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Abstract: We present example quantum chemistry programs written with JAQALPAQ, a python
meta-programming language used to code in JAQAL (Just Another Quantum Assembly Language).
These JAQALPAQ algorithms are intended to be run on the Quantum Scientific Computing Open User
Testbed (QSCOUT) platform at Sandia National Laboratories. Our exemplars use the variational
quantum eigensolver (VQE) quantum algorithm to compute the ground state energies of the H2,
HeH+, and LiH molecules. Since the exemplars focus on how to program in JAQALPAQ, the
calculations of the second-quantized Hamiltonians are performed with the PYSCF python package,
and the mappings of the fermions to qubits are obtained from the OPENFERMION python package.
Using the emulator functionality of JAQALPAQ, we emulate how these exemplars would be executed
on an error-free QSCOUT platform and compare the emulated computation of the bond-dissociation
curves for these molecules with their exact forms within the relevant basis.

Keywords: quantum computing; quantum simulation; NISQ algorithms; quantum chemistry; ion
trap quantum computing; quantum software

1. Introduction

Welcome quantum computer programmer! JAQAL, an acryonym for Just Another
Quantum Assembly Language, is a quantum assembly language that was “designed by
quantum information scientists, for quantum information scientists.” Due to this, JAQAL

enables scientists to explore near-term quantum testbeds using language constructs that
make explicit connections to hardware primitives. In particular, JAQAL allows program-
mers to schedule parallel and sequential gate blocks, associate gates to underlying pulse
programs, and bind qubit variables to hardware qubit carriers [1]. JAQAL was developed
within the QSCOUT (Quantum Scientific Computing Open User Testbed) project at Sandia
National Laboratories. For a detailed specification of the JAQAL language, please see [2].

While programmers can code directly in JAQAL if they wish to do so, it can be more
convenient to use the associated python JAQALPAQ meta-programming package instead.
JAQALPAQ allows programmers to combine classical python instructions with quantum
JAQAL instructions to generate rich and expressive programs. JAQALPAQ provides func-
tionalities to do the following:

• Parse JAQAL text files into JAQAL quantum circuit objects.
• Manipulate JAQAL quantum circuit objects using python.
• Emulate the behavior of JAQAL quantum circuit objects.
• Output JAQAL text files from JAQAL quantum circuit objects.

Programmers who have experience with other quantum assembly languages may
want to use the JAQALPAQ-EXTRAS python package. The JAQALPAQ-EXTRAS package
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provides methods for parsing and transpiling quantum assembly code written in other
languages into JAQAL circuit objects relevant for the QSCOUT platform. Currently, the
JAQALPAQ-EXTRAS package supports transpiling from the following languages: QISKIT

(IBM), CIRQ (Google), QUIL (Rigetti), t|ket〉 (Cambridge Quantum Computing), and PRO-
JECTQ (ETH Zurich).

After briefly covering how to install the relevant python packages in Section 2, we
review the variational quantum eigensolver (VQE) [3] algorithm in Section 3. We then
present and explain three exemplars written using JAQALPAQ in Sections 4–6. These
three programs each estimate the ground-state energy of a small molecule using the VQE
algorithm [3–5]. The molecules explored by these exemplars are small enough that they can
be executed on the first-generation QSCOUT quantum computer, which can run quantum
circuits on up to three qubits. After this, in Section 7, we describe a variant of one of the
exemplars that could be executed on an envisioned future QSCOUT platform that can
operate on at least four qubits.

The intended audience for this document is beginner JAQALPAQ programmers who
may or may not be experts in quantum chemistry but who have some familiarity with
quantum circuits and how variational quantum algorithms work, at the level covered
in [4–7]. To that end, we do not delve deeply into the underlying quantum chemistry minu-
tiae needed to give meaning to these exemplars. For example, we offload the evaluation of
the integrals needed to compute the Hamiltonian coefficients for the molecules and the
subsequent fermion-to-qubit mapping to the PYSCF and OPENFERMION python packages,
respectively.

We also do not analyze the merits and flaws of the various basis sets used to second-
quantize molecular Hamiltonians. Instead, we simply assert which basis we are using.
Finally, we do not detail the fermion-to-qubit mappings and effective Hamiltonian re-
ductions that we use, instead referring the reader to the relevant literature where these
topics are discussed. It is our hope that by streamlining the discussion in this way that
programmers will be able to distill the essence of how JAQALPAQ can be used to run
variational quantum algorithms, enabling them to write their own algorithms and explore
the questions they wish to investigate.

As a brief summary, Table 1 lists each of the molecules covered by exemplars in this
document, what the relevant atomic parameters are for the corresponding VQE algorithm,
and which section in the document it is discussed in (with a hyperlink).

Table 1. Molecules for which we present JAQALPAQ exemplars. The numbers of orbitals and qubits
used have been reduced using the techniques described in the corresponding sections.

Molecule Protons Electrons Orbitals Hamiltonian Qubits Basis SectionTerms

H2 2 2 2 6 2 STO-3G Section 4
HeH+ 3 2 2 9 2 STO-3G Section 5

LiH 4 4 3 13 3 STO-6G Section 6

We note that all of the exemplars described in this paper are available under the
examples directory of the JAQALPAQ git repository at https://gitlab.com/jaqal/jaqalpaq
(accessed on 23 May 2021). These simulations are not prohibitively intensive, taking on the
order of an hour to run on a modern laptop.

2. Setup and Installation of JAQALPAQ

To begin working with our exemplars, one first needs to install OpenFermion, PySCF,
OpenFermionPySCF, QSCOUT-gatemodels, pyGSTi [8,9], and JAQALPAQ. We briefly
explain how to do this in this section.

https://gitlab.com/jaqal/jaqalpaq
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2.1. Generic Notes on the Installation Procedure

Throughout, we provide installation instructions using the pip package-management
system in both the development and user modes. Development mode installation requires
the retrieval of the package source code itself and the subsequent installation of the package
relative to a particular working directory for which the user has adequate permissions. In
the development mode instructions below, git is used to clone the source on the user’s
machine through HTTPS, and the working directory relative to which the package is
installed is the cloned source.

This option is preferred for users who intend to make modifications to the source code
of any of the packages being installed. In contrast, user mode installation does not require
the user to first retrieve the package source, and the installation of the package will be
relative to the user’s home directory. This option is preferred for users who do not intend
to modify the source code of any of the packages being installed. Naturally, it is possible to
install some packages in development mode and some packages in user mode.

2.2. Installing OpenFermion

OpenFermion is a python library used to manipulate quantum chemistry Hamilto-
nians; we use it to reduce the fermionic Hamiltonians of our molecules and transform
them to act on qubits. Documentation is available at https://github.com/quantumlib/
OpenFermion (accessed on 23 May 2021). To install the latest version of OpenFermion in
development mode:

cd <install directory>
git clone https://github.com/quantumlib/OpenFermion
cd OpenFermion
python -m pip install -e .

To install the latest Python Package Index (PyPI) release as a library in user mode:

python -m pip install --user openfermion

2.3. Installing PySCF

PySCF is a second python library that we use to calculate the coefficients of the
fermionic Hamiltonians of our molecules at varying bond lengths. Documentation is
available at http://pyscf.org/quickstart.html (accessed on 23 May 2021). The simplest way
to install PySCF is via the Python Package Index (PyPI), which provides a precompiled
PySCF code (python wheel) that works on most Linux systems, macOS systems, and
Ubuntu subsystems on Windows 10:

python -m pip install pyscf

If you already have pyscf installed, you can upgrade it to the newest version:

python -m pip install --upgrade pyscf

2.4. Installing OpenFermionPySCF

OpenFermionPySCF is a third python library that allows OpenFermion and PySCF
to interface directly; we use it to invoke and execute PySCF calculations, the results of
which are turned into data structures accessible by OpenFermion. We once again refer to
the documentation available at https://github.com/quantumlib/OpenFermion-PySCF
(accessed on 23 May 2021). To install the latest versions of OpenFermion and OpenFermion-
PySCF in development mode:

cd <install directory>
git clone https://github.com/quantumlib/OpenFermion-PySCF
cd OpenFermion-PySCF
python -m pip install -e .

https://github.com/quantumlib/OpenFermion
https://github.com/quantumlib/OpenFermion
http://pyscf.org/quickstart.html
https://github.com/quantumlib/OpenFermion-PySCF
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Alternatively, to install the latest PyPI releases as libraries in user mode:

python -m pip install --user openfermionpyscf

2.5. Installing JaqalPaq

JAQALPAQ can also be installed using pip, and documentation is available at https://
gitlab.com/jaqal/jaqalpaq (accessed on 23 May 2021). To install JAQALPAQ in development
mode:

cd <install directory>
git clone https://gitlab.com/jaqal/jaqalpaq
cd jaqalpaq
python -m pip install -e .

Alternatively, to install it in user mode:

python -m pip install --user jaqalpaq

We also note the availability of transpilers from other common quantum assembly
languages to JAQAL circuit objects in JAQALPAQ. These can be installed in development
mode using:

cd <install directory>
git clone https://gitlab.com/jaqal/jaqalpaq-extras
cd jaqalpaq-extras
python -m pip install -e .

Alternatively, in user mode:

python -m pip install --user jaqalpaq-extras

2.6. Installing pyGSTi

JAQALPAQ has two further dependencies that also require installation. QSCOUT-
gatemodels and pyGSTi, the latter being a dependency of the former, and thus we discuss its
installation first. Documentation for pyGSTi is available at https://github.com/pyGSTio/
pyGSTi (accessed on 23 May 2021). It can be installed in development mode using:

cd <install directory>
git clone https://github.com/pyGSTio/pyGSTi.git
cd pyGSTi
python -m pip install -e .

Alternatively, in user mode:

python -m pip install --user pygsti

We note that pyGSTi has numerous optional dependencies that can also be installed using
pip and refer the user to https://github.com/pyGSTio/pyGSTi (accessed on 23 May 2021)
for more information.

2.7. Installing QSCOUT-Gatemodels

The other remaining JAQALPAQ dependency is the gate pulse file that defines the gates
that JAQALPAQuses. Documentation can be found at https://gitlab.com/jaqal/qscout-
gatemodels (accessed on 23 May 2021). It can be installed in development mode using:

cd <install directory>
git clone https://gitlab.com/jaqal/qscout-gatemodels
cd qscout-gatemodels
python -m pip install -e .

Alternatively, in user mode:

python -m pip install --user qscout-gatemodels

https://gitlab.com/jaqal/jaqalpaq
https://gitlab.com/jaqal/jaqalpaq
https://github.com/pyGSTio/pyGSTi
https://github.com/pyGSTio/pyGSTi
https://github.com/pyGSTio/pyGSTi
https://gitlab.com/jaqal/qscout-gatemodels
https://gitlab.com/jaqal/qscout-gatemodels
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3. Brief Review of the Variational Quantum Eigensolver (VQE) Algorithm

Quantum chemistry was identified as a promising application of future quantum
computers in [10]. The variational quantum eigensolver (VQE) algorithm was later
developed as an approach to quantum chemistry problems suitable for NISQ (Noisy
Intermediate-Scale Quantum) computers. A key advantage of the VQE algorithm is that it
can be run on near-term quantum hardware without the need for large-scale fault-tolerant
quantum computing architectures facilitated by quantum error-correcting codes [3,4].

We note that, in recent results [11], VQE may not show a quantum advantage over
classical computational chemistry methods; however, its use here as an exemplary algo-
rithm is still of interest. The VQE algorithm is a hybrid quantum-classical algorithm that
uses a classical optimizer to minimize a cost function, which is evaluated using measure-
ment outcomes from circuits executed on quantum hardware [3,4]. In the context of the
chemistry exemplars in this document, this cost function is the ground-state energy of
the electronic Hamiltonian of a small molecule. The VQE algorithm relies on an ansatz,
which is a space of quantum states that are parametrized by a vector of classical variables
~θ = (θ1, θ2, ..., θn). The VQE algorithm uses this ansatz to construct and execute a quantum
circuit that prepares a trial state within that space.

For a given trial state prepared on quantum hardware, the expectation value of the
cost function, 〈H〉(~θ), is estimated from the outcomes of a set of Pauli measurements. The
estimate and the vector of parameters are then fed into a classical optimizer that produces
a new vector of parameters ~θ′ = (θ′1, θ′2, ...θ′n) in order to compute a new value of the cost
function, and so on. The optimizer iterates this process, with each step guiding the value
of the vector of parameters closer to the ansatz state that minimizes the cost function. For
our chemistry exemplars, this corresponds to the electronic ground state energy for a fixed
molecular geometry. A simplistic version of this process is shown in Figure 1.
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<latexit sha1_base64="U+JapeDlf8OscWBQJ/g+abxD8cY=">AAACCXicdZC7SgNBFIZnvcZ4i1raDAYhNmE3F5IyYJMyglEhG8Ls5CQZnJ1dZs4GwpLWxlexsVDE1jew822cXAQV/WHg4z/ncOb8QSyFQdf9cFZW19Y3NjNb2e2d3b393MHhlYkSzaHNIxnpm4AZkEJBGwVKuIk1sDCQcB3cns/q12PQRkTqEicxdEM2VGIgOENr9XLUl0wNJdAm9fWCCv4YeOrjCJBNz3q5vFt0a+WKW6Ju0auWyqWKhXK9Xq5WqVd058qTpVq93Lvfj3gSgkIumTEdz42xmzKNgkuYZv3EQMz4LRtCx6JiIZhuOr9kSk+t06eDSNunkM7d7xMpC42ZhIHtDBmOzO/azPyr1klwUO+mQsUJguKLRYNEUozoLBbaFxo4yokFxrWwf6V8xDTjaMPL2hC+LqX/w1Wp6Fm+qOQbhWUcGXJMTkiBeKRGGqRJWqRNOLkjD+SJPDv3zqPz4rwuWlec5cwR+SHn7RPN8Jmz</latexit><latexit sha1_base64="U+JapeDlf8OscWBQJ/g+abxD8cY=">AAACCXicdZC7SgNBFIZnvcZ4i1raDAYhNmE3F5IyYJMyglEhG8Ls5CQZnJ1dZs4GwpLWxlexsVDE1jew822cXAQV/WHg4z/ncOb8QSyFQdf9cFZW19Y3NjNb2e2d3b393MHhlYkSzaHNIxnpm4AZkEJBGwVKuIk1sDCQcB3cns/q12PQRkTqEicxdEM2VGIgOENr9XLUl0wNJdAm9fWCCv4YeOrjCJBNz3q5vFt0a+WKW6Ju0auWyqWKhXK9Xq5WqVd058qTpVq93Lvfj3gSgkIumTEdz42xmzKNgkuYZv3EQMz4LRtCx6JiIZhuOr9kSk+t06eDSNunkM7d7xMpC42ZhIHtDBmOzO/azPyr1klwUO+mQsUJguKLRYNEUozoLBbaFxo4yokFxrWwf6V8xDTjaMPL2hC+LqX/w1Wp6Fm+qOQbhWUcGXJMTkiBeKRGGqRJWqRNOLkjD+SJPDv3zqPz4rwuWlec5cwR+SHn7RPN8Jmz</latexit><latexit sha1_base64="U+JapeDlf8OscWBQJ/g+abxD8cY=">AAACCXicdZC7SgNBFIZnvcZ4i1raDAYhNmE3F5IyYJMyglEhG8Ls5CQZnJ1dZs4GwpLWxlexsVDE1jew822cXAQV/WHg4z/ncOb8QSyFQdf9cFZW19Y3NjNb2e2d3b393MHhlYkSzaHNIxnpm4AZkEJBGwVKuIk1sDCQcB3cns/q12PQRkTqEicxdEM2VGIgOENr9XLUl0wNJdAm9fWCCv4YeOrjCJBNz3q5vFt0a+WKW6Ju0auWyqWKhXK9Xq5WqVd058qTpVq93Lvfj3gSgkIumTEdz42xmzKNgkuYZv3EQMz4LRtCx6JiIZhuOr9kSk+t06eDSNunkM7d7xMpC42ZhIHtDBmOzO/azPyr1klwUO+mQsUJguKLRYNEUozoLBbaFxo4yokFxrWwf6V8xDTjaMPL2hC+LqX/w1Wp6Fm+qOQbhWUcGXJMTkiBeKRGGqRJWqRNOLkjD+SJPDv3zqPz4rwuWlec5cwR+SHn7RPN8Jmz</latexit><latexit sha1_base64="U+JapeDlf8OscWBQJ/g+abxD8cY=">AAACCXicdZC7SgNBFIZnvcZ4i1raDAYhNmE3F5IyYJMyglEhG8Ls5CQZnJ1dZs4GwpLWxlexsVDE1jew822cXAQV/WHg4z/ncOb8QSyFQdf9cFZW19Y3NjNb2e2d3b393MHhlYkSzaHNIxnpm4AZkEJBGwVKuIk1sDCQcB3cns/q12PQRkTqEicxdEM2VGIgOENr9XLUl0wNJdAm9fWCCv4YeOrjCJBNz3q5vFt0a+WKW6Ju0auWyqWKhXK9Xq5WqVd058qTpVq93Lvfj3gSgkIumTEdz42xmzKNgkuYZv3EQMz4LRtCx6JiIZhuOr9kSk+t06eDSNunkM7d7xMpC42ZhIHtDBmOzO/azPyr1klwUO+mQsUJguKLRYNEUozoLBbaFxo4yokFxrWwf6V8xDTjaMPL2hC+LqX/w1Wp6Fm+qOQbhWUcGXJMTkiBeKRGGqRJWqRNOLkjD+SJPDv3zqPz4rwuWlec5cwR+SHn7RPN8Jmz</latexit>

M1

M2

1.) Prepare trial state 2.) Measure cost function

Classical 
Optimizer

Figure 1. An exemplar VQE circuit with two qubits and an ansatz, Uans(~θ), parameterized by
the angles ~θ = (θ1, θ2, θ3). (1.) The circuit prepares an ansatz state parameterized by angles ~θ.
(2.) Different circuits measure the expectation values of terms in the Hamiltonian to calculate the cost
function. (3.) The value of the cost function and angles~θ are fed into a classical optimizer to compute
new angles ~θ′.

The VQE algorithm can be separated into three primary components. The first is a
quantum circuit that prepares an ansatz state. There is a correspondence between states
in the span of the ansatz and a circuit that generates each of them. This is illustrated in
Figure 1 for a two-qubit example in terms of a unitary operation, Uans(~θ), which transforms
|00〉 into an ansatz state. The unitary operation Uans(~θ) is itself compiled into two single-
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qubit gates and one two-qubit gate, each of which is parametrized by one of the classical
variables in ~θ. By adjusting the value of ~θ, one can produce different states within the
ansatz with the intent of finding the one for which the cost function is minimized. For the
examples in this document, we used the Unitary Coupled Cluster ansatz with single and
double excitations (UCCSD) [12–15].

The second piece of the VQE algorithm is one or more circuits that perform Pauli
measurements of the prepared trial state to estimate the expectation value of the cost
function. This cost function will be comprised of products of Pauli operators. For each of
these terms, a separate circuit will prepare the ansatz state and rotate it to the correct basis
and perform a measurement. Repeated sampling of these circuits will then allow us to
calculate the expectation value of the cost function as a whole. Depending on the function
one seeks to minimize, a great deal of optimization may go into this component of the VQE
algorithm, and there are many techniques available for reducing the number of terms that
must be measured [16–20].

The third piece of the VQE algorithm is the classical optimizer. A wide variety of
classical optimizers may be used, although their efficiency varies; the best practices remain
an active area of research [21–23]. The optimizer takes, as inputs, the expectation values of
each of the terms in the cost function and their respective weights, as well as the vectors
of the parameters that produced it, and outputs a new vector of parameters that ideally
produces a state that is closer to minimizing the cost function. For each iteration in this
loop, a new ansatz circuit must be created to account for the changing vector of parameters;
however, the measurement circuits typically do not change.

4. H2: Molecular Hydrogen

In this Section, we describe our first example VQE algorithm: computing the ground-
state energy of molecular hydrogen within the UCCSD ansatz. Like the Drosophila fruit
fly is to biology research, this is the “Hello world” program of the field, as it was the first
example of quantum computation applied to quantum chemistry [24]. It has also been the
subject of many experimental realizations [25–28]. By being so simple, this example lacks
many features that larger problems possess, such as contextuality [29,30]. Nonetheless, it is
the simplest possible quantum calculation of the ground-state energy of a molecule, and is,
therefore, a natural starting point.

4.1. H2: Derivation of the Hamiltonian

Our process for computing the ground state energy of H2 closely follows the works of
O’Malley et al. [25] and Hempel et al. [28]. As shown in those works, the second-quantized
fermionic Hamiltonian for H2 represented in the STO-3G basis set can be encoded to act
on four qubits (indexed 0–3) using the Bravyi–Kitaev mapping [31]. Doing so will result
in an expression that acts with the Pauli operators I and Z on the qubits 1 and 3 and
the Pauli operators X and Y on the qubits 0 and 2. States within the UCCSD ansatz are
generated from the Hartree–Fock state, which is a single computational basis state in the
Bravyi–Kitaev encoding. The UCCSD ansatz is generated by single- and double-excitation
operators that include strings of fermionic operators that also appear in the Hamiltonian.

The states of qubits 1 and 3 are left unchanged by the application of the ansatz
generating circuit. Thus, we can reduce the dimensionality of the problem by projecting
onto the subspace in which qubits 1 and 3 both take a fixed value—this is known as
tapering [29]. It turns out that the ground state for the UCCSD ansatz is in the subspace in
which both qubits are in the |0〉 state. Therefore, the VQE algorithm can be reformulated to
find the ground state of an effective Hamiltonian that only acts on the qubits 0 and 2, which
will, henceforth, be re-indexed as 0 and 1, as was done in [25]. Specifically, the reduced
Hamiltonian is [25]:

HBK = c0 I + c1Z0 + c2Z1 + c3Z1Z0 + c4X1X0 + c5Y1Y0. (1)
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For this reduced Hamiltonian, the UCCSD ansatz becomes a space of two-qubit states
parameterized by a single real variable. The Hartree–Fock reference state from which this
space is generated is the two-qubit computational basis state for which the expectation
value of Equation (1) is smallest. It is easy to determine which state this is by inspection.
The identity acts on all basis states in the same way, and thus the value of c0 is irrelevant.
The expectation values of the X1X0 and Y1Y0 terms are zero for any basis state; therefore,
the values of c4 and c5 are also irrelevant. The sign of c1 is positive, and c2 is negative; thus,
these will reduce the energy expectation value when the qubits 0 and 1 are in the states 1
and 0, respectively. Finally, the sign of c3 is positive, and thereby the energy expectation
value will be reduced when the qubits 0 and 1 have odd parity. Thus, we can see that
the Hartree–Fock state is |ψHF〉 = |01〉, by inspection. To be clear about the ordering, this
means that qubit 0 is in the |1〉 state, and qubit 1 is in the |0〉 state.

For each term in the reduced Hamiltonian in Equation (1), we must create a JAQAL

circuit to measure the expectation value of that term acting on the VQE ansatz state. One
way to write this with JAQALPAQ is as follows: (The python import and other header
statements are not listed below to maintain the focus on the relevant code. The full python
code for this example can be found in Appendix A and in the JAQALPAQ distribution under
the jaqalpaq/examples directory.)

# Define Pauli strings that appear in the reduced two-qubit Hamiltonian
# q0 , q1
terms = [[None,None],[’Z’,None],[None,’Z’],[’Z’,’Z’],[’X’,’X’],[’Y’,’Y’]]

# Calculate effective coefficients for the reduced two-qubit Hamiltonian
# from those of the four-qubit Hamiltonian.
# Derivation follows arXiv:1803.10238v2 appendix A-2
fs = hamiltonian_bk.terms #Old coefficients from OpenFermion Hamiltonian
c0 = (fs[()] + fs[(1, ’Z’),] + fs[(1, ’Z’), (3, ’Z’),]).real
c1 = (fs[(0, ’Z’),] + fs[(0, ’Z’), (1, ’Z’),]).real
c2 = (fs[(2, ’Z’),] + fs[(1, ’Z’), (2, ’Z’), (3, ’Z’),]).real
c3 = (fs[(0, ’Z’), (2, ’Z’),] + fs[(0, ’Z’), (1, ’Z’), (2, ’Z’),]
+ fs[(0, ’Z’), (2, ’Z’), (3, ’Z’),]
+ fs[(0, ’Z’), (1, ’Z’), (2, ’Z’), (3, ’Z’)]).real
c4 = (fs[(0,’X’), (1, ’Z’), (2, ’X’),]
+ fs[(0, ’X’), (1, ’Z’), (2, ’X’), (3, ’Z’),]).real
c5 = (fs[(0, ’Y’), (1, ’Z’), (2, ’Y’),]
+ fs[(0, ’Y’), (1, ’Z’), (2, ’Y’), (3, ’Z’),]).real
#New coefficients are linear combinations of old coefficients
cs = [c0, c1, c2, c3, c4, c5]

for i in range(len(terms)):
builder = circuitbuilder.CircuitBuilder(
native_gates=normalize_native_gates(native_gates.NATIVE_GATES))

# Create a qubit register
q = builder.register(’q’, 2)

# Define a hadamard macro
hadamard = circuitbuilder.SequentialBlockBuilder()
hadamard.gate(’Sy’, ’a’)
hadamard.gate(’Px’, ’a’)
builder.macro(’hadamard’, [’a’], hadamard)

#################
#Apply UCC Ansatz
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#################

# Change basis for measurement depending on term
for j, qubit in enumerate(terms[i]):
if qubit == ’X’:
builder.gate(’hadamard’, (’array_item’, q, j)),
if qubit == ’Y’:
builder.gate(’Sxd’, (’array_item’, q, j)),
builder.gate(’measure_all’)

circuit = builder.build()

# Format results of simulation as a list of lists
#Run circuit on emulator
sim_result = emulator.run_jaqal_circuit(circuit)
#Extract probabilities
sim_probs = sim_result.subcircuits[0].probability_by_int
#Combine lists of probs of each term in Hamiltonian
term_probs += [sim_probs]

This code begins with a manual definition of the terms and coefficients of our reduced
two-qubit Hamiltonian. It then creates six different JAQAL circuit expressions, one for each
Pauli term in the Hamiltonian. Each expression begins by creating a two-qubit register and
defining a macro for a Hadamard gate. Then, each circuit expression ends with a different
measurement, depending on its corresponding Pauli term. This code will append gates to
each circuit to map the Pauli term to the logical Z basis before measurement. For the X
basis, we implement a Hadamard as a π

2 rotation about the y-axis followed by a π rotation
about the x-axis. For the Y basis, we simply rotate about the x-axis by π

2 . Lastly, the circuit
expression is made into a circuit object by the circuitbuilder class.

This JAQAL circuit, beginning with the preparation of the qubits through to their
measurement, is run on the emulator to determine the probabilities of certain output states
and, from that, the expectation values of each of the terms in the Hamiltonian. The expec-
tation values are then weighted by coefficients ci derived from the original Hamiltonian
coefficients fi that were calculated using PYSCF [32]. We note that using the emulator in
this way to access the probabilities directly is impossible in the experiment; therefore, we
also included code that shows how to estimate these probabilities by repeatedly sampling
the output of a circuit, as would be done on the QSCOUT hardware:

# Format results of simulation as a list of lists
probs = np.zeros(4) # Number of possible states

#Run circuit on emulator
sim_result = emulator.run_jaqal_circuit(circuit)
sim_probs = sim_result.subcircuits[0].probability_by_int
sample = np.random.choice(4, size=n_samples, p=sim_probs)
for count in sample:
probs[count] += 1 #Increment state counter
probs = probs/n_samples #Determine probabilities from sampling
term_probs += [probs] #Combine lists of probs of each term in Hamiltonian

This code would be replaced with calls to run the JAQAL circuit on the hardware when
not using the emulator.

The following python code estimates the energy of a term after the appropriate ro-
tations, discussed previously, have rotated the observables to each qubit’s Z basis. The
following python functions, therefore, determine the expectation values of the diagonal
operators. To determine the energy of a particular ansatz state, we define two functions:



Entropy 2021, 23, 657 9 of 29

# Calculate energy of one term of the Hamiltonian
# for one possible state
def term_energy(term, state, coefficient, prob):
parity = 1
for i in range(len(term)):
#Change parity if state is occupied
#and is acted on by a pauli operator
if term[i] != None and state[i] == ’1’:
parity = -1*parity
return coefficient*prob*parity

# Calculate energy of the molecule for a given value of theta
def make_calculate_energy(sample_noise=False):
def calculate_energy(theta):
energy = 0
#Convert tuple (from optimization) to float
probs = ansatz(theta[0], sample_noise)
for i in range(len(terms)): #For each term in the hamiltonian
for j in range(len(probs[0])): #For each possible state
term = terms[i]
#convert state to binary (# of qubits)
state = ’{0:02b}’.format(j)[::-1]
#binary must be inverted due to jaqalpaq convention
coefficient = cs[i].real
prob = probs[i][j]
energy += term_energy(term, state, coefficient, prob)
return energy
return calculate_energy

The first python function will calculate the energy of one particular basis state for one
term in the Hamiltonian. The inputs to this function are the given Pauli term, the two-qubit
basis state (in binary), the corresponding energy coefficient for the reduced Hamiltonian,
and the probability of measuring that state. The code inside this function determines the
parity of the state, which depends on whether or not each orbital is occupied and whether
or not the qubit representing that orbital is acted upon by a Pauli operator. The function
then returns the appropriate energy depending on that parity value.

The energy calculations for each term and basis state, as computed by the first function,
are summed together in the second python function. This second function calculates the
total energy of the molecule by running the ansatz circuit and measuring the energy of
each of the terms in the Hamiltonian for all of the possible states created by the circuit.

4.2. H2: Derivation of the UCCSD Operator

We still need to fill in the action of the ansatz circuit to prepare the state for measure-
ment. If we encode the Unitary Coupled Cluster for single and double excitations (UCCSD)
of H2 from [28] with the Bravyi–Kitaev (BK) mapping, we obtain

U(θ) = exp
(

i
θ

8
[−X2Y0 + Y2X0 − X2Z1Y0 + Y2Z1X0 − Z3X2Y0 + Z3Y2X0 − Z3X2Z1Y0 + Z3Y2Z1X0]

)
. (2)

As noted earlier, this operator acts with only the Pauli I and Z rotations on qubits
1 and 3, and thus it can be reduced to act on the qubits 0 and 2. When acting on the
Bravyi–Kitaev Hartree–Fock state, further simplification (and a relabeling of the qubits 0
and 2 to 0 and 1) leads to the form:

U(θ)|01〉 = exp(−iθX1Y0)|01〉. (3)
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In the “standard quantum circuit gate basis” [6], this operator would be implemented
with CNOT gates that entangle the qubits and measure their parity. However, CNOTs are
not native gates to the QSCOUT trapped-ion qubit platform. An alternative is to replace
those CNOT gates with a combination of rotations and Mølmer–Sørensen (MS) gates, as
shown in [33,34]. In the replacement circuit described in that reference, the qubits are
entangled by a Mølmer–Sørensen gate that rotates by +π

2 , followed by a parameterized
Z rotation, followed by another Mølmer–Sørensen gate that rotates by −π

2 , followed by
a measurement.

This circuit can be written in JAQALPAQ as follows:

# Prepare the Hartree Fock state
builder.gate(’prepare_all’)
builder.gate(’Px’, q[0])

# Apply the UCC Ansatz exp[-i*theta(X1 Y0)]
builder.gate(’MS’, q[1], q[0], 0, np.pi/2)
builder.gate(’Rz’, q[1], theta)
builder.gate(’MS’, q[1], q[0], 0, -np.pi/2)

In the preceding JAQALPAQ code, we prepare the qubits in the |00〉 state and then
act on the second qubit with an X rotation to produce the Hartree–Fock state |01〉. We
then apply the UCCSD operator as described above using Mølmer–Sørensen gates. Note
that JAQAL allows for a degree of freedom in choosing the axis angle of Mølmer–Sørensen
gates, which can be used to simplify some circuits; however, in this case, we set the angle
to 0. Our operator is parameterized using an argument theta input from our classical
optimization loop. With the entire circuit prepared, we then minimize the energy via
an external classical optimization routine. We used the minimization methods available
in scipy.optimize [35]—specifically, the COBYLA algorithm. This code is shown in its
entirety in Appendix A.

The dissociation curve we computed using this JAQALPAQ code is shown in Figure 2,
using the built-in emulator capability in JAQALPAQ. The data points fall exactly on the
theoretical full configuration-interaction (Full-CI) curve for two reasons. First, the ansatz
can realize the exact ground state for this small example. Second, the current version of
the JAQALPAQ emulator (a) models each QSCOUT operation as being either an error-free
unitary transformation, state preparation, or measurement and (b) returns the exact final
quantum state upon quantum circuit completion.

As such, these results do not suffer from fluctuations due to the finite numbers of
samples. For larger examples, the ansatz state will, in general, not be able to realize the
exact ground state energy. Simulation of the operation on QSCOUT with a finite number of
samples will result in statistical fluctuations in the data as is also shown in Figure 2. For all
sampling-based curves in this paper, we chose a baseline of 10,000 samples.
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H2: Bond Dissociation Curve Results
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Figure 2. Plot of the dissociation curve of H2 across different bond lengths. The black line is the
theoretical full configuration interaction value for the ground state energy. The red points show the
optimized energies derived from accessing the probabilities directly via the emulator. The blue points
show the optimized energies derived from repeated sampling of the ansatz circuits. In both cases,
the optimized results approach the theoretical curve.

5. HeH+: Helium Hydride

Replacing one of the protons of the hydrogen molecule by an alpha particle gives
HeH+. This example was realized experimentally in the original paper on VQE and has
some interesting features, which we describe below [3].

5.1. HeH+: Derivation of the Hamiltonian

Both H2 and HeH+ have two electrons and two space orbitals; therefore, we will use
a comparable Hamiltonian and ansatz as before. However, unlike H2, the one body term of
the HeH+ Hamiltonian is not symmetric under exchange of the nuclei. In the BK encoding,
the Hamiltonian for HeH+ has 27 terms acting on four qubits. Using tapering techniques
from [29] in OPENFERMION [36], we may reduce this to nine terms acting on two qubits.
As with our other molecules, we will create a JAQAL circuit for each of these terms, making
the appropriate rotations at the end to measure the expectation value and calculate the
energy. This is written in JAQALPAQ as:

# Define terms and coefficients of our Hamiltonian
terms = []
cs = [] #Coefficients
for term in hamiltonian_bk.terms:
paulis = [None, None]
for pauli in term:
paulis[pauli[0]] = pauli[1]
terms += [paulis]
cs += [hamiltonian_bk.terms[term]]

for i in range(len(terms)):
builder = circuitbuilder.CircuitBuilder(
native_gates=normalize_native_gates(native_gates.NATIVE_GATES))
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# Define constants +-pi/2
pi2 = builder.let(’pi2’, pi/2)
npi2 = builder.let(’npi2’, -pi/2)

# Create a qubit register
q = builder.register(’q’, 2)

# Define a hadamard macro
hadamard = circuitbuilder.SequentialBlockBuilder()
hadamard.gate(’Sy’, ’a’)
hadamard.gate(’Px’, ’a’)
builder.macro(’hadamard’, [’a’], hadamard)

#################
#Apply UCC Ansatz
#################

# Change basis for measurement depending on term
for j, qubit in enumerate(terms[i]):
if qubit == ’X’:
builder.gate(’hadamard’, (’array_item’, q, j)),
if qubit == ’Y’:
builder.gate(’Sxd’, (’array_item’, q, j)),
builder.gate(’measure_all’)

circuit = builder.build()

# Format results of simulation as a list of lists
sim_result = emulator.run_jaqal_circuit(circuit) #Run circuit on emulator
sim_probs = sim_result.subcircuits[0].probability_by_int #Extract probabilities
term_probs += [sim_probs] #Combine lists of probs of each term in Hamiltonian

Here, we begin again by creating nine JAQAL circuits. We previously derived our
tapered Hamiltonian using PYSCF [32] and OPENFERMION [36] as shown in detail in
Appendix B. By iterating over each of the terms in the Hamiltonian, we can separate out
the Pauli operators and their corresponding coefficients for use in our algorithm. The rest
of the code is the same as with H2, where we iterate over each circuit and perform the
necessary rotations to measure each term of our Hamiltonian. With this setup, we may
then calculate the energy using the same functions as with H2—this time using the terms
and coefficients calculated above instead of putting them in by hand.

5.2. HeH+: Derivation of the UCCSD Operator

For HeH+, the UCCSD operator will be the same as with H2, as we are again interested
in only the excitations between the two space orbitals of the molecule. However, due to a
change in the ordering of qubits in OPENFERMION we are now acting on the state |11〉:

U(θ)|11〉 = exp(−iθX0Y1)|11〉, (4)

which can be implemented in JAQALPAQ as shown in the previous section:

# Prepare the Hartree Fock state
builder.gate(’prepare_all’)
builder.gate(’Px’, q[0])
builder.gate(’Px’, q[1])
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# Apply the UCC Ansatz exp[-i*theta(X1 Y0)]
builder.gate(’MS’, q[1], q[0], 0, pi2)
builder.gate(’Rz’, q[1], theta)
builder.gate(’MS’, q[1], q[0], 0, npi2)

As before, we prepare the HF state of our molecule and then apply our ansatz before
rotating by our parameter “theta”. We may then classically optimize this parameter using
scipy to find the ground state energy. These results are shown in Figure 3.

HeH+: Bond Dissociation Curve Results
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Figure 3. Plot of the dissociation curve of HeH+ for a tapered two-qubit Hamiltonian across different
bond lengths. The black line is the theoretical full configuration interaction value for the ground state
energy. The red points show the optimized energies derived from accessing the probabilities directly
via the emulator. The blue points show the optimized energies derived from repeated sampling of
the ansatz circuits. In both cases, the optimized results approach the theoretical curve.

6. LiH: Lithium Hydride

Our last example is a more complicated system, lithium hydride. The VQE algorithm
for this system was previously experimentally realized using an ion trap in [28].

6.1. LiH: Derivation of the Hamiltonian

While H2 and HeH+ have two relevant space orbitals in a minimal basis, LiH has six,
meaning there are twelve spin orbitals to consider. In addition, there are now four electrons
instead of two, dramatically increasing the number of orbital excitations that need to be
taken into account. We again follow the work of Hempel et al. [28], choosing this time to
use the STO-6G basis as they do for a more straightforward comparison. A naive encoding
of the Hamiltonian using the Bravyi–Kitaev mapping would require 12 qubits, which is
too many for the QSCOUT system. However, since we are only trying to approximate
the ground state energy rather than calculate it exactly, we need not consider some of the
molecular orbitals. By reducing the active space of our problem as shown in [28], we go
from six orbitals and 12 qubits to three orbitals and six qubits.

Moreover, as we need only to consider transitions between the first and second
orbitals and first and third orbitals, we simplify our UCCSD operator as well. This operator
only acts non-trivially on three of the six qubits, meaning we may again reduce our
Hamiltonian using the tapering techniques from [29]. This reduction is shown in more
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detail in Appendix C. In the Bravyi–Kitaev encoding, we obtain a Hamiltonian that acts on
three qubits with a corresponding Hartree–Fock state |ΨHF〉 = |111〉:

HBK = c0 I + c1Z0 + c2Z1 + c3Z2 + c5Z0Z2 + c6Z1Z2 + c7X0X1 + c8Y0Y1 + c9X0X2 + c10Y0Y2 + c11X1X2 + c12Y1Y2 (5)

This is expressed in JAQALPAQ as follows:

# Reduce the BK Hamiltonian for LiH
terms = []
cs = []
red_hamiltonian_bk = QubitOperator()
result = reduce_hamiltonian(hamiltonian_bk)
for i in range(len(result)): #Separate out term and coeffs again after combining like terms
terms += [result[i][0]]
cs += [result[i][1]]
string = ’’
for j, pauli in enumerate(result[i][0]):
if pauli != None:
string += str(pauli)+str(j)+’ ’
red_hamiltonian_bk += result[i][1]*QubitOperator(string)

for i in range(len(terms)):
builder = circuitbuilder.CircuitBuilder(
native_gates=normalize_native_gates(native_gates.NATIVE_GATES))

# Define constants +-pi/2
pi2 = builder.let(’pi2’, pi/2)
npi2 = builder.let(’npi2’, -pi/2)

# Create a qubit register
q = builder.register(’q’, 3)

# Define a hadamard macro
hadamard = circuitbuilder.SequentialBlockBuilder()
hadamard.gate(’Sy’, ’a’)
hadamard.gate(’Px’, ’a’)
builder.macro(’hadamard’, [’a’], hadamard)

#################
#Apply UCCSD Ansatz
#################

# Change basis for measurement depending on term
for j, qubit in enumerate(terms[i]):
if qubit == ’X’:
builder.gate(’hadamard’, (’array_item’, q, j)),
if qubit == ’Y’:
builder.gate(’Sxd’, (’array_item’, q, j)),
builder.gate(’measure_all’)

circuit = builder.build()

# Format results of simulation as a list of lists
sim_result = emulator.run_jaqal_circuit(circuit) #Run circuit on emulator
sim_probs = sim_result.subcircuits[0].probability_by_int #Extract probabilities
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term_probs += [sim_probs] #Combine lists of probs of each term in Hamiltonian

This code is of the same form and function as the code for H2 and HeH+, with the
main difference being how the terms and coefficients of the reduced Hamiltonian are
calculated. A new function, defined in Appendix C, is called to transform the six-qubit
Hamiltonian into a three-qubit version in the algorithm.

6.2. LiH: Derivation of the UCCSD Operator

As was mentioned in the previous section, we are interested only in the excitations
among the first, second, and third orbitals. As with H2, the UCCSD operator will be made
from excitation operators; however, in this case, there will be two such operators leading to
a two-parameter ansatz. In the Bravyi–Kitaev encoding, each of these operators has many
Pauli terms as shown in Equation (2), corresponding to many gate operations. However,
we may limit these expressions to only the first term in that expression without decreasing
the accuracy of our calculation beyond acceptable bounds. Each of these operators may
then be written as:

U(α) = exp(−iαX2Y4). (6)

U(β) = exp(−iβX2Y6). (7)

We see that these operators only ever act on qubits 2, 4, and 6, meaning that we may
reduce our circuit and Hamiltonian to only act on three qubits in total, as discussed in the
previous section. As was the case with H2, these operators may be implemented using
Mølmer–Sørensen gates and parameterized Z rotations in JAQALPAQ:

# Prepare the Hartree Fock state
builder.gate(’prepare_all’)
builder.gate(’Px’, q[0])
builder.gate(’Px’, q[1])
builder.gate(’Px’, q[2])

# Apply the UCC Ansatz exp[-i*theta(X1 Y0)]
builder.gate(’MS’, q[1], q[0], 0, pi2)
builder.gate(’Rz’, q[0], alpha)
builder.gate(’MS’, q[1], q[0], 0, npi2)

builder.gate(’MS’, q[2], q[0], 0, pi2)
builder.gate(’Rz’, q[0], beta)
builder.gate(’MS’, q[2], q[0], 0, npi2)

Here, we prepare the initial state with X gates as before, and then act on it with two
operators, one for each parameter. As before, the resulting state is then rotated to the proper
basis before measurement. The bond dissociation curve derived from this minimization is
shown in Figure 4.
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LiH: Bond Dissociation Curve Results
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Figure 4. Plot of the dissociation curve of LiH for a tapered three-qubit Hamiltonian across different
bond lengths. The black line is the theoretical full configuration interaction value for the ground state
energy. Here, the exact energy is calculated based on the reduced three-qubit Hamiltonian. The red
points show the optimized energies derived from accessing the probabilities directly via the emulator.
The blue points show the optimized energies derived from repeated sampling of the ansatz circuits.
In both cases, the optimized results approach the theoretical curve.

7. Molecules on Future Hardware

The current QSCOUT system has three qubits at its disposal, which limits the kinds
of VQE experiments that can be run on the hardware. In this section, we detail future
experiments that could be carried out on more qubits for QSCOUT 2.0 and beyond.

HeH+: Variant for a Four-Qubit Computer

An alternative solution for HeH+ is to use the untapered Hamiltonian for HeH+ that
contains 27 terms acting on four qubits. This implementation is infeasible on current
hardware, but it remains useful as an exercise. For this more general case, the only
difference comes in the size of the qubit register:

# Create a qubit register
q = builder.register(’q’, 4)

and in the action of the UCCSD operator:

UCC(θ)|0011〉 = exp(−iθX0X1X2Y3)|0011〉, (8)

which can be implemented in JAQAL by using Mølmer–Sørensen gates as shown in
Maslov et al. [34]:

# Define a CNOT macro
CNOT = circuitbuilder.SequentialBlockBuilder()
CNOT.gate(’Sy’, ’control’)
CNOT.gate(’MS’, ’control’, ’target’, 0, np.pi/2)
Sxd_block = CNOT.block(parallel=True)
Sxd_block.gate(’Sxd’, ’control’)
Sxd_block.gate(’Sxd’, ’target’)
CNOT.gate(’Syd’, ’control’)
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builder.macro(’CNOT’, [’control’, ’target’], CNOT)

# Prepare the Hartree Fock state
builder.gate(’prepare_all’)
builder.gate(’Px’, q[0])
builder.gate(’Px’, q[1])

# Apply the UCC Ansatz exp[-i*theta(X1 Y0)]
builder.gate(’hadamard’, q[0])
builder.gate(’hadamard’, q[1])
builder.gate(’hadamard’, q[2])
builder.gate(’Sxd’, q[3])
builder.gate(’CNOT’, q[0], q[1])
builder.gate(’CNOT’, q[1], q[2])
builder.gate(’CNOT’, q[2], q[3])
builder.gate(’Rz’, q[3], theta)
builder.gate(’CNOT’, q[2], q[3])
builder.gate(’CNOT’, q[1], q[2])
builder.gate(’CNOT’, q[0], q[1])
builder.gate(’hadamard’, q[0])
builder.gate(’hadamard’, q[1])
builder.gate(’hadamard’, q[2])
builder.gate(’Sx’, q[3])

In this code, we define a ‘CNOT’ macro as a combination of rotations and a Mølmer–
Sørensen gate using nested sequential and parallel blocks of JAQAL code. This macro
can then be used in the ansatz circuit to entangle the four qubits together to prepare the
ansatz state.

Here, we plotted the bond dissociation curve for HeH+ for four qubits (Figure 5).
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Figure 5. Plot of the dissociation curve of HeH+ for the full four-qubit Hamiltonian across different
bond lengths. The black line is the theoretical full configuration interaction value for the ground state
energy. The red points show the optimized energies derived from accessing the probabilities directly
via the emulator. The blue points show the optimized energies derived from repeated sampling of
the ansatz circuits. In both cases, the optimized results approach the theoretical curve.
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8. Discussion and Conclusions

We showed the process of computing the ground state energy of three different
small molecules: H2, HeH+, and LiH. We began with the derivation of the molecules’
respective Hamiltonians through quantum chemistry packages, such as PYSCF [32] and
OPENFERMION [36]. Then, for each molecule, we iteratively prepared and measured a VQE
ansatz state using the tools that JAQALPAQ and its emulator provide, including an exact
method and sampling based method. Lastly, we plotted the results of these simulations as
bond dissociation curves, comparing our optimized values to the theoretical Full-CI values
for each molecule. We hope that by presenting and explaining these example algorithms
for H2, HeH+, and LiH that beginning JAQALPAQ programmers will have a starting point
for developing their own variational quantum algorithms using JAQAL.
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Appendix A. H2 Code
# Imports for QSCOUT
import jaqalpaq
from jaqalpaq.core import circuitbuilder
from jaqalpaq.core.circuit import normalize_native_gates
from jaqalpaq import emulator
from qscout.v1 import native_gates

# Imports for basic mathematical functionality
from math import pi
import numpy as np

# Imports for OpenFermion(-PySCF)
import openfermion as of
from openfermion.chem import MolecularData
from openfermionpyscf import run_pyscf

# Import for VQE optimizer
from scipy import optimize

def ansatz(theta, sample_noise=False):
term_probs = []
for i in range(len(terms)):
builder = circuitbuilder.CircuitBuilder(
native_gates=normalize_native_gates(native_gates.NATIVE_GATES))

https://gitlab.com/jaqal
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# Create a qubit register
q = builder.register(’q’, 2)

# Define a hadamard macro
hadamard = circuitbuilder.SequentialBlockBuilder()
hadamard.gate(’Sy’, ’a’)
hadamard.gate(’Px’, ’a’)
builder.macro(’hadamard’, [’a’], hadamard)

# Prepare the Hartree Fock state
builder.gate(’prepare_all’)
builder.gate(’Px’, q[0])

# Apply the UCC Ansatz exp[-i*theta(X1 Y0)]
builder.gate(’MS’, q[1], q[0], 0, np.pi/2)
builder.gate(’Rz’, q[1], theta)
builder.gate(’MS’, q[1], q[0], 0, -np.pi/2)

# Change basis for measurement depending on term
for j, qubit in enumerate(terms[i]):
if qubit == ’X’:
builder.gate(’hadamard’, (’array_item’, q, j)),
if qubit == ’Y’:
builder.gate(’Sxd’, (’array_item’, q, j)),
builder.gate(’measure_all’)

circuit = builder.build()

# Format results of simulation as a list of lists
sim_result = emulator.run_jaqal_circuit(circuit)
sim_probs = sim_result.subcircuits[0].probability_by_int

if sample_noise: #Sample circuits to determine probs
probs = np.zeros(4) # Number of possible states
for k in range(n_samples):
sample = np.random.choice(4, p=sim_probs)
probs[sample] += 1 #Increment state counter
probs = probs/n_samples #Determine probabilities from sampling
term_probs += [probs] #Combine lists of probs of each term in Hamiltonian

else: #Exact solution without sampling
term_probs += [sim_probs]
return term_probs

# Calculate energy of one term of the Hamiltonian for one possible state
def term_energy(term, state, coefficient, prob):
parity = 1
for i in range(len(term)):
#Change parity if state is occupied and is acted on by a pauli operator
if term[i] != None and state[i] == ’1’:
parity = -1*parity
return coefficient*prob*parity

# Calculate energy of the molecule for a given value of theta
def make_calculate_energy(sample_noise=False):
def calculate_energy(theta):
energy = 0
probs = ansatz(theta[0], sample_noise) #Convert tuple (from optimization) to float
for i in range(len(terms)): #For each term in the hamiltonian
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for j in range(len(probs[0])): #For each possible state
term = terms[i]
state = ’{0:02b}’.format(j)[::-1] #convert state to binary (# of qubits)
#binary must be inverted due to jaqalpaq convention
coefficient = cs[i].real
prob = probs[i][j]
energy += term_energy(term, state, coefficient, prob)
return energy
return calculate_energy

# Set the basis set, spin, and charge of the H2 molecule
basis = ’sto-3g’
multiplicity = 1
charge = 0

# Set calculation parameters
run_scf = 1
run_fci = 1
delete_input = True
delete_output = False

optimized_energies = [[], []]
exact_energies = []

# Loop over bond lengths from 0.3 to 1.3 angstroms
sample_noise = False
n_samples = 10000 # Sample circuit
n_pts = 11 # Number of points
bond_lengths = np.linspace(0.3,1.3,n_pts)
for diatomic_bond_length in bond_lengths:
# Generate molecule at some bond length
geometry = [(’H’, (0., 0., 0.)), (’H’, (0., 0., diatomic_bond_length))]
molecule = MolecularData(
geometry, basis, multiplicity, charge,
description=str(round(diatomic_bond_length, 2)),
filename=’./H2_sto-3g_single_dissociation’)

# Run pyscf to generate new molecular data for sto-3g H2
molecule = run_pyscf(molecule,
run_scf=run_scf,
run_fci=run_fci,
verbose=False)

# Get the fermionic Hamiltonian for H2 and map it into qubits using the BK encoding
hamiltonian = molecule.get_molecular_hamiltonian()
hamiltonian_ferm = of.get_fermion_operator(hamiltonian)
hamiltonian_bk = of.bravyi_kitaev(hamiltonian_ferm)

# Define Pauli strings that appear in the reduced two-qubit Hamiltonian
# q0 , q1
terms = [[None, None], [’Z’, None], [None, ’Z’], [’Z’, ’Z’], [’X’, ’X’], [’Y’, ’Y’]]

# Calculate effective coefficients for the reduced two-qubit Hamiltonian
# Derivation follows arXiv:1803.10238v2 appendix A-2
fs = hamiltonian_bk.terms #Old coefficients from OpenFermion Hamiltonian
c0 = (fs[()] + fs[(1, ’Z’),] + fs[(1, ’Z’), (3, ’Z’),]).real
c1 = (fs[(0, ’Z’),] + fs[(0, ’Z’), (1, ’Z’),]).real
c2 = (fs[(2, ’Z’),] + fs[(1, ’Z’), (2, ’Z’), (3, ’Z’),]).real
c3 = (fs[(0, ’Z’), (2, ’Z’),] + fs[(0, ’Z’), (1, ’Z’), (2, ’Z’),] + fs[(0, ’Z’), (2, ’Z’),
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(3, ’Z’),] + fs[(0, ’Z’), (1, ’Z’), (2, ’Z’), (3, ’Z’)]).real
c4 = (fs[(0,’X’), (1, ’Z’), (2, ’X’),] + fs[(0, ’X’), (1, ’Z’), (2, ’X’), (3, ’Z’),]).real
c5 = (fs[(0, ’Y’), (1, ’Z’), (2, ’Y’),] + fs[(0, ’Y’), (1, ’Z’), (2, ’Y’), (3, ’Z’),]).real
cs = [c0, c1, c2, c3, c4, c5] #New coefficients are linear combinations of old coefficients

# Minimize the expectation value of the energy using a classical optimizer (COBYLA)
exact_energies.append(molecule.fci_energy)
print("R={}\t Exact Energy: {}".format(str(round(diatomic_bond_length, 2)), molecule.fci_energy))
for i in range(2):
result = optimize.minimize(fun=make_calculate_energy(sample_noise=i), x0=[0.01], method="COBYLA")
optimized_energies[i].append(result.fun)
print("R={}\t Optimized Energy: {}\t Sampling Noise: {}".format(
str(round(diatomic_bond_length, 2)), result.fun, bool(i)))
print("\n")

import matplotlib
import matplotlib.pyplot as pyplot

# Plot the various energies for different bond lengths
fig = pyplot.figure(figsize=(15,10))
pyplot.rcParams[’font.size’]=18
bkcolor = ’#ffffff’
ax = fig.add_subplot(1, 1, 1)
pyplot.subplots_adjust(left=.2)
ax.set_xlabel(’R (Angstroms)’)
ax.set_ylabel(r’E (Hartrees)’)
ax.set_title(r’H2 bond dissociation curve’)
ax.spines[’right’].set_visible(False)
ax.spines[’top’].set_visible(False)
bond_lengths = [float(x) for x in bond_lengths]
ax.plot(bond_lengths, optimized_energies[0], ’o’, label=’UCCSD’, color=’red’)
ax.plot(bond_lengths, optimized_energies[1], ’x’, label=’UCCSD with Sampling Noise’, color=’blue’)
ax.plot(bond_lengths, exact_energies, ’-’, label=’Full-CI’, color=’black’)

ax.legend(frameon=False)
pyplot.show()

Appendix B. HeH+ Code
# Imports for QSCOUT
import jaqalpaq
from jaqalpaq.core import circuitbuilder
from jaqalpaq.core.circuit import normalize_native_gates
from jaqalpaq import emulator
from qscout.v1 import native_gates

# Imports for basic mathematical functionality
from math import pi
import numpy as np

# Imports for OpenFermion(-PySCF)
import openfermion as of
from openfermion.chem import MolecularData
from openfermionpyscf import run_pyscf

# Import for VQE optimizer
from scipy import optimize

def ansatz(theta, sample_noise=False):
term_probs = []
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for i in range(len(terms)):
builder = circuitbuilder.CircuitBuilder(
native_gates=normalize_native_gates(native_gates.NATIVE_GATES))

# Create a qubit register
q = builder.register(’q’, 2)

# Define a hadamard macro
hadamard = circuitbuilder.SequentialBlockBuilder()
hadamard.gate(’Sy’, ’a’)
hadamard.gate(’Px’, ’a’)
builder.macro(’hadamard’, [’a’], hadamard)

# Prepare the Hartree Fock state
builder.gate(’prepare_all’)
builder.gate(’Px’, q[0])
builder.gate(’Px’, q[1])

# Apply the UCC Ansatz exp[-i*theta(X1 Y0)]
builder.gate(’MS’, q[1], q[0], 0, np.pi/2)
builder.gate(’Rz’, q[1], theta)
builder.gate(’MS’, q[1], q[0], 0, -np.pi/2)

# Change basis for measurement depending on term
for j, qubit in enumerate(terms[i]):
if qubit == ’X’:
builder.gate(’hadamard’, (’array_item’, q, j)),
if qubit == ’Y’:
builder.gate(’Sxd’, (’array_item’, q, j)),
builder.gate(’measure_all’)

circuit = builder.build()

# Format results of simulation as a list of lists
sim_result = emulator.run_jaqal_circuit(circuit)
sim_probs = sim_result.subcircuits[0].probability_by_int

if sample_noise: #Sample circuits to determine probs
probs = np.zeros(4) # Number of possible states
for k in range(n_samples):
sample = np.random.choice(4, p=sim_probs)
probs[sample] += 1 #Increment state counter
probs = probs/n_samples #Determine probabilities from sampling
term_probs += [probs] #Combine lists of probs of each term in Hamiltonian

else: #Exact solution without sampling
term_probs += [sim_probs]
return term_probs

# Calculate energy of one term of the Hamiltonian for one possible state
def term_energy(term, state, coefficient, prob):
parity = 1
for i in range(len(term)):
#Change parity if state is occupied and is acted on by a pauli operator
if term[i] != None and state[i] == ’1’:
parity = -1*parity
return coefficient*prob*parity

# Calculate energy of the molecule for a given value of theta
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def make_calculate_energy(sample_noise=False):
def calculate_energy(theta):
energy = 0
probs = ansatz(theta[0], sample_noise) #Convert tuple (from optimization) to float
for i in range(len(terms)): #For each term in the hamiltonian
for j in range(len(probs[0])): #For each possible state
term = terms[i]
state = ’{0:02b}’.format(j)[::-1] #convert state to binary (# of qubits)
#binary must be inverted due to jaqalpaq convention
coefficient = cs[i].real
prob = probs[i][j]
energy += term_energy(term, state, coefficient, prob)
return energy
return calculate_energy

# Set the basis set, spin, and charge of the HeH+ molecule
basis = ’sto-3g’
multiplicity = 1
charge = 1 #Charge is 1 for HeH+

# Set calculation parameters
run_scf = 1
run_fci = 1
delete_input = True
delete_output = False

optimized_energies = [[], []]
exact_energies = []

# Loop over bond lengths from 0.5 to 1.5 angstroms
sample_noise = False
n_samples = 10000
n_pts = 11 # Number of points
bond_lengths = np.linspace(0.5,1.5,n_pts)
for diatomic_bond_length in bond_lengths:
# Generate molecule at some bond length
geometry = [(’He’, (0., 0., 0.)), (’H’, (0., 0., diatomic_bond_length))]
molecule = MolecularData(
geometry, basis, multiplicity, charge,
description=str(round(diatomic_bond_length, 2)),
filename=’./HeH+_2_sto-3g_single_dissociation’)

# Run pyscf to generate new molecular data for sto-3g HeH+
molecule = run_pyscf(molecule,
run_scf=run_scf,
run_fci=run_fci,
verbose=False)

# Get the fermionic Hamiltonian for HeH+ and map it using the BK encoding
hamiltonian = molecule.get_molecular_hamiltonian()
hamiltonian_ferm = of.get_fermion_operator(hamiltonian)
hamiltonian_bk = of.symmetry_conserving_bravyi_kitaev(
hamiltonian_ferm, active_orbitals=4, active_fermions=2)

# Define terms and coefficients of our Hamiltonian
terms = []
cs = [] #Coefficients
for term in hamiltonian_bk.terms:
paulis = [None, None]
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for pauli in term:
paulis[pauli[0]] = pauli[1]
terms += [paulis]
cs += [hamiltonian_bk.terms[term]]

# Minimize the expectation value of the energy using a classical optimizer (COBYLA)
exact_energies.append(molecule.fci_energy)
print("R={}\t Exact Energy: {}".format(
str(round(diatomic_bond_length, 2)), molecule.fci_energy))
for i in range(2):
result = optimize.minimize(fun=make_calculate_energy(sample_noise=i), x0=[0.01], method="COBYLA")
optimized_energies[i].append(result.fun)
print("R={}\t Optimized Energy: {}\t Sampling Noise: {}".format(
str(round(diatomic_bond_length, 2)), result.fun, bool(i)))
print("\n")

import matplotlib
import matplotlib.pyplot as pyplot

# Plot the various energies for different bond lengths
fig = pyplot.figure(figsize=(15,10))
pyplot.rcParams[’font.size’]=18
bkcolor = ’#ffffff’
ax = fig.add_subplot(1, 1, 1)
pyplot.subplots_adjust(left=.2)
ax.set_xlabel(’R (Angstroms)’)
ax.set_ylabel(r’E (Hartrees)’)
ax.set_title(r’HeH+ 2-qubit bond dissociation curve’)
ax.spines[’right’].set_visible(False)
ax.spines[’top’].set_visible(False)
bond_lengths = [float(x) for x in bond_lengths]
ax.plot(bond_lengths, optimized_energies[0], ’o’, label=’UCCSD’, color=’red’)
ax.plot(bond_lengths, optimized_energies[1], ’x’, label=’UCCSD with Sampling Noise’, color=’blue’)
ax.plot(bond_lengths, exact_energies, ’-’, label=’Full-CI’, color=’black’)

ax.legend(frameon=False)
pyplot.show()

Appendix C. LiH Code

# Imports for QSCOUT
import jaqalpaq
from jaqalpaq.core import circuitbuilder
from jaqalpaq.core.circuit import normalize_native_gates
from jaqalpaq import emulator
from qscout.v1 import native_gates

# Imports for basic mathematical functionality
from math import pi
import numpy as np

# Imports for OpenFermion(-PySCF)
import openfermion as of
from openfermion.chem import MolecularData
from openfermionpyscf import run_pyscf
from openfermion.ops import QubitOperator
from openfermion.utils import eigenspectrum
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# Import for VQE optimizer
from scipy import optimize

def ansatz(alpha, beta, sample_noise=False):
term_probs = []
for i in range(len(terms)):
builder = circuitbuilder.CircuitBuilder(native_gates=
normalize_native_gates(native_gates.NATIVE_GATES))

# Create a qubit register
q = builder.register(’q’, 3)

# Define a hadamard macro
hadamard = circuitbuilder.SequentialBlockBuilder()
hadamard.gate(’Sy’, ’a’)
hadamard.gate(’Px’, ’a’)
builder.macro(’hadamard’, [’a’], hadamard)

# Prepare the Hartree Fock state
builder.gate(’prepare_all’)
builder.gate(’Px’, q[0])
builder.gate(’Px’, q[1])
builder.gate(’Px’, q[2])

# Apply the UCC Ansatz exp[-i*theta(X1 Y0)]
builder.gate(’MS’, q[0], q[1], 0, np.pi/2)
builder.gate(’Rz’, q[0], alpha)
builder.gate(’MS’, q[0], q[1], 0, -np.pi/2)

builder.gate(’MS’, q[0], q[2], 0, np.pi/2)
builder.gate(’Rz’, q[0], beta)
builder.gate(’MS’, q[0], q[2], 0, -np.pi/2)

# Change basis for measurement depending on term
for j, qubit in enumerate(terms[i]):
if qubit == ’X’:
builder.gate(’hadamard’, (’array_item’, q, j)),
if qubit == ’Y’:
builder.gate(’Sxd’, (’array_item’, q, j)),
builder.gate(’measure_all’)

circuit = builder.build()

# Format results of simulation as a list of lists
sim_result = emulator.run_jaqal_circuit(circuit)
sim_probs = sim_result.subcircuits[0].probability_by_int

if sample_noise: #Sample circuits to determine probs
probs = np.zeros(8) # Number of possible states
for k in range(n_samples):
sample = np.random.choice(8, p=sim_probs)
probs[sample] += 1 #Increment state counter
probs = probs/n_samples #Determine probabilities from sampling
term_probs += [probs] #Combine lists of probs of each term in Hamiltonian
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else: #Exact solution without sampling
term_probs += [sim_probs]
return term_probs

# Calculate energy of one term of the Hamiltonian for one possible state
def term_energy(term, state, coefficient, prob):
parity = 1
for i in range(len(term)):
#Change parity if state is occupied and is acted on by a pauli operator
if term[i] != None and state[i] == ’1’:
parity = -1*parity
return coefficient*prob*parity

# Calculate energy of the molecule for a given value of theta
def make_calculate_energy(sample_noise=False):
def calculate_energy(params):
energy = 0
probs = ansatz(params[0], params[1], sample_noise) #Convert tuple to float for circuit
for i in range(len(terms)): #For each term in the hamiltonian
for j in range(len(probs[0])): #For each possible state
term = terms[i]
state = ’{0:03b}’.format(j)[::-1] #Formatted by number of qubits
#binary must be inverted due to jaqalpaq convention
coefficient = cs[i].real
prob = probs[i][j]
energy += term_energy(term, state, coefficient, prob)
return energy
return calculate_energy

# Further reduce the Hamiltonian to 3 qubits
def reduce_hamiltonian(hamiltonian):
terms = []
cs = []
for term in hamiltonian.terms:
paulis = [None, None, None]
ignore_term = False
for pauli in term:
#HF state |000001> {indices 7,6,5,4,3,2 -> 5,4,3,2,1,0}
#Ansatz does not act on odd indices so they may be classically evaluated
if pauli[0]%2==1 and (pauli[1]==’X’ or pauli[1]==’Y’): #expectation value is 0
ignore_term = True

#Ansatz does act on even indices so they are left alone and relabled
elif pauli[0]%2==0:
paulis[pauli[0]//2] = pauli[1]
if not ignore_term: #For terms that remain, separate out paulis and coefficients
terms += [paulis]
cs += [hamiltonian.terms[term]]

# Combine like terms in the Hamiltonian
d = {}
for i in range(len(terms)):
if repr(terms[i]) in d: #If term is present...
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d[repr(terms[i])][1] += cs[i] #Sum coefficients for simplified pauli terms
else: #If term isn’t present...
d[repr(terms[i])] = [terms[i], cs[i]] #Simply append it
return(list(d.values()))

# Set the basis set, spin, and charge of the LiH molecule
basis = ’sto-6g’
multiplicity = 1
charge = 0

# Set calculation parameters
run_scf = 1
run_fci = 1
delete_input = True
delete_output = False

optimized_energies = [[], []]
exact_energies = []
hf_energies = []

# Loop over bond lengths from 1.0 to 2.0 angstroms
sample_noise=False
n_samples = 10000 # Sample circuit
n_pts = 11 #Number of points
bond_lengths = np.linspace(1.0,2.0,n_pts)
for diatomic_bond_length in bond_lengths:
# Generate molecule at some bond length
geometry = [(’Li’, (0., 0., 0.)), (’H’, (0., 0., diatomic_bond_length))]
molecule = MolecularData(
geometry, basis, multiplicity, charge,
description=str(round(diatomic_bond_length, 2)),
filename=’./LiH_sto-6g_single_dissociation’)

# Run pyscf
molecule = run_pyscf(molecule,
run_scf=run_scf,
run_fci=run_fci,
verbose=False)

# Get the fermionic Hamiltonian for LiH and map it using the BK encoding
# Reduce active space to orbitals 1, 2, and 3
hamiltonian = molecule.get_molecular_hamiltonian(occupied_indices=[0], active_indices=[1,2,3])
hamiltonian_ferm = of.get_fermion_operator(hamiltonian)
hamiltonian_bk = of.bravyi_kitaev(hamiltonian_ferm)

# Reduce the BK Hamiltonian for LiH
terms = []
cs = []
red_hamiltonian_bk = QubitOperator()
result = reduce_hamiltonian(hamiltonian_bk)
for i in range(len(result)): #Separate out term and coeffs again after combining like terms
terms += [result[i][0]]
cs += [result[i][1]]
string = ’’
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for j, pauli in enumerate(result[i][0]):
if pauli != None:
string += str(pauli)+str(j)+’ ’
red_hamiltonian_bk += result[i][1]*QubitOperator(string)

# Minimize the expectation value of the energy using a classical optimizer (COBYLA)
exact_energies.append(eigenspectrum(red_hamiltonian_bk)[0])
print("R={}\t Exact Energy: {}".format(
str(round(diatomic_bond_length, 2)),eigenspectrum(red_hamiltonian_bk)[0]))
for i in range(2):
result = optimize.minimize(
fun=make_calculate_energy(sample_noise=i), x0=[0.01, 0.01], method="COBYLA")
optimized_energies[i].append(result.fun)
print("R={}\t Optimized Energy: {}\t Sampling Noise: {}".format(
str(round(diatomic_bond_length, 2)), result.fun, bool(i)))
print("\n")

import matplotlib
import matplotlib.pyplot as pyplot

# Plot the various energies for different bond lengths
fig = pyplot.figure(figsize=(15,10))
pyplot.rcParams[’font.size’]=18
bkcolor = ’#ffffff’
ax = fig.add_subplot(1, 1, 1)
pyplot.subplots_adjust(left=.2)
ax.set_xlabel(’R (Angstroms)’)
ax.set_ylabel(r’E (Hartrees)’)
ax.set_title(r’LiH bond dissociation curve’)
ax.spines[’right’].set_visible(False)
ax.spines[’top’].set_visible(False)
bond_lengths = [float(x) for x in bond_lengths]
ax.plot(bond_lengths, optimized_energies[0], ’o’, label=’UCCSD’, color=’red’)
ax.plot(bond_lengths, optimized_energies[1], ’x’, label=’UCCSD with Sampling Noise’, color=’blue’)
ax.plot(bond_lengths, exact_energies, ’-’, label=’Full-CI’, color=’black’)

ax.legend(frameon=False)
pyplot.show()
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