
entropy

Article

Interpolating between Positive and Completely Positive Maps:
A New Hierarchy of Entangled States
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Abstract: A new class of positive maps is introduced. It interpolates between positive and completely
positive maps. It is shown that this class gives rise to a new characterization of entangled states.
Additionally, it provides a refinement of the well-known classes of entangled states characterized in
terms of the Schmidt number. The analysis is illustrated with examples of qubit maps.
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1. Introduction

Both positive and completely positive maps play an essential role in quantum infor-
mation theory [1]. Recall that a linear map Φ : B(H) → B(H) is positive if Φ[X] ≥ 0
for X ≥ 0 [2–4]. Moreover, if Φ is trace-preserving, then it maps quantum states (rep-
resented by density operators) into quantum states. In what follows, we consider only
finite-dimensional Hilbert spacesH, where dimH = d. Additionally, we denote a vector
space of (bounded) operators acting on H by B(H). Interestingly, quantum physics re-
quires a more refined notion of positivity due to the fact that a tensor product Φ1 ⊗Φ2 of
two positive maps is not necessarily a positive map. A map Φ is called k-positive if

idk ⊗Φ : Mk(C)⊗B(H)→ Mk(C)⊗B(H), (1)

is positive, where idk denotes the identity map on Mk(C), which is a vector space of k× k
complex matrices. Finally, a map is completely positive if it is k-positive for all k = 1, 2, . . .
Actually, in the finite-dimensional case, complete positivity is equivalent to d-positivity.
Hence, if Pk denotes a (convex) set of k-positive, trace-preserving maps, then there is the
following chain of inclusions,

CPTP maps = Pd ⊂ Pd−1 ⊂ . . . ⊂ P1 = PTP maps. (2)

Completely positive maps play a key role in quantum information theory since they
correspond to physical operations. In particular, completely positive, trace-preserving
(CPTP) maps provide mathematical representations of quantum channels. Any CPTP map
satisfies the data processing inequality [1,5,6]. Namely, for an arbitrary quantum channel E
and any pair of states ρ, σ, one has [7]

D(ρ||σ) ≥ D(E [ρ]||E [σ]), (3)

where D(ρ||σ) is the relative entropy. Interestingly, it turns out that condition (3) holds for
any PTP map.

Maps that are positive but not completely positive find elegant applications in the
theory of entanglement [8–11]. A state ρAB inHA ⊗HB is separable if and only if

(id⊗Φ)[ρAB] ≥ 0 (4)
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for all positive maps Φ. Hence, any violation of (4) witnesses entanglement of ρAB. The
key property of any PTP map is its contractivity with respect to the trace norm [12],

‖Φ[X]‖tr ≤ ‖X‖tr, (5)

for any X ∈ B(H). This implies that distinguishability between any pair of density
operators ρ and σ, defined by ‖ρ− σ‖tr, cannot increase under the action of a PTP map.
Similarly, if Φ is k-positive and trace-preserving, then idk ⊗Φ is contractive.

In this paper, we introduce a new family of maps such that id⊗Φ is contractive but
only on the subspaces of B(H⊗H) of particular dimensions. We call such maps k-partially
contractive, where now k ∈ {1, . . . , d2}. For k = 1 and k = d2, one reproduces PTP maps
and CPTP maps, respectively. Hence, this new family interpolates between these two
important classes. The inspiration for k-partially contractive maps comes from [13], where
the author considered the strength of non-Markovian evolution that lies between P and
CP-divisible dynamical maps. We provide the characterisation of partially contractive maps
and illustrate this concept with simple qubit maps. Interestingly, in the qubit case, we find a
connection between partially contractive maps and the Schwarz maps. The class of partially
contractive maps allows us to introduce a new hierarchy of entangled states in full analogy
to the well-known characterization in terms of the Schmidt number [8–10,14]. In the qubit
case, this new characterization interpolates between separable states (Schmidt number = 1)
and entangled states (Schmidt number = 2). Hence, it provides a refinement of the Schmidt
number classes. A simple illustration of two-qubit isotropic states is discussed. We hope
that the new class of partially contractive maps introduced in this paper will also allow for
a more refined analysis of entangled states in higher-dimensional quantum systems.

2. Partially Contractive Maps

Denote by BH(H) a real subspace of Hermitian operators in B(H). Let us recall the
following characterisation of PTP maps [4,15].

Proposition 1. Assume that Φ : B(H)→ B(H) is a map that preserves both trace and Hermitic-
ity. Then, Φ is positive if and only if

‖Φ[X]‖tr ≤ ‖X‖tr, (6)

for all Hermitian operators X ∈ BH(H).

Let {ρ1, . . . , ρk} be a set of linearly independent density operators in BH(H) and
denote byM({ρ1, . . . , ρk}) = spanR{ρ1, . . . , ρk} a real linear subspace of BH(H).

Definition 1. A trace-preserving, Hermiticity-preserving map Φ : B(H) → B(H) is called
k-partially contractive if, for any set of linearly independent {ρ1, . . . , ρk},

‖(id⊗Φ)[X]‖tr ≤ ‖X‖tr (7)

for all X ∈ BH(H)⊗M({ρ1, . . . , ρk}).

Corollary 1. One has the following correspondence between partial contractivity criteria and
positivity of quantum maps:

1. Φ is PTP iff it is 1-partially contractive;
2. Φ is CPTP iff it is d2-partially contractive.

Hence, k-partially contractive, trace-preserving maps are interpolated between PTP and
CPTP maps.

Denote by Ck a set of k-partially contractive, trace-preserving maps. It is easy to show
that there is an inclusion relation between different Ck.
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Proposition 2. The set Ck is a convex subset of P1 (a set of PTP maps). Moreover,

CPTP maps = Cd2 ⊂ Cd2−1 ⊂ . . . ⊂ C2 ⊂ C1 = P1 = PTP maps. (8)

If Φ1 ∈ Ck and Φ2 ∈ C`, then the composition Φ1 ◦Φ2 ∈ Cmin{k,`}.

Given a set {ρ1, . . . , ρk} and a map Φ : B(H) → B(H), define a map restricted to
M({ρ1, . . . , ρk)} by

ΦM[X] = Φ[X] (9)

for any X ∈ M({ρ1, . . . , ρk}).

Theorem 1. Let Φ : B(H)→ B(H) be a trace-preserving map. If for any linearly independent
set {ρ1, . . . , ρk} the restricted map ΦM can be extended to a CPTP map on B(H), then Φ is
k-partially contractive.

Proof. If Φ̃M is a CPTP extension of ΦM, then one has∥∥∥(id⊗ Φ̃)[X]
∥∥∥

tr
≤ ‖X‖tr (10)

for any BH(H)⊗BH(H). Hence, if X ∈ BH(H)⊗M({ρ1, . . . , ρk}), then

‖(id⊗Φ)[X]‖tr =
∥∥∥(id⊗ Φ̃)[X]

∥∥∥
tr
≤ ‖X‖tr, (11)

which proves k-partial contractivity of Φ.

The problem of finding extensions for positive and completely positive maps is
well-studied in mathematical literature. Let us recall a seminal extension theorem of
Arveson [16].

Theorem 2. Assume that Φ : S→ B(H) is a CP unital map, where S denotes an operator system
in B(H) (i.e., 1l ∈ S and if X ∈ S, then X† ∈ S). Then, there exists a (not unique) CP unital
extension Φ̃ : B(H)→ B(H) of Φ to B(H).

Actually, if S contains strictly positive operatora X > 0 and Φ : S→ B(H) is CP, then
there exists a CP extension Φ̃ : B(H) → B(H) of Φ [17]. Another interesting result was
provided in [18].

Proposition 3. Consider a CP map Φ :M→ B(H), whereM is spanned by positive operators
(e.g., density operators). Then, Φ can be extended to a CP map Φ̃ : B(H)→ B(H).

However, the above result only guarantees the existence of a CP extension and says
nothing about trace preservation.

3. Qubit Maps

For d = 2, we have the following seminal result due to Alberti and Uhlmann [19].

Theorem 3. Let Φ : M({ρ1, ρ2}) → B(H) be a trace-preserving contraction. Then, Φ can be
extended to a CPTP map Φ̃ : B(H)→ B(H).

This result was recently generalized in [20,21]. Using the Albert–Uhlmann theorem,
one comes to the following conclusion.

Corollary 2. If d = 2, then any PTP map Φ : B(H)→ B(H) is a two-partial contraction.

Hence, in the qubit case, the hierarchy in (8) simplifies to
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CPTP maps = C4 ⊂ C3 ⊂ C2 = C1 = P1 = PTP maps. (12)

Therefore, there exists a class C3 that interpolates between PTP and CPTP maps. In this
section, we analyze Φ ∈ C3.

Consider a triple {ρ1, ρ2, ρ3} of linearly independent qubit density operators. From [22],
we know that

M({ρ1, ρ2, ρ3}) = spanR{UX1U†, UX2U†, UX3U†}, (13)

where X1 = σ1, X2 = σ2, X3 = diag(p, 1− p) for some p ∈ (0, 1), and U is a unitary
operator depending on the choice of {ρ1, ρ2, ρ3}. From Definition 1, Φ is three-partially
contractive if and only if ∥∥∥∥∥ 3

∑
k=1

Ak ⊗Φ[ρk]

∥∥∥∥∥
tr

≤
∥∥∥∥∥ 3

∑
k=1

Ak ⊗ ρk

∥∥∥∥∥
tr

(14)

for all possible choices of {ρ1, ρ2, ρ3} and Hermitian qubit operators {A1, A2, A3}. Using
Equation (13), we see that for any set of {A1, A2, A3} there exists another set of Hermitian
operators {B1, B2, B3} such that

3

∑
k=1

Ak ⊗ ρk =
3

∑
k=1

Bk ⊗UXkU†. (15)

Now, consider a special class of qubit maps with the following property: for any
unitary operator U, there exists a unitary operator V such that

Φ[UXU†] = VΦ[X]V† (16)

for any X ∈ B(H).

Lemma 1. If a trace-preserving qubit map Φ satisfies Equation (16), as well as∥∥∥∥∥ 3

∑
k=1

Bk ⊗Φ[Xk]

∥∥∥∥∥
tr

≤
∥∥∥∥∥ 3

∑
k=1

Bk ⊗ Xk

∥∥∥∥∥
tr

(17)

for any p ∈ (0, 1) and all Hermitian {B1, B2, B3}, then Φ ∈ C3.

Proof. It is enough to show that conditions (14) and (17) are equivalent if Φ satisfies
Equation (16). Using Equation (15), one has∥∥∥∥∥ 3

∑
k=1

Ak ⊗ ρk

∥∥∥∥∥
tr

=

∥∥∥∥∥ 3

∑
k=1

Bk ⊗ Xk

∥∥∥∥∥
tr

. (18)

Now, for a positive, trace-preserving map Φ satisfying Equation (16), it follows that∥∥∥∥∥ 3

∑
k=1

Ak ⊗Φ[ρk]

∥∥∥∥∥
tr

=

∥∥∥∥∥ 3

∑
k=1

Bk ⊗Φ[UXkU†]

∥∥∥∥∥
tr

=

∥∥∥∥∥ 3

∑
k=1

Bk ⊗VΦ[Xk]V†

∥∥∥∥∥
tr

=

∥∥∥∥∥ 3

∑
k=1

Bk ⊗Φ[Xk]

∥∥∥∥∥
tr

. (19)

Example 1. Let us propose an example of a positive map that is not three-partially contractive.
Consider the transposition map

T[X] = XT . (20)

It can be easily seen that T satisfies condition (16). Now, take a set of three Hermitian operators,

B1 =

[
0 1
1 0

]
, B2 =

[
0 i
−i 0

]
, B3 =

[
1 0
0 0

]
. (21)
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The corresponding trace norms read

∥∥∥∥∥ 3

∑
k=1

Bk ⊗ Xk

∥∥∥∥∥
tr

=

∥∥∥∥∥∥∥∥
p 0 0 0
0 1− p 2 0
0 2 0 0
0 0 0 0

∥∥∥∥∥∥∥∥
tr

= p +
√
(1− p)2 + 16 (22)

and ∥∥∥∥∥ 3

∑
k=1

Bk ⊗ T[Xk]

∥∥∥∥∥
tr

=

∥∥∥∥∥∥∥∥
p 0 0 2
0 1− p 0 0
0 0 0 0
2 0 0 0

∥∥∥∥∥∥∥∥
tr

= 1− p +
√

p2 + 16. (23)

Hence, we show that T violates condition (17) for p > 1
2 and thus, from Lemma 1, we conclude that

T /∈ C3.

Example 2. Consider the qubit map

Λa[X] =
1

2− a
(1lTrX− aX), (24)

which is trace-preserving and positive if and only if 0 ≤ a ≤ 1. Let us show when Λa is three-
partially contractive but not completely positive. Observe that 0 ≤ a ≤ 1 gives the primary
constraint for a, as three-partially contractive maps are necessarily positive. The map restricted to
the subspaceM reads

Λa|M[X1] = −
a

2− a
X1, Λa|M[X2] = −

a
2− a

X2, Λa|M[X3] =
1

2− a
(1l− aX3). (25)

Now, we extend Λa|M to Λ̃a : B(H)→ B(H) in the following way,

Λ̃a[Xk] = Λa|M[Xk], k = 1, 2, 3, Λ̃a[X4] = rσ3, (26)

where σ3 = diag(1,−1), which guarantees the trace preservation of Λ̃a. The complete positivity of
the extension is equivalent to the positivity of its Choi matrix [23],

C(Λ̃a) =
1
2

1

∑
j,k=0
|j〉〈k| ⊗Λ[|j〉〈k|] = 1

2(2− a)


c(p) 0 0 −a

0 b(1− p) 0 0
0 0 b(p) 0
−a 0 0 c(1− p)

, (27)

where
c(p) = 1− pa + r(1− p)(2− a), b(p) = 1− pa− rp(2− a). (28)

From Sylvester’s criterion [24], C(Λ̃a) ≥ 0 if and only if all its minors have positive determinants.
This translates to the condition that there exists a real number r such that

c(p) ≥ 0, b(p) ≥ 0, det A(p) = det
(

c(p) −a
−a c(1− p)

)
≥ 0 (29)

for all 0 ≤ p ≤ 1. From the first two inequalities, one obtains

− 1
2− a

≤ r ≤ 1− a
2− a

. (30)
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What remains is the condition for the determinant of A(p). For the allowed range of p, the only
local extrema of det A(p) are maxima, as one has

∂2 det A(p)
∂p2 = −2(ra− a− 2r)2 < 0. (31)

Therefore, the minimal value of det A(p) is achieved at the end points, p = 0 and p = 1.
The sufficient condition for the positivity of det A(p) is the positivity of det A(0), where

det A(0) = det A(1) = (1− a)[1 + r(2− a)]− a2. (32)

The last inequality of Equation (29) gives the new upper bound on r,

r ≥ a2 + a− 1
a2 − 3a + 2

. (33)

Thus, there exists a parameter r such that Λ̃a[X3] = rσ3 whenever

a2 + a− 1
a2 − 3a + 2

≤ 1− a
2− a

, (34)

which is satisfied for a ∈ [0, 1] if and only if

0 ≤ a ≤ 2
3

. (35)

In this way, we arrive at the three-partial contractivity condition for Λa. Finally, Λa is completely
positive if and only if 0 ≤ a ≤ 1/2. Hence, it is three-partially contractive but not completely
positive for

1
2
< a ≤ 2

3
. (36)

Example 3. Now, consider another trace-preserving qubit map,

Ωε[X] =
ε

2
1lTrX + (1− ε)XT . (37)

This map is positive if and only if 0 ≤ ε ≤ 2 and completely positive if and only if 2/3 ≤ ε ≤ 2.
Using the same method as in the previous example, one shows that Ωε is three-partially contractive
but not completely positive for

1
2
≤ ε <

2
3

. (38)

4. Partial Contractivity vs. Schwarz Qubit Maps

A positive map Φ : B(H)→ B(H) is called a Schwarz map if for any X ∈ B(H),

‖Φ(1l)‖∞Φ[X†X] ≥ Φ[X†]Φ[X], (39)

where ‖A‖∞ stands for the operator norm. Any Schwarz map satisfies ‖Φ‖∞ = ‖Φ(1l)‖∞, where

‖Φ‖∞ := sup
X∈B(H)

‖Φ(X)‖∞

‖X‖∞
. (40)

If Φ is unital (Φ[1l] = 1l), then Equation (39) reduces to [4,25,26]

Φ[X†X] ≥ Φ[X†]Φ[X]. (41)

Note that condition (39) is sufficient for positivity and necessary for complete positivity.
A composition Φ1 ◦Φ2 and a convex combination qΦ1 + (1− q)Φ2 of two unital Schwarz
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maps is also a unital Schwarz map. It was proven by Kadison that any positive unital map
satisfies Equation (41) for Hermitian X (the celebrated Kadison inequality [27]). If Φ is not
unital but V = Φ[1l] > 0, then Ψ(X) := V−1/2Φ[X]V−1/2 is inital and Ψ is a Schwarz map
if and only if

Φ[X†X] ≥ Φ[X†]Φ[1l]−1Φ[X] ≥ 1
‖Φ‖∞

Φ[X†]Φ[X], (42)

for arbitrary X ∈ B(H). Hence, Φ satisfies (39). Now, for PTP unital qubit maps, one finds
the following hierarchy,

CPTP unital maps ⊂ S ⊂ PTP unital maps, (43)

where S denotes the set of Schwarz maps. After comparing Equation (12) with Equation (43),
it would be interesting to analyze the relation between two classes of maps: three-partially
contractive and Schwarz maps.

A method of constructing the Schwarz maps was proposed in [28]. Take a positive,
trace-preserving, unital map Ψ : B(H) → B(H) that is a contraction ‖Ψ[X]‖2 ≤ ‖X‖2 in
the Hilbert–Schmidt (Frobenius) norm, where ‖X‖2 =

√
Tr(X†X). Define the qubit map

Φ[X] =
q
2

1lTrX + (1− q)Ψ[X]. (44)

Now, Φ is a Schwarz map if
1
2
≤ q ≤ 3

2
. (45)

The following stronger results were also proven.

Proposition 4 ([28]). The map Λa defined in Equation (24) is the Schwarz map (that is not CP) if
and only if 1

2 < a ≤ 2
3 .

Proposition 5 ([28]). The map Ωε defined in Equation (37) is the Schwarz map (that is not CP) if
and only if 1

2 ≤ ε < 2
3 .

At this point, we make an important observation: the sufficient condition for three-
partial contractivity and the necessary and sufficient conditions for Schwarz maps coincide
for Λε and Ωε. In other words, the following relations hold,

CPTP unital maps ⊂ C3 ⊂ S ⊂ PTP unital maps. (46)

Therefore, one observes an intricate connection between the Schwarz maps and three-
partially contractive maps. This problem deserves further analysis.

5. Partial Contractions vs. Quantum Entanglement

Any state vector ψ ∈ H⊗H gives rise to the Schmidt decomposition

|ψ〉 =
r

∑
i=1

si|ei〉 ⊗ | fi〉, (47)

where the Schmidt rank r = SR(ψ) satisfies 1 ≤ r ≤ d. This concept can be easily
generalized to density operators [14]: given ρ, one defines its Schmidt number

SN(ρ) = min
{pk ,ψk}

max
k

SR(ψk), (48)

where the minimization is carried over all pure state decompositions ρ = ∑k pk|ψk〉〈ψk|.
If ρ = |ψ〉〈ψ|, then SN(ρ) = SR(ψ). Furthermore, the generalized Schmidt number is used
to measure entanglement in a multipartite scenario [29–33].
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Proposition 6 ([10]). A map Φ : B(H)→ B(H) is k-positive if and only if

(id⊗Φ)[ρ] ≥ 0 (49)

for any ρ ∈ B(H⊗H) with SN(ρ) ≤ k.

This result allows us to provide the following classification of entangled states in
H⊗H,

separabale states = E1 ⊂ E2 ⊂ . . . ⊂ Ed−1 ⊂ Ed = all states, (50)

where Ek contains all states with SN ≤ k. The hierarchy in (50) is dual to (2).

Example 4. Consider a map Φ : B(H)→ B(H) defined by

Φp[X] = p 1ldTrX− X, (51)

with p > 0. Choi showed that Φp is k-positive but not (k+ 1)-positive if and only if k ≤ p < k + 1 [34].
In particular, Φ is positive if p ≥ 1. In the entanglement theory, the map Φ1 is called the reduction map
and plays an important role in classifying states of composite systems [8–10]. Now, consider the family of
isotropic states inH⊗H,

ρ f =
1− f
d2 − 1

(1ld ⊗ 1ld − P+
d ) + f P+

d , f ∈ [0, 1], (52)

where P+
d denotes the projector onto the maximally entangled state. One finds that if the fidelity

f > k/d, then SN(ρ) ≥ k + 1 [14].

A large class of k-positive maps based on spectral property of the Choi matrix was
proposed in [35]. It provides a generalization of the Choi map from Example 4.

Note that one can easily define a hierarchy similar to (8) via

separabale states = E1 ⊂ E2 ⊂ . . . ⊂ Ed2−1 ⊂ Ed2 = all states, (53)

where Ek contains such states ρ for which

(id⊗Φ)[ρ] ≥ 0 (54)

for all Φ ∈ Ck. In the qubit case, the above hierarchy reduces to

separabale states = E1 = E2 ⊂ E3 ⊂ E4 = all states. (55)

Example 5. Consider the action of Λa from Equation (24) on one part of the two-qubit isotropic
states ρ f defined in Equation (52). We find that

(id⊗Λa)[ρ f ] =
1

6(2− a)


3− a(1 + 2 f ) 0 0 −a(4 f − 1)

0 3− 2a(1− f ) 0 0
0 0 3− 2a(1− f ) 0

−a(4 f − 1) 0 0 3− a(1 + 2 f )

. (56)

The above matrix is positive in the range 1
2 < a ≤ 2

3 , where Λa is three-partially contractive but
not completely positive, if and only if

0 ≤ f ≤ 3
4

. (57)

The same result is obtained if one considers Ωε instead of Λa. Thus, the above inequality provides
a necessary condition for ρ f ∈ E3. Note that ρ f /∈ E2 (is entangled) for 1/2 < f ≤ 1, and if
f > 3/4, then ρ f /∈ E3 (highly entangled).
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6. Conclusions

We proposed a new classification of positive maps based on the contractivity with
respect to the trace norm on subspaces of B(H⊗H). The k-partially contractive maps give
rise to a hierarchy of d2 classes of positive maps that interpolate between PTP and CPTP
maps. The parameter k, which is the dimension of the subspace, can be interpreted as a
strength of positivity. For qubit maps, we introduced an intermediate class of positive
but not completely positive maps, corresponding to the choice k = 3. Moreover, we
provided an analytical technique for assessing three-partial contractivity. Our concept was
illustrated with examples of simple qubit maps. Interestingly, our analysis showed that
there is a connection between partially contractive maps and the Schwarz maps. Finally,
we applied these results to refine the hierarchy of entangled states based on the Schmidt
number. In the qubit case, we obtained a single class that interpolates between separable
and entangled states.

The topic of partially contractive maps requires further analysis. The first step would
be to find less restrictive sufficient conditions for three-partially contractive qubit maps.
Then, the full relation between these maps and the Schwarz maps could be established.
Additionally, it is crucial to find a computational method of constructing k-partially con-
tractive maps in any finite dimension d. To achieve this, one needs a relation analogical to
Equation (13) for d = 2. Then, one would be able to find the connection between k-partial
contractivity and k-positivity. Another open question concerns possible applications of our
classification. One implementation, already touched upon in this paper, is a more refined
analysis of entangled states.
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