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Abstract: For an AI agent to make trustworthy decision recommendations under uncertainty on be-
half of human principals, it should be able to explain why its recommended decisions make preferred
outcomes more likely and what risks they entail. Such rationales use causal models to link potential
courses of action to resulting outcome probabilities. They reflect an understanding of possible
actions, preferred outcomes, the effects of action on outcome probabilities, and acceptable risks and
trade-offs—the standard ingredients of normative theories of decision-making under uncertainty,
such as expected utility theory. Competent AI advisory systems should also notice changes that
might affect a user’s plans and goals. In response, they should apply both learned patterns for quick
response (analogous to fast, intuitive “System 1” decision-making in human psychology) and also
slower causal inference and simulation, decision optimization, and planning algorithms (analogous
to deliberative “System 2” decision-making in human psychology) to decide how best to respond to
changing conditions. Concepts of conditional independence, conditional probability tables (CPTs) or
models, causality, heuristic search for optimal plans, uncertainty reduction, and value of information
(VoI) provide a rich, principled framework for recognizing and responding to relevant changes and
features of decision problems via both learned and calculated responses. This paper reviews how
these and related concepts can be used to identify probabilistic causal dependencies among variables,
detect changes that matter for achieving goals, represent them efficiently to support responses on
multiple time scales, and evaluate and update causal models and plans in light of new data. The
resulting causally explainable decisions make efficient use of available information to achieve goals
in uncertain environments.

Keywords: explainable AI; XAI; causality; decision analysis; information; explanation; Bayesian
networks; reinforcement learning; partially observable Markov decision processes; stochastic control

1. Introduction: Creating More Trustworthy AI/ML for Acting under Risk and
Uncertainty

How can the predictions, decisions and recommendations made by artificial intelli-
gence and machine learning (AI/ML) systems be made more trustworthy, transparent, and
intelligible? Enabling AI/ML systems to explain the reasons for their recommendations in
terms that make sense to humans would surely help. This paper reviews a set of concepts,
principles and methods for creating AI/ML systems that recommend (or execute, for
autonomous systems) appropriate actions—those we would want them to take, or at least
understand and approve of their rationales for taking, if they were acting on our behalf.
The key ideas are based on causal models of the relationship between actions and outcome
probabilities. To a limited but useful extent, current causal models enable appropriate
decisions even under unforeseen conditions and in response to new and unanticipated
events. Such “causal artificial intelligence” (CAI) principles might also be useful in improv-
ing and explaining decision and policy recommendations in human organizations when
risk, uncertainty, and novelty make the consequences of different courses of action hard to
predict and, thus, make collecting information for predicting them valuable [1].

CAI builds on the intuition that systems that can explain the rationales for their
inferences, predictions, recommendations, and behaviors in clear cause-and-effect terms are
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likely to be more trusted (and, perhaps, more trustworthy) than those that cannot. It applies
principles of information theory and closely related probabilistic and statistical concepts
of conditional independence, probabilistic dependence (e.g., conditional probabilities),
causality, uncertainty reduction, and value of information (VoI) to model probabilistic
dependencies among variables and to infer probable consequences caused by alternative
courses of action. To recommend best decisions despite incomplete causal knowledge
and information, CAI seeks not only to identify facts that make current observations less
surprising, and in this sense to explain them; but also to identify actions, policies, and
plans that make preferred future outcomes more probable, and in this sense, explain how
to achieve them. CAI applies statistical tests for conditional independence (or, conversely,
mutual information) and other relationships (e.g., directed information flows and invariant
causal prediction properties, reviewed later) among random variables to identify causal
regularities that are consistent with multiple datasets, thereby enabling generalization
from experience and prediction of probable consequences of courses of action in new
settings [2]. Such causal generalization may be essential for acting effectively, as well as for
explaining the basis for actions or recommendations, when confronting novel situations
and unanticipated risks.

Current AI systems are typically most fragile and least trustworthy in novel situa-
tions because they lack common-sense knowledge and the ability to reason effectively
(and causally) about likely consequences of actions when relevant prior data with stable
predictive patterns are not available. CAI seeks to help bridge this crucial gap between
experiential learning and the need to act effectively under novel conditions by applying
causal generalizations from past observations. It recognizes the tight link between causally
effective plans, meaning plans (i.e., sequences of actions contingent on events) that make
preferred outcomes more probable, and causal explanations for preferred courses of action.
Both exploit the fact that causes provide unique information about their direct effects (or
joint distributions of effects): conditioning on levels of other variables does not remove
the statistical dependency of effects on their direct causes. Causes and their direct effects
have positive mutual information, and this information can be used to identify courses of
action that make preferred outcomes more likely, hence less surprising. Intuitively, causally
effective decision-making can be thought of as mapping observations—signals received by
an agent from its environment—to decisions and resulting behaviors that are calculated
to change outcome probabilities to make preferred outcomes more likely. Decisions are
implemented by control signals—typically transduced by effectors which may be unreliable
or slow—sent into the agent’s environment to change outcome probabilities. A completely
specified probabilistic causal model predicts conditional probabilities of outcomes, given
observations and actions. This provides the information needed to optimize actions. Even
partial information about causal dependencies among variables can help to decide what
additional information to seek next to formulate more causally effective policies. To act
effectively, an agent must receive and process observations and transmit control signals
quickly enough to keep up with changes in its environment.

Figure 1 summarizes key concepts and methods reviewed in subsequent sections
and shows how they fit together. Observations (upper left) provide information about the
underlying state (lower left) of the system or environment via an information channel, i.e.,
a probabilistic mapping from the state to observations. Actions (lower right) cause state
transitions and associated costs or benefits, generically referred to as rewards (bottom)
via a causal model, i.e., a probabilistic mapping from current state-action pairs to condi-
tional probabilities of next-state and reward pairs. Table 1 lists several specific classes
of causal models, discussed later, in rough order of increasing generality and flexibility
in representing uncertainty. Actions are selected by policies, also called decision rules,
strategies, or control laws (upper right), which, at their most general, are probabilistic
mappings from observations to control signals sent to actuators; these control signals are
the decision-maker or controller’s choice. The mapping from choices to actions may be
probabilistic if actuators are not entirely reliable; in this case, the capacity of the control
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channel and actuators to transfer information from control signals to future states of the
system limits the possibilities for control. In many settings, actions are implemented via
hierarchies of learned skills (i.e., abilities to complete tasks and subtasks); what can be done
in a situation depends, in part, on the repertoire of skills that have been acquired [3]. In
Figure 2, observations are explained by underlying states (and the information channels via
which they are observed). By contrast, rational decisions are explained via optimization of
decision-rules (i.e., policies). If knowledge of the causal model and the other components
in Figure 1 is inadequate to support full optimization, then reinforcement learning or
other adaptive control methods, together with optimization heuristics, are used to improve
policies over time. The vast majority of “explainable AI” (XAI) research to date has focused
on explaining observations, as in diagnostic systems, predictions, and prediction-driven
recommendations [4]. Such explanations emphasize the left side of Figure 1, where obser-
vations are used to draw inferences about states, which can then be used to predict further
observations. A principal goal of this paper is to help extend XAI to more fully explain
the rationales for recommended decisions and policies. Such explanations draw also on
the right side of Figure 1, using preferences for outcomes (i.e., rewards), choice sets (e.g.,
possible control signals), causal models, and optimization of policies as key explanatory
constructs, in addition to observations and inferences.

Entropy 2021, 23, x FOR PEER REVIEW 3 of 34 

 

models, discussed later, in rough order of increasing generality and flexibility in repre-
senting uncertainty. Actions are selected by policies, also called decision rules, strategies, 
or control laws (upper right), which, at their most general, are probabilistic mappings 
from observations to control signals sent to actuators; these control signals are the deci-
sion-maker or controller’s choice. The mapping from choices to actions may be probabil-
istic if actuators are not entirely reliable; in this case, the capacity of the control channel 
and actuators to transfer information from control signals to future states of the system 
limits the possibilities for control. In many settings, actions are implemented via hierar-
chies of learned skills (i.e., abilities to complete tasks and subtasks); what can be done in 
a situation depends, in part, on the repertoire of skills that have been acquired [3]. In Fig-
ure 2, observations are explained by underlying states (and the information channels via 
which they are observed). By contrast, rational decisions are explained via optimization of 
decision-rules (i.e., policies). If knowledge of the causal model and the other components 
in Figure 1 is inadequate to support full optimization, then reinforcement learning or other 
adaptive control methods, together with optimization heuristics, are used to improve pol-
icies over time. The vast majority of “explainable AI” (XAI) research to date has focused 
on explaining observations, as in diagnostic systems, predictions, and prediction-driven 
recommendations [4]. Such explanations emphasize the left side of Figure 1, where ob-
servations are used to draw inferences about states, which can then be used to predict 
further observations. A principal goal of this paper is to help extend XAI to more fully 
explain the rationales for recommended decisions and policies. Such explanations draw 
also on the right side of Figure 1, using preferences for outcomes (i.e., rewards), choice 
sets (e.g., possible control signals), causal models, and optimization of policies as key 
explanatory constructs, in addition to observations and inferences. 

 
Figure 1. Summary of key ideas and methods used in causal AI (CAI) to explain decisions. 

The following sections seek to show how these intuitions can be sharpened and for-
malized and how they can be implemented in computationally effective CAI algorithms 
to support and explain decision recommendations for several widely applied classes of 
probabilistic causal models. One goal is to review how current causal AI/ML methods 
support and explain causally effective decisions—decisions that make preferred outcomes 
more probable—in practical applications, such as allocating a budget across advertising 
channels that interact in affecting consumer preferences and sales. We seek to present an 
accessible exposition, review and synthesis of CAI ideas and advances from several dec-
ades of AI/ML progress for a broad audience that might include decision analysts, risk 
analysts, decision science researchers, psychologists, and policy analysts, as well as AI/ML 
researchers. A second goal is to propose a framework clarifying the types of information 
and argument structure needed to provide convincing and responsible causal explana-
tions for CAI-based decision and policy recommendations. 

  

                                                                         policy  
            optimization 

                                      observations →  policy/decision rule, P(a | y) 
  information channel, P(y | x) ↑                              ↓ control signal  
                current state, x                   action 
                                   ↓       ↑                              ↓ causal model: P(x’, r|x, a) = P(next state, reward | current state, action)  
      outcome: probabilistic transition to next state; probabilistic reward 
 
Symbols: x = current state, x’ = next state, y = observation, a = action, r = reward   

Figure 1. Summary of key ideas and methods used in causal AI (CAI) to explain decisions.

The following sections seek to show how these intuitions can be sharpened and
formalized and how they can be implemented in computationally effective CAI algorithms
to support and explain decision recommendations for several widely applied classes of
probabilistic causal models. One goal is to review how current causal AI/ML methods
support and explain causally effective decisions—decisions that make preferred outcomes
more probable—in practical applications, such as allocating a budget across advertising
channels that interact in affecting consumer preferences and sales. We seek to present
an accessible exposition, review and synthesis of CAI ideas and advances from several
decades of AI/ML progress for a broad audience that might include decision analysts, risk
analysts, decision science researchers, psychologists, and policy analysts, as well as AI/ML
researchers. A second goal is to propose a framework clarifying the types of information
and argument structure needed to provide convincing and responsible causal explanations
for CAI-based decision and policy recommendations.
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Table 1. Some important probabilistic causal models.

Probabilistic Causal Models, in Order
of Increasing Generality

Knowledge Representation, Inference, and
Decision Optimization Assumptions

Decision trees [5], event trees (decision
trees without decisions); fault trees, event
trees, bow tie diagrams [6]

Event trees show possible sequences of events
(realizations of random variables). Decision trees are
event trees augmented with choice nodes and
utilities at the leaves of the tree. Fault trees are trees
of binary logical events and deterministic logic gates,
supporting bottom-up inference from low-level
events to top-level events (e.g., systems failure).
Bow-tie diagrams integrate fault trees leading up to
an event and event trees following it.

Bayesian networks (BNs), dynamic BNs,
causal BNs
Influence diagrams (IDs) are BNs with
decision nodes and utility nodes [7]

Random variables (nodes) are linked by probabilistic
dependencies (described by conditional probability
tables, CPTs). In a DBN, variables can change over
time. In a causal BN, changing a variable changes
the probability distributions of its children in a
directed acyclic graph (DAG). Bayesian inference of
unobserved quantities from observed (or assumed)
ones can proceed in any direction.

Markov decision process (MDP)
optimization models, can be
risk-sensitive

Markov transition assumptions, observed states,
actions completed without delays.

Partially observable MDPS (POMDPs)
States are not directly observed, but must be inferred
from observations (signals, symptoms, data) via
information channels, P(observation = y|state = x)

PO semi-MDPs (POSMDPs);
behavior trees

Actions take random amounts of time to complete
and may fail.

Discrete-event simulation models
Realistic lags and dependencies among events are
modeled by state-dependent conditional intensities
for individual-level transitions.

Causal simulation-optimization
models

Known models. Inference and optimization can be
NP-hard and may require heuristics, such as Monte
Carlo Tree Search (MCTS).

Model ensemble optimization;
reinforcement learning (RL) with initially
unknown or uncertain causal models

Unknown/uncertain models. Probabilistic causal
relationships between actions and consequences
(e.g., rewards and state transitions) are learned via
(heuristic-guided) trial and error.

2. Methodology and Applications

To accomplish this review, synthesis, and exposition of CAI for explaining decisions,
we first consider the traditional concept of explanation in statistics as the proportion of
variance in a dependent variable in a regression model that is “explained” by differences
in the independent variables on which it depends. A different concept is needed to explain
decisions, since regression coefficients only address how to predict dependent variables
from observed independent variables, but not the causal question of how intervening
to exogenously change independent variables would change probability distributions of
dependent variables [8]. We therefore examine the structure of causal explanations for
decisions in the causal models in Table 1. These models have been widely used in causal
analytics, risk analysis, and applied AI/ML to represent probabilistic dependencies of
outcomes (e.g., rewards and next states in a Markov decision process) on actions [6]. For
each model, we discuss how the concepts in Figure 1 can be used to recommend decisions
and explain their rationales. The discussion includes relatively recent developments (e.g.,
integration of Thompson sampling into Monte Carlo Tree Search) while noting foundational
works in prescriptive decision analysis and decision optimization (e.g., [7,9,10]).
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Our focus is on CAI concepts, principles and methods for causal explanations of deci-
sions, but a variety of practical applications have been described in industrial engineering
and industrial control, managerial economics (e.g., for forestry or fishery management),
personalized medicine, supply chain management, logistics optimization, urban traffic
control, robotics, autonomous vehicle and drone control, pest management in ecosystems,
financial investments, game-playing, and other areas of applied risk analysis (e.g., [6]).
Many of these applications have focused solely on decision optimization, rather than
also on decision explanation, under risk and uncertainty. This motivates our focus on
the structure of causal explanations under risk and uncertainty. However, to understand
how CAI methods and explanations can improve the trustworthiness of causal inferences
and intervention decision recommendations in practice, we recommend recent analyses
and applications of computational causal methods in Systems Biology for cancer research.
Although current CAI methods do not yet fully automate valid causal discovery with high
reliability [11], causal discovery and understanding of low-level (molecular-biological)
pathways are increasingly able to inform, and build confidence in, high-level public health
policies by helping target the right causal factors at the macro-level (e.g., diet, exposures)
to be causally effective in reducing risks [12]. Explaining how interventions cause desired
changes helps to select effective interventions.

3. The Structure of Traditional Statistical Explanations

What should explainable AI (XAI) explain? Observations (why did an observed event
happen?), predictions (what might happen next, and how probable is it?), and recom-
mendations (what should we do now to make preferred outcomes more probable?) are
natural candidates for diagnostic, predictive, and decision support (prescriptive) systems,
respectively. Explaining actions, choices, and behaviors by AIs becomes more crucial as
increasingly autonomous AI-directed systems interact more with people. Most of this
paper focuses on explaining decision recommendations: if an AI system recommends an
action or policy, how can and should it explain and justify its recommendation? We first
contrast this with explaining observations, the more usual focus of descriptive, diagnostic,
predictive, and prescriptive systems that rely on stable patterns in data to explain some
proportion of the variation in observed outcomes across cases.

It is natural in many cases to regard a system under study as having inputs, some
of which may be controllable, and outputs, some of which are observed. Learning to
explain observed output values in terms of combinations of input values that make them
expected, or at least less surprising, is a fundamental task for statistics and machine
learning. Statistical models posit a simple, powerful explanatory structure of the following
form [13]:

output = f(inputs,noise) (1)

Statistical regression models simplify this further, often to the following form:

expected value of output = f(inputs) + noise (2)

The expected value of a dependent variable (the “output” of the regression model—a
quantity, response, or outcome whose value is to be predicted or explained) is expressed
as a deterministic function of variables on which it depends (the “inputs” or independent
variables). The actual value of the dependent variable for each case is modeled as a random
variable, typically (but not necessarily) the sum of the predicted value and a random noise
or error term having zero mean. The regression approach thus postulates that variability in
observed output values is “explained” as the sum of predicted values and unpredictable
error or noise. More generally, the mean of the conditional probability distribution of a
dependent variable, given the values of the variables on which it directly depends (its
parents in a directed acyclic graph (DAG) or probabilistic graphical model of dependencies
among variables) constitutes a response surface model (RSM) for the dependent variable
(output) as a function of the independent variables (inputs) (see Figure 8 for an example).
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As an explanation for output values, a statistical model does not run deep. It does not
reveal why the expected value of the output depends on the inputs, or how (or whether)
changes in the inputs propagate along causal pathways of successive mechanisms to change
the output so that the regression model is again satisfied. Such deeper explanations are the
province of causal modeling. Statistical regression models merely describe observed pat-
terns and quantify the proportion of variance in outputs that is “explained” by differences
in inputs, given the model assumptions. Figure 2 shows an example. In a dataset recording
heights of parents and their adult offspring, we might wonder how much of the variance
in offspring heights (the Height variable on the vertical axis in Figure 2) is explained by
differences in the father’s height (Father, on the horizontal axis).
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# Data Source and R code for Figure 2
#Get dataset from web site, rename it as dataframe "df", attach it to current session
df <- read.csv(url("https://raw.githubusercontent.com/dspiegel29/ArtofSta tistics/master/05-1-sons-fathers-
heights/05-1-galton-x.csv")); attach(df);
# Fit and plot simple linear regression model
plot(Father, Height); lines(Father, predict(lm(Height~Father)));
# Fit and plot nonparametric regression model
library(npreg); smod<- sm(Height~Father); plotci(Father, smod$fitted.values,smod$se.fit, col = "red", bars =
TRUE, xlab = "Height", ylab = "Father", col = "red", add=TRUE)

A simple linear regression model, represented by the black line in Figure 2, shows
that the proportion of variance in Height explained by Father is about 7.5% [the adjusted R-
squared value, produced in R via summary(lm(Height~Father, data = df))], corresponding
to the fit of the black line to the scatterplot in Figure 2). Nonparametric (smoothing)
regression produces an almost identical line and R2 value (it is shown by the smooth grey
curve in Figure 2, which falls almost on top of the black line), but now the straight-line
relation between Father and Height is a discovery rather than an assumption, as smoothing
regression allows many other shapes. Various nonparametric smoothing (e.g., loess, kernel
density, spline) and parametric (e.g., polynomial) regression models give closely similar
fits; we relegate details to the underlying software packages, such as package npreg in
R, which was used to produce the nonparametric regression curve in Figure 2. The key
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point is just that differences in the father’s height “explain” (in the statistical sense) a small
but significant (i.e., non-zero with high statistical confidence) proportion of the observed
variance in Height across offspring. Even such a partial explanation has practical value for
prediction: it shows that the father’s height helps to predict offspring height. However,
it does not address causal questions, such as how or whether the distribution of Height
in a population would change if the distribution of Father heights were to change. For
example, if it turned out that tall men tend to marry tall women, and the mother’s height
alone affects offspring height, then the observed statistical association between Father and
Height might be entirely explained by the mediating variable of the mother’s height. In
this sense, the statistical “explanation” of variance in Height by differences in Father has
nothing necessarily to do with causal mechanisms or explanations.

Including more independent variables, also called “explanatory variables,” on the
right side of a regression model can increase the proportion of explained variance in the
dependent variable. For example, including mother’s height increases the proportion of
explained variance in offspring heights from 7.5% to 10.7% (adjusted R2 = 0.1069, as shown
by the R commands attach(df); model <− lm(Height~Father + Mother); summary(model));
including offspring’s sex increases the R2 to 0.6385 (using summary(lm(Height~Father
+ Mother + Gender)). Figure 3 shows response surface models (RSMs) for this dataset,
illustrating that offspring Height increases more steeply with Father height than with Mother
height, and that Gender plays a larger role than either and does not interact with parent
heights, insofar as the two sheets for men and women are approximately parallel.
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#R code for Figure 3: library(car); scatter3d(Height~Father + Mother | as.factor(Gender), fit = c("linear" ));
scatter3d(Height~Father + Mother | as.factor(Gender), fit = c("smooth"))

4. The Structure of Explanations in Causal Bayesian Networks (BNs)

Bayesian network (BN) models and more general probabilistic graphical models
(e.g., with some undirected edges) generalize RSMs by quantifying probabilistic dependen-
cies among all of the variables in a model, with no need for just one dependent variable. In a
BN, nodes represent variables, and arrows between nodes represent statistical dependence
relationships between variables. The response surface concept is generalized to that of a
conditional probability table (CPT); we use this as a generic term to denote any probability
model (not necessarily a table) specifying the conditional probability distribution of a random
variable, given the values of its parents. (Nodes with no parents, e.g., input nodes with
only outward-directed arrows, have marginal (unconditional) probability distributions,
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but we subsume these as special cases of CPTs). A fully specified BN is a DAG with a
CPT at each node. As in regression models and RSMs, part of the variation in a dependent
variable is “explained” by differences in the values of other variables on which it depends,
i.e., variables in its CPT.

4.1. Explaining Direct, Indirect (Mediated), and Total Effects

Figure 4 shows a probabilistic graphical model with its arrows indicating that the
value of Height depends on Father, Mother, and Gender. More specifically, the arrows
signify that Height is not conditionally independent of any of the variables to which it is
connected, even after conditioning on the other two; thus, for example, the hypothesis that
the statistical effect of Father on Height is fully explained (or explained away) by Mother as a
mediating variable is rejected in this model (since otherwise Height would be conditionally
independent of Father given Mother, and there would be no direct link between Father and
Height). In general, two nodes (variables) are connected in such a probabilistic graphical
model if, and only if, they are found to be informative about each other, i.e., the null
hypothesis of conditional independence between them is rejected, implying that they have
positive mutual information even after conditioning on other variables. Such graphs enable
a slightly deeper level of causal explanation for observations than do regression models,
by distinguishing between, and quantifying, direct and indirect (mediated) causation. If a
person is observed to be surprisingly tall or short, a partial explanation may be given in
terms of the parents’ heights: the observed height may be less surprising, or more probable,
after conditioning on relevant information about (a) the parents’ heights (explanatory
inputs) and (b) the CPT for Height (i.e., knowledge of how inputs affect the conditional
distribution of the Height output). This is similar to regression model-based explanations,
with the CPT playing the role of the regression model and the parents of the outcome
being the explanatory variables. However, the probabilistic graphical model goes beyond
regression modeling by distinguishing between direct and indirect causes: a person’s
unusual height might be partially explained by the direct effect of his or her father’s
height, but also by the direct effect of his or her mother’s height, which in turn may be
correlated with, and in that sense partly explained by, the father’s height. Thus, the total
effect of the father’s height on the expected value (or conditional probability distribution)
of the offspring’s height consists of both a direct effect and an indirect effect mediated by the
mother’s height [14].
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Figure 4. A probabilistic graphical model for the Height dataset.

In more detail, to be well-defined, counterfactual causal questions about how off-
spring height probabilities would differ if the father’s height was different must specify
whether the mother’s height should be held fixed—and if so, at what level. Holding the
mother’s height fixed in considering how the offspring height distribution varies with
the father’s height isolates the controlled direct effect (or “partial” effect) of the father’s
height on the conditional probability distribution of the offspring height [14]. Alternatively,
if the mother’s height is allowed to vary realistically based on the father’s height, then
we quantify the total (direct plus indirect, mediated by the mother’s height) effect of the
father’s height. Distinctions among direct (or partial), indirect, and total effects of one
variable on another, while holding some other variables fixed at specified levels, are causal
concepts with no counterparts in statistical regression, as the concept of “holding fixed”
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is not a statistical (observational) construct, but a causal one [8,15]. It is of fundamental
importance for definitions of causality that consider X to be a direct cause of Y if and only
if the value (or, more generally, the conditional probability distribution) of Y differs for
different values of X, holding all other potential causes of Y fixed [16].

4.2. Conditional Independence and Potential Causalityin BNs

Arrows in a BN are causally oriented if direct causes point into their direct effects, but
this begs the question of what is meant by a direct cause (or its direct effect) and how
they are to be identified from data. Algorithms for causal discovery propose constructive
answers to these questions and clarify what causal questions can and cannot be answered
from observational data [8,17]. The undirected arc between Father and Mother in Figure 4
signifies that they are informative about each other (e.g., because men and women of similar
heights are more likely to marry), although perhaps neither can be interpreted as a cause of
the other. More generally, arrow directions in non-causal probabilistic graphical models
are often best regarded as arbitrary, since mutual information between random variables
is symmetric: if P(x|y) differs from P(x) (conditional probability does not equal marginal
probability), then P(y|x) = P(x|y)P(y)/P(x) = [P(x|y)/P(x)]*P(y) must also differ from P(y).
Just as Bayes’ Rule allows the joint probability P(x, y) to be decomposed equally well as
either P(x|y)P(y), corresponding to the DAG model Y→ X; or as P(y x)P(x), corresponding
to the DAG model X→ Y, so arrow directions in a fully specified Bayesian network (BN)
only show one way to decompose a joint probability distribution into marginal distributions
and CPTs. Other equally valid decompositions are usually possible. Thus, if suggested
causal interpretations for arrows are provided, they must rest on principles other than
conditional independence or mutual information, as these are symmetric.

Yet, there is a close relationship between conditional independence and most concepts
of causality. Intuitively, a direct cause of a variable provides information about it that can-
not be obtained from other direct causes. Thus, a variable is not conditionally independent
of its direct causes, even though (by definition) it is conditionally independent of its more
remote ancestors, given the values of its parents. These considerations often stop short of
uniquely identifying the direct causes of each variable because conditional independence
tests alone may not be able to distinguish between the parents and children of a node.
For example, the three DAGs X→ Y→ Z, X← Y→ Z, and Z→ Y→ X have the same
conditional independence relationships among variables, with X and Z being condition-
ally independent, given Y. They are indistinguishable by conditional independence tests
(i.e., they belong to the same “Markov equivalence class”), but the constraints imposed by
conditional independence do provide a useful filter: if no variable is conditionally indepen-
dent of its direct causes, then statistical tests for conditional independence can help identify
potential direct causes, even if they cannot always distinguish direct causes from direct
effects. Conditional independence tests are built into current causal discovery and BN
structure-learning software packages, such as CompareCausalNetworks [17] and bnlearn [18].
Although conceptual counterexamples can be contrived, e.g., by making X identical to Y in
X← Y→ Z, so that Z is conditionally independent of Y given X, even though Y rather than
X is a direct cause of Z, practical workers might be willing to disregard such special cases,
perhaps regarding them as having a probability measure of 0 or close to it in real datasets,
in order to get the benefits of automated screening for potential direct causes based on an
(almost) necessary, although not sufficient, condition. For example, in the above Markov
equivalence class, conditional independence implies that X is not a direct cause of Z (since
Y separates them, i.e., conditioning on Y renders them conditionally independent) and that
X and Z are not both causes of Y (since conditioning on Y renders them independent rather
than dependent), although it leaves ambiguous whether Y is a cause or an effect of Z.

4.3. Causal Discovery for Predictive, Interventional, and Mechanistic Causation

Causal discovery algorithms apply additional principles beyond conditional indepen-
dence to disambiguate possible directions of causality (if any) between variables. Useful
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principles for orienting mutual-information links between variables incorporated in mod-
ern causal discovery packages include the following [17].

V-structures (explaining away): If X and Y are unconditionally independent, but
become dependent after conditioning on a third variable Z, then Z is a common child (or
possibly a common descendant, if there are other variables) of X and Y. This is called a
“collider” or “v structure” DAG: X→ Z← Y. For example, if Mother and Father heights
are independent variables, but the adult offspring Height depends on both of them, then
observing a tall person with a short father might make it more likely that the mother is tall,
thus inducing a negative correlation between parent heights.

Directed information flow and predictive causation (Granger) vs. manipulative
causation: Information flows from causes to their effects over time. Parents’ heights are
potential causes of offspring heights, but not vice versa. This intuitively appealing idea
leads to tests for predictive causality, such as classical Granger causality testing in time-series
analysis and its nonparametric generalization to transfer entropy [19]. In these tests, X is
defined as a predictive cause of Y if future values of Y are not conditionally independent
of past and present values of X, given past and present values of Y itself. An intuitive
motivation is that changes in causes help to predict changes in their effects [20]. However,
predictive causation is a relatively weak causal concept: in a dataset that does not contain
smoking as a variable, nicotine-stained fingers might be a predictive cause of lung cancer
without being a manipulative (or “interventional”) cause, i.e., X being a predictive cause
of Y does not necessarily imply that intervening to change the value (or distribution) of
X would change the probability distribution of Y. Interventional causation, in turn, is
weaker than mechanistic causation: in a world where fingers can only be kept clean by
not smoking, nicotine-stained fingers could be a manipulative cause and a predictive
cause of lung cancer without being a mechanistic cause. For causally effective decision-
making, manipulative causation is necessary and sufficient, but it cannot be inferred from
conditional independence and directed information flows alone.

Dynamic Bayesian networks (DBNs) make the flow of information between variables
over time explicit by replacing individual variables with time-stamped values, creating
a time series of values for each variable in successive periods. The conditional probabil-
ity distribution for each variable in each period is allowed to depend on past values of
other variables, possibly including its own lagged values.Causal discovery algorithms
for learning DBNs from both experimental [21] and observational data [22] have been de-
veloped (e.g.,CaMML package, https://bayesian-intelligence.com/software/BI-CaMML-
Quickstart-Guide-1.4/ (accessed on 19 April 2021).

Effects are often simple (e.g., approximately linear) functions of their direct causes
andof random noise, as in the regression model in Equation (1). This provides a basis
for statistical tests for the direction of causality between variables if noise is not Gaus-
sian [23,24].

Causal laws (CPTs) are invariant across applications contexts. If a CPT P(Y|Pa(Y))
represents a causal law, then it should be the same across contexts, meaning that the same
inputs (parent values) produce the same conditional probability distribution for the output
Y. The property of invariant causal prediction (ICP) stipulates that the CPT is the same
across studies (causal generalization) and across interventions (transportability), where
an intervention sets values of some of the parents [25,26]. This property can sometimes
be tested if the effects of interventions are available from multiple studies with different
values of Pa(Y). For example, adding a study identifier code to other potential predictors of
Y lets a CART tree or other conditional independence tests check whether the distribution
of Y is conditionally independent of the study ID (and hence the specific interventions, if
any, in different studies) once values of Pa(Y) are known [26].

These principles and algorithms have helped to identify plausible structures for causal
BNs in many domains [22], but they often give somewhat different answers. Some require
strong assumptions, such as that there are no unmeasured common causes of the observed
variables (e.g., hidden confounders) that, if known, would explain away the observed

https://bayesian-intelligence.com/software/BI-CaMML-Quickstart-Guide-1.4/
https://bayesian-intelligence.com/software/BI-CaMML-Quickstart-Guide-1.4/
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dependencies between measured variables. Even whether one variable is a direct or an
indirect cause of another in a dataset may depend on what other variables are measured.
For example, the father’s height might be a direct cause of the offspring’s height in a dataset
consisting of Father, Mother, Gender, and Height, and yet the two might be conditionally
independent in a dataset that also contains more mechanistically relevant information, such
as the offspring’s levels of human growth hormone during development until adulthood.

4.4. Knowledge-Based Constraints Help to Orient Arrows to Reflect Causal Interpretations

Current causal discovery algorithms are often unable to establish unique directions
for arrows based on passive observations alone. For example, Figure 5 shows the results of
applying four current structure-learning algorithms to the heights dataset (hill-climbing
(hc), tabu search, grow–shrink (gs), and incremental association Markov blanket (iamb);
see [18] for details of these algorithms). Only two of them (hc and tabu) oriented an arrow
from Father to Height; the other two algorithms reversed this orientation. Knowledge-
based constraints can help orient arrows to reflect causal interpretations. For example,
if it is known that a variable is a sink in a causal BN, meaning that it can have parents
(representing direct causes) but not children (e.g., Height might be an effect of Father,
Mother, or Gender, but not a cause of any of them), then classification and regression tree
(CART) algorithms [27] with the sink as a dependent variable provide useful heuristics for
identifying direct causes and estimating CPT from the data. Figure 6 shows an example
for Height. The CART algorithm (implemented in the rpart package in R) identifies Height
as depending directly on (i.e., not being conditionally independent of) Father, Mother, and
Gender. Their relative “importance” scores are estimated as 15, 6, and 80, respectively, based
on their contributions to predicting Height; see the rpart package documentation and [27]
for details of CART importance scores. Likewise, after imposing the knowledge-based
constraint that Height is a sink, all four of the BN-learning algorithms used in Figure 5
correctly identify Father, Mother, and Gender as parents of Height.
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2 of 4 agree on each thin arrow (lighter color). (Continuous variables were discretized using the
Hartemink discretization pre-processing option, and hc, tabu, gs, and iamb algorithms were applied).

Figure 6 displays CPT information for Height, summarized as boxplots for the em-
pirical conditional distributions of Height in the leaf nodes at the bottom of the tree. Each
leaf node yields a different conditional probability distribution for Height, given the values
or ranges of values shown on the branches for the “splits” (answers to binary questions)
leading from the root node at the top of the tree to the leaf node. These splits define each
leaf node and the information on which its probability distribution for Height is condi-
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tioned. For example, a male (M) with Father ≥ 68.35 inches and Mother ≥ 67.5 inches
has a conditional distribution for Height summarized by the boxplot in the right-most
leaf node, with a median value of over 72 inches. There are 22 such cases in the dataset
(displayed as n = 22 for node 11). BN-learning algorithms, such as those in R packages
bnlearn and CompareCausalNetworks, provide multiple methods for performing conditional
independence tests and identifying the parents and estimating the CPTs of sink nodes, but
the CART tree heuristic remains one of the simplest and most interpretable. If variables are
not conditionally independent of their direct causes, then CART trees for sink nodes show
their direct causes, provided that the differences they make in the conditional distribution
of the sink variable are large enough to be detected by the tree-growing algorithm.
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# R code for Figure 6
library(rpart); library(rpart.plot); library(partykit); tree <- rpart(Height~Father + Mother + Gender);
plot(as.party(tree), type = "extended", main = "Height")

4.5. Structure of Most Probable Explanations (MPEs) in Bayesian Networks

In a probabilistic DAG model with causally oriented arrows, a direct explanation for
an observed value states that Y has the value it does because the parents of Y, denoted
by Pa(Y), have the values they do. These values entered the CPT for Y, which can be
denoted as P(Y|Pa(Y)) (or more explicitly as P(Y = y|Pa(Y) = x), where y denotes a specific
value of Y and x a specific vector of values for Pa(Y)) to generate the observed outcome
for Y. Alternatively, indirect explanations for the value of Y state that the parents of Y have
the values they do because of their own parents and CPTs. One can, therefore, at least
partially explain an a priori improbable value of Y by finding values (or combinations
of values) of its parents that, when conditioned upon, make the observed value of Y
more probable. Such explanations in causal DAG models can be deepened recursively:
values of variables are explained by explaining the values of their parents. This extends
the concept of explanation beyond the statistical regression concept of proportion of
variance of a dependent variable explained by differences in its explanatory variables. A
causal DAG model makes probabilistic dependencies among the explanatory variables
explicit, leading to a hierarchy of explanations rooted in the values of input variables
(nodes with only outward-pointing arrows) and in chance at the CPTs. Explanations in
such models are not limited to explaining factual observations. A standard application
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of Bayesian inference algorithms in BNs is to find values for unobserved variables to
maximize functions of the observed data, such as the (log) likelihood function, the posterior
probability, or a generalized Bayes factor of the observed values, thereby generating most
probable explanations (MPEs), maximum a posteriori (MAP) explanations, and most relevant
explanations (MREs) for the observed data, respectively [28]. These algorithms are also
frequently applied to hypothetical, counterfactual, and potential future events, rather than
to observed ones. For example, if it is posited that a complex system eventually fails, then
these BN “explanations” (i.e., settings of the values of unobserved variables to maximize
an objective function), given the hypothesized failure information, can be used to help
envision how the failure might occur, which may help to prevent it. A combinatorically
complex problem is to find the simplest such explanations (by various criteria, e.g., with
irrelevant conditions pruned away). Exact and approximate methods have been developed
for this purpose [29]. However, all these methods are restricted to passive explanations:
they explain some (real or imagined) observations in terms of other observations, rather
than in terms of design decisions or other active decisions and interventions.

4.6. Explaining Predictions for Effects of Interventions: Adjustment Sets, Causal Partial
Dependence Plots (PDPs) and Accumulated Local Effects (ALE) Plots for Known Causal BNs

In a causal BN, exogenously changing the value of one variable changes the conditional
probability distributions of variables into which it points (its direct effects) via their CPTs.
Changing their distributions, in turn, changes the distributions of their children. The
effects of the initial change propagate along causally oriented arrows, leading to updated
aleatory distributions for its descendants. The process is analogous to the propagation of
evidence in a non-causal BN but describes propagation of changes in aleatory probabilities in
response to actions, rather than (or in addition to) propagation of inferences about epistemic
probabilities in response to observations [8]. In this setting, the statistical challenge of
estimating how changing one variable would change the distributions of others can be met
using a combination of graph-theoretic and statistical estimation methods. Specifically, to
predict how changing X (via an exogenous intervention or manipulation) would change the
distribution of one of its descendants, Y, it is necessary to identify an adjustment set of other
variables to condition upon [30]. Adjustment sets generalize the principle that one must
condition on any common parents of X and Y to eliminate confounding biases, but must not
condition on any common children to avoid introducing selection biases [19]. Appropriate
adjustment sets can be computed from the DAG structure of a causal BN for both direct
causal effects and total causal effects [30]. Then, given a dataset of observed values for all
variables for each of many cases, the quantitative effect of changes in X on the conditional
mean (or, more informatively, the conditional distribution) of Y can be displayed via a
partial dependence plot (PDP) [13]. This shows how the conditional distribution for Y (or its
mean and uncertainty bands), as predicted by a machine-learning technique (e.g., random
forest, support vector machines, gradient boosted machines, deep learning networks, etc.),
changes for different values of X, holding the values of variables in the adjustment set fixed
at the values they have in the cases in the dataset. We call the result a causal PDP. It shows
how Y changes with X when sources of bias (e.g., possible confounders) are controlled by
holding their values fixed, but other variables are allowed to adjust realistically as X varies.
For example, in a causal BN model X→ Z→ Y, the probability distribution of Z would
change as described by its CPT in response to changes in the value of X. The distribution
of Y would then change in response to the change in the distribution of its input, Z. If all
relevant confounders are measured and controlled in this way, then the changes in Y’s
distribution are presumably caused by the differences in X values [16,19].

In this causal BN framework, the predicted change in Y in response to a change in X
is explained in terms of the following components.

a. Probabilistic causal laws, represented by CPTs. These causal CPTs remain fixed (“in-
variant”), independent of the situation or interventions to which they are applied [25]
and of the particular studies from which they were derived [2]. In this sense, a CPT in
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a causal BN encodes a causal generalization from specific studies and experiments. It
describes how aleatory probabilities for a variable’s values depend on the values of its
parents. The invariance of this description across settings and interventions, termed
invariant causal prediction (ICP), reflects the universality of causal laws (ibid). (In a
non-causal BN, by contrast, CPTs are statistical description of conditional probabilities
that may change across applications, perhaps reflecting different mixtures of aleatory
CPTs based on different values of causally relevant latent variables.)

b. Initial conditions to which these laws are applied. These conditions may differ
across applications. For example, an exogenous intervention that sets X to a new
value changes the conditions entering the CPTs of its children, initiating a change in
their conditional distributions that then propagates along causally directed paths to
change downstream distributions. The same intervention can have different effects in
different populations if other conditions are also different between them. Thus, an
infection control intervention that greatly reduces infection-related mortality rates in
one hospital might not do so in another with a different mix of patient conditions, not
because the same causal laws (aleatory CPTs) don’t hold, but because the distributions
of other variables that affect success (i.e., other causal parents of success) differ. In
such cases, transportability formulas show how to adjust the findings from one set of
conditions to apply to a new set of conditions, if there is enough common information
between them so that this can be done [31]. For example, if the success of the infection
control program varies by the age and sex of patients (and perhaps other covariates,
which would be parents of the success indicator variable in a BN model), then the
conditional success probabilities for different combinations of age and sex and any
other causally relevant covariates can be applied to the empirical joint distributions
of these variables at other hospitals to predict how well the program will succeed
elsewhere and explain why.

c. Causal network structure, i.e., the topology of the causal BN, showing the direct
causes that each variable depends on, i.e., its parents in the causal BN, if any.

d. An adjustment set specifying which variables are held fixed in calculating the causal
effect of a change in X on changing the distribution of Y. There are often multiple valid
adjustment sets and comparing the PDPs for the estimated causal effects of changes
in X on Y across alternative adjustment sets provides an internal validity consistency
check for whether the assumed BN model provides a consistent description of the
causal effects [30].

e. Assumed values for the variables that are held fixed. In PDPs, the assumed values
are those that the variables have in the dataset, used to estimate the PDP.

A causal PDP curve plotting the conditional expected value of Y for each value of
X, with uncertainty bands included if desired, provides a concise summary of how Y
is predicted to change if X is changed, holding variables in the adjustment set fixed at
specified levels. Rather than answering “If we observe that Y = y, what is the most probable
explanation?” as for MPEs, a causal PDP answers “If we set X = x, how will the expected
value (or, more generally, the conditional distribution) of Y change?” given stated levels of other
variables. Fully explaining the answer requires the preceding five components, (a)–(e).
The resulting ability to make (and to explain) predictions about effects of interventions
provides essential information for optimizing decisions.

The graph-theoretic part of the causal BN explanatory framework provides rigorous
conditions and algorithms for identifying adjustment sets and transportability conditions
and formulas, when they exist [30,31]. The quantitative estimation and display of average
causal effects by PDPs is less satisfactory because averaging effects over different individual
cases and hypothetical conditions obscures exactly what is (and should be) assumed about
each case [32,33].The concept of “holding fixed” some variables to isolate the causal effects
of others becomes problematic when the variables are tightly coupled, so that changing one
entails changing others, rather than holding them fixed. For example, suppose that heart
attack risk depends on both height and weight, and that weight also depends on height. To
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isolate the effect of weight on heart attack risk, a causal PDP would first include height
in an adjustment set, and then modify the value of weight in each record of a dataset (i.e.,
each case), setting it equal to different values while holding heights fixed at the values they
have in the records. The PDP would record the average predicted heart attack risk for each
value of weight. The needed predictions are made by applying a predictive ML method,
such as random forest, to each record for each value of weight, holding other variables
fixed. In reality, weight and height are not independent. Averaging predicted risks over
hypothetical cases with modified values of weight that are unlikely or impossible in light
of the corresponding heights undermines the practical relevance of the resulting PDP by
diluting it with predictions for unrealistic hypothetical cases that fall outside the observed
range of observed data values. To avoid this limitation, accumulated local effects (ALE) plots
do not involve counterfactual conditions outside the range of the data, but instead quantify
how small (“local”) changes in one variable would affect the predicted value for another
for each individual (again using a predictive model such as random forest) [33]. The effect
of a small change in X on the expected value of Y, evaluated at X = x, is averaged over
cases with X approximately equal to x, rather than being averaged over all cases (by setting
X = x for all cases, while holding other variables fixed, as in PDPs). Thus, instead of asking
how heart attack risk would differ for a 7 foot man if his weight were 100 pounds instead
of 300 pounds, the ALE asks how heart attack risks would change for each individual if
his or her weight were reduced by 1 pound. It displays the answer for individuals with
different weights. Similarly, individual conditional expectation (ICE) plots [32] can be used to
show how E(Y|x) varies with x for each individual case, thus avoiding the ambiguities of
aggregation. These ICE plots, in turn, can be clustered to reduce visual clutter.

Figure 7 illustrates these ideas, showing a PDP (upper left), ALE (upper right, y axis
showing deviations from average), and ICE cluster plot (lower, y axis showing deviations
from average) for the Heights dataset, using random forest as the prediction engine. (The
plots were generated by the Causal Analytics Toolkit at http://cloudcat.cox-associates.com:
8899/ (accessed on 19 April 2021), which automatically optimizes the number of clusters in
the ICE cluster plot.) We refer the interested reader to [32] for ICE plots and to [33] for ALE
plots. Both also discuss PDPs. Apley and Zhu note that both PDPs and ALEs correctly
recover the additive components in generalized additive models. To our knowledge, no
software package currently disaggregates ALE curves to the individual level, analogous to
ICE plots for PDPs, but this seems to be a natural next step.
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These various approaches to defining, quantifying, and visualizing effects of one
variable on another in a multivariate context are complicated mainly by conceptual am-
biguities about what “effect” should mean when there are interactions among variables
and heterogeneity in their values across cases. For direct causal effects in individual cases,
there is no such ambiguity in the causal BN framework: the causal CPT fully describes how
each variable’s aleatory probability distribution depends on, and varies with, the values
of its parents. The CPT describes probabilistic dependency, rather than offering a deeper
(e.g., mechanistic) explanation of why it exists and how it functions, but this description
suffices to predict effects of interventions. For this purpose, a simple descriptive causal
BN model X→ Y for predicting or controlling Y via observations and interventions on X
is as useful as a more refined causal BN model X→ Z→ Y, describing how Z mediates
the causal relationship between X and Y (via P(y|x) = ΣzP(z|x)P(y|z)). The model Father
→ Height is just as useful and valid as the more refined model Father→ HGH→ Height,
indicating that human growth hormone (HGH) mediates the probabilistic dependence
of Height on Father, for the purposes of predicting the effects of Father on Height. More
generally, the most useful level of detail to include in a causal explanation for support-
ing decisions describes how feasible changes in controllable decision variables change
probabilities of outcomes. Causal BNs and their extensions to include decision variables
and evaluation nodes (influence diagrams, discussed next) support this level of detail,
while leaving open scientific questions of how underlying causal mechanisms mediate the
dependencies among variables that are described by causal CPTs.

5. Structure of Explanations for Decision and Policy Recommendations in Influence
Diagrams (IDs): Maximizing Expected Utility with a Known Causal Model

Causal BNs can be extended to produce AI decision-support advisory systems that
recommend decisions (also called choices, actions, interventions, or manipulations) and
policies (also called decision rules or strategies, defined as mappings from available infor-
mation to actions, or, more generally, to probability distributions over actions). Actions
and policies are viewed as controllable causes, i.e., decision variables with values selected
from a set of possibilities (the choice set) by the decision-maker. The CPT for a random
variable includes the values of any decision nodes on which it depends, i.e., with arrows
that point into it in a causal DAG model. Decisions do not fit smoothly into the formalism
of probability theory, as they are not events (subsets of a sample space), but they can readily
be incorporated into BNs by introducing decision nodes and a sink node called the value
or utility node that evaluates the outcomes at other nodes. The utility node represents the
von Neumann–Morgenstern utility function for evaluating outcomes. The variables that
point into it are those that matter to the decision-maker in evaluating the consequences
of decisions. The resulting augmented BN is called an influence diagram (ID) [7,34]. In
an ID, any of several alternative actions can be taken at a decision node (or “choice node”),
based on information about the values of nodes that point into it. It is often convenient to
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allow deterministic functions for some variables in IDs as well, e.g., body mass index is
a deterministic function of height and weight. These may be regarded as special cases of
CPTs, giving probability 1 to a specific output value for each combination of values of its
parents. Policies or decision rules, mapping information to (possibly randomized) choices
of actions, are implemented at choice nodes.

In the ID framework, a decision rule sets the value of a choice node. The distributions
of variables that depend on the choice node are then updated based on their CPTs, and these
updates are propagated through the ID, ultimately leading to a conditional distribution and
an expected utility (EU) value at the utility node. Decisions are optimized by algorithms that
select decision rules to maximize expected utility. For tabular IDs, with a few possibilities
at each node and explicit tables showing how conditional probability distributions of
random variables depend on their parents, the same Bayesian inference algorithms used
to calculate posterior distributions of chance nodes given any set of observations can be
repurposed to infer decisions that maximize expected utility [35]; see also [36] for related
work). More computationally efficient algorithms have also been developed for solving for
optimal decisions in IDs [34,35]. In an ID, the explanation for a recommended (optimized)
decision rule is that it maximizes expected utility, given the information available when
decisions are made. If the ID is known to be a trustworthy model of reality, then its decision
recommendations are justified by the normative axioms of expected utility theory. If the
ID is estimated from data and has uncertain validity, then maximizing estimated EU may
still be a valuable heuristic, but other considerations involving model uncertainty may also
become important.

Figure 8 presents an example based on a dataset showing levels of sales for customers
receiving different levels of Facebook, YouTube, and newspaper advertising. The left side
of Figure 8 shows the results of four BN structure-learning algorithms; all agree that sales
depends on YouTube and Facebook, but not on newspaper advertising levels. The right side
shows a nonparametric response surface for sales as a function of YouTube and Facebook. Its
shape reveals that ads in each channel increase expected sales most when the other channel
also has relatively many ads. That is, there is cross-channel positive interaction (synergy).
Given these data and information on a marketing budget and advertising prices for each
channel, what decision recommendation should be made for how to allocate the budget to
maximize resulting sales, and how should this recommendation be explained and justified?

Figure 9 shows a standard managerial economics solution to this decision optimization
problem. The solution is not related to standard ID solution algorithms for discrete decision
variables, but instead applies nonlinear programming to choose the point satisfying the
budget constraint that achieves the highest possible sales (the point, indicated by a star,
where the budget line and an iso-sales contour are tangent). For simplicity, we assume
that the goal is to maximize sales, or that the budget constraint is binding. The budget
line is the set of feasible choices (the choice set for the decision problem) of all affordable
combinations of Facebook and YouTube advertising that spend the budget, given the prices of
advertising in each channel (which are divided into the budget to determine the intercepts
of the line). Contours for equal predicted sales (the “iso-sales” contours, in microeconomics
parlance) are estimated from the data by applying PDP estimation algorithms to the direct
causes of sales, averaging over the fixed levels of other variables.
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Figure 8. Left: Bayesian network (BN) structures learned by 4 algorithms in the bnlearnR package (hc, gs, tabu, iamb).
Arrow thicknesses show how many algorithms (4 for darker-color arrows, 2 for lighter-color arrows) produce each arrow.
Right: A response surface model for sales given YouTube and Facebook.

# R code for response surface
library(car); data("marketing", package = "datarium"); scatter3d(sales ~ youtube + facebook, fit = c("smooth"),
data = marketing)

The left panel of Figure 9 shows the contours estimated by a support vector machine
(SVM) algorithm, and the right panel shows the corresponding contours estimated by
multiple linear regression with second-order interactions. (In the right panel, the location
of the sales-maximizing allocation is interpolated from the contours above and below the
budget line, since none of the displayed contours is tangent to it.) Numerous other machine-
learning techniques could be used equally well to estimate these contours, e.g., random
forest, multiple adaptive regression splines (MARS), gradient boosted machines (GBM),
and so forth. They give somewhat different estimates of the contours, and hence somewhat
different recommendations for the optimal budget allocation. These differences reflect
model uncertainty: the true contours are unknown, and the estimated contours depend
somewhat on the specific estimation technique used. However, the causal structure for
decision recommendations is clear: select the feasible decision (or combination of decisions,
if we view expenditures in each channel as distinct decision variables) to maximize the
expected utility of consequences (here, the expected resulting sales). Moreover, to the extent
that the relevant causal model can be estimated from data, it is also clear how the optimal
decision recommendation should change as conditions change. If budget or advertising
prices change (altering the slope and intercepts of the budget line), or if the contours
of the PDP change (e.g., because of events that affect the advertising effectiveness of
different channels, perhaps by changing the reputations, credibility, or market penetrations
of the parent companies), then the new point of tangency between the budget constraint
line and the iso-sales contours identifies the new recommended decision for the altered
circumstances.
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Figure 9. Estimated causal partial dependence plot (PDP) contours for sales based on support vector machine (left) and
quadratic regression (right) with superimposed budget lines and estimated optimal budget allocations (stars) for each
estimated causal PDP.

# R code for partial dependence plots
data("marketing", package = "datarium"); library(e1071); library(pdp); library(ggfortify)
svm<- svm(sales ~ ., data = marketing); lm<- lm(sales ~ .^2, data = marketing)
pdp1 <- partial(svm, pred.var = c("youtube", "facebook"), chull = TRUE); autoplot(pdp1, main = "sales",
contour = TRUE); pdp2 <- partial(lm, pred.var = c("youtube", "facebook"), chull = TRUE); autoplot(pdp2,
main = "sales", contour = TRUE)

In this way, the optimization-based framework can cope with limited novelty, offer-
ing defensible decision recommendations for what to do under new pricing, budget or
effectiveness conditions, even if no historical data are available for the new conditions.
The underlying causal model (the PDP contours, corresponding to a causal CPT for sales,
given values of its parent decision variables, YouTube and Facebook, and averaging over the
values of all other variables that might affect individual purchase decisions) provides the
knowledge needed to justify decision recommendations even under new conditions. In
this way, causal AI avoids the need for new training data to make and explain decision
recommendations if causal CPTs satisfying ICP are available for predicting and optimizing
effects of interventions under current, possibly novel, conditions. However, model uncer-
tainty about the relevant causal CPTs, illustrated by the different estimates of contours in
Figure 9, leads to uncertainty about the best decision recommendation. It creates a need
to learn more about the shape of the response surface (or causal CPT) over time to enable
higher-value decisions. Reinforcement learning (RL) algorithms, discussed below, address
this need.

6. Structure of Explanations for Decision Recommendations Based on Monte Carlo
Tree Search (MCTS) and Causal Simulation

Making and explaining current decisions in terms of probabilities and utilities for their
potential consequences epitomizes rational, deliberative, planning and decision-making
for reason-driven “System 2” decisions, as contrasted with quick, pattern-driven “Sys-
tem 1” decisions [37,38]. When a known probabilistic causal model capable of predicting
outcome probabilities for different actions is available, along with a utility function for
evaluating different outcomes, then solving for expected utility-maximizing policies, even
in multi-period settings, is conceptually similar to solving the simple nonlinear program-
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ming optimization problem illustrated in Figure 9. The relevant optimization techniques
for stochastic dynamic systems are more complicated, e.g., with stochastic dynamic pro-
gramming instead of simple nonlinear programming, but the principle is similar in that
current decisions are optimized to maximize expected utility, taking into account future
decisions and outcome probabilities [39]. For example, a Markov decision process (MDP)
is a multistate transition reward process, for which a policy specifies which feasible action
to take in each state. Actions can affect rewards from transitions as well as next-state
transition probabilities. MDPs with finite numbers of states and actions can be solved
for optimal policies that maximize expected discounted rewards or average rewards per
unit time by using either linear programming, dynamic programming, or well-known
special-purpose iterative algorithms [9,10]. As in Figure 9, re-optimizing when conditions
change allows new optimal policies and resulting decision recommendations to be created
as needed for new situations; they are justified by optimization.

The optimization-based paradigm for recommending and justifying decisions must be
extended if the objective function to be optimized is unknown, either because it is difficult to
compute (perhaps requiring lengthy simulation) or because of a lack of causal information
about how actions affect outcome probabilities. If uncertainty about an MDP is described by
convex uncertainty sets for transition matrices—e.g., if the one-step transition probabilities
are known to lie in certain intervals, or if the rows of the transition matrix are known only
to lie within some relative entropy (Kullback–Leibler) “distance” from known reference
distributions—then MDP solution algorithms can be extended to find the best policy for the
worst-case model in the uncertainty set, providing a form of robust control for uncertain
MDPs [40]. (Extensions of expected utility theory that imply such maximin decision-
making over convex uncertainty sets in decision analysis are discussed by [41]) However,
the optimization paradigm breaks down if the optimization problem is unsolvable, e.g.,
because optimal policies are incomputable. This happens in some partially observable
MDPs (POMDPs), i.e., if the states of MDPs cannot be directly observed (so that policies
mapping states to actions cannot be implemented) but must be inferred from observations
that depend probabilistically on the underlying state—e.g., from signals observed via
noisy information channels in engineering systems; from observed symptoms in patients
with underlying unmeasured health conditions; from observed behaviors of customers
with underlying unmeasured beliefs, preferences, and intents; and so forth. Existence of
optimal policies—or even of policies meeting desired constraints, such as having at least
a stated probability of achieving a goal state in finite time without first encountering any
catastrophic state—is undecidable for some POMDPs with infinite planning horizons, and
with either discounted or undiscounted total reward models [42]. Although important
special cases are decidable [43], e.g., by converting the POMDPs to equivalent dynamic
Bayesian networks (DBNs) and then optimizing policies by maximizing the likelihood
of suitably normalized rewards [44], finding optimal or near-optimal policies in many
POMDPs, even when it is possible in principle, is sufficiently computationally complex so
that heuristics must be used [43].

The rationale for heuristic-guided decision or policy recommendations in such cases
is that no better choice has been discovered by the time decisions must be made. This “any time
planning” principle applies more generally, well beyond the class of POMDP decision
problems. For example, several recent state-of-the-art probabilistic planning heuristics
apply sampling-based methods, such as Monte Carlo Tree Search (MCTS) with deep learn-
ing or other function approximators of value functions, to search for and incrementally
improve the best (highest expected value) plan that can be discovered with a given compu-
tational budget. When an action must be taken, the best plan discovered so far is used to
recommend what to do next [45–47]. Other causal simulation and simulation-optimization
algorithms [48,49], e.g., particle filtering for efficient sampling of decision and outcome
trajectories in POMDPs with hidden (latent) variables, differ in detail from MCTS, but they
use similar principles of selective sampling and expansion (via simulation) of future trajec-
tories for decisions and outcomes to estimate value functions and heuristically optimize
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immediate decisions [50,51]. We will refer to such methods generically as causal simulation
heuristics, as they use causal models to envision a sample of future scenarios that are then
used to evaluate and choose among currently feasible courses of action. Causal models
that describe probabilistic relationships between actions and consequences (next states
and rewards) are crucial inputs to these methods. They are used under the guidance of
MCTS, particle filtering, or other (e.g., hybrid MCTS-particle filtering) causal simulation
heuristics to efficiently sample, simulate (“roll out”), and evaluate possible futures. The
resulting information is used to improve plans specifying what to do now and what to do
next if various contingencies occur [50]. Re-planning and searching for better plans occur
as new information and additional time for planning are gained, with decisions at any
time being guided by the current best plan. Causal simulation guided by entropy-based
upper bounds on the value of the best policy (maximum entropy MCTS) converges quickly
(exponentially fast) to the optimal next decision for some classes of sequential decision
problems for MCTS [47].

7. Structure of Explanations for Decision Recommendations Based on Reinforcement
Learning (RL) with Initially Unknown or Uncertain Causal Models

If a causal model specifying how actions affect outcome probabilities (e.g., reward
and state transition probabilities in an MDP) is not available, a key new principle is needed
to guide decision-making. When causal models and optimal policies are initially uncertain,
actions are valued not only for the rewards and state transitions that they cause, but also for the
value of the information that they reveal about how to improve policies [52]. Managing the
famous exploration–exploitation tradeoff between applying the most promising policy
discovered so far (exploitation), and deviating from it to discover whether a different policy
might perform better (exploration) requires taking into account the value of information
(VoI) produced by actions (ibid). For example, in a multiarm bandit (MAB) problem, such
as a clinical trial of several alternative treatments where the efficacy of each treatment is
initially unknown, a simple Bayesian heuristic starts with the uniform prior probability
that each treatment is best. It updates these probabilities by conditioning on observed
results [53]. The convenient fact that the family of beta distributions, which includes the
uniform, is a self-conjugate family for binomial sampling yields simple update formulas
(posterior beta distributions) for MABs with fixed but initially unknown probabilities of
success for each treatment. More complex update formulas and approximations have
been developed for MABs with more complex reward distributions [54]. A simple but
very effective technique for balancing exploration against exploitation in this setting is to
probabilistically select, on each trial, each treatment with a probability equal to its current
probability of being best. Thus, a treatment known to be best would always be selected;
one known not to be best is never selected; and treatments deemed more likely to be
best are selected more frequently (“reinforced”) as experience accumulates. This simple
reinforcement learning (RL) heuristic [55], known as Thompson sampling (TS), has been
extended to MDPs with the number of periods (the “decision epoch” length) for which
each trial policy is evaluated being tuned to be long enough to evaluate the policy without
a needlessly inefficient search [53]. Variations of Thompson sampling are asymptotically
optimal (converging in the mean to optimal-value policies) even for many non-Markov
and partially observable environments [56].

Performance guarantees for TS and other RL algorithms are usually given in terms of
asymptotic optimality and sublinear growth of regret. The regret from using a policy P over
any time interval is defined as the expected difference between the sum of rewards that
would be obtained by acting optimally throughout the interval, as assessed by someone
with perfect information about how actions affect outcome probabilities, and the sum of
rewards actually obtained by following policy P. If regret grows sublinearly with the length
of the interval, then the policy being used must be optimal (zero regret) or getting closer to
it as time passes, since otherwise regret would increase at least in proportion to the length
of the interval over which it is accumulated. Sublinear bounds and asymptotic zero-regret
guarantees for the performance of RL algorithms, including TS, have been established
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for MDPs, MABs, and other classes of sequential and adaptive decision problems [53,57].
Recent refinements include sampling each action to minimize the ratio of the square of
expected error (i.e., of squared one-period regret) per unit of information gained about
how to optimize choices (i.e., per bit of mutual information between the optimal action
and the next observation). This heuristic outperforms Thompson Sampling and other
heuristics across a wide class of models, with a bound on regret that scales with the
uncertainty (entropy) of the optimal action distribution [58]. If the pace of change is
slow enough, then RL algorithms yield low-regret policies even for MDPs with drifting
(i.e., slowly changing, in a sense that can be made precise) parameter values [59]. If risk
is important, imposing safety constraints on learning to avoid sampling actions with
potentially catastrophic consequences still allows zero-regret policies to be learned in some
MAB problems [60,61]. Risk-averse dynamic programming methods that protect against
large negative deviations from expected values have been developed for MDPs using
average value-at-risk (VaR) [62,63]. Other coherent risk measures, including conditional-
value-at-risk (CVaR) and entropic-value-at-risk (EVaR), have recently been used in risk-
averse planning and decision optimization algorithms for both MDPs and POMDPs [64,65],
as well as in model-free RL algorthms [66].

Other refinements, extensions, and improvements in RL algorithms for various classes
of decision problems continue to be made, as this is a very active area of ongoing re-
search [55,57]. For example, in nonlinear optimization problems, such as optimizing
cross-channel advertising expenditures in Figure 9, the smoothness of the estimated re-
sponse surface, as exhibited in its contours, allows valuable information about the best
policy (feasible allocation of budget) to be gleaned from observations at nearby points.
Collecting information in the vicinity of the current estimated optimum to better ascertain
the shape of the response surface, thereby enabling incremental adjustments of the decision
variables to increase mean system performance, was one of the earliest approaches to
decision-making with uncertain response surface models [67]. MABs have been extended
to allow for such spatial correlations among rewards at different locations in a decision
space, and RL algorithms have been developed for the safe exploration and optimiza-
tion of policies with correlated rewards when some combinations of decision variables
have low rewards (or high penalties) and must be avoided [1,68]. RL methods have also
been integrated into MCTS heuristics for sequential planning and decision-making in
MDPs, POMDPs, and more general probabilistic environments to guide efficient search for
high-performance plans satisfying safety constraints [60,69]. They have been applied to
POMDPs, to semi-Markov decision processes (SMDPs) and to partially observable SMDPs,
in which executing an action (or the subtasks of which it is composed) takes an uncertain
amount of time [70,71]. For this often realistic setting of tasks with uncertain durations and
success probabilities, RL has also been integrated with behavior trees [72] and with hier-
archical POMDPs [44,71] to enable AIs to adaptively select behaviors (sequences of tasks
and subtasks) over time. Importantly, RL can be used to acquire and improve skills, i.e.,
learned sequences of actions for accomplishing tasks and subtasks [3,73]. Multiple skills
and behaviors can be executed simultaneously as when an autonomous robot executes,
in parallel, routines for moving toward a target while maintaining balance and avoiding
collisions. This concept of choosing behaviors from a set that can be expanded by acquiring
and perfecting new skills extends the usual decision–analytic model of decision-making, in
which a decision-maker optimizes over a fixed choice set of possible alternative choices, by
allowing investment in skills that expand the repertoire of behaviors that can be success-
fully executed in response to a situation. What it knows how to do (i.e., the current choice
set) then forms part of the explanation for what an agent (whether an AI, a person, or a
team or organization) chooses to do at any time [3].

Throughout these variously extended and generalized classes of decision problems,
however, the basic RL principle of adaptively selecting actions and policies to reduce
expected regret, considering the value of information as well as the value of rewards, has
proved extremely valuable, not only for MABs, MDPs and POMDPs with initially unknown
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parameter values, but also for an increasingly wide variety of other dynamic stochastic
systems with initial uncertainty about how actions affect transitions and rewards [56].
Simply adding an “entropy regularization” term, reflecting current uncertainty (entropy)
about the best policy for an MDP, to the standard objective function (e.g., a weighted sum
of rewards) in RL to encourage more random exploration when the best policy is more
uncertain has been found to improve the robustness and convergence of RL for MDPs with
continuous state and action spaces [74]. In effect, successful RL heuristics use adaptive
exploration, guided by current uncertainty about the best (reward-maximizing) policy, to
learn enough about the causal relationships between actions and consequences to enable
low-regret policies to be discovered [75]. RL heuristics thereby provide a basis for decision
recommendations along the way that can be explained and justified as contributing to a
balanced mix of exploration and exploitation while meeting safety and risk constraints
if necessary [60]. Although they are guaranteed to eventually learn optimal policies
with probability approaching 1 in certain stationary environments, such as ergodic MDPs
or MABs, RL algorithms may perform poorly in non-stationary environments, such as
for “restless bandits” with reward distributions that change quickly compared to the
convergence rate for learning low-regret policies [76]. More generally, in dynamic decision
environments, the performance of an AI decision and control system is limited by the rates
at which it can interact with and learn from its environment, as discussed next.

8. Limitations and Failures of Causally Explainable Decisions for Dynamic Systems

An AI system can fail to provide causally effective decision recommendations to
achieve desired states and safety goals if it is overwhelmed by its environment—for ex-
ample, if the conditional state transition or reward probability distributions in response
to its actions change too quickly for the AI learning and decision algorithms to keep up,
or if the AI’s repertoire of available actions is too limited to greatly change the course of
events. Suppose that the state of a controlled system changes probabilistically not only in
response to choices made by an AI controller, but also in response to stochastic inputs from
the environment. The state of the system at any time is only partially observable by the AI
controller via a noisy (probabilistic) information channel representing its limited sensing
capabilities. In contrast to mathematical optimization formulations that treat choosing an
action as a primitive that can be executed instantaneously, correctly, and with certainty,
suppose that the AI controller can only select control signals to send to imperfect actuators
(e.g., people or agents or mechanisms acting on its behalf). Implementation of its control
signals as actions may involve errors and uncertainties. An intended action may be in-
terrupted or fail before it is completed. Thus, the control channel is also probabilistic: a
control signal sent by the AI creates a probability distribution over implemented actions
(controllable inputs) entering the system and possibly affecting its future state. In this
context, the AI’s ability to steer the system toward desired (highly valued) goal states while
avoiding undesired ones is limited by the capacities of its sensing and control channels,
i.e., the rate at which information about the state of the system can be received [77] for
feedback control stabilization of stochastic linear systems) and the rate at which infor-
mation can be transferred from control signals to future states of the system, called the
empowerment or control capacity of the controller [78–80]. Thus, a scalar stochastic linear
system with actuator uncertainty can be stabilized around a desired state if and only if its
control capacity—which is used to dissipate uncertainty about the state of the system—is
greater than the rate at which uncertainty about the state accumulates in the absence of
control [80]. If the control capacity is below this limit, then even an arbitrarily “intelligent”
AI, meaning one capable of instantly computing fully optimal policies with respect to
the information it has and the control signals it can send, will lack power to implement
causally effective policies to bring the system to (or close to) a desired state and maintain it
there. Conversely, even if control and sensor capacities are high enough not to limit the
performance of a controller, the difficulty or impossibility (undecidability) of computing
optimal or approximately optimal polices for some problems, including some POMDPs
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with infinite horizons, limits the quality of decision recommendations that can be given for
these problems [42,81]. In short, the value of decision recommendations that any system
can give depends greatly on the decision problem and on the available causal model (if
any) linking actions to outcome probabilities. Such models range from relatively simple
tabular influence diagrams, response surface, and optimization models (Figures 8 and 9),
for which optimal recommendations are readily computed and defended, to undecidable
infinite-horizon POMDPs or computationally hard (NP-complete) stochastic optimal con-
trol problems [39] and to MDPs with initially unknown parameters, for which RL heuristics
may provide practical approximate solutions (Table 1). This heterogeneity in decision
optimization problem types and achievable results suggests that no single type of causal
explanation for decision recommendations is best for all situations. Rather, rationales for
decision recommendations should be matched to the problem type.

9. Discussion: Explaining CAI Decision Recommendations

The different causal models we have reviewed lead to different detailed algorithms
for decision optimization, but all draw on a small set of causal artificial intelligence (CAI)
principles for making and defending (by explaining their rationales in causal terms) deci-
sion and policy recommendations when actions have uncertain consequences. This section
attempts to distil those principles. In this context, a decision is a choice from a choice
set of feasible alternatives. A policy is a decision rule specifying how to make a decision
whenever one must be made, based on the information available then. A fully specified
probabilistic causal model gives the probabilities of outcomes of actions. In influence
diagrams (IDs), these are probabilities for the utility node, mediated by changes in the
distributions of other variables caused by decisions. In Markov decision processes (MDPs),
semi-Markov decision processes (SMDPs), and other stochastic optimal control models,
actions can affect probabilistic state transition rates and reward distributions for occupying
and/or transitioning between states. In partially observable MDPs (POMDPs) or partially
observable SMDPs (POSMDPs), actions may also affect the information channels that map
the unobserved underlying states to conditional probabilities of observed signals. In all of
these classes of causal models, causally effective decision-making recommends decisions and
policies that make preferred outcomes more probable, where preferences are represented
by utility functions, reward functions (including discount rates for future rewards), or goal
states (perhaps with forbidden states and safety constraints), depending on the model. A
causal explanation for a recommended decision or policy explains why it is recommended,
i.e., why it is believed that it will make preferred outcomes more probable.

CAI principles and computational methods that have proved useful for support-
ing causally effective decision-making and control in a variety of applications include
the following.

• Expected utility (EU) optimization with known causal models: Choose a feasible ac-
tion or policy to maximize expected utility. This is practical when probabilistic causal
models are known and optimization is tractable. Decision problems with known
causal models represented by small (tabular) Bayesian networks or influence dia-
grams (IDs), decision trees, or response surfaces (Figures 8 and 9) are amenable to
EU optimization-based decision recommendations and causal explanations, with the
fundamental rationale for recommended decisions being that they are implied by the
normative axioms of EU theory.

• Dynamic decision optimization and risk management with known dynamic causal
models: Make current decisions to maximize a long-run objective function, taking into
account potential future decisions and chance events. Common objective functions
include long-run average, total, or discounted rewards, and long-run expected utility.
Dynamic optimization is practical for known causal models represented by small
decision trees, influence diagrams based on dynamic Bayesian networks (DBNs), or
MDPs. It is practical for some POMDPs, but computationally difficult for others,
and impossible (undecidable) for some infinite-horizon POMDPs. MDP and POMDP
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solution algorithms can be modified to incorporate risk aversion, using a variety
of coherent risk measures [63,65]. When dynamic optimization is impracticable or
impossible, heuristics must be used to guide choice.

• Causal simulation andMonte Carlo Tree Search (MCTS) heuristics: Make current
decisions based on the best plan available when decisions must be made. MCTS and other
causal simulation methods use causal models to simulate possible futures and incre-
mentally improve plans, i.e., sequences of decisions contingent on future events, with
increasing CPU time. MCTS does so by selecting (via adaptive sampling), simulating,
and evaluating possible futures and keeping the best (most highly valued) plans
discovered. Although full optimization of an objective function may be impossible
with the time and resources provided, causal simulation uses the best plan discovered
so far to recommend what to do when decisions must be made. It is practical if a
probabilistic causal model, e.g., a POMDP or a discrete-event simulation model, is
available to support its simulations (“roll outs”) of possible futures.

• Reinforcement Learning (RL) with initially unknown causal models: Make current
decisions to reduce expected regret, taking into account the estimated value of information
from actions, as well as the estimated immediate state transitions and rewards that the
actions cause. RL with entropy regularization is useful for discovering optimal or
near-optimal (low-regret) policies in MDPs, even when relevant causal models linking
actions to probabilities of consequences (immediate rewards and state transitions) are
initially unknown [74].

• Information and control capacities: Make current decisions based on realistic assessments
of what is possible to accomplish in future. If an AI makes or recommends decisions in
order to control a system that evolves dynamically in response to a mix of controlled
and uncontrolled (stochastic) inputs, then the set of probability distribution over
outcomes that it can reach and maintain in a given time interval via its control signals
is limited by its control capacity—the rate at which it can transfer information to
future states of the system—as well as by its capacity to sense and process relevant
information needed for causally effective control. To the extent that these constraints
are understood, or can be learned from experience, they can inform planning by
showing what goals (construed as desired probability distributions over states reached
within specified times) are realistically achievable. While this principle has been most
thoroughly developed for discrete-time linear dynamical systems, the link between
incoming and outgoing information rates and causally effective controllability of
systems is applicable more generally [82] and is being further clarified via recent work
(e.g., [83]).

These principles are complementary. Current state-of-the-art AI/ML systems for
discovering how to act effectively under uncertainty typically integrate several of them.
For example, RL techniques such as Thompson sampling are now commonly used in MCTS
to prioritize scenarios to simulate and evaluate. RL, MCTS, and numerical methods for
approximate stochastic dynamic programming and policy optimization have all benefitted
from the use of flexible nonparametric function approximators, such as deep neural net-
works, to estimate value functions for evaluating policies from limited samples of decision
and outcome trajectories. AI/ML systems that integrate dynamic decision optimization,
RL, and MCTS methods have proved useful in a wide range of applications, both when
complex causal models (e.g., POMDPs) are available, and also in the absence of an a priori
known causal model (model-free RL).

Applying CAI Principles to Explain Decision Recommendations

A powerful motivation for CAI is its potential to identify decisions and policies that
improve average rewards (or improve other, risk-adjusted, objective function values) for
decision and control under uncertainty, compared to methods that do not use causal
models to help optimize decisions. We have emphasized an additional motivation: the
potential for CAI to explain the causal rationales for its decision recommendations, thereby
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increasing their transparency and trustworthiness. However, the CAI methods we have
discussed—EU maximization, dynamic optimizationwith or without risk aversion or safety
constraints, and MCTS or optimal control, if causal models are known; RL if causal models
are initially uncertain or unknown; and hybrids of these methods, assisted by function
approximators, such as deep learning—are best understood by specialists. To what extent,
then, can CAI facilitate humanly satisfying explanations that succeed in making decision
recommendations more transparent, trusted, and acceptable for non-specialists? Although
this question can only be fully answered empirically via social science research informed
by the psychology of explanations [4,84], the distinctions we have discussed among model-
based optimization, causal simulation heuristics, experiential learning (RL), and capacity
to effect change may be useful in setting expectations for the different kinds of information
that can, should, and must be included to create convincing explanations for decision and
policy recommendations.

Current thinking on “explainable AI” (XAI) focuses largely on explanations for AI/ML
black-box predictions, with palatable explanations generated by simplifying complex black-
box predictive models to yield simpler (e.g., linear or threshold), approximate predictive
rules [4]. By contrast, any rational explanation for a decision recommendation must include
information about each of the following components:

• A causal model describing how outcome probabilities depend on choices. Examples of causal
models discussed in previous sections include conditional probability tables (CPTs)
in influence diagrams and in dynamic Bayesian networks (DBNs); response surface
models; and MDPs, POMDPs, stochastic control models, and causal simulation models
for dynamic systems. Examples of outcomes over which preferences are defined in
these various causal models include trajectories (time sequences) of system states,
outputs, or rewards; terminal states to which utilities are attached; and realizations of
the utility random variable in an influence diagram model. If a unique causal model
is not known, then model ensemble methods (e.g., different estimated causal models
produced by different ML techniques, as in the slightly different PDP contour maps
in Figure 9) or reinforcement learning methods that maintain posterior distributions
over possible models (e.g., beta distributions for the rewards from each arm of a MAB,
or from each act in each state of a MDP, in Thompson sampling) may be used to reflect
model uncertainty [85].

• Preferences for outcomes. Preferences are represented in several ways in the different
causal models we have discussed, e.g., by a utility function; by an objective function
for trajectories of states and outputs, in POMDPs and stochastic control models,
perhaps modified or constrained to reflect desired risk aversion; by estimated one-step
transition rewards for state transitions and/or occupancy, together with a discount
rate, in MDPs; or by goal states to be reached and taboo states to be avoided over
some time horizon in stochastic optimal control models.

• A choice set of feasible alternatives that the decision-maker can currently choose among. While
POMDPs, behavior trees, and control capacity models all acknowledge that a decision-
maker may not be able to simply choose an action that is then implemented promptly
and without error, all of them also recognize that decisions involve selecting from a
feasible set of choices—even if what is selected is only which control signal to send or
what task(s) to attempt next, rather than the successful completion of an action.

Given these three main components, a CAI decision support algorithm applies opti-
mization methods or heuristics to recommend decisions that are predicted by the causal
model to make preferred outcomes more probable. If a causal model is known for which op-
timization is tractable, then CAI recommends decisions to maximize an objective function.
For example, Figure 9 illustrates how a choice set (the budget line), possible outcomes (sales
levels), a causal model learned from data (the iso-sales contours expressed as functions
of the decision variables, namely, advertising in each channel), and assumed preferences
(higher contours are assumed to be preferred) come together in a simple traditional nonlin-
ear programming optimization model. If optimization is intractable, then causal simulation
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heuristics, such as MCTS, are used. If no causal model is available, then reinforcement
learning is used.

In each case, the optimization algorithms or heuristics for selecting a recommended
decision are likely to be inscrutable to many users. Their results are not likely to be readily
explicable except in simple cases, such as that shown in Figure 9. However, the three
required inputs (causal model, preference model, choice set) can often be explained and
visualized with the help of Bayesian networks and influence diagrams (or decision trees
and tables, for very small problems); state transition diagrams and example trajectories for
MDPs and POMDPs; and response surface models, partial dependence plots (PDPs), and
accumulated local effects (ALE) plots, if there are only a few continuous decision variables.
Moreover, if a trusted causal simulation model is available, then the recommendations
from a CAI-based decision recommendation engine can be made credible, even if the
optimization algorithms that lead to them are obscure, by simulating deviations from them
and showing that non-recommended policies reduce the value of the objective function
being maximized (or stochastically reduce it, i.e., shift its cumulative distribution leftward
over repeated simulation runs). If a trusted causal model is not available, then sensitivity
analyses and reinforcement learning methods that maintain and update posterior distribu-
tions for the best policies can be used instead to show how deviating from recommended
decisions reduces expected utility, as assessed with currently available information.

From this perspective, explaining CAI-based decision recommendations to build
trust and acceptance among users need not confront the challenge of explaining how the
CAI algorithms work. Rather, they can focus on assuring that the choice sets, preference
models, and causal models that the optimization algorithms or heuristics use to generate
recommendations are well understood and agreed to, and that the resulting decision recom-
mendations are credible, as shown by the demonstrable difficulty (or, for exact optimization
methods, impossibility) of improving upon them. For decades, human decision analysts
have emphasized precisely these features in communicating with and earning the trust of
decision-makers: it is essential to be clear about the inputs and outputs and the structure
of the analysis (choice sets, possible outcomes, preferences and value tradeoffs among
outcomes, and conditional probabilities for outcomes given choices), but technical details
for solution algorithms can be safely encapsulated in influence diagram software or other
solvers with the validity and robustness of results (i.e., decision recommendations) being
clarified more through simulations and sensitivity analyses than by explaining how they
were calculated [86,87]. To this traditional perspective from decision analysis on how to
build trust in analyses and recommendations, we add the following points:

a. In recommending a decision or policy, a CAI advisory system should disclose whether
its recommendation is based on full optimization, heuristic search, or RL exploration.

b. It should also disclose whether its recommendation is based on a well-validated
causal model (e.g., a causal model with CPTs for which properties of transportability
and invariant causal prediction (ICP) have been tested and verified); on a causal
model that has been assumed but not yet validated (as in many traditional decision
analyses that use subjectively elicited decision trees or IDs); on an uncertain model or
ensemble of plausible causal models learned from data (e.g., with contours in Figure 9
estimated using causal PDP or ALE plots based on ensemble ML techniques); or on
reinforcement learning (RL) trajectories seeking to estimate from experience how
decisions affect rewards or risk-adjusted objective functions.

c. If the relevant causal model is uncertain (e.g., if it is still being learned by an RL
heuristic that has not yet converged to a zero-regret answer), then the CAI systems
should disclose current uncertainty about the best recommendation. It should note
how, if at all, risk aversion and safe exploration constraints have been incorporated
into the search for the best recommendation.

d. If heuristics have been used to make a decision recommendation, then bounds on
regret, or other performance guarantees, should be provided if possible. For ex-
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ample, such information is produced by several current state-of-the-art POMDP
heuristics [53,78].

While explaining details of CAI algorithms is probably unnecessary for justifying
decision recommendations and explaining to what extent they are trustworthy, explaining
the technical basis for the analyses that supports the recommendations—especially the
above aspects of causal model uncertainty and optimization uncertainty—can help to set
realistic expectations for the reliability of the recommendations.

10. Conclusions: Explaining Recommended Decisions in Causal AI

Needing to show that following a CAI advisory system’s decision recommendations
is expected to cause probability distributions for possible outcomes that are preferred to
the distributions caused by feasible alternatives creates a distinctive set of information
requirements and a distinctive structure for causal explanations of decision recommenda-
tions. These differ markedly from the information requirements and structure needed to
explain observations or predictions. Explaining decision rationales requires not simply
conditional probability distributions, but causal models of effects of possible (counterfac-
tual) actions on probability distributions. It requires being able to use knowledge of choice
sets, preferences (e.g., utility functions or goal states) for possible future outcomes, and
estimated causal links (e.g., CPTs satisfying ICP) between current actions and probabilities
of future outcomes to explain why the recommended course of action is best, as well as pro-
cedural knowledge of appropriate exact or heuristic optimization methods for finding the
recommended course of action. In relatively simple situations, decision recommendations
are then obtained by optimizing a known (or approximately known) objective function
that serves as a causal model for predicting the value or expected utility of outcomes
caused by different feasible settings of decision variables. Figure 9 illustrates this concept.
Feasible allocations of the available budget between marketing channels constitute the
choice set; estimated iso-sales contours constitute the causal model; and sales correspond
to the outcome variable to be maximized. The recommended decision (the starred point
of tangency between the budget constraint line and the estimated contours of expected
sales caused by different actions, i.e., allocations) has a clear explanation in this example:
deviating from the recommendation in either direction causes lower performance contours.

Such a causal model also readily explains how and why recommended decisions
change as conditions change, even if the new conditions have never been encountered
before. For example, a change in the budget or in advertising prices (changing the budget
line) or in advertising effectiveness (changing the contours) that implies a new point of
tangency in the example of Figure 9 thereby immediately implies a new optimal budget
allocation decision, even if no data have been collected for the new situation. In this way,
causal models can provide defensible recommendations for new situations without requir-
ing further training data, as long as the relevant causal laws are known, and are known
to apply for the new conditions (transportability and ICP). This enables a CAI advisory
system that monitors changes in causally relevant conditions (e.g., parents or ancestors of
the utility node in an ID model) within the scope of known causal laws (causal CPTs) to
exercise automated vigilance on behalf of those it advises, proactively recommending next
optimal actions in response to observed changes in conditions without having to wait for
new training data or to learn new predictive patterns. The recommendations can be ex-
plained by showing how estimated optimal decisions change as conditions change, similar
to comparative statics in economics. For more elaborate dynamic causal simulation models,
explanations cannot necessarily be visualized as easily as in Figure 9, but simulating the
consequences of deviating from recommended policies can provide convincing evidence
that the recommendations should be followed, provided that the causal simulation model
is trusted. To validate a causal model, in turn, an array of tools from causal analysis is
available, as discussed in the section on the structure of explanations in causal Bayesian
networks. These include structure-learning algorithms, CPT estimation algorithms, and
conditional independence tests for implications of hypothesized causal structures; statisti-
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cal tests for internal validity based on comparison of causal effect estimates across multiple
distinct adjustment sets; and statistical tests for external validity based on transportability
and invariant causal prediction (ICP) [2,30]. As with all statistical tests, passing these
various validation tests does not assure that a causal model is valid, but provides evidence
against the null hypothesis that its testable predictions are false. These methods have been
most extensively developed in the context of causal Bayesian networks, but they apply
also to other causal models, including MDPs and POMDPs, that can be represented by
equivalent dynamic Bayesian networks [44].

If relevant causal laws (CPTs satisfying ICP) are known for only a limited range of
conditions, however—perhaps only those in the vicinity of the currently estimated optimal
policy, if it has been learned via RL—then changes that push observed conditions outside
the scope of the currently known CPTs may require new rounds of RL before confident
decision recommendations can be made. In Figure 9, for example, if the response surface
had been fit to a narrow range of data near the starred optimum instead of to a relatively
wide data cloud, the resulting causal PDP model might have produced a relatively narrow
swath of well-estimated contours surrounded by unknown contours outside the range of
observed data. To characterize the reliability of the basis for its recommended decisions,
CAI advisory systems should, therefore, not only distinguish among exact optimization,
heuristic (sub)-optimization, and exploratory RL heuristics, but they should also charac-
terize remaining uncertainty about their recommendations whenever possible, e.g., by
providing regret bounds or performance guarantees. Such uncertainty information differs
from the statistical confidence intervals and Bayesian posterior distributions typically used
in predictive analytics, insofar as it requires counterfactual comparisons—for example, for
the expected difference between achieved rewards and the maximum rewards that would
have been achieved had the truly optimal policy been known and followed. Plausible ex-
planations for why one action should be taken instead of another make such counterfactual
comparisons necessary. Causal models of the effects of actions on the outcome probabilities
make them possible.

Although CAI is recent enough to make confident prediction of trends difficult, it
has recently been identified as an important next step for the evolution of applied AI/ML
by AI/ML developers, users and commentators (e.g., [17,88,89]). The main reason is
that it allows AI to go beyond pattern-driven inferences and predictions to calculate the
probable effects of different interventions, or courses of action, and to optimize policies
and behaviors accordingly—in effect, leading to smarter AI/ML. As explained by [89]:
“Ultimately, knowing the ‘why’ behind complex problems helps us to understand how
the world really operates and, in turn, to identify the right actions to achieve desired
outcomes. We may yet find that an ounce of causal AI is worth a pound of prediction.”
For practitioners, the greatest practical value of CAI is probably that it helps to identify
actions and policies that are causally effective in increasing the probabilities of achieving
desired outcomes [12]. For developers, a strong contribution of CAI is that it improves
the speed and accuracy of machine learning, especially in novel situations, by enabling
efficient generalization and transfer of knowledge learned under previously encountered
conditions to apply to new situations, as in the example of Figure 9. CPTs satisfying the ICP
property need not be re-learned every time an environment changes, or as new conditions or
interventions are encountered, but instead can be used to “transport” previously acquired
causal knowledge to the new situations (via transportability calculations) to predict effects
of interventions without waiting to collect new data [26].

In some applications areas, such as Systems Biology, users and developers have
collaborated closely in developing and applying CAI [11]. CAI implementation and
public-domain software have advanced enormously in the past decade, and uniform
interfaces to multiple causal discovery packages are now readily available, such as the
CompareCausalNetworks package in R [17]. Despite these advances, the situation illustrated
in Figures 5 and 8 (left panel), in which the structure of a causal model is not uniquely
determined automatically from data alone, is still common in practice. As a result, current
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CAI technology is often used as a tool by knowledgeable experts to generate and test causal
hypotheses and quantify causal relationships. Human experts apply common-sense causal
knowledge (such as that age and sex can be causes, but not effects, of diseases; or that death
can be an effect, but not a cause, of diseases and exposures) to constrain the search for causal
models that are consistent with the data [11,18]. Whether used as a tool by human experts,
or used by autonomous or human-guided AI to speed learning and to help optimize
decisions, CAI will most likely be trusted in the future if it can give clear explanations for
its conclusions. We have proposed that, for decisions—as opposed to predictions, diagnoses,
or causal discovery—the structure of convincing explanations involves the components
shown in Figure 1 for a wide range of causal models (Table 1); making this structure clear
can provide a useful and credible explanation for CAI-based decision recommendations,
even if details of policy optimization heuristics are not discussed. Future systems that
incorporate causal explanations together with CAI methods may help to increase the
trustworthiness and acceptability of CAI in practical applications for proposing improved
decisions and policies under uncertain and changing conditions.

We have discussed the structures and types of information and arguments needed to
give convincing causal explanations for recommended decisions or policies. The essence
of such an explanation is a counterfactual comparison between the changes in outcome
probabilities that the recommended decisions or policies are expected to cause, on the one
hand, and those that alternative decisions would cause, on the other. This is precisely the
type of comparison that optimization and RL heuristics use to make their recommendations.
Therefore, the same CAI methods can be used both to identify what decisions to recommend,
as well as to explain why they are recommended. Emphasizing causally explainable decision
recommendations improves their quality as well as their credibility. This is because, in
contrast to simplification-based XAI for predictive analytics, CAI for prescriptive analytics
emphasizes the production of evidence that following the recommendations makes desired
outcomes more probable. We propose that demonstrable effectiveness in trusted causal
simulation models, rather than simplicity, is the essence of convincing explanations for
decision recommendations from CAI-assisted prescriptive analytics.
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