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Abstract: Random fluctuations in neuronal processes may contribute to variability in perception
and increase the information capacity of neuronal networks. Various sources of random processes
have been characterized in the nervous system on different levels. However, in the context of
neural correlates of consciousness, the robustness of mechanisms of conscious perception against
inherent noise in neural dynamical systems is poorly understood. In this paper, a stochastic model is
developed to study the implications of noise on dynamical systems that mimic neural correlates of
consciousness. We computed power spectral densities and spectral entropy values for dynamical
systems that contain a number of mutually connected processes. Interestingly, we found that spectral
entropy decreases linearly as the number of processes within the system doubles. Further, power
spectral density frequencies shift to higher values as system size increases, revealing an increasing
impact of negative feedback loops and regulations on the dynamics of larger systems. Overall, our
stochastic modeling and analysis results reveal that large dynamical systems of mutually connected
and negatively regulated processes are more robust against inherent noise than small systems.

Keywords: neural correlates of consciousness; spectral entropy; power spectrum; stochastic model-
ing; noise in neuronal networks

1. Introduction

Noise is ubiquitous in neuronal circuits [1,2]. Hence, neuronal networks may produce
highly variable responses to the repeated presentation of the same stimulus [3,4]. The
dominant sources of noise in neuronal systems include voltage-gated channel noise [5,6]
and synaptic noise [7,8], as well as sensory-motor sources of noise [2]. Several studies
have examined the implications of noise on membrane potential [1], propagation of action
potential [9], and spike train coding [10].

In bistable and threshold-like systems, noise can significantly affect the information-
processing of sub-threshold periodic signals that are more likely to cross the threshold in
the presence of noise. Therefore, the propagation of weak periodic signals can be enhanced
by the presence of a certain level of noise. This phenomenon is called stochastic resonance.
The noise-induced transmission of information has been observed in cat visual neurons [11],
rat [12], and crayfish [13]. Several theoretical studies of information-processing in threshold-
like neuronal systems show that additive noise can increase the mutual information of
threshold neurons [14–16]. Stochastic resonance can also modulate behavioral responses.
For example, noise has been shown to improve human motor performance and balance
control [17] and enhance the normal feeding behavior of river paddlefish [18]. Therefore,
noise can influence perception and behavior by altering the information transmission and
processing in nervous systems.

Overall, noise is a key component of the sensorimotor loop and, thus, may have
direct behavioral consequences [2]. Noise may also increase the information capacity of
neuronal networks and maximize mutual information [16]. Average mutual information
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across all bipartitions of a neural network is used as a metric for neural complexity in the
information integration theory of consciousness [19,20]. Thus, noise can be directly linked
with conscious perception. Undoubtedly, it is also important to consider noise in the neural
correlates of consciousness studies that pave the way for understanding neural mechanisms
of perception and consciousness [21–24]. Neural correlates of consciousness are identified
by the minimal set of neuronal events sufficient for any one specific conscious percept [23].
Noise can have a substantial impact on the system dynamics that must be considered
when the minimal set of neuronal events sufficient for any one specific conscious percept
is defined.

In this work, we study the implications of stochastic noise on systems of processes
exhibiting dynamics isomorphic with a specific conscious percept [25,26]. During the past
few decades, several comprehensive theoretical models of consciousness have been de-
veloped based on dynamical and operational system frameworks [27–30], information
theory [19,31], temporo-spatial theory [32,33], and several other mathematical and physical
frameworks [34]. It is widely accepted that consciousness is a dynamic process that requires
the proper execution of physical neuronal operations [19]. Conscious states are observed
only when both the neuronal processes are correctly executed and running and the connec-
tions between different parts of neuronal networks (brain areas) are largely maintained
and functional [35]. It has also been proposed that the specific conscious percept can be
associated with a particular functional organization of a neuronal system [36], or that
the operations of transient neuronal assemblies must be functionally isomorphic with
phenomenal qualities [28]. Our dynamic model exhibits this important property.

To study the implication of noise on neural correlates of consciousness, we developed
a stochastic model based on our previous dynamical system framework for a conscious
percept [25,26]. The main purpose of this work is to investigate how noise affects the
dynamical systems of different sizes. We computed the spectral entropy for different
systems and determined the dependence of entropy on system size. Overall, we believe
that our stochastic model can help us better understand the impact of noise on neural
correlates of consciousness. Understanding the impact of noise on perception can help
us deduce processes related to conscious perception, apply this knowledge to modulate
behavioral responses [17,18] and design computer vision systems [37,38].

2. Materials and Methods

To generate stochastic trajectories for processes, we used Gillespie’s stochastic simula-
tion algorithm. This method is often applied to handle stochastic fluctuations in chemical
reaction systems [39–41]. In Gillespie’s formalism, the kinetic terms describing rates of
biochemical reactions are treated as stochastic propensities for a reaction event to occur
over a small interval of time. This algorithm is the most accurate for elementary reaction
mechanisms expressed in terms of mass-action rate laws [39]. However, the algorithm has
been also used to handle stochastic fluctuations in chemical reaction systems described by
other phenomenological rate laws (like Hill function) that are commonly used in determin-
istic models of biochemical systems [40]. Overall, Gillespie’s scheme is often considered
as a convenient way to turn a deterministic simulation into a stochastic realization by
reinterpreting kinetic rate laws as propensities of a reaction. Gillespie’s stochastic sim-
ulation algorithm has been also applied to simulate reaction-diffusion systems [42], the
predator-prey cycles [43], and the evolutionary dynamics of a multi-species population [44].
Here we use Gillespie’s scheme to introduce randomness into the system of processes
which we had previously described by deterministic differential equations [25].

The deterministic systems (2, 3) were converted into stochastic models using the
Gillespie method, where the right-hand-side terms of ordinary differential equations
describe propensity functions determining the probability for a process pi to increase,
decrease, or transition to a process zi. The algorithm can be described by the following
general Gillespie scheme [39]:

1. Initialize the process state vector,
→
P , and set the initial time at 0.
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2. Calculate the propensities, ak(
→
P).

3. Generate a uniform random number, r1.
4. Compute the time for the next event, τ = − 1

∑k ak(
→
P)

ln r1.

5. Generate a uniform random number, r2.

6. Find which event is next, I = i, if ∑i−1
k=1 ak(

→
P)

∑k ak(
→
P)
≤ r2 < ∑i

k=1 ak(
→
P)

∑k ak(
→
P)

7. Update state vector,
→
P →

→
P + yi .

8. Update time, t→ t + τ .
9. Repeat (2)–(8).

XPP/XPPAUT software (http://www.math.pitt.edu/~bard/xpp/xpp.html, accessed
on 24 March 2021) was used to solve systems of ordinary differential equations, compute
one-parameter bifurcation diagrams (Figure 3A), and simulate stochastic models. XPPAUT
codes that were used to simulate results in Figures 1, 3A and 4A,D,G are provided in
Appendix A.

The eigenvalues shown in Figure 3B were computed using Wolfram Mathematica
software.

To implement Gillespie’s stochastic simulation algorithm in the XPPAUT codes (pro-

vided in Appendix A), we first computed sums of event propensities xi =
i

∑
k=1

ak(
→
P) for all

values of i, then we found the next event (steps 5, 6), updated the time (4, 8) and the states

of processes
→
P (step 7).

We used the spectrum analysis and spectral entropy to quantify noise effects in the
system of processes. These techniques are common tools that are often applied to analyzed
data obtained in neurophysiological studies [45–48]. These tools are also commonly applied
in signal processing, control systems engineering and diagnosis. For example, spectrum
techniques are often used to monitor dynamics of complex machines and their fault
diagnosis [49,50]. Spectral entropy in our work is based on Shannon’s entropy formalism
that is a foundational concept of information theory [51]. The entropy metric is also
an essential part of information integration theory of consciousness [19,31]. Particularly,
the entropy metric is used to quantify integrated information of a system composed of
interacting elements. We used the spectral entropy to quantify the effects of noise on the
system of interacting processes and how the impact of noise changes when the system
size increases.

The fast Fourier transform (FFT) of each process p(t) was computed using the Fourier
Analysis function in Excel’s Analysis ToolPak. 1024 points were used to obtain the signal
p( f ) in the frequency domain. 1024 points corresponded to a total simulation time of
~370 arb. u. and the period of oscillations ranged between ~5–10 arb. u. (see Figure 4C,F,I).
The sampling frequency, f , was computed by dividing the number of points by the time in-
terval, ∆t. The frequency magnitudes were calculated using Excel’s IMABS function.
The power spectral density was defined as PSDi = |p( fi)|2/2∆ f . We used 512 data
points to compute spectral densities. The spectral entropy was computed using the
following equation:

S = −k
512

∑
i=1

ˆPSDiLog2
( ˆPSDi

)
, (1)

where k = 1
Log2(512) ≈ 0.1 and ˆPSD is the normalized power spectral density. ˆPSD was

computed by dividing the power spectral density by the total power [52].

3. Results

We considered a dynamical model that describes mutually connected processes. In
this model, the processes maintain specific dynamic relationships, which are designed to
be isomorphic with a hypothetical conscious percept to mimic a mechanism for neural

http://www.math.pitt.edu/~bard/xpp/xpp.html
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correlates of consciousness [26]. The specific conscious percept was represented as a specific
function (property) that was performed and maintained by the dynamical system. This is
in line with William James’s interpretation of consciousness as a dynamical process, not a
capacity, memory, or information [53].

A nonlinear system of two processes and linear systems of four, eight, and sixteen
processes were used to mimic some specific conscious percepts exhibited by these dynam-
ical systems. The former system was used to illustrate the concept that the system can
execute and maintain a specific relationship between processes p1 = f (p2) and p2 = f (p1)
where f (. . .) is a nonlinear function. The latter system was used to investigate the effect of
the size of the system. In the linear system of mutually connected processes, each process

could be expressed through all other processes as
→
P = A

→
P, where

→
P is a vector of processes

and A is the hollow matrix. The corresponding stochastic models were used to investigate
the effects of noise on these systems.

First, we consider a system of two nonlinear differential equations:

dp1
dt = −p2 + p1

(
R2 − p2

1 − p2
2
)

dp2
dt = p1 + p2

(
R2 − p2

1 − p2
2
)
.

(2)

System (2) has a periodic solution p1 = R cos(t), p2 = R sin(t) shown in Figure 1A. The
solution could also be represented by a limit cycle in the p1 p2-phase plane (see Figure 1B).
Thus, the relationship between the two processes is defined by the limit cycle, which is
maintained in time. The parameter R defines the radius of the limit cycle. For System (2),
the specific dynamic relationship between p1 and p2 is isomorphic with a circular motion.
This relationship itself is a part of the dynamical system. We assume that the specific
conscious percept is represented by the dynamical property that emerges in the dynamics
of the system, which, in this case, is isomorphic with a circular motion.
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Figure 1. Dynamic behavior of a deterministic system (2) and the corresponding stochastic system. (A) Trajectories for 

processes 𝑝1 and 𝑝2 described by the system of differential equations (2), (B) the limit cycle in the 𝑝1𝑝2-phase plane, (C) 
Figure 1. Dynamic behavior of a deterministic system (2) and the corresponding stochastic system. (A) Trajectories
for processes p1 and p2 described by the system of differential equations (2), (B) the limit cycle in the p1p2-phase plane,
(C) stochastic trajectories, (D) the limit cycle describing the solution of the stochastic system, (E) the normalized power
spectral density characterizing the noise spectra in stochastic trajectories. The parameter R = 1 for the deterministic system
(2) and R = 100 for the corresponding stochastic system.
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We introduced noise into System (2) by applying a stochastic formulation. Here,
we used the Gillespie algorithm, described in the Materials and Methods section, which
allowed us to describe the evolution of processes using propensities derived from rates that
govern the dynamics of the processes in System (2). The simulated stochastic trajectories
for the p1 and p2 processes are shown in Figure 1C and the corresponding limit cycle in the
p1p2-phase plane is shown in Figure 1D. Using stochastic simulation results, we computed
power spectral densities (see Figure 1E) from stochastic trajectories as well as the spectral
entropy using Equation (1) as described in the Materials and Methods section. For the
stochastic version of a nonlinear system (2), we found that spectral entropy was ~0.5 for
both the p1 and p2 processes.

Nonlinear relationships among the processes are expected for any nonlinear system
and a system consisting of more than two processes could represent a challenge for mathe-
matical analysis. Thus, to investigate how system size alters the impact of stochastic noise
on a system, we used a scalable linear system of interacting oscillating processes and we
analyzed a system of coupled oscillators that was described by a set of linear differential
equations [25]. This system of coupled oscillators represents a set of interacting processes
that have the following two properties: (i) each process in the set could be represented
by a linear combination containing all other processes in the set, and (ii) the relationships
among the processes are isomorphic to a distance matrix. We then developed a stochastic
model describing this system to study the implications of noise on a system of mutu-

ally connected processes. We consider two sets of n-processes,
→
P = (p1, p2, . . . , pn) and

→
Z = (z1, z2, . . . , zn), which are described by the following system of equations:

d
→
P

dt = A
→
P −

(→
Z +

→
P
)

d
→
Z

dt =
→
P .

(3)

The deterministic system (3) was extensively analyzed in Ref. [25]; in this paper, our goal
was to analyze the stochastic version of System (3). System (3) has oscillatory solutions

such that
→
P = A

→
P , where A is a hollow distance matrix [25]. Matrix A defines how each

process pi in the system is connected to all other processes, and we considered the following
relationship between processes:

pi =
n

∑
j=1

(i− j)2εpj (4)

and thus

A =


0
ε

ε . . .
0 . . .

(n− 1)2ε

(n− 2)2ε
...

...
. . .

...
(n− 1)2ε (n− 2)2ε · · · 0

. (5)

Figure 2 shows a wiring diagram presenting the relationships among processes de-
scribed by System (3).

System (3) has one parameter ε that is considered as a bifurcation parameter for the
system (3). The typical one parameter bifurcation diagram for system (3) is shown in
Figure 3A. The Hopf bifurcation value of ε depends on the number of processes in the
system. For systems consisting of 4, 6, . . . , 20 processes, the Hopf bifurcations occurs
at ε equals to ±1, ±1/4, ±1/10, ±1/20, ±1/35, ±1/56, ±1/84, ±1/120, and ±1/165,
respectively. For a system of two pi and two zi processes, the stability of the steady states
of system (3) is described by four eigenvalues. The real and imaginary parts of these
eigenvalues, as a function of parameter ε, are shown in Figure 3B. The real parts of all
eigenvalues are negative for −1 < ε < 1, indicating a spiral sink for this range of ε. For
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|ε| > 1 the spiral source is observed. For ε = ±1 the system exhibits oscillations with a
constant amplitude.
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Figure 2. The influence diagram for processes described by the system of equations (3). Arrow-headed lines represent a
positive influence and bar-headed lines represent a negative influence of one process on another or itself. The dot-headed
lines represent positive or negative influence depending on the sign of the ε parameter. Different line colors are used for
tracking purposes. Red lines represent interactions between pi−1, pi+1, and pi; green lines represent interactions between pi,
pi+1 and pi−1; blue lines wire pi−1, pi with pi+1.
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Figure 3. One parameter bifurcation diagram for the system of two pi and two zi processes (A), and real parts (blue curves)
and imaginary parts (red curves) of eigenvalues as a function of parameter ε (B). Hopf bifurcation points (HB) were obtained
at ε = ±1. The solid black line indicates the values of ε for which a spiral sink solution was obtained, the dashed black
line indicates the values of ε for which a spiral source solution was observed, and open circles indicate periodic solutions.
Further, the spiral sink solution was confirmed by the fact that real parts of all eigenvalues are negative for −1 < ε < 1 as
shown in (B).

Noise was introduced into system (3) by applying the Gillespie stochastic formulation
described in the Materials and Methods section. The stochastic model was then used to
investigate how noise affects the dynamical systems that consists of a different number
of processes. We performed simulations for a system of four (p1, p2, z1, z2), eight (p1, . . . ,
p4, z1, . . . , z4), and sixteen (p1, . . . , p8, z1, . . . , z8) processes that interact as shown in
Figure 2. Stochastic trajectories for processes pi in three systems consisting of two, four,
and eight pi processes are shown in Figure 4A,D,G, respectively. Note that the number of
zi processes in the system is always the same as the number of pi processes. However, we
only describe the dynamics of the pi processes because their dynamics exhibit the property
that each process pi has a specific relationship with all other processes (see Equation (4)),
and this relationship is isomorphic with the distance matrix. Figure 4 also shows the
distribution functions (see Figure 4B,E,H) and the normalized power spectral densities
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(see Figure 4C,F,I) computed using stochastic trajectories for the selected process p2. The
method to compute and normalize power spectral densities is described in the Materials
and Methods section. For other processes included in the system, the distribution functions
and power spectral density plots look nearly identical to those shown for the process p2 in
Figure 4.
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(A,D,G) Stochastic trajectories for all processes pi, (B,E,H) distribution histograms for process p2, and (C,F,I) normalized
power spectral densities for process p2, which were obtained using systems of two, four, and eight pi-processes, respectively.
The power spectral density for a process pi depends on the number of processes constituting the system.

To quantify the implications of noise on systems of different sizes, we computed
spectral entropy values for all processes in the systems using Equation (1). The results
are summarized in Table 1. We observed that the spectral entropy values decrease as the
number of processes in the system increases. Figure 5 shows the average spectral entropy
values as a function of system size, which is represented by the number of processes pi
constituting the system. Interestingly, spectral entropy decreases linearly as the system
size doubled. This indicates that a larger system is more robust against the influence of
inherent fluctuations than smaller systems.
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Table 1. The dependence of spectral entropy for processes on system size.

The System of Two pi Processes The System of Eight pi Processes

Process Name Spectral Entropy Process Name Spectral Entropy

p1 0.5735 p1 0.483
p2 0.5693 p2 0.466

The average entropy value = 0.5714 p3 0.474

The System of Four pi Processes p4 0.512
Process Name Spectral Entropy p5 0.4986

p1 0.539 p6 0.4688
p2 0.542 p7 0.4686
p3 0.5375 p8 0.4664
p4 0.5343 The average entropy value = 0.48

The average entropy value = 0.538
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4. Discussion

In this paper, we studied how inherent noise impacted the dynamical systems that
mimic a mechanism for neural correlates of consciousness. Our modeled system exhibits a
dynamic behavior that is isomorphic with a specific conscious percept [25,26]. Details on
how phenomenal conscious states are assumed to arise in dynamical systems are provided
in our previous works [25,26]. The neural correlates of consciousness are defined as a
minimal mechanism sufficient for any one specific conscious percept. Here, our analysis is
concentrated on implications of noise on the mechanisms that are scaled to different sizes.
To study and characterize noise effects on the dynamic behavior of the mechanism, we
developed a stochastic version of our deterministic model described in Ref. [25].

The main finding of our study is that the larger system of mutually connected and
negatively regulated processes is more robust against the influence of inherent fluctuations.
We found that spectral entropy of the system decreases linearly as system size doubled
(see Figure 5 and Table 1). In addition, we found that the frequency domain, for which
the power spectral density values are significant, shrinks as system size increases (see
Figure 4C,F,I). This indicates that the noise impact is more restricted when the number of
regulatory feedback loops (see Figure 2) in the mechanism increases. Our results agree
with several other experimental and computational studies of noise in biological regulatory
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circuits, which revealed that negative feedback loops suppress the effects of noise on the
dynamic behavior of the circuits [54,55].

Comparing the power spectral densities shown in Figure 4C,F,I, we also observed
that the frequencies are shifted from low to high values. This agrees with independent
studies of noise effects in gene regulatory networks, where it has been shown that negative
feedback loops shift noise frequency from low to high values compared to non-regulated
circuits [56,57]. Therefore, we conclude that the shift to higher frequencies occurs due to
a stronger influence of negative feedback loops in the larger systems that were analyzed
in this work. This indicates that network wiring and architecture can influence the noise
spectra. Remarkably, the noise suppression strategy in biological systems is different
from standard frequency domain techniques that are commonly used in control systems
engineering, electronics, and signal processing systems [58,59].

Interestingly, the spectral entropy value obtained for small nonlinear systems was
smaller than spectral entropy values for the larger linear systems shown in Table 1. This
may indicate that nonlinear systems can control and suppress noise more effectively than
linear systems. However, the systems described by Equations (2) and (3) are very different
and cannot be used for any conclusive comparison.

Power spectral density and spectral entropy are common tools that are often used to
characterize electroencephalography and magnetic resonance encephalography recordings.
For example, spectral analysis of electroencephalograms is used to study the neurophysi-
ology of sleep [45], to detect differences in brain activities of subjects under normal and
hypnosis conditions [46], and healthy subjects and schizophrenic patients [47]. Electroen-
cephalography and magnetic resonance encephalography recordings in patients with
drug-resistant epilepsy reveal the altered spectral entropy for electrophysiological and
hemodynamic signals [48]. Spectral entropy for electroencephalographic signals can also
be used to predict changes in memory performance [52]. We used the spectral analysis
tools to characterize possible impacts of noise on signals generated by dynamical systems
that are isomorphic with hypothetical specific conscious percepts.

Overall, our study showed that negative feedback loops in dynamical systems could
suppress noise and shift it to a higher frequency. This property can be applied to neuronal
dynamical systems that involve negative feedback loops; higher noise frequencies in a
neuronal network can be more easily filtered out by other parts of the system that are
composed of several connected subnetworks. We can also conclude that it is important
to understand the contribution of noise to the dynamics of neural systems to successfully
determine a minimal mechanism sufficient for any one specific conscious percept. Our
study and analysis of a simple dynamical model that mimics a mechanism for neural
correlates of consciousness revealed the particular impact of inherent fluctuations on the
system and the influence of system size and architecture on noise spectra.

Funding: This research received no external funding.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

The XPPAUT code A was used to simulate results in Figure 1A,B.

# code A
par R=1
init p1=−0.1412 p2=−0.2316

p1’=−p2+p1*(Rˆ2−p1ˆ2−p2ˆ2)
p2’=p1+p2*(Rˆ2−p1ˆ2−p2ˆ2)
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@ dt=.025, total=40, xplot=t,yplot=p1
@ xmin=0,xmax=30,ymin=−1,ymax=1
done

The XPPAUT code B was used to simulate results in Figure 1C,D.

#code B

par R=100
init p1=−14.12,p2=−23.16

# compute the sum of all event propensities
x1=abs(p2)
x2=x1+abs((Rˆ2−p1*p1−p2*p2)*p1)
x3=x2+abs(p1)
x4=x3+abs((Rˆ2−p1*p1−p2*p2)*p2)

# choose random event
s2=ran(1)*x4
y1=(s2<x1)
y2=(s2<x2)&(s2>=x1)
y3=(s2<x3)&(s2>=x2)
y4=(s2>=x3)

# time for next event
tr’=tr-log(ran(1))/x4

p1’=p1−sign(p2)*y1+sign((Rˆ2−p1*p1-p2*p2)*p1)*y2
p2’=p2+sign(p1)*y3+sign((Rˆ2−p1*p1-p2*p2)*p2)*y4

@ bound=10000000000,meth=discrete,total=1000000,njmp=1000
@ xp=tr,yp=p1
@ xlo=0,ylo=-100,xhi=30,yhi=100

done

The XPPAUT code C was used to simulate the one-parameter bifurcation diagram in
Figure 3A.

# code C
init p1=1 p2=0 z1=0 z2=0
par eps=−1.0
p1’=eps*p2−z1−p1
z1’=p1
p2’=eps*p1−z2−p2
z2’=p2
@ dt=.025, total=40, xplot=t,yplot=p1
@ xmin=0,xmax=40,ymin=−1,ymax=1
done

The XPPAUT code D was used to simulate the results in Figure 4A.



Entropy 2021, 23, 583 11 of 18

# code D

par eps=−1
init p1=1000,p2=0, z1=0, z2=0

# compute the sum of all event propensities
x1=abs(eps*p2)
x2=x1+abs(eps*p1)
x3=x2+abs(z1)
x4=x3+abs(z2)
x5=x4+abs(p1)
x6=x5+abs(p2)

# choose random event#
s2=ran(1)*x6
y1=(s2<x1)
y2=(s2<x2)&(s2>=x1)
y3=(s2<x3)&(s2>=x2)
y4=(s2<x4)&(s2>=x3)
y5=(s2<x5)&(s2>=x4)
y6=(s2>=x5)

# time for the next event
tr’=tr−log(ran(1))/x6

p1’=p1+sign(eps)*sign(p2)*y1−sign(z1)*y3−sign(p1)*y5
p2’=p2+sign(eps)*sign(p1)*y2−sign(z2)*y4−sign(p2)*y6
z1’=z1+sign(p1)*y5
z2’=z2+sign(p2)*y6

@ bound=100000000,meth=discrete,total=1000000,njmp=1000
@ xp=tr,yp=p1
@ xlo=0,ylo=−1000,xhi=40,yhi=1000

done

The XPPAUT code E was used to simulate the results in Figure 4D.

# code E

par eps=−0.1
init p1=1000,p2=0, p3=0, p4=0, z1=0, z2=0, z3=0, z4=0

# compute the sum of all event propensities
x11=abs(eps*p2)
x12=x11+abs(4*eps*p3)
x13=x12+abs(9*eps*p4)
x21=x13+abs(eps*p1)
x22=x21+abs(eps*p3)
x23=x22+abs(4*eps*p4)
x31=x23+abs(4*eps*p1)
x32=x31+abs(eps*p2)
x33=x32+abs(eps*p4)
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x41=x33+abs(9*eps*p1)
x42=x41+abs(4*eps*p2)
x43=x42+abs(eps*p3)

x51=x43+abs(z1)
x52=x51+abs(z2)
x53=x52+abs(z3)
x54=x53+abs(z4)
x61=x54+abs(p1)
x62=x61+abs(p2)
x63=x62+abs(p3)
x64=x63+abs(p4)

# choose random event
s2=ran(1)*x64
y1=(s2<x11)
y2=(s2<x12)&(s2>=x11)
y3=(s2<x13)&(s2>=x12)
y4=(s2<x21)&(s2>=x13)
y5=(s2<x22)&(s2>=x21)
y6=(s2<x23)&(s2>=x22)
y7=(s2<x31)&(s2>=x23)
y8=(s2<x32)&(s2>=x31)
y9=(s2<x33)&(s2>=x32)
y10=(s2<x41)&(s2>=x33)
y11=(s2<x42)&(s2>=x41)
y12=(s2<x43)&(s2>=x42)
y13=(s2<x51)&(s2>=x43)
y14=(s2<x52)&(s2>=x51)
y15=(s2<x53)&(s2>=x52)
y16=(s2<x54)&(s2>=x53)
y17=(s2<x61)&(s2>=x54)
y18=(s2<x62)&(s2>=x61)
y19=(s2<x63)&(s2>=x62)
y20=(s2>=x63)

# time for next event
tr’=tr−log(ran(1))/x64

p1’=p1+sign(eps)*sign(p2)*y1+sign(eps)*sign(p3)*y2+sign(eps)*
sign(p4)*y3−sign(z1)*y13−sign(p1)*y17
p2’=p2+sign(eps)*sign(p1)*y4+sign(eps)*sign(p3)*y5+sign(eps)*
sign(p4)*y6−sign(z2)*y14−sign(p2)*y18
p3’=p3+sign(eps)*sign(p1)*y7+sign(eps)*sign(p2)*y8+sign(eps)*
sign(p4)*y9−sign(z3)*y15−sign(p3)*y19
p4’=p4+sign(eps)*sign(p1)*y10+sign(eps)*sign(p2)*y11+sign(eps)*
sign(p3)*y12−sign(z4)*y16−sign(p4)*y20
z1’=z1+sign(p1)*y17
z2’=z2+sign(p2)*y18
z3’=z3+sign(p3)*y19
z4’=z4+sign(p4)*y20

@ bound=100000000,meth=discrete,total=1000000,njmp=1000
@ xp=tr,yp=p1
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@ xlo=0,ylo=-1000,xhi=40,yhi=1000

done

The XPPAUT code F was used to simulate the results in Figure 4G.

# code F

par eps=-0.0119047619
init p1=1000,p2=0, p3=0, p4=0, p5=0, p6=0, p7=0, p8=0, z1=0,
z2=0, z3=0, z4=0, z5=0, z6=0, z7=0, z8=0

# compute the sum of all event propensities
x11=abs(eps*p2)
x12=x11+abs(4*eps*p3)
x13=x12+abs(9*eps*p4)
x14=x13+abs(16*eps*p5)
x15=x14+abs(25*eps*p6)
x16=x15+abs(36*eps*p7)
x17=x16+abs(49*eps*p8)
x21=x17+abs(eps*p1)
x22=x21+abs(eps*p3)
x23=x22+abs(4*eps*p4)
x24=x23+abs(9*eps*p5)
x25=x24+abs(16*eps*p6)
x26=x25+abs(25*eps*p7)
x27=x26+abs(36*eps*p8)
x31=x27+abs(4*eps*p1)
x32=x31+abs(eps*p2)
x33=x32+abs(eps*p4)
x34=x33+abs(4*eps*p5)
x35=x34+abs(9*eps*p6)
x36=x35+abs(16*eps*p7)
x37=x36+abs(25*eps*p8)
x41=x37+abs(9*eps*p1)
x42=x41+abs(4*eps*p2)
x43=x42+abs(eps*p3)
x44=x43+abs(eps*p5)
x45=x44+abs(4*eps*p6)
x46=x45+abs(9*eps*p7)
x47=x46+abs(16*eps*p8)
x51=x47+abs(16*eps*p1)
x52=x51+abs(9*eps*p2)
x53=x52+abs(4*eps*p3)
x54=x53+abs(eps*p4)
x55=x54+abs(eps*p6)
x56=x55+abs(4*eps*p7)
x57=x56+abs(9*eps*p8)
x61=x57+abs(25*eps*p1)
x62=x61+abs(16*eps*p2)
x63=x62+abs(9*eps*p3)
x64=x63+abs(4*eps*p4)
x65=x64+abs(eps*p5)
x66=x65+abs(eps*p7)
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x67=x66+abs(4*eps*p8)
x71=x67+abs(36*eps*p1)
x72=x71+abs(25*eps*p2)
x73=x72+abs(16*eps*p3)
x74=x73+abs(9*eps*p4)
x75=x74+abs(4*eps*p5)
x76=x75+abs(eps*p6)
x77=x76+abs(eps*p8)
x81=x77+abs(49*eps*p1)
x82=x81+abs(36*eps*p2)
x83=x82+abs(25*eps*p3)
x84=x83+abs(16*eps*p4)
x85=x84+abs(9*eps*p5)
x86=x85+abs(4*eps*p6)
x87=x86+abs(eps*p7)

x91=x87+abs(z1)
x92=x91+abs(z2)
x93=x92+abs(z3)
x94=x93+abs(z4)
x95=x94+abs(z5)
x96=x95+abs(z6)
x97=x96+abs(z7)
x98=x97+abs(z8)
x101=x98+abs(p1)
x102=x101+abs(p2)
x103=x102+abs(p3)
x104=x103+abs(p4)
x105=x104+abs(p5)
x106=x105+abs(p6)
x107=x106+abs(p7)
x108=x107+abs(p8)

# choose random event#
s2=ran(1)*x108
y1=(s2<x11)
y2=(s2<x12)&(s2>=x11)
y3=(s2<x13)&(s2>=x12)
y4=(s2<x14)&(s2>=x13)
y5=(s2<x15)&(s2>=x14)
y6=(s2<x16)&(s2>=x15)
y7=(s2<x17)&(s2>=x16)
y8=(s2<x21)&(s2>=x17)
y9=(s2<x22)&(s2>=x21)
y10=(s2<x23)&(s2>=x22)
y11=(s2<x24)&(s2>=x23)
y12=(s2<x25)&(s2>=x24)
y13=(s2<x26)&(s2>=x25)
y14=(s2<x27)&(s2>=x26)
y15=(s2<x31)&(s2>=x27)
y16=(s2<x32)&(s2>=x31)
y17=(s2<x33)&(s2>=x32)
y18=(s2<x34)&(s2>=x33)
y19=(s2<x35)&(s2>=x34)
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y20=(s2<x36)&(s2>=x35)
y21=(s2<x37)&(s2>=x36)
y22=(s2<x41)&(s2>=x37)
y23=(s2<x42)&(s2>=x41)
y24=(s2<x43)&(s2>=x42)
y25=(s2<x44)&(s2>=x43)
y26=(s2<x45)&(s2>=x44)
y27=(s2<x46)&(s2>=x45)
y28=(s2<x47)&(s2>=x46)
y29=(s2<x51)&(s2>=x47)
y30=(s2<x52)&(s2>=x51)
y31=(s2<x53)&(s2>=x52)
y32=(s2<x54)&(s2>=x53)
y33=(s2<x55)&(s2>=x54)
y34=(s2<x56)&(s2>=x55)
y35=(s2<x57)&(s2>=x56)
y36=(s2<x61)&(s2>=x57)
y37=(s2<x62)&(s2>=x61)
y38=(s2<x63)&(s2>=x62)
y39=(s2<x64)&(s2>=x63)
y40=(s2<x65)&(s2>=x64)
y41=(s2<x66)&(s2>=x65)
y42=(s2<x67)&(s2>=x66)
y43=(s2<x71)&(s2>=x67)
y44=(s2<x72)&(s2>=x71)
y45=(s2<x73)&(s2>=x72)
y46=(s2<x74)&(s2>=x73)
y47=(s2<x75)&(s2>=x74)
y48=(s2<x76)&(s2>=x75)
y49=(s2<x77)&(s2>=x76)
y50=(s2<x81)&(s2>=x77)
y51=(s2<x82)&(s2>=x81)
y52=(s2<x83)&(s2>=x82)
y53=(s2<x84)&(s2>=x83)
y54=(s2<x85)&(s2>=x84)
y55=(s2<x86)&(s2>=x85)
y56=(s2<x87)&(s2>=x86)
y57=(s2<x91)&(s2>=x87)
y58=(s2<x92)&(s2>=x91)
y59=(s2<x93)&(s2>=x92)
y60=(s2<x94)&(s2>=x93)
y61=(s2<x95)&(s2>=x94)
y62=(s2<x96)&(s2>=x95)
y63=(s2<x97)&(s2>=x96)
y64=(s2<x98)&(s2>=x97)
y65=(s2<x101)&(s2>=x98)
y66=(s2<x102)&(s2>=x101)
y67=(s2<x103)&(s2>=x102)
y68=(s2<x104)&(s2>=x103)
y69=(s2<x105)&(s2>=x104)
y70=(s2<x106)&(s2>=x105)
y71=(s2<x107)&(s2>=x106)
y72=(s2>=x107)
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# time for the next event
tr’=tr−log(ran(1))/x108

p1’=p1+sign(eps)*sign(p2)*y1+sign(eps)*sign(p3)*y2+sign(eps)*
sign(p4)*y3+sign(eps)*sign(p5)*y4+sign(eps)*sign(p6)*y5+sign(eps)*
sign(p7)*y6+sign(eps)*sign(p8)*y7−sign(z1)*y57−sign(p1)*y65
p2’=p2+sign(eps)*sign(p1)*y8+sign(eps)*sign(p3)*y9+sign(eps)*
sign(p4)*y10+sign(eps)*sign(p5)*y11+sign(eps)*sign(p6)*y12+sign(eps)*
sign(p7)*y13+sign(eps)*sign(p8)*y14−sign(z2)*y58−sign(p2)*y66
p3’=p3+sign(eps)*sign(p1)*y15+sign(eps)*sign(p2)*y16+sign(eps)*
sign(p4)*y17+sign(eps)*sign(p5)*y18+sign(eps)*sign(p6)*y19+sign(eps)*
sign(p7)*y20+sign(eps)*sign(p8)*y21−sign(z3)*y59−sign(p3)*y67
p4’=p4+sign(eps)*sign(p1)*y22+sign(eps)*sign(p2)*y23+sign(eps)*
sign(p3)*y24+sign(eps)*sign(p5)*y25+sign(eps)*sign(p6)*y26+sign(eps)*
sign(p7)*y27+sign(eps)*sign(p8)*y28−sign(z4)*y60−sign(p4)*y68
p5’=p5+sign(eps)*sign(p1)*y29+sign(eps)*sign(p2)*y30+sign(eps)*
sign(p3)*y31+sign(eps)*sign(p4)*y32+sign(eps)*sign(p6)*y33+sign(eps)*
sign(p7)*y34+sign(eps)*sign(p8)*y35−sign(z5)*y61−sign(p5)*y69
p6’=p6+sign(eps)*sign(p1)*y36+sign(eps)*sign(p2)*y37+sign(eps)*
sign(p3)*y38+sign(eps)*sign(p4)*y39+sign(eps)*sign(p5)*y40+sign(eps)*
sign(p7)*y41+sign(eps)*sign(p8)*y42−sign(z6)*y62−sign(p6)*y70
p7’=p7+sign(eps)*sign(p1)*y43+sign(eps)*sign(p2)*y44+sign(eps)*
sign(p3)*y45+sign(eps)*sign(p4)*y46+sign(eps)*sign(p5)*y47+sign(eps)*
sign(p6)*y48+sign(eps)*sign(p8)*y49−sign(z7)*y63−sign(p7)*y71
p8’=p8+sign(eps)*sign(p1)*y50+sign(eps)*sign(p2)*y51+sign(eps)*
sign(p3)*y52+sign(eps)*sign(p4)*y53+sign(eps)*sign(p5)*y54+sign(eps)*
sign(p6)*y55+sign(eps)*sign(p7)*y56−sign(z8)*y64−sign(p8)*y72

z1’=z1+sign(p1)*y65
z2’=z2+sign(p2)*y66
z3’=z3+sign(p3)*y67
z4’=z4+sign(p4)*y68
z5’=z5+sign(p5)*y69
z6’=z6+sign(p6)*y70
z7’=z7+sign(p7)*y71
z8’=z8+sign(p8)*y72

@ bound=100,000,000,meth=discrete,total=1,000,000,njmp=1000
@ xp=tr,yp=p1
@ xlo=0,ylo=−1000,xhi=40,yhi=1000

done
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