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Abstract: Ordinal pattern dependence is a multivariate dependence measure based on the co-
movement of two time series. In strong connection to ordinal time series analysis, the ordinal
information is taken into account to derive robust results on the dependence between the two
processes. This article deals with ordinal pattern dependence for a long-range dependent time series
including mixed cases of short- and long-range dependence. We investigate the limit distributions
for estimators of ordinal pattern dependence. In doing so, we point out the differences that arise for
the underlying time series having different dependence structures. Depending on these assumptions,
central and non-central limit theorems are proven. The limit distributions for the latter ones can be
included in the class of multivariate Rosenblatt processes. Finally, a simulation study is provided to
illustrate our theoretical findings.

Keywords: ordinal patterns; time series; long-range dependence; multivariate data analysis; limit theorems

1. Introduction

The origin of the concept of ordinal patterns is in the theory of dynamical systems. The
idea is to consider the order of the values within a data vector instead of the full metrical
information. The ordinal information is encoded as a permutation (cf. Section 3). Already
in the first papers on the subject, the authors considered entropy concepts related to this
ordinal structure (cf. [1]). There is an interesting relationship between these concepts and
the well-known Komogorov–Sinai entropy (cf. [2,3]). Additionally, an ordinal version of
the Feigenbaum diagram has been dealt with e.g., in [4]. In [5], ordinal patterns were used
in order to estimate the Hurst parameter in long-range dependent time series. Furthermore,
Ref. [6] have proposed a test for independence between time series (cf. also [7]). Hence,
the concept made its way into the area of statistics. Instead of long patterns (or even letting
the pattern length tend to infinity), rather short patterns have been considered in this
new framework. Furthermore, ordinal patterns have been used in the context of ARMA
processes [8] and change-point detection within one time series [9]. In [10], ordinal patterns
were used for the first time in order to analyze the dependence between two time series.
Limit theorems for this new concept were proven in a short-range dependent framework
in [11]. Ordinal pattern dependence is a promising tool, which has already been used in
financial, biological and hydrological data sets, see in this context, also [12] for an analysis
of the co-movement of time series focusing on symbols. In particular, in the context of
hydrology, the data sets are known to be long-range dependent. Therefore, it is important
to also have limit theorems available in this framework. We close this gap in the present
article.

All of the results presented in this article have been established in the Ph.D. thesis of I.
Nüßgen written under the supervision of A. Schnurr.

The article is structured as follows: in the subsequent section, we provide the reader
with the mathematical framework. The focus is on (multivariate) long-range dependence.
In Section 3, we recall the concept of ordinal pattern dependence and prove our main
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results. We present a simulation study in Section 4 and close the paper by a short outlook
in Section 5.

2. Mathematical Framework

We consider a stationary d-dimensional Gaussian time series
(
Yj
)

j∈Z (for d ∈ N), with:

Yj :=
(

Y(1)
j , . . . , Y(d)

j

)t
(1)

such that E
(

Y(p)
j

)
= 0 and E

((
Y(p)

j

)2
)

= 1 for all j ∈ Z and p = 1, . . . , d. Furthermore,

we require the cross-correlation function to fulfil
∣∣∣r(p,q)(k)

∣∣∣ < 1 for p, q = 1, . . . , d and k ≥ 1,

where the component-wise cross-correlation functions r(p,q)(k) are given by r(p,q)(k) =

E
(

Y(p)
j Y(q)

j+k

)
for each p, q = 1, . . . , d and k ∈ Z. For each random vector Yj, we denote the

covariance matrix by Σd, since it is independent of j due to stationarity. Therefore, we have
Σd =

(
r(p,q)(0)

)
p,q=1,...,d

.

We specify the dependence structure of
(
Yj
)

j∈Z and turn to long-range dependence:

we assume that for the cross-correlation function r(p,q)(k) for each p, q = 1, . . . , d, it
holds that:

r(p,q)(k) = Lp,q(k)kdp+dq−1, (2)

with Lp,q(k) → Lp,q (k → ∞) for finite constants Lp,q ∈ [0, ∞) with Lp,p 6= 0, where the
matrix L =

(
Lp,q

)
p,q=1,...,d has full rank, is symmetric and positive definite. Furthermore,

the parameters dp, dq ∈
(

0, 1
2

)
are called long-range dependence parameters. Therefore,(

Yj
)

j∈Z is multivariate long-range dependent in the sense of [13], Definition 2.1.
The processes we want to consider have a particular structure, namely for h ∈ N, we

obtain for fixed j ∈ Z:

Yj,h :=
(

Y(1)
j , . . . , Y(1)

j+h−1, Y(2)
j , . . . , Y(2)

j+h−1, . . . , Y(d)
j , . . . , Y(d)

j+h−1

)t
∈ Rdh. (3)

The following relation holds between the extendend process
(

Yj,h

)
j∈Z

and the primarily

regarded process
(
Yj
)

j∈Z. For all k = 1, . . . , dh, j ∈ Z we have:

Y(k)
j,h = Yb

k−1
h c+1

j+(k mod h)−1, (4)

where bxc = max{k ∈ Z : k ≤ x}. Note that the process
(

Yj,h

)
j∈Z

is still a centered

Gaussian process since all finite-dimensional marginals of
(
Yj
)

j∈Z follow a normal distri-
bution. Stationarity is also preserved since for all p, q = 1, . . . , dh, p ≤ q and k ∈ Z, the
cross-correlation function r(p,q,h)(k) of the process

(
Yj,h

)
j∈Z

is given by

r(p,q,h)(k) = E
(

Y(p)
j,h Y(q)

j+k,h

)
= E

(
Y

⌊
p−1

h

⌋
+1

j+(p mod h)−1Y

⌊
q−1

h

⌋
+1

j+k+(q mod h)−1

)

= r(
⌊

p−1
h

⌋
+1,

⌊
q−1

h

⌋
+1)

(k + ((q− p) mod h)) (5)
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and the last line does not depend on j. The covariance matrix Σd,h of Yj,h has the follow-
ing structure:

(Σd,h) p,q=1,...,d,
p≤q

=
(

r(p,q,h)(0)
)

p,q=1,...,dh,
p≤q,

,

(Σd,h) p,q=1,...,d,
p>q

=
(

r(q,p,h)(0)
)

p,q=1,...,dh,
q<p

.

Hence, we arrive at:

Σd,h =
(

Σ(p,q)
h

)
1≤p,q≤d

, (6)

where Σ(p,q)
h = E

((
Y(p)

1 , . . . , Y(p)
h

)t(
Y(q)

1 , . . . , Y(q)
h

))
=
(

r(p,q)(i− k)
)

1≤i,k≤h
, p, q = 1, . . . , d.

Note that Σ(p,q)
h ∈ Rh×h and r(p,q)(k) = r(q,p)(−k), k ∈ Z since we are studying cross-

correlation functions.
Therefore, we finally have to show that based on the assumptions on

(
Yj
)

j∈Z, the
extended process is still long-range dependent.

Hence, we have to consider the cross-correlations again:

r(p,q,h)(k) = r(
⌊

p−1
h

⌋
+1,

⌊
q−1

h

⌋
+1)

(k + ((q− p) mod h))

= r(p∗ ,q∗)(k + m∗)

' r(p∗ ,q∗)(k) (k→ ∞), (7)

since p∗, q∗ ∈ {1, . . . , d} and m∗ ∈ {0, . . . , h− 1}, with p∗ :=
⌊

p−1
h

⌋
+ 1, q∗ :=

⌊
q−1

h

⌋
+ 1

and m∗ = (q− p) mod h.
Let us remark that ak ' bk ⇔ limk→∞

ak
bk

= 1.
Therefore, we are still dealing with a multivariate long-range dependent Gaussian

process. We see in the proofs of the following limit theorems that the crucial parameters
that determine the asymptotic distribution are the long-range dependence parameters dp,
p = 1, . . . , d of the original process

(
Yj
)

j∈Z and therefore, we omit the detailed description
of the parameters dp∗ herein.

It is important to remark that the extended process
(

Yj,h

)
j∈Z

is also long-range depen-

dent in the sense of [14], p. 2259, since:

lim
k→∞

kDr(p,q,h)(k)
L(k)

= lim
k→∞

kDr(p∗ ,q∗)(k)
L(k)

= lim
k→∞

kDLp∗ ,q∗k
dp∗+dq∗−1

L(k)
=: bp∗ ,q∗ , (8)

with:

D := min
p∗∈{1,...,d}

{1− 2dp∗} ∈ (0, 1) (9)

and L(k) can be chosen as any constant Lp,q that is not equal to zero, so for simplicity, we
assume without a loss of generality L1,1 6= 0, and therefore, L(k) = L1,1, since the condition
in [14] only requires convergence to a finite constant bp∗ ,q∗ . Hence, we may apply the
results in [14] in the subsequent results.

We define the following set, which is needed in the proofs of the theorems of this section.
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P∗ := {p ∈ {1, . . . , d} : dp ≥ dq, for all q ∈ {1, . . . , d}} (10)

and denote the corresponding long-range dependence parameter to each p ∈ P∗ by

d∗ := dp, p ∈ P∗.

We briefly recall the concept of Hermite polynomials as they play a crucial role in
determining the limit distribution of functionals of multivariate Gaussian processes.

Definition 1. (Hermite polynomial, [15], Definition 3.1)
The j-th Hermite polynomial Hj(x), j = 0, 1, . . ., is defined as

Hj(x) := (−1)j exp
(

x2

2

)
dj

dxj exp
(
− x2

2

)
.

Their multivariate extension is given by the subsequent definition.

Definition 2. (Multivariate Hermite polynomial, [15], p. 122)
Let d ∈ N. We define as d-dimensional Hermite polynomial:

Hk(x) := Hk1,...,kd
(x) := Hk1,...,kd

(x1, . . . , xd) =
d

∏
j=1

Hkj

(
xj
)
,

with k = (k1, . . . , kd) ∈ Nd
0 \ {(0, . . . , 0)}.

Let us remark that the case k = (0, . . . , 0) is excluded here due to the assumption
E( f (X)) = 0.

Analogously to the univariate case, the family of multivariate Hermite polynomials{
Hk1,...,kd

, k1, . . . , kd ∈ N
}

forms an orthogonal basis of L2
(
Rd, ϕId

)
, which is defined

as

L2
(
Rd, ϕId

)
:=
{

f : Rd → R,
∫
Rd

f 2(x1, . . . , xd)ϕ(x1) . . . ϕ(xd)dxd . . . dx1 < ∞
}

.

The parameter ϕId denotes the density of the d-dimensional standard normal dis-
tribution, which is already divided into the product of the univariate densities ϕ in the
formula above.

We denote the Hermite coefficients by

C( f , X, k) := C( f , Id, k) := 〈 f , Hk〉 = E( f (X)Hk(X)).

The Hermite rank m( f , Id) of f with respect to the distribution N (0, Id) is defined as
the largest integer m, such that:

E
(

f (X)
d

∏
j=1

Hkj

(
X(j)

))
= 0 for all 0 < k1 + . . . kd < m.

Having these preparatory results in mind, we derive the multivariate Hermite expan-
sion given by

f (X)−E f (X) = ∑
k1+...+kd≥m( f ,Id)

C( f , X, k)
k1! . . . kd!

d

∏
j=1

Hkj

(
X(j)

)
. (11)
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We focus on the limit theorems for functionals with Hermite rank 2. First, we introduce
the matrix-valued Rosenblatt process. This plays a crucial role in the asymptotics of
functionals with Hermite rank 2 applied to multivariate long-range dependent Gaussian
processes. We begin with the definition of a multivariate Hermitian–Gaussian random
measure B̃(dλ) with independent entries given by

B̃(dλ) =
(

B̃(1)(dλ), . . . , B̃(d)(dλ)
)t

, (12)

where B̃(p)(dλ) is a univariate Hermitian–Gaussian random measure as defined in [16],
Definition B.1.3. The multivariate Hermitian–Gaussian random measure B̃(dλ) satisfies:

E
(

B̃(dλ)
)
= 0,

E
(

B̃(dλ)B̃(dλ)∗
)
= Id dλ

and:

E
(

B̃(p)(dλ1)B̃(q)(dλ2)
)
= 0, |λ1| 6= |λ2|, p, q = 1, . . . , d,

where B̃(dλ)∗ =
(

B(1)(dλ), . . . , B(d)(dλ)
)

denotes the Hermitian transpose of B̃(dλ).
Thus, following [14], Theorem 6, we can state the spectral representation of the matrix-
valued Rosenblatt process Z2,H(t), t ∈ [0, 1] as

Z2,H(t) =
(

Z(p,q)
2,H (t)

)
p,q=1,...,d

where each entry of the matrix is given by

Z(p,q)
2,H (t) =

∫ ′′
R2

exp(it(λ1 + λ2))− 1
i(λ1 + λ2)

B̃(p)(dλ1)B̃(q)(dλ2).

The double prime in
∫ ′′
R2 excludes the diagonals |λi| =

∣∣λj
∣∣, i 6= j in the integration.

For details on multiple Wiener-Itô integrals, as can be seen in [17].
The following results were taken from [18], Section 3.2. The corresponding proofs

were outsourced to the Appendix A.

Theorem 1. Let
(
Yj
)

j∈Z be a stationary Gaussian process as defined in (1) that fulfils (2) for

dp ∈
(

1
4 , 1

2

)
, p = 1 . . . , d. For h ∈ N we fix:

Yj,h :=
(

Y(1)
j , . . . , Y(1)

j+h−1, . . . , Y(d)
j , . . . , Y(d)

j+h−1

)t
∈ Rdh

with Yj,h ∼ N (0, Σd,h) and Σd,h as described in (6). Let f : Rdh → R be a function with Hermite
rank 2 such that the set of discontinuity points D f is a Null set with respect to the dh-dimensional

Lebesgue measure. Furthermore, we assume f fulfills E
(

f 2
(

Yj,h

))
< ∞. Then:

n−2d∗(C2)
− 1

2

n

∑
j=1

(
f
(

Y(1)
j , . . . , Y(d)

j+h−1

)
−E

(
f
(

Y(1)
j , . . . , Y(d)

j+h−1

)))
D−→ ∑

p,q∈P∗
α̃(p,q)Z(p,q)

2,d∗+1/2(1), (13)
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where:

Z(p,q)
2,d∗+1/2(1) = Kp,q(d∗)

∫ ′′
R2

exp(i(λ1 + λ2))− 1
i(λ1 + λ2)

|λ1λ2|−d∗ B̃(p)
L (dλ1)B̃(q)

L (dλ2).

The matrix K(d∗) is a normalizing constant, as can be seen in [18], Corollary 3.6. Moreover,
B̃L(dλ) is a multivariate Hermitian–Gaussian random measure with E(BL(dλ)BL(dλ)∗) = L dλ
and L as defined in (2). Furthermore, C2 := 1

2d∗(4d∗−1) is a normalizing constant and:

α̃(p,q) :=
h

∑
i,k=1

α
(p,q)
i,k

where α
(p,q)
i,k = αi+(p−1)h,k+(q−1)h for each p, q ∈ P∗ and i, k = 1, . . . , h and:

(αi,k)1≤i,k≤dh = Σ−1
d,hCΣ−1

d,h

where C denotes the matrix of second order Hermite coefficients, given by

C = (ci,k)1≤i,k≤dh = E
(

Y1,h( f (Y1,h)−E( f (Y1,h)))Yt
1,h

)
.

It is possible to soften the assumptions in Theorem 1 to allow for mixed cases of short-
and long-range dependence.

Corollary 1. Instead of demanding in the assumptions of Theorem 1 that (2) holds for
(
Yj
)

j∈Z with

the addition that for all p = 1, . . . , d we have dp ∈
(

1
4 , 1

2

)
, we may use the following condition.

We assume that:

r(p,q)(k) = kdp+dq−1Lp,q(k) (k→ ∞)

with Lp,q(k) as given in (2), but we do no longer assume dp ∈
(

1
4 , 1

2

)
for all p = 1, . . . , d but soften

the assumption to d∗ ∈
(

1
4 , 1

2

)
and for dp 6= d∗, p = 1, . . . , d we allow for dp ∈ (−∞, 0)∪

(
0, 1

4

]
.

Then, the statement of Theorem 1 remains valid.

However, with a mild technical assumption on the covariances of the one-dimensional
marginal Gaussian processes that is often fulfilled in applications, there is another way
of normalizing the partial sum on the right-hand side in Theorem 1, this time explicitly
for the case #P∗ = 2 and h ∈ N, such that the limit can be expressed in terms of two
standard Rosenblatt random variables. This yields the possibility of further studying the
dependence structure between these two random variables. In the following theorem, we
assume #P∗ = d = 2 for the reader’s convenience.

Theorem 2. Under the same assumptions as in Theorem 1 with #P∗ = d = 2 and d∗ ∈
(

1
4 , 1

2

)
and the additional condition that r(1,1)(l) = r(2,2)(l), for l = 0, . . . , h − 1, and L1,1 + L2,2 6=
L1,2 + L2,1, it holds that:

n−2d∗(C2)
− 1

2

n

∑
j=1

(
f
(

Y(1)
j , . . . , Y(d)

j+h−1

)
−E f

(
Y(1)

j , . . . , Y(d)
j+h−1

))
D−→
(

α̃(1,1) − α̃(1,2)
) L2,2 − L2,1 − L1,2 + L1,1

2
Z∗2,d∗+1/2(1)

+
(

α̃(1,1) + α̃(1,2)
) L2,2 + L2,1 + L1,2 + L1,1

2
Z∗∗2,d∗+1/2(1)
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with C2 := 1
2d∗(4d∗−1) being the same normalizing factor as in Theorem 1, (αi,k)1≤i,k≤dh =

Σ−1
d,hCΣ−1

d,h and C = (ci,k)1≤i,k≤dh = E
(

Y1,h( f (Y1,h)−E f (Y1,h))Yt
1,h

)
. Note that Z∗2,d∗+1/2(1)

and Z∗∗2,d∗+1/2(1) are both standard Rosenblatt random variables whose covariance is given by

Cov
(

Z∗2,d∗+1/2(1), Z∗∗2,d∗+1/2(1)
)
=

(L2,2 − L1,1)
2

(L1,1 + L2,2)
2 − (L1,2 + L2,1)

2 . (14)

3. Ordinal Pattern Dependence

Ordinal pattern dependence is a multivariate dependence measure that compares
the co-movement of two time series based on the ordinal information. First introduced
in [10] to analyze financial time series, a mathematical framework including structural
breaks and limit theorems for functionals of absolutely regular processes has been built
in [11]. In [19], the authors have used the so-called symbolic correlation integral in order
to detect the dependence between the components of a multivariate time series. Their
considerations focusing on testing independence between two time series are also based on
ordinal patterns. They provide limit theorems in the i.i.d.-case and otherwise use bootstrap
methods. In contrast, in the mathematical model in the present article, we focus on
asymptotic distributions of an estimator of ordinal pattern dependence having a bivariate
Gaussian time series in the background but allowing for several dependence structures
to arise. As it will turn out in the following, this yields central but also non-central limit
theorems.

We start with the definition of an ordinal pattern and the basic mathematical frame-
work that we need to build up the ordinal model.

Let Sh denote the set of permutations in {0, . . . , h}, h ∈ N0 that we express as (h + 1)-
dimensional tuples, assuring that each tuple contains each of the numbers above exactly
once. In mathematical terms, this yields:

Sh =
{

π ∈ Nh+1
0 : 0 ≤ πi ≤ h, and πi 6= πk, whenever i 6= k, i, k = 0, . . . , h

}
,

as can be seen in [11], Section 2.1.
The number of permutations in Sh is given by #Sh = (h + 1)!. In order to get a better

intuitive understanding of the concept of ordinal patterns, we have a closer look at the
following example, before turning to the formal definition.

Example 1. Figure 1 provides an illustrative understanding of the extraction of an ordinal pattern
from a data set. The data points of interest are colored in red and we consider a pattern of length
h = 3, which means that we have to take n = 4 data points into consideration. We fix the points in
time t0, t1, t2 and t3 and extract the data points from the time series. Then, we search for the point
in time which exhibits the largest value in the resulting data and write down the corresponding
time index. In this example, it was given by t = t1. We order the data points by writing the time
position of the largest value as the first entry, the time position of the second largest as the second
entry, etc. Hence, the absolute values are ordered from largest to smallest and the ordinal pattern
(1, 0, 3, 2) ∈ S3 is obtained for the considered data points.

t

x t ⇒

t0 t1 t2 t3

t0

⇒ (1, 0, 3, 2)

Figure 1. Example of the extraction of an ordinal pattern of a given data set.
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Formally, the aforementioned procedure can be defined as follows, as can be seen
in [11], Section 2.1.

Definition 3. As the ordinal pattern of a vector x = (x0, . . . , xh) ∈ Rh+1, we define the unique
permutation π = (π0, . . . , πh) ∈ Sh:

Π(x) = Π(x0, . . . , xh) = (π0, . . . , πh),

such that:

xπ0 ≥ . . . ≥ xπh ,

with πi−1 < πi if xπi−1 = xπi , i = 1, . . . , h.

The last condition assures the uniqueness of π if there are ties in the data sets. In
particular, this condition is necessary if real-world data are to be considered.

In Figure 2, all ordinal patterns of length h = 2 are shown. As already mentioned in
the introduction, from the practical point of view, a highly desirable property of ordinal
patterns is that they are not affected by monotone transformations, as can be seen in [5],
p. 1783.

(2, 1, 0) (0, 1, 2) (0, 2, 1) (2, 0, 1) (1, 0, 2) (1, 2, 0)

Figure 2. Ordinal patterns for h = 2.

Mathematically, this means that if f : R→ R is strictly monotone, then:

Π(x0, . . . , xh) = Π( f (x0), . . . , f (xh)). (15)

In particular, this includes linear transformations f (x) = ax + b, with a ∈ R+ and
b ∈ R.

Following [11], Section 1, the minimal requirement of the data sets we use for ordinal
analysis in the time series context, i.e., for ordinal pattern probabilities as well as for
ordinal pattern dependence later on, is ordinal pattern stationarity (of order h). This property
implies that the probability of observing a certain ordinal pattern of length h remains
the same when shifting the moving window of length h through the entire time series
and is not depending on the specific points in time. In the course of this work, the time
series, in which the ordinal patterns occur, always have either stationary increments or are
even stationary themselves. Note that both properties imply ordinal pattern stationarity.
The reason why requiring stationary increments is a sufficient condition is given in the
following explanation.

One fundamental property of ordinal patterns is that they are uniquely determined
by the increments of the considered time series. As one can imagine in Example 1, the
knowledge of the increments between the data points is sufficient to obtain the correspond-
ing ordinal pattern. In mathematical terms, we can define another mapping Π̃, which
assigns the corresponding ordinal pattern to each vector of increments, as can be seen in [5],
p. 1783.

Definition 4. We define for y = (y1, . . . , yh) ∈ Rh the mapping Π̃ : Rh → Sh:

Π̃(y1, . . . , yh) := Π(0, y1, y1 + y2, . . . , y1 + . . . + yh),
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such that for yi = xi − xi−1, i = 1, . . . , h, we obtain:

Π̃(y1, . . . , yh) = Π(0, y1, y1 + y2, . . . , y1 + . . . + yh)

= Π(0, x1 − x0, x2 − x0, . . . , xh − x0)

= Π(x0, x1, x2, . . . , xh).

We define the two mappings, following [5], p. 1784:

S : Sh → Sh, (π0, . . . , πh)→ (πh, . . . , π0),

T : Sh → Sh, (π0, . . . , πh)→ (h− π0, . . . , h− πh).

An illustrative understanding of these mappings is given as follows. The mapping
S(π), which is the spatial reversion of the pattern π, is the reflection of π on a horizontal
line, while T (π), the time reversal of π, is its reflection on a vertical line, as one can observe
in Figure 3.

π = (1, 3, 2, 0) T (π) = (2, 0, 1, 3)

S(π) = (0, 2, 3, 1) T ◦ S(π) = (3, 1, 0, 2)

Figure 3. Space and time reversion of the pattern π = (1, 3, 2, 0).

Based on the spatial reversion, we define a possibility to divide Sh into two disjoint sets.

Definition 5. We define S∗h as a subset of Sh with the property that for each π ∈ Sh, either π or
S(π) are contained in the set, but not both of them.

Note that this definition does not yield the uniqueness of S∗h .

Example 2. We consider the case h = 2 again and we want to divide S2 into a possible choice of S∗2
and the corresponding spatial reversal. We choose S∗2 = {(2, 1, 0), (2, 0, 1), (1, 2, 0)}, and therefore,
S2 \ S∗2 = {(0, 1, 2), (1, 0, 2), (0, 2, 1)}. Remark that S∗2 = {(0, 1, 2), (2, 0, 1), (1, 2, 0)} is also a
possible choice. The only condition that has to be satisfied is that if one permutation is chosen for S∗2 ,
then its spatial reverse must not be an element of this set.

We stick to the formal definition of ordinal pattern dependence, as it is proposed
in [11], Section 2.1. The considered moving window consists of h + 1 data points, and
hence, h increments. We define:

p : = pX(1),X(2) := P
(

Π
(

X(1)
0 , . . . , X(1)

h

)
= Π

(
X(2)

0 , . . . , X(2)
h

))
(16)

and:

q : = qX(1),X(2) := ∑
π∈Sh

P
(

Π
(

X(1)
0 , . . . , X(1)

h

)
= π

)
P
(

Π
(

X(2)
0 , . . . , X(2)

h

)
= π

)
.
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Then, we define ordinal pattern dependence OPD as

OPD := OPDX(1),X(2) :=
p− q
1− q

. (17)

The parameter q represents the hypothetical case of independence between the two
time series. In this case, p and q would obtain equal values and therefore, OPD would
equal zero. Regarding the other extreme, the case in which both processes coincide or
one is a strictly monotone increasing transform of the other one, we obtain the value 1.
However, in the following, we assume p ∈ (0, 1) and q ∈ (0, 1).

Note that the definition of ordinal pattern dependence in (17) only measures posi-
tive dependence. This is no restriction in practice, because negative dependence can be
investigated in an analogous way, by considering OPDX(1),−X(2) . If one is interested in both

types of dependence simultaneously, in [11], the authors propose to use
(

OPDX(1),X(2)

)
+
−(

OPDX(1),−X(2)

)
+

. To keep the notation simple, we focus on OPD as it is defined in (17).

We compare whether the ordinal patterns in
(

X(1)
j

)
j∈Z

coincide with the ones in(
X(2)

j

)
j∈Z

. Recall that it is an essential property of ordinal patterns that they are uniquely

determined by the increment process. Therefore, we have to consider the increment
processes

(
Yj
)

j∈Z =
((

Y(1)
j , Y(2)

j

))
j∈Z

as defined in (1) for d = 2, where Y(p)
j = X(p)

j −

X(p)
j−1, p = 1, 2. Hence, we can also express p and q (and consequently OPD) as a probability

that only depends on the increments of the considered vectors of the time series. Recall the
definition of

(
Yj,h

)
j∈Z

for d = 2, given by

Yj,h =
(

Y(1)
j , . . . , Y(1)

j+h−1, Y(2)
j , . . . , Y(2)

j+h−1

)t
,

such that Yj,h ∼ N (0, Σ2,h) with Σ2,h as given in (6).
In the course of this article, we focus on the estimation of p. For a detailed investigation

of the limit theorems for estimators of OPD, we refer to [18]. We define the estimator of
p, the probability of coincident patterns in both time series in a moving window of fixed
length, by

p̂n =
1

n− h

n−h−1

∑
j=0

1{
Π
(

X(1)
j ,...,X(1)

j+h

)
=Π

(
X(2)

j ,...,X(2)
j+h

)}

=
1

n− h

n−h

∑
j=1

1{
Π̃
(

Y(1)
j ,...,Y(1)

j+h−1

)
=Π̃

(
Y(2)

j ,...,Y(2)
j+h−1

)},

where:

Π̃(Y1, . . . , Yh) : = Π(0, Y1, Y1 + Y2, . . . , Y1 + . . . + Yh)

= Π(0, X1 − X0, . . . , Xh − X0)

= Π(X0, X1, . . . , Xh).

Figure 4 illustrates the way ordinal pattern dependence is estimated by p̂n. The
patterns of interest that are compared in each moving window are colored in red.
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Figure 4. Illustration of estimation of ordinal pattern dependence.

Having emphasized the crucial importance of the increments, we define the following
conditions on the increment process

(
Yj
)

j∈Z: let
(
Yj
)

j∈Z be a bivariate, stationary Gaussian

process with Y(p)
j ∼ N (0, 1), p = 1, 2:

(L) We assume that
(
Yj
)

j∈Z fulfills (2) with d∗ in
(

1
4 , 1

2

)
. We allow for min{d1, d2} to

be in the range (−∞, 0) ∪
(

0, 1
4

]
.

(S) We assume d1, d2 ∈ (−∞, 0) ∪
(

0, 1
4

)
such that the cross-correlation function of(

Yj
)

j∈Z fulfills for p, q = 1, 2:

r(p,q)(k) = kdp+dq−1Lp,q(k) (k→ ∞)

with Lp,q(k)→ Lp,q and Lp,q ∈ R holds.

Furthermore, in both cases, it holds that
∣∣∣r(p,q)(k)

∣∣∣ < 1 for p, q = 1, 2 and k ≥ 1 to
exclude ties.

We begin with the investigation of the asymptotics of p̂n. First, we calculate the Her-
mite rank of p̂n, since the Hermite rank determines for which ranges of d∗ the estimator p̂n
is still long-range dependent. Depending on this range, different limit theorems may hold.

Lemma 1. The Hermite rank of f (Yj,h) = 1{
Π̃
(

Y(1)
j+1,...,Y(1)

j+h

)
=Π̃

(
Y(2)

j+1,...,Y(2)
j+h

)} with respect to Σ2,h

is equal to 2.

Proof. Following [20], Lemma 5.4 it is sufficient to show the following two properties:

(i) m( f , Σ2,h) ≥ 2,
(ii) m( f , I2,h) ≤ 2.

Note that the conclusion is not trivial, because m( f , Σ2,h) 6= m( f , I2,h) in general,
as can be seen in [15], Lemma 3.7. Lemma 5.4 in [20] can be applied due to the following
reasoning. Ordinal patterns are not affected by scaling, therefore, the technical condition
that Σ−1

2,h − I2,h is positive semidefinite is fulfilled in our case. We can scale the standard
deviation of the random vector Yj,h by any positive real number σ > 0 since for all j ∈ Z
we have: {

Π̃
(

Y(1)
j , . . . , Y(1)

j+h−1

)
= Π̃

(
Y(2)

j , . . . , Y(2)
j+h−1

)}
=
{

Π̃
(

σY(1)
j , . . . , σY(1)

j+h−1

)
= Π̃

(
σY(2)

j , . . . , σY(2)
j+h−1

)}
.



Entropy 2021, 23, 670 12 of 37

To show property (i), we need to consider a multivariate random vector:

Y1,h :=
(

Y(1)
1 , . . . , Y(1)

h , Y(2)
1 , . . . , Y(2)

h

)t

with covariance matrix Σ2,h. We fix i = 1, . . . , 2h. We divide the set Sh into disjoint sets,
namely into S∗h , as defined in Definition 5 and the complimentary set Sh \ S∗h . Note that:

−Yj,h
D
= Yj,h

holds. This implies:

E
(

Y(i)
j,h 1{

Π̃
(

Y(1)
1 ,...,Y(1)

h

)
=Π̃

(
Y(2)

1 ,...,Y(2)
h

)
=π
}) = −E

(
Y(i)

j,h 1{
Π̃
(

Y(1)
1 ,...,Y(1)

h

)
=Π̃

(
Y(2)

1 ,...,Y(2)
h

)
=S(π)

})
for π ∈ Sh. Hence, we arrive at:

E
(

Y(i)
j,h f (Yj,h)

)
= E

(
Y(i)

j,h 1{
Π̃
(

Y(1)
1 ,...,Y(1)

h

)
=Π̃

(
Y(2)

1 ,...,Y(2)
h

)})
= ∑

π∈Sh

E
(

Y(i)
j,h 1{

Π̃
(

Y(1)
1 ,...,Y(1)

h

)
=Π̃

(
Y(2)

1 ,...,Y(2)
h

)
=π
})

= ∑
π∈S∗h

E
(

Y(i)
j,h 1{

Π̃
(

Y(1)
1 ,...,Y(1)

h

)
=Π̃

(
Y(2)

1 ,...,Y(2)
h

)
=π
})

− ∑
π∈Sh\S∗h

E
(

Y(i)
j,h 1{

Π̃
(

Y(1)
1 ,...,Y(1)

h

)
=Π̃

(
Y(2)

1 ,...,Y(2)
h

)
=S(π)

})
= 0

for i = 1, . . . , 2h.
Consequently, m( f , Σ2,h) ≥ 2.
In order to prove (ii), we consider:

U1,h :=
(

U(1)
1 , . . . , U(1)

h , U(2)
1 , . . . , U(2)

h

)t

to be a random vector with independent N (0, 1) distributed entries. For i = 1, . . . , h and
k = h + 1, . . . , 2h such that k− h = i, we obtain:

E
(

U(i)
1,hU(k)

1,h f (U1,h)
)
= E

(
U(1)

i U(2)
k−h1{

Π̃
(

U(1)
1 ,...,U(1)

h

)
=Π̃

(
U(2)

1 ,...,U(2)
h

)})
= ∑

π∈Sh

E
(

U(1)
i U(2)

i 1{
Π̃
(

U(1)
1 ,...,U(1)

h

)
=Π̃

(
U(2)

1 ,...,U(2)
h

)
=π
})

= ∑
π∈Sh

(
E
(

U(1)
i 1{

Π̃
(

U(1)
1 ,...,U(1)

h

)
=π
}))2

6= 0,

since E
(

U(1)
i 1{

Π̃
(

U(1)
1 ,...,U(1)

h

)
=π
}) 6= 0 for all π ∈ Sh. This was shown in the proof of

Lemma 3.4 in [20].
All in all, we derive m( f , Σ2,h) = 2 and hence, have proven the lemma.

The case m( f , Σ2,h) = 2 exhibits the property that the standard range of the long-range

dependence parameter d∗ ∈
(

0, 1
2

)
has to be divided into two different sets. If d∗ ∈

(
1
4 , 1

2

)
,

the transformed process f
(

Yj,h

)
j∈Z

is still long-range dependent, as can be seen in [16],
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Table 5.1. If d∗ ∈
(

0, 1
4

)
, the transformed process is short-range dependent, which means

by definition that the autocorrelations of the transformed process are summable, as can be
seen in [13], Remark 2.3. Therefore, we have two different asymptotic distributions that
have to be considered for the estimator p̂n of coincident patterns.

3.1. Limit Theorem for the Estimator of p in Case of Long-Range Dependence

First, we restrict ourselves to the case that at least one of the two parameters d1 and d2

is in
(

1
4 , 1

2

)
. This assures d∗ ∈

(
1
4 , 1

2

)
. We explicitly include mixing cases where the process

corresponding to min{d1, d2} is allowed to be long-range as well as short-range dependent.
Note that this setting includes the pure long-range dependence case, which means

that for p = 1, 2, we have dp ∈
(

1
4 , 1

2

)
, or even d1 = d2 = d∗. However, in general, the

assumptions are lower, such that we only require dp ∈
(

1
4 , 1

2

)
for either p = 1 or p = 2 and

the other parameter is also allowed to be in (−∞, 0) or
(

0, 1
4

)
.

We can, therefore, apply the results of Corollary 1 and obtain the following asymptotic
distribution for p̂n:

Theorem 3. Under the assumption in (L), we obtain:

n1−2d∗(C2)
− 1

2 ( p̂n − p) D−→ ∑
p,q∈P∗

α̃(p,q)Z(p,q)
2,d∗+1/2(1) (18)

with Z(p,q)
2,d∗+1/2(1) as given in Theorem 1 for p, q ∈ P∗ and C2 := 1

2d∗(4d∗−1) being a normalizing
constant. We have:

α̃(p,q) :=
h

∑
i,k=1

α
(p,q)
i,k , where α

(p,q)
i,k = αi+(p−1)h,k+(q−1)h,

for each p, q ∈ P∗ and i, k = 1, . . . , h and (αi,k)1≤i,k≤dh = Σ−1
2,hCΣ−1

2,h , where the variable:

C = (ci,k)1≤i,k≤2h = E
(

Y1,h

(
1{

Π̃
(

Y(1)
1 ,...,Y(1)

h

)
=Π̃

(
Y(2)

1 ,...,Y(2)
h

)} − p
)

Yt
1,h

)
denotes the matrix of second order Hermite coefficients.

Proof. The proof of this theorem is an immediate application of the Corollary 1 and
Lemma 1. Note that for p̂n it holds that it is square integrable with respect to Yj,h and that
the set of discontinuity points is a Null set with respect to the 2h-dimensional Lebesgue
measure. This is shown in [18], Equation (4.5).

Following Theorem 2, we are also able to express the limit distribution above in terms
of two standard Rosenblatt random variables by modifying the weighting factors in the
limit distribution. Note that this requires slightly stronger assumptions as in Theorem 1.

Theorem 4. Let (L) hold with d1 = d2. Additionally, we assume that r(1,1)(l) = r(2,2)(l), for
l = 0, . . . , h− 1, and L1,1 + L2,2 6= L1,2 + L2,1. Then, we obtain:

n1−2d∗(C2)
− 1

2 ( p̂n − p) D−→
(

α̃(1,1) − α̃(1,2)
) L2,2 − L2,1 − L1,2 + L1,1

2
Z∗2,d∗+1/2(1)

+
(

α̃(1,1) + α̃(1,2)
) L2,2 + L2,1 + L1,2 + L1,1

2
Z∗∗2,d∗+1/2(1),
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with C2 and α̃(p,q) as given in Theorem 3. Note that Z∗2,d∗+1/2(1) and Z∗∗2,d∗+1/2(1) are both
standard Rosenblatt random variables, whose covariance is given by

Cov
(

Z∗2,d∗+1/2(1), Z∗∗2,d∗+1/2(1)
)
=

(L2,2 − L1,1)
2

(L1,1 + L2,2)
2 − (L1,2 + L2,1)

2 . (19)

Remark 1. Following [18], Corollary 3.14, if additionally r(1,1)(k) = r(2,2)(k) and r(1,2)(k) =
r(2,1)(k) is fulfilled for all k ∈ Z, then the two limit random variables following a standard
Rosenblatt distribution in Theorem 4 are independent. Note that due to the considerations in [21],
Equation (10), we know that the distribution of the sum of two independent standard Rosenblatt
random variables is not standard Rosenblatt. However, this yields a computational benefit, as it
is possible to efficiently simulate the standard Rosenblatt distribution, for details, as can be seen
in [21].

We turn to an example that deals with the asymptotic variance of the estimator of p in
Theorem 3 in the case h = 1.

Example 3. We focus on the case h = 1 and consider the underlying process
(
Yj,1
)

j∈Z =(
Y(1)

j , Y(2)
j

)
j∈Z

. It is possible to determine the asymptotic variance depending on the correla-

tion r(1,2)(0) between these two increment variables.
We start with the calculation of the second order Hermite coefficients in the case π = (1, 0).

This corresponds to the event
{

Y(1)
j ≥ 0, Y(2)

j ≥ 0
}

, which yields:

cπ,2
1,1 = E

(((
Y(1)

j

)2
− 1
)

1{
Y(1)

j ≥0,Y(2)
j ≥0

})
and:

cπ,2
1,2 = E

((
Y(1)

j Y(2)
j

)
1{

Y(1)
j ≥0,Y(2)

j ≥0
}).

Due to r(1,2)(0) = r(2,1)(0), we have
(

Y(1)
j , Y(2)

j

) D
=
(

Y(2)
j , Y(1)

j

)
and therefore, cπ,2

1,1 = cπ,2
2,2 .

We identify the second order Hermite coefficients as the ones already calculated in [20], Example 3.13,
although we are considering two consecutive increments of a univariate Gaussian process there.
However, since the corresponding values are only determined by the correlation between the Gaussian
variables, we can simply replace the autocorrelation at lag 1 by the cross-correlation at lag 0. Hence,
we obtain:

cπ,2
1,1 = ϕ2(0)r(1,2)(0)

√
1−

(
r(1,2)(0)

)2,

cπ,2
1,2 = ϕ2(0)

√
1−

(
r(1,2)(0)

)2.

Recall that the inverse Σ−1
2,1 =

(
gi,j
)

i,j=1,2 of the correlation matrix of
(

Y(1)
j , Y(2)

j

)
is given by

Σ−1
2,1 =

1

1−
(
r(1,2)(0)

)2

(
1 −r(1,2)(0)

−r(1,2)(0) 1

)
.

By using the formula for α̃(p,q) obtained in [18], Equation (4.23), we derive:

α̃
(1,1)
π,2 = απ,2

1,1 =
(

g2
1,1 + g2

1,2

)
cπ,2

1,1 + 2g1,1g1,2cπ,2
1,2 ,

α̃
(1,2)
π,2 = απ,2

1,2 =
(

g2
1,1 + g2

1,2

)
cπ,2

1,2 + 2g1,1g1,2cπ,2
1,1 .
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Plugging the second order Hermite coefficients and the entries of the inverse of the covariance
matrix depending on r(1,2)(0) into the formulas, we arrive at:

α̃
(1,1)
π,2 =

−ϕ2(0)r(1,2)(0)(
1−

(
r(1,2)(0)

)2
)1/2

and:

α̃
(1,2)
π,2 =

ϕ2(0)(
1−

(
r(1,2)(0)

)2
)1/2 .

Therefore, in the case h = 1, we obtain the following factors in the limit variance in Theorem 3:

α̃(1,1) = α̃(2,2) =
−2ϕ2(0)r(1,2)(0)(

1−
(
r(1,2)(0)

)2
)1/2

α̃(1,2) = α̃(2,1) =
2ϕ2(0)(

1−
(
r(1,2)(0)

)2
)1/2 .

Remark 2. It is not possible to analytically determine the limit variance for h = 2, as this includes
orthant probabilities of a four-dimensional Gaussian distribution. Following [22], no closed formulas
are available for these probabilities. However, there are fast algorithms at hand that calculate the limit
variance efficiently. It is possible to take advantage of the symmetry properties of the multivariate
Gaussian distribution to keep the computational cost of these algorithms low. For detail, as can be
seen in [18], Section 4.3.1.

3.2. Limit Theorem for the Estimator of p in Case of Short-Range Dependence

In this section, we focus on the case of d∗ ∈ (−∞, 0) ∪
(

0, 1
4

)
. If d∗ ∈

(
0, 1

4

)
, we

are still dealing with a long-range dependent multivariate Gaussian process
(

Yj,h

)
j∈Z

.

However, the transformed process p̂n − p is no longer long-range dependent, since we
are considering a function with Hermite rank 2, see also [16], Table 5.1. Otherwise, if
d∗ ∈ (−∞, 0), the process

(
Yj,h

)
j∈Z

itself is already short-range dependent, since the cross-

correlations are summable. Therefore, we obtain the following central limit theorem by
applying Theorem 4 in [14].

Theorem 5. Under the assumptions in (S), we obtain:

n
1
2 ( p̂n − p) D−→ N

(
0, σ2

)
with:

σ2 =
∞

∑
k=−∞

E
[(

1{
Π̃
(

Y(1)
1 ,...,Y(1)

h

)
=Π̃

(
Y(2)

1 ,...,Y(2)
h

)} − p
)

×
(

1{
Π̃
(

Y(1)
1+k ,...,Y(1)

h+k

)
=Π̃

(
Y(2)

1+k ,...,Y(2)
h+k

)} − p
)]

.

We close this section with a brief retrospect of the results obtained. We established limit
theorems for the estimator of p as probability of coincident pattern in both time series and
hence, on the most important parameter in the context of ordinal pattern dependence. The
long-range dependent case as well as the mixed case of short- and long-range dependence
was considered. Finally, we provided a central limit theorem for a multivariate Gaussian



Entropy 2021, 23, 670 16 of 37

time series that is short-range dependent if transformed by p̂n. In the subsequent section,
we provide a simulation study that illustrates our theoretical findings. In doing so, we
shed light on the Rosenblatt distribution and the distribution of the sum of Rosenblatt
distributed random variables.

4. Simulation Study

We begin with the generation of a bivariate long-range dependent fractional Gaussian
noise series

(
Y(1)

j , Y(2)
j

)
j=1,...,n

.

First, we simulate two independent fractional Gaussian noise processes
(

U(1)
j

)
j=1,...,n

and
(

U(2)
j

)
j=1,...,n

derived by the R-package “longmemo”, for a fixed parameter H ∈
(

1
2 , 1
)

in both time series. For the reader’s convenience, we denote the long-range dependence
parameter d by H = d + 1

2 as it is common, when dealing with fractional Gaussian noise
and fractional Brownian motion. We refer to H as Hurst parameter, tracing back to the work
of [23]. For H = 0.7 and H = 0.8 we generate n = 106 samples, for H = 0.9, we choose
n = 2 · 106. We denote the correlation function of univariate fractional Gaussian noise by
r(1,1)

H (k), k ≥ 0. Then, we obtain
(

Y(1)
j , Y(2)

j

)
j

for j = 1, . . . , n:

Y(1)
j = U(1)

j ,

Y(2)
j = ψU(1)

j + φU(2)
j , (20)

for ψ, φ ∈ R.
Note that this yields the following properties for the cross-correlations of the two

processes for k ≥ 0:

r(1,2)
H (k) = E

(
Y(1)

j Y(2)
j+k

)
= ψr(1,1)

H (k)

r(2,1)
H (k) = r(1,2)(−k) = ψr(1,1)

H (k)

r(2,2)
H (k) = E

(
Y(2)

j Y(2)
j+k

)
=
(

ψ2 + φ2
)

r(1,1)
H (k).

We use ψ = 0.6 and φ = 0.8 to obtain unit variance in the second process.
Note that we chose the same Hurst parameter in both processes to get a better simu-

lation result. The simulations of the processes
(

Y(1)
j

)
j∈Z

and
(

Y(2)
j

)
j∈Z

are visualized in

Figure 5. On the left-hand side, the different fractional Gaussian noises depending on the
Hurst parameter H are displayed. They represent the stationary long-range dependent
Gaussian increment processes we need in the view of the limit theorems we derived in
Section 3. The processes in which we are comparing the coincident ordinal patterns, namely(

X(1)
j

)
j∈Z

and
(

X(2)
j

)
j∈Z

, are shown on the right-hand side in Figure 5. The long-range de-

pendent behavior of the increment processes is very illustrative in these processes: roughly
speaking, they become smoother the larger the Hurst parameter gets.
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Figure 5. Plots of 500 data points of one path of two dependent fractional Gaussian noise processes (left) and the paths of
the corresponding fractional Brownian motions (right) for different Hurst parameters: H = 0.7 (top), H = 0.8 (middle),
H = 0.9 (bottom).

We turn to the simulation results for the asymptotic distribution of the estimator
p̂n. The first limit theorem is given in Theorem 3 for H = 0.8 and H = 0.9. In the case
of H = 0.7, a different limit theorem holds, see Theorem 5. Therefore, we turn to the
simulation results of the asymptotic distribution of the estimator p̂n of p, as shown in
Figure 6 for pattern length h = 2. The asymptotic normality in case H = 0.7 can be clearly
observed. We turn to the interpretation of the simulation results of the distribution of
p̂n − p for H = 0.8 and H = 0.9 as the weighted sum of the sample (cross-)correlations: we
observe in the Q–Q plot for H = 0.8 that the samples in the upper and lower tail deviate
from the reference line. For H = 0.9, a similar behavior in the Q–Q plot is observed.
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Figure 6. Histogram, kernel density estimation and Q–Q plot with respect to the normal distribution (H = 0.7) or to
the Rosenblatt distribution of p̂n − p with h = 2 for different Hurst parameters: H = 0.7 (top); H = 0.8 (middle);
H = 0.9 (bottom).

We want to verify the result in Theorem 4 that it is possible, by a different weighting,
to express the limit distribution of p̂n − p as the distribution of the sum of two independent
standard Rosenblatt random variables. The simulated convergence result is provided in
Figure 7. We observed the standard Rosenblatt distribution.
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Figure 7. Histogram, kernel density estimation and Q–Q plot with respect to the Rosenblatt distribu-

tion of 1
n ∑n

j=1 H2

(
Y∗j
)

for different Hurst parameters: H = 0.8 (top); H = 0.9 (bottom).

5. Conclusions and Outlook

We considered limit theorems in the context of the estimation of ordinal pattern
dependence in the long-range dependence setting. Pure long-range dependence, as well
as mixed cases of short- and long-range dependence, were considered alongside the
transformed short-range dependent case. Therefore, we complemented the asymptotic
results in [11]. Hence, we made ordinal pattern dependence applicable for long-range
dependent data sets as they arise in the context of neurology, as can be seen in [24]
or artificial intelligence, as can be seen in [25]. As these kinds of data were already
investigated using ordinal patterns, as can be seen, for example, in [26], this emphasizes
the large practical impact of the ordinal approach in analyzing the dependence structure
multivariate time series. This yields various research opportunities in these fields in the
future.

Our results rely on the assumption of Gaussianity of the considered multivariate
time series. If we focus on comparing the coincident ordinal patterns in a stationary long-
range dependent bivariate time series, we highly benefit from the property of ordinal
patterns not being affected by monotone transformations. It is possible to transform the
data set to the Gaussian framework without losing the necessary ordinal information. In
applications, this property is highly desirable. If we consider the more general setting,
that is, stationary increments, the mathematical theory in the background gets a lot more
complex leading to the limitations of our results. A crucial argument used in the proofs
of the results in Section 2 is given in the Reduction Theorem, originally proven in Theorem
4.1 in [27] in the univariate case and extended to the multivariate setting in Theorem 6
in [14]. For further details, we refer the reader to the Appendix A. However, this result
only holds in the Gaussian case. Limit theorems for the sample cross-correlation process
of multivariate linear long-range dependent processes with Hermite rank 2 have recently
been proven in Theorem 4 in [28]. This is possibly an interesting starting point to adapt the
proofs in the Appendix A to this larger class of processes without requiring Gaussianity.
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Considering the property of having a discrete bivariate time series in the background, an
interesting extension is given in time continuous processes and the associated techniques
of discretization to still regard the ordinal perspective. To think even further beyond our
scope, a generalization to categorical data is conceivable and yields an interesting open
research opportunity.
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Appendix A. Technical Appendix

All proofs in this appendix were taken from [18], Chapter 3.

Appendix A.1. Preliminary Results

Before turning to limit theorems, we introduce a possibility to decompose the d-
dimensional Gaussian process

(
Yj
)

j∈Z using the Cholesky decomposition, as can be seen
in [29]. Based on the definition of the multivariate normal distribution, as can be seen
in [30], Definition 1.6.1, we find an upper triangular matrix Ã, such that ÃÃt = Σd. Then,
it holds that:

Yj
D
= ÃU∗j , (A1)

where U∗j is a d-dimensional Gaussian process where each U∗j has independent and identi-

cally N (0, 1) distributed entries. We want to assure that
(

U∗j
)

j∈Z
preserves the long-range

dependent structure of
(
Yj
)

j∈Z. Since we know from (2) that:

E
(

YjYj+k

)
= ΓY(k) ' kD− 1

2 Id LkD− 1
2 Id (k→ ∞),

the process
(

U∗j
)

has to fulfill:

E
(

U∗j U∗j+k

)
= ΓU∗(k) ' kD− 1

2 Id LUkD− 1
2 Id (k→ ∞), (A2)

with L = ÃLU∗ Ãt.
Then, it holds for all n ∈ N that:(

Yj, j = 1, . . . , n
) D
=
(

ÃU∗j , j = 1, . . . , n
)

. (A3)

Note that the assumption in (A2) is only well-defined because we assumed
∣∣∣r(p,q)(k)

∣∣∣ <
1 for k ≥ 1 and p, q = 1, . . . , d in (1). This becomes clear in the following considerations.
In the proofs of the theorems in this chapter, we do not only need a decomposition of Yj,
but also of Yj,h. As Yj,h is still a multivariate Gaussian process, the covariance matrix of Yj,h
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given by Σd,h is positive definite. Hence, it is possible to find an upper triangular matrix A,
such that AAt = Σd,h. It holds thatL

Yj,h
D
= AUj,h

for:

Uj,h =
(

U(1)
(j−1)h+1, . . . , U(1)

jh , . . . , U(d)
(j−1)h+1, . . . , U(d)

jh

)t
.

The random vector Uj,h consists of (d · h) independent and standard normally dis-
tributed random variables. We notice the different structure of Uj,h compared to Yj,h. We
assure that for consecutive j, the entries in Uj,h are all different while there are identical

entries, for example in Y1,h =
(

Y(1)
1 , Y(1)

2 , . . . , Y(d)
h

)t
and Y2,h =

(
Y(1)

2 , . . . , Y(d)
h , Y(d)

h+1

)t
.

This complicates our aim that:(
Yj,h, j = 1, . . . , n

)t D
=
(

AUj,h, j = 1, . . . , n
)t

(A4)

holds.
The special structure of

(
Yj,h

)
j∈Z

, namely that consisting of h consecutive entries

of each marginal process
(

Y(p)
j

)
, p = 1, . . . , d, alongside the dependence between two

random vectors in the process
(

Yj,h

)
, has to be reflected in the covariance matrix of(

Uj,h, j = 1, . . . , n
)

. Hence, we need to check whether such a vector
(

Uj,h, j = 1, . . . , n
)

exists, i.e., if there is a positive semi-definite matrix that fulfills these conditions. We define
A as a block diagonal matrix with A as main-diagonal blocks and all off-diagonal blocks as
dh× dh-zero matrix.

We denote the covariance matrix of
(

Yj,h, j = 1, . . . , n
)t

by ΣY,n and define the follow-
ing matrix:

ΣU,n := inv(A)ΣY,ninv
(
At). (A5)

We know that ΣY,n is a positive semi-definite for all n ∈ N because
(
Yj
)

is a Gaussian
process. Mathematically described, this means that:

xtΣY,nx ≥ 0, (A6)

for all x = (x1, . . . , xnhd)
t ∈ Rnhd. We conclude:

xtΣU,nx = xtinv(A)ΣY,ninv
(
At)x

=
(
inv
(
At)x)tΣY,n

(
xtinv(A)

)
(A6)
≥ 0.

Therefore, ΣU,n is a positive semi-definite matrix for all n ∈ N and the random vector:(
Uj,h, j = 1, . . . , n

)t
N ∼ (0, ΣU,n)

exists and (A4) holds. Note that we do not have any further information on the dependence
structure within the process

(
Uj
)
, in general, this process neither exhibits long-range

dependence, nor independence, nor stationarity.
We continue with two preparatory results that are also necessary for proving Theorem

2.1.
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Lemma A1. Let
(
Yj
)

j∈Z be a d-dimensional Gaussian process as defined in (1) that fulfills (2)
with d1 = . . . = dd = d∗, such that:

ΓY(k) = E
(

YjYt
j+k

)
' Lk2d∗−1, (k→ ∞).

Let C2 be a normalization constant:

C2 =
1

2d∗(4d∗ − 1)

and let BY be an upper triangular matrix, such that:

BYBt
Y = L.

Furthermore, for l ∈ N we have:

Γ̂Y,n(l) =
1

n− l

n−l

∑
j=1

YjYt
j+l .

Then, for h ∈ N it holds that:(
n1−2d∗(C2)

−1/2(BY ⊗ BY)
−1vec

(
Γ̂n(l)− Γ(l)

)
, l = 0, . . . , h− 1

)
D−→
(

vec
(

Z(p,q)
2,d∗+1/2(1)

)
p,q=1,...,d

, l = 0, . . . , h− 1
)

,

where Z(p,q)
2,d∗+1/2(1) has the spectral domain representation:

Z(p,q)
2,d∗+1/2(1) = Kp,q(d∗)

∫ ′′
R2

exp(i(λ1 + λ2))− 1
i(λ1 + λ2)

|λ1λ2|−d∗ B̃(p)(dλ1)B̃(q)(dλ2)

where:

K2
p,q(d

∗) =


1

2C2(2Γ(1−2d∗) sin(πd∗))2 , p = q
1

C2(2Γ(1−2d∗) sin(πd∗))2 , p 6= q.

and B̃(dλ) =
(

B̃(1)(dλ), . . . , B̃(d)(dλ)
)

is a multivariate Hermitian–Gaussian random measure
as defined in (12).

Proof. First, we can use (A1):

Yj
D
= ÃU∗j ,

such that
(

U∗j
)

is a multivariate Gaussian process with U∗j ∼ N (0, Id) and
(

U∗j
)

is still
long-range dependent, as can be seen in (A2). It is possible to decompose the sample
cross-covariance matrix Γ̂Y,n(l)− ΓY(l) with respect to

(
Yj
)

at lag l given by

Γ̂Y,n(l)− ΓY(l) =
1

n− l

n−l

∑
j=1

YjYt
j+l −E

(
YjYt

j+l

)
to:

Γ̂Y,n(l)− ΓY(l)
D
= Ã

(
Γ̂U∗ ,n(l)− ΓU∗(l)

)
Ãt,



Entropy 2021, 23, 670 23 of 37

where we define the sample cross-covariance matrix Γ̂U∗ ,n(l)− ΓU∗(l) with respect to
(

U∗j
)

at lag l by

Γ̂U∗ ,n(l)− ΓU∗(l) =
1

n− l

n−l

∑
j=1

U∗j U∗j+l −E
(

U∗j U∗j+l

)
.

Each entry of:

Γ̂U∗ ,n(l)− ΓU∗(l) =
(

r̂(p,q)
n,U∗ (l)− r(p,q)

U∗ (l)
)

p,q=1,...,d

is given by

r̂(p,q)
n,U∗ (l)− r(p,q)

U∗ (l) :=
n

∑
j=1

U∗ (p)
j U∗ (q)j+l −E

(
U∗ (p)

j U∗ (q)j+l

)
.

Following [31], proof of Lemma 7.4, the limit distribution of:(
Γ̂U∗ ,n(l)− ΓU∗(l), l = 0, . . . , h− 1

)
is equal to the limit distribution of:(

Γ̂U∗ ,n(0)− ΓU∗(0), l = 0, . . . , h− 1
)
.

We recall the assumption that d∗ = dp for all p = 1, . . . , d. We follow [14], Theorem
6 and use the Cramer–Wold device: Let a1,1, a1,2, . . . , ad,d ∈ R. We are interested in the
asymptotic behavior of:

n1−2d∗
d

∑
p,q=1

ap,q

(
r̂(p,q)

n,U (0)− r(p,q)
U (0)

)
=n−2d∗

n

∑
j=1

d

∑
p,q=1

ap,q

(
U∗ (p)

j U∗ (q)j −E
(

U∗ (p)
j U∗ (q)j

))
.

We consider the function:

f
(

U∗j
)
=

d

∑
p,q=1

ap,q

(
U∗ (p)

j U∗ (q)j −E
(

U∗ (p)
j U∗ (q)j

))
(A7)

and may apply Theorem 6 in [14]. Using the Hermite decomposition of f as given in (11),
we observe that f and therefore, ap,q, p, q = 1, . . . , d, only affects the Hermite coefficients.
Indeed, using [15], Lemma 3.5, the Hermite coefficients reduce to ap,q for each summand
on the right-hand side in (A7). Hence, we can state:

n−2d∗
n

∑
j=1

d

∑
p,q=1

ap,q

(
U∗ (p)

j U∗ (q)j −E
(

U∗ (p)
j U∗ (q)j

))
(A8)

D−→
d

∑
p,q=1

ap,qZ(p,q)
2,d∗+1/2(1), (A9)

where Z(p,q)
2,d∗+1/2(1) has the spectral domain representation:

Z(p,q)
2,d∗+1/2(1) = Kp,q(d∗)

∫ ′′
R2

exp(i(λ1 + λ2))− 1
i(λ1 + λ2)

|λ1λ2|−d∗ B̃(p)(dλ1)B̃(q)(dλ2) (A10)
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where:

K2
p,q(d

∗) =


1

2C2(2Γ(1−2d∗) sin(πd∗))2 , p = q
1

C2(2Γ(1−2d∗) sin(πd∗))2 , p 6= q.

and B̃(dλ) =
(

B̃(1)(dλ), . . . , B̃(d)(dλ)
)

is an appropriate multivariate Hermitian–Gaussian
random measure. Thus, we proved convergence in the distribution of the sample-cross
correlation matrix:

n1−2d∗(Γ̂U∗ ,n(0)− ΓU∗(0)
) D−→

(
Z(p,q)

2,d∗+1/2(1)
)

p,q=1,...,d
.

We take a closer look at the covariance matrix of vec
(
Γ̂U∗ ,n(0)− ΓU∗(0)

)
. Follow-

ing [28], Lemma 5.7, we observe:

n1−2d∗(4d∗(4d∗ − 1))1/2Cov
(
vec
(
Γ̂U∗ ,n(0)− ΓU∗(0)

)
, vec

(
Γ̂U∗ ,n(0)− ΓU∗(0)

))
=(Id2 + Kd2)(LU∗ ⊗ LU∗),

with LU∗ as defined in (A3) and⊗ denotes the Kronecker product. Furthermore, Kd denotes
the commutation matrix that that transforms vec(A) into vec

(
At) for A ∈ Rd×d. Further

details can be found in [32].
Hence, the covariance matrix of the vector of the sample cross-covariances is fully

specified by the knowledge of LU∗ as it arises in the context of long-range dependence
in (A3).

We obtain a relation between L and LU∗ , since:

ΓY(·) = ÃΓU(·)Ãt.

Both:

ΓY(k) ' Lk2d∗−1 (k→ ∞)

and:

ΓU∗(k) ' LU∗k2d∗−1 (k→ ∞)

hold and we obtain:

L = ÃLU∗ Ãt.

We study the covariance matrix of: vec
(
Γ̂Y,n(0)− ΓY(0)

)
:

n1−2d∗(4d∗(4d∗ − 1))1/2Cov
(

vec
(
Γ̂Y,n(0)− ΓY(0)

)
, vec

(
Γ̂Y,n(0)− ΓY(0)

)t
)

→ (Id2 + Kd2)(L⊗ L) (A11)

= (Id2 + Kd2)
(

ÃLU∗ Ãt)⊗ (ÃLU∗ Ãt)
= (Id2 + Kd2)

(
Ã⊗ Ã

)
· (LU∗ ⊗ LU∗) ·

(
Ãt ⊗ Ãt).

Let BU∗ be an upper triangular matrix, such that:

BU∗Bt
U∗ := LU∗ .

We know that such a matrix exists because LU∗ is positive definite. Analogously, we
define BY:

BY := ÃBU∗ .
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Then, it holds that:

BYBt
Y = L.

We arrive at:

n1−2d∗(C2)
−1/2(BY ⊗ BY)

−1vec
(
Γ̂Y,n(0)− ΓY(0)

)
D
= n1−2d∗(C2)

−1/2(BU∗ ⊗ BU∗)
−1(A⊗ A)−1vec

(
Ã
(
Γ̂U∗ ,n(0)− ΓU∗(0)

)
Ãt)

= n1−2d∗(C2)
−1/2(BU∗ ⊗ BU∗)

−1vec
(
Γ̂U∗ ,n(0)− ΓU∗(0)

)
D−→ vec

(
Z(p,q)

2,d∗+1/2(1)
)

p,q=1,...,d
,

where Z(p,q)
2,d∗+1/2(1) has the spectral domain representation:

Z(p,q)
2,d∗+1/2(1) = Kp,q(d∗)

∫ ′′
R2

exp(i(λ1 + λ2))− 1
i(λ1 + λ2)

|λ1λ2|−d∗ B̃(p)(dλ1)B̃(q)(dλ2)

where:

K2
p,q(d

∗) =


1

2C2(2Γ(1−2d∗) sin(πd∗))2 , p = q
1

C2(2Γ(1−2d∗) sin(πd∗))2 , p 6= q.

and B̃(dλ) =
(

B̃(1)(dλ), . . . , B̃(d)(dλ)
)

is a multivariate Hermitian–Gaussian random mea-
sure as defined in (12). Note that the standardization on the left-hand side is appropriate
since the covariance matrix of vec(Z2,d∗+1/2(1)) is given by

E
(

K2(d∗)
∫ ′′
R2

∫ ′′
R2

Eλ1,λ2 Eλ3,λ4vec
(

B̃(dλ1)
(

B̃(dλ2)
)t
)

(
vec
(

B̃(dλ3)
(

B̃(dλ4)
)t
))t

)
. (A12)

by denoting:

Eλ1,λ2 :=
exp(i(λ1 + λ2))− 1

i(λ1 + λ2)
|λ1λ2|−d∗ .

We observe:

E
(

vec
(

B̃(dλ1)B̃(dλ2)
t
)(

vec
(

B̃(dλ3)
(

B̃(dλ4)
)t
))t

)

=

{
Id2dλ1dλ2, |λ1| = |λ3| 6= |λ2| = |λ4|,
Kd2dλ1dλ2, |λ1| = |λ4| 6= |λ2| = |λ3|,

(A13)

following [28], (27). Neither the case |λ1| = |λ2| nor |λ3| = |λ4| has to be incorporated as
the diagonals are excluded in the integration in (A12).

Corollary A1. Under the assumptions of Lemma A1, there is a different representation of the limit
random vector. For h ∈ N, we obtain:(

n1−2d∗(C2)
−1/2vec

(
Γ̂n(l)− Γ(l)

)
, l = 0, . . . , h− 1

)
D−→ (vec(Z2,d∗+1/2(1)) l = 0, . . . , h− 1),



Entropy 2021, 23, 670 26 of 37

where vec(Z2,d∗+1/2(1)) has the spectral domain representation:

vec(Z2,d∗+1/2(1)) = DK(d∗)

∫ ′′
R2

exp(i(λ1 + λ2))− 1
i(λ1 + λ2)

|λ1λ2|−d∗vec
(

B̃L(dλ1)B̃L(dλ2)
t
)

.

The matrix DK(d∗) is a diagonal matrix:

DK(d∗) = diag(vec(K(d∗))),

and K(d∗) =
(
Kp,q(d∗)

)
p,q=1,...,d is such that:

K2(d∗)p,q =


1

2C2(2Γ(1−2d∗) sin(πd∗))2 , p = q
1

C2(2Γ(1−2d∗) sin(πd∗))2 , p 6= q.

Furthermore, B̃L(dλ) is a multivariate Hermitian–Gaussian random measure that fulfills:

E
(

B̃L(dλ)B̃L(dλ)∗
)
= L dλ.

Proof. The proof is an immediate consequence of Lemma A1 using B̃L(dλ) = BY B̃(dλ)
with BYBt

Y = L and B̃(dλ) as defined in (12).

Appendix A.2. Proof of Theorem 2.1

Proof. Without loss of generality, we assume E
(

f
(

Yj,h

))
= 0. Following the argumenta-

tion in [20], Theorem 5.9, we first remark that Yj,h
D
= AUj,h with Uj,h and A as described

in (A4) and (A5). We now want to study the asymptotic behavior of the partial sum
n
∑

j=1
f ∗
(
Uj
)

where f ∗
(

Uj,h

)
:= f

(
AUj,h

) D
= f

(
Yj,h

)
. Since m( f ∗, Idh) = m( f ◦ A, Idh) =

m( f , Σd,h) = 2, as can be seen in [15], Lemma 3.7, hence, we know by [14], Theorem 6, that
these partial sums are dominated by the second order terms in the Hermite expansion of
f ∗:

n

∑
j=1

f ∗
(

Uj,h

) n

∑
j=1

∑
l1+...+ldh=2

E
(

f ∗
(

Uj,h

)
Hl1,...,ldh

(
Uj,h

))
Hl1,...,ldh

(
Uj,h

)
+ oP

(
n2d∗

)
.

This follows from the multivariate extension of the Reduction Theorem as proven
in [14]. We obtain:

∑
l1+...+ldh=2

E
(

f ∗
(

Uj,h

)
Hl1,...,ldh

(
Uj,h

))
Hl1,...,ldh

(
Uj,h

)
=

dh

∑
i=1

E
(

f ∗
(

Uj,h

)((
U(i)

j,h

)2
− 1
))((

U(i)
j,h

)2
− 1
)
+ ∑

1≤i,k≤dh,i 6=k
E
(

f ∗
(

Uj,h

)
U(i)

j,h U(k)
j,h

)
U(i)

j,h U(k)
j,h

=
dh

∑
i=1

E
(

f ∗
(

Uj,h

)(
U(i)

j,h

)2
)((

U(i)
j,h

)2
− 1
)
+ ∑

1≤i,k≤dh,i 6=k
E
(

f ∗
(

Uj,h

)
U(i)

j,h U(k)
j,h

)
U(i)

j,h U(k)
j,h ,

since E
(

f ∗
(

Uj,h

))
= E

(
f
(

Yj,h

))
= 0. This results in:

dh

∑
i=1

E
(

f ∗
(

Uj,h

)(
U(i)

j,h

)2
)((

U(i)
j,h

)2
− 1
)
+ ∑

1≤i,k≤dh,i 6=k
E
(

f ∗
(

Uj,h

)
U(i)

j,h U(k)
j,h

)
U(i)

j,h U(k)
j,h

= ∑
1≤i,k≤dh

E
(

f ∗
(

Uj,h

)
U(i)

j,h U(k)
j,h

)
U(i)

j,h U(k)
j,h −

dh

∑
i=1

E
(

f ∗
(

Uj,h

)(
U(i)

j,h

)2
)

. (A14)
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Note that:

∑
1≤i,k≤dh

E
(

f ∗
(

Uj,h

)
U(i)

j,h U(k)
j,h

)
E
(

U(i)
j,h U(k)

j,h

)
=

dh

∑
i=1

E
(

f ∗
(

Uj,h

)(
U(i)

j,h

)2
)

(A15)

since the entries of Uj,h are independent for fixed j and identically N (0, 1) distributed.
Thus, the subtrahend in (A14) equals the expected value of the minuend.

Define B := (bi,k)1≤i,k≤dh ∈ R(dh)×(dh) with:

bi,k := E
(

f ∗
(

Uj,h

)
U(i)

j,h U(k)
j,h

)
= E

(
f ∗(U1)U

(i)
1 U(k)

1

)
since we are considering a stationary process. We obtain:

B = E
(

Uj,h f ∗
(

Uj,h

)
Ut

j,h

)
= E

(
A−1Yj,h f

(
Yj,h

)
Yt

j,h

(
A−1

)t
)

.

Hence, we can state the following:

∑
1≤i,k≤dh

E
(

f ∗
(

Uj,h

)
U(i)

j,h U(k)
j,h

)
U(i)

j,h U(k)
j,h

= Ut
j,hBUj,h

D
= Yt

j,h

(
A−1

)t
BA−1Yj,h

= Yt
j,h

(
A−1

)t
A−1E

(
Yj,h f

(
Yj,h

)
Yt

j,h

)(
A−1

)t
A−1Yj,h

= Yt
j,hΣ−1

d,hE
(

Yj,h f
(

Yj,h

)
Yt

j,h

)
Σ−1

d,hYj,h

= Yt
j,hAYj,h

= ∑
1≤i,k≤dh

Y(i)
j Y(k)

j αik, (A16)

where we define A := (αik)1≤ik≤dh := Σ−1
d,hCΣ−1

d,h , with C := E
(

Yj,h f
(

Yj,h

)
Yt

j,h

)
as the

matrix of second order Hermite coefficients, in contrast to B now with respect to the
original considered process

(
Yj,h

)
j∈Z

.

Remembering the special structure of Yj,h =
(

Y(1)
j , . . . , Y(1)

j+h−1, . . . , Y(d)
j , Y(d)

j+h−1

)t
,

namely that Y(k)
j,h = Y(

b k−1
h c+1)

j+(k mod h)−1, k = 1, . . . , dh, we can see that:

n

∑
j=1

∑
1≤ik≤dh

Y(i)
j,h Y(k)

j,h αik =
n

∑
j=1

∑
1≤ik≤dh

Y(b
i−1

h c+1)
j+(i mod h)−1Y(b

k−1
h c+1)

j+(k mod h)−1αik

=
n

∑
j=1

d

∑
p,q=1

h

∑
i,k=1

Y(p)
j+i−1Y(q)

j+k−1α
(p,q)
ik , (A17)

where we divide:

A =


A(1,1) A(1,2) . . . A(1,d)

A(2,1) A(2,2) . . . A(2,d)

...
...

...
A(d,1) A(d,2) . . . A(d,d)

,
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with A(p,q) =
(

α
(p,q)
i,k

)
1≤i,k≤h

∈ Rh×h such that α
(p,q)
i,k = αi+(p−1)h,k+(q−1)h for each p, q =

1, . . . , d and i, k = 1, . . . , h.
We can now split the considered sum in (A17) in a way such that we are afterwards

able to express it in terms of sample cross-covariances. In order to do so, we define the
sample cross-covariance at lag l by

r̂(p,q)
n (l) :=

1
n

n−l

∑
j=1

X(p)
j X(q)

j+l

for p, q = 1, . . . , d.
Note that in the case h = 1, it follows directly that:

n

∑
j=1

d

∑
p,q=1

h

∑
i,k=1

Y(p)
j+i−1Y(q)

j+k−1α
(p,q)
ik =

d

∑
p,q=1

α
(p,q)
1,1

n

∑
j=1

Y(p)
j Y(q)

j = n
d

∑
p,q=1

r̂(p,q)
n (0).

The case h = 2 has to be regarded separately, too, and we obtain:

n

∑
j=1

d

∑
p,q=1

2

∑
i,k=1

Y(p)
j+i−1Y(q)

j+k−1α
(p,q)
ik

=
d

∑
p,q=1

(
α
(p,q)
1,1

n

∑
j=1

Y(p)
j Y(q)

j + α
(p,q)
1,2

n

∑
j=1

Y(p)
j Y(q)

j+1 + α
(p,q)
2,1

n

∑
j=1

Y(p)
j+1Y(q)

j + α
(p,q)
2,2

n

∑
j=1

Y(p)
j+1Y(q)

j+1

)

=
d

∑
p,q=1

(
α
(p,q)
1,1 nr̂(p,q)

n (0) + α
(p,q)
1,2

nr̂(p,q)
n (1) + Y(p)

n Y(q)
n+1︸ ︷︷ ︸

F

+ α
(p,q)
2,1

nr̂(q,p)
n (1) + Y(p)

n+1Y(q)
n︸ ︷︷ ︸

F



+ α
(p,q)
2,2

nr̂(p,q)
n (0) + Y(p)

n+1Y(q)
n+1︸ ︷︷ ︸

F

−Y(p)
1 Y(q)

1︸ ︷︷ ︸
F


)

,

Note that for each of the terms labeled by F, the following holds for d∗ ∈
(

1
4 , 1

2

)
:

n−2d∗F
P−→ 0, (n→ ∞).

We use this property later on when dealing with the asymptotics of the term in (A17).
Finally, we consider the term in (A17) for h ≥ 3 and arrive at:

n

∑
j=1

d

∑
p,q=1

h

∑
i,k=1

Y(p)
j+i−1Y(q)

j+k−1α
(p,q)
ik

=
d

∑
p,q=1

h

∑
i,k=1

α
(p,q)
ik

n+i−1

∑
j=i

Y(p)
j Y(q)

j+k−i

=
d

∑
p,q=1

h−1

∑
l=0

h−l

∑
i=1

α
(p,q)
i,i+l

n+i−1

∑
j=i

Y(p)
j Y(q)

j+l +
d

∑
p,q=1

−1

∑
l=−(h−1)

h

∑
i=1−l

α
(p,q)
i,i+l

n+i−1

∑
j=i

Y(p)
j Y(q)

j+l

=
d

∑
p,q=1

h−1

∑
l=0

h−l

∑
i=1

α
(p,q)
i,i+l

n+i−1

∑
j=i

Y(p)
j Y(q)

j+l

+
d

∑
p,q=1

h−1

∑
l=1

h−l

∑
i=1

α
(p,q)
i+l,i

n+i−1

∑
j=i

Y(p)
j+l Y

(q)
j (A18)
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=
d

∑
p,q=1

h

∑
i=1

α
(p,q)
i,i

n+i−1

∑
j=i

Y(p)
j Y(q)

j

+
d

∑
p,q=1

h−1

∑
l=1

h−l

∑
i=1

(
α
(p,q)
i,i+l

n+i−1

∑
j=i

Y(p)
j Y(q)

j+l + α
(p,q)
i+l,i

n+i−1

∑
j=i

Y(p)
j+l Y

(q)
j

)
(A19)

=
d

∑
p,q=1

(
α
(p,q)
1,1

n

∑
j=1

Y(p)
j Y(q)

j +
h

∑
i=2

α
(p,q)
i,i

n+i−1

∑
j=i

Y(p)
j Y(q)

j

)

+
d

∑
p,q=1

h−2

∑
l=1

((
α
(p,q)
1,1+l

n

∑
j=1

Y(p)
j Y(q)

j+l + α
(p,q)
1+l,1

n

∑
j=1

Y(p)
j+l Y

(q)
j

)

+
h−l

∑
i=2

(
α
(p,q)
i,i+l

n+i−1

∑
j=i

Y(p)
j Y(q)

j+l + α
(p,q)
i+l,i

n+i−1

∑
j=i

Y(p)
j+l Y

(q)
j

))

+
d

∑
p,q=1

(
α
(p,q)
1,h

n

∑
j=1

Y(p)
j Y(q)

j+h−1 + α
(p,q)
h,1 Y(p)

j+h−1Y(q)
j

)
(A20)

=
d

∑
p,q=1

(
α
(p,q)
1,1 nr̂(p,q)

n (0) +
h

∑
i=2

α
(p,q)
i,i

(
n+i−1

∑
j=n+1

Y(p)
j Y(q)

j︸ ︷︷ ︸
F

+nr̂(p,q)
n (0)−

i−1

∑
j=1

Y(p)
j Y(q)

j︸ ︷︷ ︸
F

))

+
d

∑
p,q=1

h−2

∑
l=1

((
α
(p,q)
1,1+lnr̂(p,q)

n (l) + α
(p,q)
1+l,1nr̂(q,p)

n (l)

)

+
h−l

∑
i=2

(
α
(p,q)
i,i+l

(
n+i−1

∑
j=n−l+1

Y(p)
j Y(q)

j+l︸ ︷︷ ︸
F

+nr̂(p,q)
n (l)−

i−1

∑
j=1

Y(p)
j Y(q)

j+l︸ ︷︷ ︸
F

)

+ α
(p,q)
i+l,i

(
n+i−1

∑
j=n−l+1

Y(p)
j+l Y

(q)
j︸ ︷︷ ︸

F

+nr̂(q,p)
n (l)−

i−1

∑
j=1

Y(p)
j+l Y

(q)
j︸ ︷︷ ︸

F

)))

+
d

∑
p,q=1

(
α
(p,q)
1,h

(
n

∑
j=n−h+2

Y(p)
j Y(q)

j+h−1︸ ︷︷ ︸
F

+nr̂(p,q)
n (h− 1)

)
(A21)

+ α
(p,q)
h,1

(
n

∑
j=n−h+2

Y(p)
j+h−1Y(q)

j︸ ︷︷ ︸
F

+nr̂(q,p)
n (h− 1)

))
. (A22)

Again for each of the terms labeled by F it holds for d∗ ∈
(

1
4 , 1

2

)
:

n−2d∗F
P−→ 0, (n→ ∞),

since each F describes a sum with a finite number (independent of n) of summands.
Therefore, we continue to express the terms denoted by F by oP

(
n2d∗

)
.

With these calculations, we are able to re-express the partial sum, whose asymptotics
we are interested in, in terms of the sample cross-correlations of the original long-range
dependent process

(
Yj
)

j∈Z.
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Finally, the previous calculations lead to:

n

∑
j=1

f
(

Yj,h

)
D
=

n

∑
j=1

f ∗
(

Uj,h

)
(A14)
=

n

∑
j=1

(
∑

1≤i,k≤dh
E
(

f ∗
(

Uj,h

)
U(i)

j,h U(k)
j,h

)
U(i)

j,h U(k)
j,h −

dh

∑
i=1

E
(

f ∗
(

Uj,h

)(
U(i)

j,h

)2
))

+ oP(n2d∗)

D
=

(A17)

n

∑
j=1

d

∑
p,q=1

h

∑
i,k=1

α
(p,q)
ik

(
Y(p)

j+i−1Y(q)
j+k−1 −E

(
Y(p)

j+i−1Y(q)
j+k−1

))
+ oP(n2d∗), (A23)

where (A23) follows, since (A15) yields:

dh

∑
i=1

E
(

f ∗
(

Uj,h

)(
U(i)

j,h

)2
)
= ∑

1≤i,k≤dh
E
(

f ∗
(

Uj,h

)
U(i)

j,h U(k)
j,h

)
E
(

U(i)
j,h U(k)

j,h

)
(A17)
=

d

∑
p,q=1

h

∑
i,k=1

α
(p,q)
ik E

(
Y(p)

j+i−1Y(q)
j+k−1

)
.

Taking the parts containing the sample cross-correlations into account, we derive:

n

∑
j=1

d

∑
p,q=1

h

∑
i,k=1

α
(p,q)
ik

(
Y(p)

j+i−1Y(q)
j+k−1 −E

(
Y(p)

j+i−1Y(q)
j+k−1

))
+ oP(n2d∗)

(A22)
=

d

∑
p,q=1

(
α
(p,q)
1,1 n

(
r̂(p,q)

n (0)− r(p,q)(0)
)
+

h

∑
i=2

α
(p,q)
i,i n

(
r̂(p,q)

n (0)− r(p,q)(0)
))

+
d

∑
p,q=1

h−2

∑
l=1

((
α
(p,q)
1,1+ln

(
r̂(p,q)

n (l)− r(p,q)(l)
)
+ α

(p,q)
1+l,1n

(
r̂(q,p)

n (l)− r(q,p)(l)
))

+
h−l

∑
i=2

(
α
(p,q)
i,i+l n

(
r̂(p,q)

n (l)− r(p,q)(l)
)
+ α

(p,q)
i+l,i n

(
r̂(q,p)

n (l)− r(q,p)(l)
)))

+
d

∑
p,q=1

(
α
(p,q)
1,h n

(
r̂(p,q)

n (h− 1)− r(p,q)(h− 1)
)
+ α

(p,q)
h,1 n

(
r̂(q,p)

n (h− 1)− r(q,p)(h− 1)
))

(A24)

+ oP(n2d∗)

= n
d

∑
p,q=1

(
h−1

∑
l=0

h−l

∑
i=1

α
(p,q)
i,i+l

(
r̂(p,q)

n (l)− r(p,q)(l)
)
+

h−1

∑
l=1

h−l

∑
i=1

α
(p,q)
i+l,i

(
r̂(q,p)

n (l)− r(q,p)(l)
)))

+ oP(n2d∗). (A25)

We take a closer look at the impact of each long-range dependence parameter dp,
p = 1, . . . , d to the convergence of this sum. The setting we are considering does not allow
for a normalization depending on p and q for each cross-correlation

(
r̂(p,q)

n (l)− r(p,q)(l)
)

,
l = 0, . . . , h− 1, but we need to find a normalization for all p, q = 1, . . . , d. Hence, we need
to remember the set P∗ := {p ∈ {1, . . . , d} : dp ≥ dq∀q ∈ {1, . . . , d}} and the parameter
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d∗ = max
p=1,...,d

dp, such that for each p ∈ P∗, we have dp = d∗. For each p, q ∈ {1, . . . , d} with

(p, q) /∈ (P∗ × P∗) and l = 0, . . . , h− 1, we conclude that:

E
((

n1−2d∗
(

r̂(p,q)
n (l)− r(p,q)(l)

))2
)
= n2(dp+dq−2d∗)E

((
n1−dp−dq

(
r̂(p,q)

n (l)− r(p,q)(l)
))2

)
= n2dp+2dq−4d∗C2

(
Lp,pLq,q + Lp,qLq,p

)
(n→∞)−−−−→ 0, (A26)

since dp + dq − 2d∗ < 0.
This implies that:

n1−2d∗
(

r̂(p,q)
n (0)− r(p,q)(0)

) P−→ 0

Hence, using Slutsky’s theorem, the crucial parameters that determine the normal-
ization and therefore, the limit distribution of (A27) are given in P∗. We have an equal
long-range dependence parameter d∗ to regard for all p ∈ P∗. Applying Lemma A1, we
obtain the following, by using the symmetry in l = 0 of the cross-correlation function
r(p,q)(0) = r(q,p)(0) for p, q ∈ P∗:

d

∑
p,q=1

(
h−1

∑
l=0

h−l

∑
i=1

α
(p,q)
i,i+l

(
r̂(p,q)

n (l)− r(p,q)(l)
)
+

h−1

∑
l=1

h−l

∑
i=1

α
(p,q)
i+l,i

(
r̂(q,p)

n (l)− r(q,p)(l)
)))

= ∑
p,q∈P∗

(
h−1

∑
l=0

h−l

∑
i=1

α
(p,q)
i,i+l

(
r̂(p,q)

n (0)− r(p,q)(0)
)
+

h−1

∑
l=1

h−l

∑
i=1

α
(p,q)
i+l,i

(
r̂(q,p)

n (0)− r(q,p)(0)
)))

+ oP(n2d∗−1)

= ∑
p,q∈P∗

(
r̂(p,q)

n (0)− r(p,q)(0)
)( h−1

∑
l=0

h−l

∑
i=1

α
(p,q)
i,i+l +

h−1

∑
l=1

h−l

∑
i=1

α
(p,q)
i+l,i

)
+ oP(n2d∗)

= ∑
p,q∈P∗

(
r̂(p,q)

n (0)− r(p,q)(0)
)( h

∑
i,k=1

α
(p,q)
i,k

)
+ oP(n2d∗)

= ∑
p,q∈P∗

α̃(p,q)
(

r̂(p,q)
n (0)− r(p,q)(0)

)
+ oP(n2d∗), (A27)

by defining α̃(p,q) :=
h
∑

i,k=1
α
(p,q)
i,k . Applying the continuous mapping theorem given in [33],

Theorem 2.3, to the result in Corollary A1, we arrive at:

n−2d∗(C2)
−1/2

n

∑
j=1

f
(

Yj,h

)
= n−2d∗

(
n

d

∑
p,q=1

α̃(p,q)
(

r̂(p,q)
n (0)− r(p,q)(0)

)
+ oP(n2d∗)

)

= n1−2d∗(C2)
−1/2

d

∑
p,q=1

α̃(p,q)
(

r̂(p,q)
n (0)− r(p,q)(0)

)
+ oP(1)

D−→ ∑
p,q∈P∗

α̃(p,q)Z(p,q)
2,d∗+1/2(1),

where:

Z(p,q)
2,d∗+1/2(1) = Kp,q(d∗)

∫ ′′
R2

exp(i(λ1 + λ2))− 1
i(λ1 + λ2)

|λ1λ2|−d∗ B̃(p)
L (dλ1)B̃(q)

L (dλ2).
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The matrix K(d∗) is given in Corollary A1. Moreover, B̃L(dλ) is a multivariate
Hermitian–Gaussian random measure with E(BL(dλ)BL(dλ)∗) = L dλ and L as defined
in (2).

Appendix A.3. Proof of Corollary 2.2

Proof. We assumed d∗ ∈
(

1
4 , 1

2

)
, because otherwise we leave the long-range dependent

setting, since we are studying functionals with Hermite rank 2 and the transformed process
would no longer be long-range dependent and limit theorems for functionals of short-range
dependent processes would hold, as can be seen in Theorem 4 in [14]. This choice of d∗

assures that the multivariate generalization of the Reduction Theorem as it is used in the
proof of Theorem 2.1 still holds for these softened assumptions, as explained in (8).

We turn to the asymptotics of g(p,q)(Yj
)
. We obtain for all p, q ∈ {1, . . . , d} \ P∗, i.e.,

excluding dp = dq = d∗ and for all l = 0, . . . , h− 1 as in (A26), that:

E
((

n1−2d∗
(

r̂(p,q)
n (l)− r(p,q)(l)

))2
)
= n2(dp+dq−2d∗)E

((
n1−dp−dq

(
r̂(p,q)

n (l)− r(p,q)(l)
))2

)
= n2dp+2dq−4d∗C2

(
Lp,pLq,q + Lp,qLq,p

)
(n→∞)−−−−→ 0, (A28)

since dp + dq − 2d∗ < 0.
This implies that:

n1−2d∗
(

r̂(p,q)
n (0)− r(p,q)(0)

) P−→ 0.

Applying Slutsky’s theorem, we observe that only p, q ∈ P∗ have an impact on the
convergence behavior as it is given in (A27) and hence, the result in Theorem 2.1 holds.

Appendix A.4. Proof of Theorem 2.3

Proof. We follow the proof of Theorem 2.1 until (A27), in order to obtain a limit distribution
that can be expressed by the sum of two standard Rosenblatt random variables:

2

∑
p,q=1

α̃(p,q)
(

r̂(p,q)
n (0)− r(p,q)(0)

)
=

1
n

n

∑
j=1

2

∑
p,q=1

α̃(p,q)
(

Y(p)
j Y(q)

j − r(p,q)(0)
)

=
1
n

n

∑
j=1

(
Y(1)

j , Y(2)
j

)(α̃(1,1) α̃(1,2)

α̃(2,1) α̃(2,2)

)(
Y(1)

j , Y(2)
j

)t

−E
((

Y(1)
j , Y(2)

j

)(α̃(1,1) α̃(1,2)

α̃(2,1) α̃(2,2)

)(
Y(1)

j , Y(2)
j

)t
)

. (A29)

We remember that α̃(p,q) = ∑h
i,k=1 α

(p,q)
i,k = ∑h

i,k=1 αi+(p−1)h,k+(q−1)h for p, q = 1, 2 and
A = (αi,k)1≤i,k≤2h = Σ−1

2,hCΣ−1
2,h . Since Σ−1

2,h is the inverse of the covariance matrix Σ2,h
of Y1,h it is a symmetric matrix. The matrix of second order Hermite coefficients C has

the representation C = E
(

Yj,h f
(

Yj,h

)
Yt

j,h

)
and therefore, ci,k = E

(
Y(i)

j,h Y(k)
j,h f

(
Yj,h

))
= ck,i

for each i, k = 1, . . . , 2h. Then, A is also a symmetric matrix, since At =
(

Σ−1
2,hCΣ−1

2,h

)t
=(

Σ−1
2,h

)t
Ct
(

Σ−1
2,h

)t
= A. We can now show that

(
α̃(1,1) α̃(1,2)

α̃(2,1) α̃(2,2)

)
is a symmetric matrix,
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i.e., α̃(1,2) = α̃(2,1). To this end, we define Ip = (0, 0, . . . , 0, 1, . . . , 1, 0, . . . , 0)t ∈ R2h such

that I(i)p = 1 only if i = (p− 1)h + 1, . . . , ph, p = 1, 2. Then, we obtain:

α̃(1,2) =
h

∑
i,k=1

α
(1,2)
i,k =

(
α̃(1,2)

)t
=
(
It

1AI2
)t

= It
2AI1 = α̃(2,1).

We now apply the new assumption that r(1,1)(l) = r(2,2)(l), for l = 0, . . . , h− 1 and
show α̃(1,1) = α̃(2,2) with the symmetry features of the multivariate normal distribution
discussed in (2.2) and in (2.3) in [18], since ci,j = c2h−i+1,2h−j+1, i, j = 1, . . . , 2h.
We have to study:

α̃(2,2) =
(
It

2AI2
)t

= It
2Σ−1

2,hCΣ−1
2,hI2.

Since Σ−1
2,h = (gi,k)1≤i,k≤2h is a symmetric and persymmetric matrix, we have gi,k = gk,i and

gi,k = g2h−i+1,2h−k+1 for i, k = 1, . . . , 2h. Then, we obtain:

It
2Σ−1

2,h =

(
2h

∑
i=h+1

gi,1, . . . ,
2h

∑
i=h+1

gi,2h

)

=

(
h

∑
i=1

gi+h,1, . . . ,
h

∑
i=1

gi+h,2h

)

=

(
h

∑
i=1

gh−i+1,2h, . . . ,
h

∑
i=1

gh−i+1,1

)

=

(
h

∑
i=1

gi,2h, . . . ,
h

∑
i=1

gi,1

)

=

(
h

∑
i=1

g2h,i, . . . ,
h

∑
i=1

g1,i

)
=: (g̃2h, . . . , g̃1).

Note that:

Σ−1
2,hI1 =

(
h

∑
i=1

g1,i, . . . ,
h

∑
i=1

g2h,i

)t

= (g̃1, . . . , g̃2h)
t.

Then, we arrive at:

α̃(2,2) =
(
It

2AI2
)t

= It
2Σ−1

2,hCΣ−1
2,hI2

=
2h

∑
i,k=1

g̃2h−i+1 g̃2h−k+1ci,k

=
2h

∑
i,k=1

g̃2h−i+1 g̃2h−k+1c2h−i+1,2h−k+1

=
2h

∑
i,k=1

g̃i g̃kci,k

= It
1Σ−1

2,hCΣ−1
2,hI1

= α̃(1,1).
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Therefore, we have to deal with a special type of 2× 2 matrix, since the original matrix

in the formula (A27), namely

(
α̃(1,1) α̃(1,2)

α̃(2,1) α̃(2,2)

)
, has now reduced to

(
α̃(1,1) α̃(1,2)

α̃(1,2) α̃(1,1)

)
.

Finally, we know that any real-valued symmetric matrix A can be decomposed via
diagonalization into an orthogonal matrix V and a diagonal matrix D, where the entries of
the latter one are determined via the eigenvalues of A, for details, as can be seen in [34],
p. 327.

We can explicitly give formulas for the entries of these matrices here:

V =

(
−2−1/2 2−1/2

2−1/2 2−1/2

)
, D =

(
λ1 = α̃(1,1) − α̃(1,2) 0

0 λ2 = α̃(1,1) + α̃(1,2)

)
,

such that:

VDV =

(
λ1+λ2

2
λ2−λ1

2
λ2−λ1

2
λ1+λ2

2

)
=

(
α̃(1,1) α̃(1,2)

α̃(1,2) α̃(1,1)

)
.

Therefore, continuing with (A29), we now have the representation:

1
n

n

∑
j=1

(
Y(1)

j , Y(2)
j

)(α̃(1,1) α̃(1,2)

α̃(2,1) α̃(2,2)

)(
Y(1)

j , Y(2)
j

)t

−E
((

Y(1)
j , Y(2)

j

)(α̃(1,1) α̃(1,2)

α̃(2,1) α̃(2,2)

)(
Y(1)

j , Y(2)
j

)t
)

=
1
n

n

∑
j=1

(
Y(1)

j , Y(2)
j

)
VDV

(
Y(1)

j , Y(2)
j

)t
−E

((
Y(1)

j , Y(2)
j

)
VDV

(
Y(1)

j , Y(2)
j

)t
)

=
1
n

n

∑
j=1

α̃(1,1) − α̃(1,2)

2

((
Y(2)

j −Y(1)
j

)2
−E

(
Y(2)

j −Y(1)
j

)2
)

+
1
n

n

∑
j=1

α̃(1,1) + α̃(1,2)

2

((
Y(1)

j + Y(2)
j

)2
−E

(
Y(1)

j + Y(2)
j

)2
)

=
1
n

n

∑
j=1

(
α̃(1,1) − α̃(1,2)

)(
1− r(1,2)(0)

)
 Y(2)

j −Y(1)
j√

2− 2r(1,2)(0)

2

− 1


+

1
n

n

∑
j=1

(
α̃(1,1) + α̃(1,2)

)(
1 + r(1,2)(0)

)
 Y(1)

j + Y(2)
j√

2 + 2r(1,2)(0)

2

− 1


=

1
n

(
α̃(1,1) − α̃(1,2)

)(
1− r(1,2)(0)

) n

∑
j=1

H2

(
Y∗j
)

+
1
n

(
α̃(1,1) + α̃(1,2)

)(
1 + r(1,2)(0)

) n

∑
j=1

H2

(
Y∗∗j

)
, (A30)

with Y∗j :=
Y(2)

j −Y(1)
j√

2−2r(1,2)(0)
and Y∗∗j :=

Y(1)
j +Y(2)

j√
2+2r(1,2)(0)

.

Now, note that:

E
(

Y∗j Y∗∗j

)
= E

 Y(2)
j −Y(1)

j√
2− 2r(1,2)(0)

Y(1)
j + Y(2)

j√
2 + 2r(1,2)(0)

 = 0.
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Therefore, we created a bivariate long-range dependent Gaussian process, since:(
−1 1
1 1

)(
Y(1)

j , Y(2)
j

)t
=
(

Y∗j , Y∗∗j

)t
∼ N (0, I2)

with cross-covariance function:

r(1,2)
∗ (k) := E

(
Y∗j Y∗∗j+k

)
= E

 Y(2)
j −Y(1)

j√
2− 2r(1,2)(0)

Y(1)
j+k + Y(2)

j+k√
2 + 2r(1,2)(0)


=

r(2,1)(k) + r(2,2)(k)− r(1,1)(k)− r(1,2)(k)

2
√(

1− r(1,2)(0)
)(

1 + r(1,2)(0)
)

' L2,2 + L2,1 − L1,2 − L1,1

2
√(

1− r(1,2)(0)
)(

1 + r(1,2)(0)
) k2d∗−1. (A31)

Note that the covariance functions have the following asymptotic behavior:

r(1,1)
∗ (k) := E

(
Y∗j Y∗j+k

)
= E

 Y(2)
j −Y(1)

j√
2− 2r(1,2)(0)

Y(2)
j+k −Y(1)

j+k√
2− 2r(1,2)(0)


=

r(2,2)(k)− r(2,1)(k)− r(1,2)(k) + r(1,1)(k)
2− 2r(1,2)(0)

' L2,2 − L2,1 − L1,2 + L1,1

2− 2r(1,2)(0)︸ ︷︷ ︸
=:L∗1,1

k2d∗−1

and analogously:

r(2,2)
∗ (k) := E

(
Y∗∗j Y∗∗j+k

)
' L2,2 + L2,1 + L1,2 + L1,1

2 + 2r(1,2)(0)︸ ︷︷ ︸
=:L∗2,2

k2d∗−1.

We can now apply the result of [14], Theorem 6, since we created a bivariate Gaussian
process with independent entries for fixed j. Note that for the function we apply here,
namely f̃

(
Y∗j , Y∗∗j

)
= H2

(
Y∗j
)
+ H2

(
Y∗∗j

)
the weighting factors in [14], Theorem 6, reduce

to e1,1 = e2,2 = 1 and e1,2 = e2,1 = 0. These weighting factors fit into the result in [14],
(3.6) and (3.7), which even yields the joint convergence of the vector of both univariate
summands,

(
H2

(
Y∗j
)

, H2

(
Y∗∗j

))
, suitably normalized to a vector of two (dependent)

Rosenblatt random variables. Since the long-range dependence property in [13], Defini-
tion 2.1 is more specific than in [14], p. 2259, (3.1) (see the considerations in (8)), we are
able to scale the variances of each Rosenblatt random variable to 1 and give the covariance
between them, by using the normalization given in [15], Theorem 4.3. We obtain:
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n−2d∗(2C2)
−1/2

(
α̃(1,1) − α̃(1,2)

)(
1− r(1,2)(0)

) n

∑
j=1

H2

(
Y∗j
)

+ n−2d∗(2C2)
−1/2

(
α̃(1,1) + α̃(1,2)

)(
1 + r(1,2)(0)

) n

∑
j=1

H2

(
Y∗∗j

)
D−→
(

α̃(1,1) − α̃(1,2)
)(

1− r(1,2)(0)
)

L∗1,1Z∗2,d∗+1/2(1)

+
(

α̃(1,1) + α̃(1,2)
)(

1 + r(1,2)(0)
)

L∗2,2Z∗∗2,d∗+1/2

=
(

α̃(1,1) − α̃(1,2)
) L2,2 − L2,1 − L1,2 + L1,1

2
Z∗2,d∗+1/2(1)

+
(

α̃(1,1) + α̃(1,2)
) L2,2 + L2,1 + L1,2 + L1,1

2
Z∗∗2,d∗+1/2(1)

with C2 := 1
2d∗(4d∗−1) being the same normalizing factor as in Theorem 2.1.

We observe that Z∗2,d∗+1/2(1) and Z∗∗2,d∗+1/2(1) are both standard Rosenblatt random
variables. Following Corollary A1, their covariance is given by

Cov
(

Z∗2,d∗+1/2(1), Z∗∗2,d∗+1/2(1)
)
=

(
L∗1,2 + L∗2,1

)2

L∗1,1L∗2,2

=
2
(
(L2,2 − L1,1)

2
)

4
(
1− r(1,2)(0)

)(
1 + r(1,2)(0)

) (L∗1,1L∗2,2
)−1

=
(L2,2 − L1,1)

2

(L1,1 + L2,2)
2 − (L1,2 + L2,1)

2 .

Note that (L1,1 + L2,2)
2 − (L1,2 + L2,1)

2 6= 0 is fulfilled since L1,1 + L2,2 6= L1,2 + L2,1.
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