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Abstract: In the signal processing of real subway vehicles, impacts between wheelsets and rail joint
gaps have significant negative effects on the spectrum. This introduces great difficulties for the fault
diagnosis of gearboxes. To solve this problem, this paper proposes an adaptive time-domain signal
segmentation method that envelopes the original signal using a cubic spline interpolation. The peak
values of the rail joint gap impacts are extracted to realize the adaptive segmentation of gearbox fault
signals when the vehicle was moving at a uniform speed. A long-time and unsteady signal affected
by wheel–rail impacts is segmented into multiple short-term, steady-state signals, which can suppress
the high amplitude of the shock response signal. Finally, on this basis, multiple short-term sample
signals are analyzed by time- and frequency-domain analyses and compared with the nonfaulty
results. The results showed that the method can efficiently suppress the high-amplitude components
of subway gearbox vibration signals and effectively extract the characteristics of weak faults due to
uniform wear of the gearbox in the time and frequency domains. This provides reference value for
the gearbox fault diagnosis in engineering practice.

Keywords: gearbox; signal interception; peak extraction; cubic spline interpolation envelope

1. Introduction

The gearbox is an important part of an urban rail train, and a malfunctioning gearbox
will significantly affect the smoothness and comfort of the train operation. Furthermore,
the service life of the whole structure will be reduced due to the long-term wear of gear
damage [1]. At present, in actual train operation management and maintenance, most of the
gearbox fault diagnosis is completed during the maintenance of the unit. To find a gearbox
fault as early as possible, the real vehicle signals must be processed and diagnosed [2].
However, for the signal processing of a real vehicle gearbox, the working environment of
the gearbox is complex and easily affected by vibrations of all kinds of connected parts.
This can lead to various problems, such as spectrum distortion caused by the impact of
the rail joint gap, the failure frequency not being obvious due to the uniform wear of the
gearbox, and the speed of the train and frequency of gearbox being in an uncertain state.
The traditional signal processing methods have difficulty capturing the fault characteristics
of a gearbox. Therefore, filtering the interference in a real vehicle signal and accurately
extracting the fault characteristic information from the vibration time-domain signal are
the key problems to be solved in the fault diagnosis of subway gearboxes.

In recent years, scholars have proposed a series of methods for processing the fault
signals of nonstationary stochastic processes, and many algorithms and processing ideas
have been improved and applied to gearbox fault diagnosis. As a previously proposed
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signal decomposition method, empirical mode decomposition (EMD) [3], has been gradu-
ally developed in recent years, the optimized form of EMD is now relatively mature and
widely used in fault diagnosis [4]. Ensemble empirical mode decomposition (EEMD) has
been proposed to reduce the mode mixing phenomenon [5–10] in the process of EMD
decomposition. This is realized by adding Gaussian white noise to change the character-
istics of the extrema, and variants of this algorithm have been developed. Wu et al. [11]
proposed a feature learning detection method based on EEMD and a Gaussian process
classifier. Trelet was used for data dimension reduction as the Gaussian process input,
and it is optimized by bacterial foraging optimization. In addition, complementary set
empirical mode decomposition (CEEMD) introduces complementary noise [12–14], which
eliminates redundant noise to a large extent in the reconstruction of signals, greatly shorten-
ing the processing time and improving the computational efficiency. Han et al. [15] used a
combination of the Teager energy operator and CEEMD to extract features from the bearing
fault signals of a wind turbine. This algorithm showed unique advantages in detecting the
impact characteristics of signals and effectively extracted the fault features of low-speed
bearings. Li et al. [16] used the improved complete CEEMD with adaptive noise method
to decompose bearing vibration signals, extracted nonlinear entropy features, and built a
multiclass intelligent recognition model based on an integrated support vector machine,
effectively classifying experimental data under various operating conditions. Variational
mode decomposition (VMD) is a kind of adaptive signal decomposition method. This
method assumes that each mode is around a center frequency. The modal solution can be
converted to a constrained optimization problem, drastically reducing the modal aliasing
phenomenon [17]. Based on this method, many scholars modified the VMD algorithm for
mechanical fault diagnosis [18–22]. Cai et al. [23] proposed a multipoint kurtosis–VMD
compound algorithm that can reduce the original signal noise and extract recurrent failures
by using multipoint kurtosis at the same time, and more cycle vectors were constructed
to determine the decomposition layers K. Compared with the traditional particle swarm
optimization algorithm and ant colony algorithm, this method shows a speed advantage
and eventually effectively extracts the compound fault characteristics. Hua et al. [24] pro-
posed an inherent mode function selection method based on the resonance frequency for
VMD parameter optimization and selected the modal components with fault information
according to the resonance frequency. The results showed that this method can extract
weak signals of early rolling bearing faults and realize correct judgment of bearing faults.
Liu et al. [25] improved the VMD algorithm based on an autoregression (AR) model. By
reducing the interference of low-frequency components and denoising each component,
Hilbert envelope analysis was used to demodulate the signal, and the fault was determined
by combining the demodulation frequency and theoretical fault frequency. Miao et al. [26]
proposed an improved parameter-adaptive VMD method to construct a new comprehen-
sive kurtosis index, which takes into account periodicity and impacts. This algorithm is
superior to the traditional VMD method and further extends the application of VMD for
compound fault diagnosis. Many scholars have also applied neural networks for fault di-
agnosis [27–35], and the improved algorithms have shown good results. In addition, there
are also many decomposition methods based on signal processing, including local mean
decomposition [36–40], Fourier decomposition [41], and other methods, which are widely
used in gearbox fault diagnosis. Lei et al. [42] combined the advantages of integrated
local mean decomposition and fast spectral kurtosis to carry out fault detection of rotating
machinery and finally verified the effectiveness of this algorithm for the fault diagnosis
of gearboxes and rolling bearings. Dou et al. [43] proposed a mechanical fault feature ex-
traction method based on Fourier decomposition, which has the characteristics of adaptive
narrowband filtering at high and low frequencies. In terms of separating low-frequency
signal components, due to the traditional EMD method, it has a good effect when used
for the feature extraction of mechanical vibration signals. Pang et al. [44] proposed an
enhanced singular spectrum decomposition (ESSD) method that highlights fault signal
components by introducing differentiation and integration operators. This method exhibits
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strong anti-interference abilities and better performances when processing experimental
signals compared with traditional singular spectrum decomposition (SSD) and VMD.

For the research on wheel–rail impact caused by rail joints, Yang et al. [45] designed
an experiment and finite element model to reproduce the noise and vibration signals of a
wheelset passing the rail joints. The results show that the vibration energy of the vertical
impact is mainly concentrated around 300 and 1000 Hz, while the dominant frequency
range of transverse vibration is between 300 and 1200 Hz. Tajalli et al. [46] used an
experiment and finite element model to study different relative positions of sleeper and
rail joint influence on wheel–rail impact; the results show that the wheel–rail contact force
is 1.77 times the size of the static load when wheelset passes the rail joint, which caused
the wheel–rail vibration acceleration signal to change sharply. The research also points
out that the impact force can be reduced by 40% when using a fishplate to connect the rail
joint. Choi et al. [47] used the ANSYS model to analyze the wheel–rail impact force at the
rail joint, and the model was verified by experimental data. They evaluated the wheel–rail
contact force by comparing track impact factor (TIF), and the results showed that TIF value
with rail joints is 57% higher than that for continuous welded rails. This research shows
that rail joints produce wheel–rail impact, which will bring interference components to
gearbox diagnosis. Real vehicle signal data are very scarce currently, and this problem is
proposed in real vehicle signal processing. The traditional EMD and VMD methods have
remarkable performance on the bearing vibration signals collected in the laboratory, but the
effect on the wheel–rail impact filtering in the measured train gearbox signals is not ideal;
most of these algorithms were proposed based on laboratory data, and their feasibility in
practical engineering needs to be further verified. The method proposed in this paper aims
to eliminate the interference of wheel–rail impact on the spectrum more effectively.

To solve this problem, this paper proposes a time-domain adaptive interception
algorithm based on a cubic spline interpolation envelope. The purpose is to remove wheel–
rail impact interference in real train signals. The basic idea is to automatically extract
the peak value from the whole large sample signal and calculate the train speed data
corresponding to the short-term sample by using the peak interval. Based on the position
of the peak value, the single large sample signal is adaptively intercepted and divided into
several short-term samples, after which it is analyzed in the time–frequency domain and
finally compared with healthy signals. The results show that this method can effectively
eliminate the low-frequency interference caused by rail impacts, and it can calculate and
complement the missing train speed data. Moreover, the processed signals can reflect
certain fault rules in both the time-domain statistics and frequency-domain analysis, and
the method can diagnose uniform wear of subway gearboxes.

The main contributions of this work are summarized as follows: A gearbox fault diag-
nosis algorithm based on adaptive spline is proposed for suppressing impact components
in real vehicle signals adaptively. Speed data can also be calculated based on the proposed
algorithm. A new feature representation method is used in the analysis part; it is based on
multisample preponderance after processing by the proposed algorithm.

This work has the following organization: The foundational spline method and the
proposed algorithm are both introduced in Section 2. Section 3 describes the acquisition of
real vehicle signal and presents the results of the analysis of the proposed method carried
out using real vehicle signal, compared with EEMD and VMD. Conclusions are drawn in
Section 4.

2. Signal Segmentation Method Based on Cubic Spline Interpolation Envelope

The impact components will seriously interfere with the low frequency after Fourier
transform, which causes severe distortion of the spectrum. At present, there may be some
difficulties in finding the peak and intercept signal adaptively. In this section, a time-
domain adaptive interception algorithm based on cubic spline interpolation envelope is
proposed to deal with interference of wheel–rail impact in real vehicle signals. A long-time
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large sample signal is divided into several short-term small sample signals, and impact
components are extracted and eliminated at the same time.

2.1. Cubic Spline Interpolation Envelope

The cubic spline interpolation method has good convergence properties. In the process
of adaptive signal segmentation, it exhibits good stability. Cubic spline interpolation uses
multiple piecewise cubic polynomials and is piecewise continuous, so its first and second
derivative functions are continuous, and there are no errors at the nodes or at the nodes of
the first and second derivatives.

Cubic spline interpolation is defined as a partition x0 < x1 < . . . < xn−1 < xn
given in the interval [x0, xn]. The function L(x) is defined on each segment interval
[xi−1, xi](i = 1, 2, . . . , n). L(x) is a cubic polynomial, and in the entire interval [x0, xn], L(x)
is a second-order continuous and differentiable function. Each polynomial satisfies the
following at each node xi(i = 1, 2, . . . , n− 1):

L(k)(xi − 0) = L(k)(xi + 0), k = 0, 1, 2, (1)

The constraint conditions are as follows:
L(xi) = yi, (i = 0, 1, . . . , n)
L(xi − 0) = L(xi + 0), (i = 1, 2, . . . , n− 1)
L′(xi − 0) = L′(xi + 0), (i = 1, 2, . . . , n− 1)
L′′ (xi − 0) = L′′ (xi + 0), (i = 1, 2, . . . , n− 1)

, (2)

In the cubic spline interpolation method, there are three types of boundary conditions:
clamped, natural, and not-a-knot. Since the second derivative of cubic polynomial L(x)
is a first-order function, let [L′′ (x0), L′′ (x1), . . . , L′′ (xn)] = [Q0, Q1, . . . , Qn], and then the
interpolation function of each piecewise interval is as follows:

L(x) = Qi−1
6hi

(xi − x)3 + Qi
6hi

(x− xi−1)
3 + (

yi−yi−1
hi
− Qi−Qi−1

6 hi)x

+yi − Qi
6 hi

2 − (
yi−yi−1

hi
− Qi−Qi−1

6 hi)xi
(3)

In Equation (3), hi = xi − xi−1.
With the support of the above principle, the original signal is processed by a cubic

spline interpolation envelope. In the whole signal, the amplitude sequence is x, the
corresponding time series is t, and n + 1 signal sequence points are denoted as (t0, x0),
(t1, x1) . . . (ti, xi) . . . (tn, xn). The step size to find the maximum number of points np is
defined, and the maximum value from the fixed signal step size is output. The signal
length is optimized based on experience. An excessive step size will cause significant
distortion, while too small of a step size will increase the number of calculations. Therefore,
it is necessary to optimize the selection of step size, as shown in Figure 1, which is the
amount of peak value under different step sizes. It can be seen that when the step size
reaches a certain range, the amount of peak value tends to be stable several times. In the
first stabilization, the average of corresponding values will be the best np (red mark), and
then the coordinate of each maximum point is (aj, bj), j = 0, . . . , n.

Using the maximum output point (aj, bj) in the above fixed step size np as the interpo-
lation point, Equation (3) shows that the cubic spline interpolation function on the interval
[aj, aj+1] is expressed as follows:

L(t) =
Qj−1

6hj
(aj − t)3 +

Qj
6hj

(t− aj−1)
3 + (

bj−bj−1
hj
− Qj−Qj−1

6 hj)t

+bj −
Qj
6 hj

2 − (
bj−bj−1

hj
− Qj−Qj−1

6 hj)aj

(4)
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Figure 1. The selection of np value.

In Equation (4), hj = aj − aj−1. A fixed boundary condition is selected; that is, the first
derivative value at each maximum coordinate point a0 and aj is L′(a0) = b′0 = L′(an) =
b′n = 0, and the solution of Qj is as follows:

2 1
µ2 2 1− µ2

. . . . . . . . .
µn−1 2 1− µn−1

1 2




Q1
Q2
...

Qn−1
Qn

 =


λ1
λ2
...

λn−1
λn

, (5)

where µj =
hj

hj+hj+1
, λ1 = 6

h1
( b1−b0

h1
− b′0), λn = 6

hn
(b′n − bn−bn−1

hn
), and λj = 6(

bj+1−bj
hj+1

−
bj−bj−1

hj
) 1

hj+hj+1
(j = 2, 3, . . . , n− 1).

Through the catch-up method, [Q0, Q1, . . . , Qn] can be solved for using Equation (5),
which can be back-substituted into Equation (5) to obtain the cubic spline interpolation
envelope of the original signal. At this time, the envelope curve has filtered out a significant
amount of peak interference other than the wheel–rail impact, and the maximum value of
the envelope curve can be determined and output as (Gi, Hi), i = 0, 1, . . . , n.

2.2. Impact Component Extraction and Short-Term Signal Sample Segmentation

There is some error between the crude extracted coordinates and the original signal
due to the envelope curve fitting. Therefore, to eliminate this error, the original signal
peak is extracted. Because the time interval between the wheel and rail impact has a
certain regularity, that is, the ratio of the rail length to vehicle speed, the abscess interval
of the pulse can be estimated as ∆t ≈ 1.4 s. The search interval [Gi − ∆t

2 • fs, Gi +
∆t
2 • fs]

is set according to the abscissa of the maximum value of the envelope curve Gi, and the
maximum values (Gi

′, (Hi
′, i = 0, 1, . . . , n are found within the search interval to complete

the extraction steps of the whole signal.
After the impact component is extracted, the x-coordinate difference of maximum

values (Gi
′, Hi

′), which is ∆G = Gi
′ − Gi−1

′, is calculated; ∆G is the interval time of the
train passing along a steel rail. To control the length of each short-term sample and reduce
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the number of variables, a 1 s signal is intercepted between the extracted wheel–rail impact
interval to complete the overall signal segmentation.

3. Experiment and Results
3.1. Real Vehicle Data Collection

The vibration acceleration data of a real vehicle gearbox were collected. Test informa-
tion is as follows:

Data acquisition equipment: three-axis vibration sensor (measurement range is 500 g),
MDR-80 dynamic acquisition instrument, MDR-80 mobile data recording system.

Test object: subway vehicle.
Test location: a whole Beijing subway line, total distance of single acquisition is about

81 km.
Figure 2a shows the field sensor layout, and the vibration sensor was installed on

the outer shell of the gearbox. The sensor adopted a triaxial vibration sensor, and the
sampling frequency was set to 10 kHz. Figure 2b shows the data acquisition equipment.
The acceleration and deceleration processes of the vehicle were kept as uniform as possible.
When driving at a constant speed on a straight line segment, the speed should be kept at
about 67 km/h, and the stopping time of each stop should be 2 s. The data of the faulty
and healthy gearbox were collected on the same subway line twice. Two data samples were
collected, and the single sample collection time lasted about 120 min. The total number
of sample points was above 70 million for one sample. The tooth ratio of the measured
gearbox was 100:13. The surface damage of the internal gear of the fault gearbox is shown
in Figure 2c, and there were cracks, peeling, and wear on the gear surface. The other
calculation parameters are shown in Table 1.

Figure 2. Data acquisition of real vehicle gearbox: (a) gearbox sensor layout; (b) data acquisition equipment; (c) tooth
surface fault.

Table 1. Train speed calculation parameters.

Length of Rail/lr(m) Wheel Diameter/d (mm) Gear Ratio/i

Parameter 25 821 100:13

3.2. Results

Figure 3 shows a segment of the signal when the vehicle was operating at a uniform
speed in the time domain. Wheel–rail impacts were distributed uniformly over the whole
segment of the time-domain signal. After the Fourier transform, the spectral components
were mixed, and the fault components could not be determined and separated. The fault
frequency could not be distinguished, and there was more interference at low frequencies,
which was caused to some extent by the frequency of rail joint gap impacts.
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Figure 3. Time-domain diagram of original signals.

Tooth surface wear is an inevitable phenomenon over the life of a gearbox. The failure
frequency was not fixed, the train speed varied during the signal measurement, and the
gear switching frequency floated up and down. Figure 4 shows the healthy and faulty
original signal spectrum graph. The original noise signal interference was evident, and
various frequency components were mutually coupled. The signal characteristics of some
weak faults were easily submerged by noise, so it was difficult to judge the fault situation
based on the spectrum peaks.

Figure 4. Spectrum comparison of healthy and faulty states.

Figure 5 shows the original signal power spectrum diagram, and the inset shows the
meshing frequencies. The red line represents the faulty signal, and the blue line represents
the healthy signal. The healthy and faulty states of the power spectrum in the frequency
domain were similar, and the power of the healthy signal was even greater than that
of the faulty signal in one region. A pattern of the differences between the two spectra
is not evident, and the power spectrum analysis of the original signal cannot show the
fault characteristics.
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Figure 5. Power spectrum of original signal.

Based on the principle described above, the cubic spline interpolation envelope signal
intercept method was applied. The real vehicle operating conditions and changes interfered
with the signal, and the gearbox signal was mixed with the wheel–rail impact signal. Thus,
direct calculation and analysis of the original signal could not provide better analysis of
the composition of the gearbox fault.

The specific steps of the algorithm are as follows, and the algorithm flow chart is
shown in Figure 6:

(1) The extremum step np is defined to find and output the maximum value (aj, bj)
from the extremum step in the original signal.

(2) Using the cubic spline interpolation method, the envelope curve S(t) is calculated
for the above maximum array, and the maximum value (Gi, Hi) of the envelope is output.

(3) The maximum value (Gi
′, Hi

′) of the original signal is found within half of the
abscess interval of the maximum value, which is the peak value of the original signal rail
joint gap impact.

(4) According to the coordinates of the adjacent impact peak, some of the short-term
sample signals between the peak values were intercepted, and a large number of short-term
sample signals were intercepted for statistical analysis in the time–frequency domain.

In this way, the wheel–rail impact components in the original signal can be effectively
removed, and the sample size of the data can also be increased, laying a foundation for
the next step of the time-domain statistics. Figure 7 shows the whole signal segment. The
signal after adaptive interception is shown, where the gray components are the original
signal and the blue components are parts of the intercepted signal. The rail joint gap
impact component was effectively eliminated, and a gearbox signal component with a
more uniform amplitude was retained. Wheel–rail impact components are marked in red
circles; their accuracy directly determines the effectiveness of the algorithm. After many
instances of verification and calculation, the accuracy rate was about 98%, and errors often
occurred at the boundary part of signals.
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Figure 6. Algorithm flow chart.

Figure 7. Schematic diagram of signal interception.
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Since the original measured signals often lack the speed information of the train when
it is operating, the calculation of the speed data is completed according to the extracted
time between the wheel–rail impact peak and the length of the rail. The parameters such as
the length of the rail and the measured wheel diameter are shown in Table 1, and the train
speed is v = lr

∆G . It is also possible to calculate the pinion frequency fr =
v

πd , the large gear
frequency fR = fr•i, and the meshing frequency fm = 100 fr = 13 fR. It should be noted that
the speed calculated at this time is the average speed of the train passing a whole section of
rail, as shown in Figure 8. After the signal interception, there are some incorrect calculated
speed data. Due to changes in speed and rail length, the distance between impacts may
become irregular, which will make calculated speed data invalid. To ensure that the data
were collected when the train moved at as constant a speed as possible, the calculated speed
was used as the discriminant standard. Outlying speed points were screened out by setting
a threshold: the maximum acceleration could not be greater than 1.5 m/s2 when the train
was running. In the figure, the slope of the curve pointed to by the arrow is too steep, so
points on either side of this point will be regarded as outlying speed data, and short-term
samples on either side of the point will not be analyzed in the time–frequency domain. At
this point, the entire adaptive signal segmentation processing was completed.

Figure 8. Velocity line diagram.

3.3. Statistical Analysis of Time-Domain Root Mean Square Values

First, the state of the gearbox was judged in the time-domain analysis. Since a single
large sample was divided into several short-term samples after signal segmentation, the
time-domain statistical analysis was carried out with the advantage of multiple samples,
and the main calculated parameter was the root mean square (RMS) value. The time-
domain index RMS of each signal after segmentation was calculated. The RMS is plotted
versus the train speed for both the healthy and faulty states in Figure 9. The blue points are
the healthy state data, the red points are the faulty state data, the red line is the faulty data
envelope, the blue line is the healthy data envelope, and the dark red and dark blue X marks
are the faulty and healthy data scatter centers of mass, respectively. From the perspective of
the root mean square value, the overall level and average level of the faulty state were 30%
higher than those of the healthy state. Combined with the speed distribution, although
the root mean square value from low speed to high speed had a slight linear increase, the
faulty state level was always above the healthy state.

The Jaccard similarity coefficient of the two types of cluster areas is used to indicate
the similarity degree of the clusters. The formula of the Jaccard coefficient is as follows:
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J(SH , SF) =
|SH∩SF |
|SH∪SF |

, where SH is the area of the convex envelope of the healthy scattered
points and SF is the area of the convex envelope of the faulty scattered points. As shown in
Figure 10, the Jaccard similarity coefficient of the two clusters was 33.87%, indicating that
the similarity degree of the two types of data was extremely low. This further indicated
that there was a significant difference between the healthy and faulty data, and the fault
features of the time-domain root mean square statistics were prominent.

Figure 9. Statistics on root mean square values of short-term samples.

Figure 10. Cluster area and Jaccard similarity coefficient.

3.4. Multiple Mean Power Spectrum Analysis in Frequency Domain

After the fault differences were found in the time domain, the fault characteristics
were further characterized in the frequency domain. According to the above analysis, since
the train speed varied continuously, the average speed of the short-term sample train was
66 km/h. To determine the rotational frequency range of the large and small gears, the
rotational frequencies of the small and large gears were 55.5 and 7.22 Hz, which were
calculated using the wheel diameter and tooth ratio.

The signal segmentation algorithm proposed in this paper was used to divide the
large sample signal into several short-term sample signals, and then the power spectrum
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of each small sample signal was calculated. To control the variables as much as possible,
35 short-term healthy samples and 35 short-term faulty samples were selected, and all the
samples were collected from the same section on the rail line. The signal power spectrum
is shown in Figure 11, where each curve represents the signal power spectral density
for a short-term sample. Figure 11a,b show the results for healthy and faulty gearboxes,
respectively. Most of the peak values of the faulty sample were concentrated at small gear
rotation frequencies. Relative to the healthy data, the curve of the faulty data was steeper,
and the peak frequency range was more concentrated. However, the above characteristics
were not prominent in the large gear rotational frequency range.

1 
 

 
Figure 11. Power spectrum of each short-term sample.

To represent the differences in the characteristics, the average power spectra of the
faulty and healthy states were obtained, as shown in Figure 12. The main plot shows the
power spectrum of the gear rotational frequency, and the inset shows the power spectrum
of the meshing frequency. The blue line represents the healthy state, and the red line
represents the faulty state. The power spectral density function of the fault near the gear
rotational frequency was much higher than that of the healthy state, especially in the region
corresponding to the double small gear rotational frequency. Due to cracks and spalling
failures in the gear surface and the changing speed of the train, the frequency-domain
features had no specific fault frequency, which confirmed the fault features of multiple
cracks and wear on the gearbox tooth surface. Thus, the fault diagnosis of the measured
gearbox data was complete.

Figure 12. Average power spectrum of short-term samples with proposed method.
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EEMD and VMD were selected to be compared with the proposed method, and the
signal was divided into several 10 s short-term signals. After decomposed by using the
two methods, IMFs were obtained, as shown in Figure 13. The IMFs with larger kurtosis
were selected for reconstruction. The power spectra of reconstructed signals are shown in
Figure 14. It can be clearly seen that EEMD and VMD failed to filter the impact components,
which still affected the spectra significantly.

Figure 13. IMFs after decomposition by EEMD and VMD: (a) IMFs of EEMD; (b) IMFs of VMD.
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Figure 14. Average power spectra of compared methods: (a) EEMD average power spectrum; (b) VMD average power spectrum.

The difference between healthy and faulty power spectra was calculated to evaluate
the methods’ effects. As shown in Figure 15, a larger value at the fr range means the
method has a better effect. It can be seen that the value of EEMD is far less than 0, and
VMD is slightly better than EEMD, but it is still in the state of less than 0, which means
it failed to distinguish between faulty and healthy signals. The method proposed in this
paper has the best effect, with a value that is much greater than 0. In summary, removing
the wheel–rail impact interference from the original signal can effectively highlight the
gearbox fault features with cracks, wear, and other damage.
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Figure 15. Power spectrum difference of each method.

4. Conclusions

In this paper, measured signals of real trains were analyzed. This work provides
reference value for the fault diagnosis of train gearboxes in engineering practice. A signal
segmentation algorithm was proposed, and the advantages of this algorithm are as follows:

(1) The impacts between the wheelsets and rail joint gaps in a real vehicle signal
cause significant spectrum distortion in the low-frequency region. However, the signal
also exhibits a certain regularity in the time domain. By using this regularity, this paper
proposes a segmentation algorithm based on cubic spline interpolation. It can suppress the
high amplitude of the shock response signal and divide a single large sample signal into
several short-term sample signals.

(2) In the case of an uncertain train speed, this method can calculate the data for the
train speed by using the extracted wheel–rail impacts, which provides a certain data basis
for the calculation of the rotational frequency and fault frequency band in the frequency-
domain analysis.

(3) Taking advantage of the number of samples after signal segmentation, statistical
analysis of the short-term sample signal was completed in the time and frequency domains.
The results showed that the algorithm has a strong ability to filter the disturbances caused
by the impact of the rail joint gap. It can extract the useful short-term signal sample
accurately. Compared to EEMD and VMD, the proposed algorithm can suppress and
remove the impact components of the original real vehicle signal effectively. The results
can detect regularities in the faulty signal and highlight the gearbox fault characteristics
due to cracks, wear, and other damage in the time- and frequency-domain analyses.
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