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S1. Derivation of the PMF by way of the Committor Probability Method

The integrated form of the ED equation for the forward current takes the form

J f =
ρ f (zmin)eβE(zmin) − ρ f (z)eβE(z)∫ z

zmin

exp[βE(z′)]
D(z′) dz′

. (S1)

Consider a hypothetical channel that extends only from zmin to z < zmax. This is a first passage
problem—an ion is adsorbed at the x,y-plane that is located at z and its further fate is not considered.
The forward current through this truncated channel, which we abbreviate J f

z , is different from J f , even
though it still corresponds to a steady state. Analogously to Eq. S1, J f

z is equal to

J f
z =

ρ
f
z (zmin)eβE(zmin) − ρ

f
z (z)eβE(z)∫ z

zmin

exp[βE(z′)]
D(z′) dz′

. (S2)

Here, we take advantage of the fact that the PMF, the applied voltage and diffusivity is the same for
both systems.

If J f > 0 we take the ratio of J f to J f
z in Eq. S1 and Eq. S2. Note the difference from CWDM, where

the ratio of forward and backward currents is taken. We obtain

J f

J f
z
=

ρ f (zmin)eβE(zmin) − ρ f (z)eβE(z)

ρ
f
z (zmin)eβE(zmin) − ρ

f
z (z)eβE(z)

. (S3)

This equation can be rewritten as

J f

J f
z
=

ρ f (zmin)− ρ f (z)eβ∆E(z,zmin)

ρ
f
z (zmin)− ρ

f
z (z)eβ∆E(z,zmin)

, (S4)

where
∆E(z, zmin) = E(z)− E(zmin).

All ions that reach z contribute to J f
z . Among them, a fraction will reach zmax contributing to J f .

In other words, ions that reach z have a probability P(z) of continuing to zmax and contributing to J f .
This probability is precisely the forward referenced committor probability. This means that

J f = P(z)J f
z . (S5)

When this relation is substituted to Eq. S4 we obtain

P(z) =
ρ f (zmin)− ρ f (z)eβ∆E(z,zmin)

ρ
f
z (zmin)− ρ

f
z (z)eβ∆E(z,zmin)

. (S6)
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or, after rearrangements

exp[β∆E(z, zmin)] =
ρ f (zmin)− P(z)ρ f

z (zmin)

ρ f (z)− P(z)ρ f
z (z)

. (S7)

In analogy to Eq. S5
P(z)ρ f

z (z) = ρ f (zmax), (S8)

which yields

exp[β∆E(z, zmin)] =
ρ f (zmin)− P(z)ρ f

z (zmin)

ρ f (z)− ρ f (zmax)
. (S9)

All ions that enter the channel at zmin either return to zmin or exit at zmax. For the truncated channel,
the same ions either return to zmin or are absorbed at z. If the densities are binned as histogram then at
the limit of small bins

ρ f (zmin) + ρ f (zmax) = ρ
f
z (zmin) + ρ

f
z (z) = ρ

f
z (zmin) +

ρ f (zmax)

P(z)
. (S10)

This provides an equation for ρ
f
z (zmin) that can be substituted to Eq. S7. This yields

exp[β∆E(z, zmin)] =

[
ρ f (zmin) + ρ f (zmax)

]
[1− P(z)]

ρ f (z)− ρ f (zmax)
. (S11)

Since ρ f (zmin) >> ρ f (zmax), this equation simplifies

exp[β∆E(z, zmin)] =
ρ f (zmin) [1− P(z)]
ρ f (z)− ρ f (zmax)

. (S12)

This is precisely Eq. 13 for reconstructing the PMF from forward simulations.
In the backward direction, this equation takes the form

exp[β∆E(z, zmax)] =
ρb(zmax)

[
1− Pb(z)

]
ρb(z)− ρb(zmin)

, (S13)

where the forward and backward committor probabilities, P f (z) = P(z) and Pb(z), respectively, are
related

Pb(z) = 1− P f (z) = 1− P(z). (S14)

Since
∆E(z, zmax) = ∆E(z, zmin)− ∆E(zmax, zmin), (S15)

Eq. S13 becomes

exp[β∆E(z, zmin)] = exp[β∆E(zmax, zmin)]
ρb(zmax)P(z)

ρb(z)− ρb(zmin)
, (S16)

which is Eq. 14.

S2. Detailed derivation of the equation for I-V dependence

From Eqs. 16 and 17, the ratio Jµ/Jν is
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Jµ

Jν
=

ρµ(zmin)− ρµ(zmax) exp [β(Eν(zmax, zmin)] + βq(E el
ν − E el

µ )
∫ zmax

zmin
ρµ(z) exp [β∆Eν(z, zmin)] dz

ρν(zmin)− ρν(zmax) exp [β∆Eν(zmax, zmin)]
,

(S17)

where ∆Eν(z2, z1) is defined according to Eq. 11 and Vµ(z) and Vν(z) according to Eq. 3. This equation
can be rewritten as:

Jν

[
ρµ(zmin)− ρµ(zmax) exp [β∆Eν(zmax, zmin)] + βq(E el

ν − E el
µ )
∫ zmax

zmin

ρµ(z) exp [β∆Eν(z, zmin)] dz
]
=

Jµ [ρν(zmin)− ρν(zmax) exp [β∆Eν(zmax, zmin)]] .
(S18)

In the limit of small bin size, ρµ(zmax) and ρν(zmax) measure the number of ions leaving the
channel at zmax, i.e. measure the currents.

ρµ(zmax) = αJµ, (S19)

ρν(zmax) = αJν. (S20)

In the last two equations, α is a constant in length/time to ensure the correct conversion between the
boundary densities and currents.

Let’s abbreviate the number density of ions entering the channel into the first bin as ρin(zmin).
Then, taking advantage of Eqs. S19 and S20,

ρµ(zmin) = 2ρin(zmin)− αJµ (S21)

and

ρν(zmin) = 2ρin(zmin)− αJν. (S22)

The last two equations reflect the fact that in the steady state all ions that enter the channel through
the zmin plane also exit through the same plane with the exception of those that successfully cross the
channel.

After substituting Eqs. S19 - S22 to Eq. S18, we obtain

2Jνρin(zmin)− αJν Jµ − αJν Jµ exp [β∆Eν(zmax, zmin)]

+ Jνβq(E el
ν − E el

µ )
∫ zmax

zmin

ρµ(z) exp [β∆Eν(z, zmin)] dz =

2Jµρin(zmin)− αJµ Jν − αJµ Jν exp [β∆Eν(zmax, zmin)] ,

(S23)

which simplifies to

Jν

[
2ρin(zmin) + βq(E el

ν − E el
µ )
∫ zmax

zmin

ρµ(z) exp [β∆Eν(z, zmin)] dz
]
= 2Jµρin(zmin). (S24)

We define

gµ(z) = ρµ(z) exp
[
β∆Eµ(z, zmin)

]
. (S25)
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Then

Jν

[
2ρin(zmin) + βq(E el

ν − E el
µ )
∫ zmax

zmin

gµ(z) exp
{

βq
[
Vν(z)−Vµ(z)

]}
dz
]
= 2Jµρin(zmin) (S26)

or

Jµ

Jν
= 1 +

βq(E el
ν − E el

µ )
∫ zmax

zmin
gµ(z) exp

{
βq
[
Vν(z)−Vµ(z)

]}
dz

2ρin(zmin)
. (S27)

If we assume that the number of ions entering the channel is much larger that the number of ions
crossing the channel, an approximation that has been shown to be accurate in practice, then 2ρin(zmin)

can be replaced by ρµ(zmin) (see Eq. S21). Then:

Jµ

Jν
= 1 +

βq(E el
ν − E el

µ )
∫ zmax

zmin
gµ(z) exp

{
βq
[
Vν(z)−Vµ(z)

]}
dz

ρµ(zmin)
,

which directly leads to Eq. 18 in which

fµ(z) =
gµ(z)

ρµ(zmin)
.

S3. Calculating committor probability

Among ions that entered the channel through the zmin-plane, N f (z) reached the point z in the
channel. Since this is a first-passage problem, each ion is counted only once. In particular, the number
of ion that reach zmax is N f (zmax). Taking advantage of these definitions, the forward committor
probability, P f (z), is expressed as

P f (z) = N f (zmax)/N f (z). (S28)

Analogously, the backward committor proability, Pb(z) can be written as

Pb(z) = Nb(zmin)/Nb(z), (S29)

where P f (z) and Pb(z) are connected via Eq. S14.
In a stochastic process, there is no memory about the history of an ion that reached z. Therefore,

forward and backward committor probabilities can be combined. The total number of ions that reach z
is N f (z) + Nb(z) and the total number of ions that leave through (are absorbed at) the zmax-plane is
N f (zmax) + Nb(z)− Nb(zmin). This yields the following formula for the forward referenced committor
probability

P(z) =
N f (zmax) + Nb(z)− Nb(zmin)

N f (z) + Nb(z)
. (S30)

S4. Free Energy Surfaces

To determine the accuracy of the recently developed approaches to calculating the I-V curves (see
Section S2), we utilized PMFs for ions crossing three different channels. Below, we provide details
on how these PMFs were obtained. However, as we stressed and explained in the Introduction, no
conclusions from this study depend on how accurately the calculated PMFs reproduce the actual PMFs
experienced by the ions.

We use a previously reported model of the TTX channel [1,2], an unpublished calculation on the
p7 viroporin from the Hepatitis C virus, and an unpublished calculation on the pH-gated Na+ channel
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GLIC. Here, we provide brief details of the simulations that were used to generate the input PMFs.
Pictures of the channels are shown in in Fig. S1

Figure S1. Pictures from MD simulations
of (top left) TTX showing a seven α-helix
bundle (yellow ribbons) embedded in a POPC
membrane (dark blue licorice with gold, red
and blue licorice in the head group region),
water (rad and white licorice), K+ (gold)
and Cl− (blue) ions; (top right) p7 showing
the 6 subunits (different colored ribbons)
embedded in a POPC membrane and water
molecules (red and white CPK); and (bottom
left) GLIC (monomerics in different color
ribbons plus transparent gold CPK showing
the spatial extent of the protein) in a POPC
membrane. Waters and ions have been
removed except for waters in the pore and
vestibule of the protein.

The MD simulations of TTX [1,3] were carried out at the experimental concentration of 1 M KCl [4].
Simulations of p7 were carried out at 0.5 M (Shannon, Wilson and Pohorille, unpublished). The GLIC
simulations were carried out at the physiological concentration of 140 mM NaCl (Wilson and Pohorille,
unpublished). Preliminary calculations on GLIC were also performed at a higher concentration of
500 mM, but increased concentration had little effect on the conductance, likely due to saturation of
Na+ in the vestibular region.

In all three simulations, the protein was embedded in a POPC membrane with water and salt
concentrations as noted on both sides of the lipid bilayer. In all simulations, the TIP3P model of water[5]
was used. In the TTX simulations, the CHARMM27 [6] and the CHARMM27 with CMAP corrections
[7] were used to represent POPC and the protein, respectively. In the p7 and GLIC simulations, the
CHARMM36 potentials [8] were used to represent both proteins and lipids. After equilibration, all
simulations were carried out in an NVT ensemble with an applied potential, noted below, using Ewald
sums and periodic boundary conditions with a time step of 2 fs. In all simulations, backbone restraints
were applied to the protein to prevent collapse of the pore.

TTX: (see Wilson, et al.[1] for details), The simulation box was: 84.854 Å × 84.2246 Å × 106.322 Å. The
system contained 16628 water molecules, 300 ions each of K+ and Cl−, 204 POPC molecules, and 7
TTX monomers each containing 18 residues (255 atoms). A model of the TTX channel consisting of
7 straight helices that we developed was used. A MD trajectory 900 ns with applied voltage of 50
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mV was generated by way of NAMD. Additional, shorter simulations were carried out at 0 V, -50
mV (500 ns) and 100 mV (315 ns). The currents were calculated at all these voltages. At 50 mV, the
numbers of crossing events observed were: K+: 198 with the field, 32 against the field; Cl−: 84 with the
field, 10 against. The PMF was obtained from nonequilibrium simulations at applied voltage and from
separate adaptive biasing force (ABF) calculations [9]. In the latter case, the transmembrane region
was subdivided into 7 strata or windows, 6 Å wide each overlapping its neighboring windows by 2
Å. Then, trajectories 60 ns long were obtained with an ion constrained in each window, and the free
energy profile was constructed by integrating the average force across the pore region. The PMF from
both methods were found to be in good agreement[1]. The PMF from the latter simulations was used
in this study.

p7: A 2.06 µsec trajectory for NMR structure (PDB: 2M6X)[10] of p7 at applied voltage 140 mV was
obtained on the Anton machine at CMU. Additional shorter trajectories were carried out at voltages of
-140 mV, -105mV, -70 mV, -35 mV, 0 mV, 35 mV, 70 mV, and 105 mV (300 ns, each). The simulation box
was 112.285 Å × 113.792 Å × 103.052 Å. The system contained 27864 water molecules, 265 K+ and 301
Cl− ions (to balance the protein charge), 349 POPC molecules, and 6 p7 monomers each containing 63
residues (1000 atoms) with ACE and CT2 terminal blocking groups. The numbers of crossing events at
140 mV were: K+: 50 with the field, 0 against the field; Cl−: 625 with field, 5 against the field. The p7
PMF was obtained over the range [-22,19] from ABF using 7 windows of 8 Å width, each overlapping
its neighboring windows by 2 Å, with a 250 ns trajectory in each window. The PMF was also calculated
from the 2.06 µsec trajectory at 140 mV from the the non-equilibrium CPM and CWDM methods
outlined above (Shannon, Wilson, Chipot and Pohorille, unpublished). The results from these three
methods were found to be in good agreement.

GLIC: A 7.68 µsec trajectory for X-Ray structure of GLIC (PDB: 4HFI) [11] at applied voltage 100 mV
was obtained on the Anton machine at CMU. The simulation box was 121.703 Å × 121.703 Å × 171.386
Å. The system contained 60806 water molecules, 147 K+ and 117 Cl− ions (to balance the protein
charge), 400 POPC molecules, and 5 GLIC monomers each containing 312 residues (5083 atoms) with
ACE and CT3 terminal blocking groups. The numbers of crossing events were: Na+: 23 with field, 1
against field; Cl−: no crossing events observed. The GLIC free energy profile was determined from
non-equilibrium simulations using the CPM approach.

S5. Diffusivity Calculations

As noted in the text, several methods are available to calculate diffusivities. Although the
diffusivity drops out of the expressions for free energy and current in the formulations used here,
it is needed to link time scales of the stochastic and MD simulations (see Section 7). Once the PMF
had been obtained, the diffusivity at a number of points along the channel was calculated. To do so,
configurations from the PMF calculation with the ion located within ±0.5 Å of the selected value of z
were used. Then, for each configuration, a set of MD trajectories was initiated in which the force due to
the PMF is subtracted from the forces acting on the ion. The resultant ion trajectory was due only to the
random forces acting on the ion. This means that diffusivity can be extracted from Einstein’s relation.
For each point zi, the quantity < (z(t)− z(0))2 > was typically calculated from 100 trajectories of 100
ps, each. If the process is diffusive then, at longer times, < (z(t)− z(0))2 > is linear in t with slope
2D(zi). Thus, calculating diffusivity at each value of z required approximately 10 ns of MD trajectories.
Usually, we computed the diffusivities at 3-7 points, depending on the shape of the pore. Results of
diffusivity calculations for the channels considered here are listed below.

TTX Calculations of diffusivity [1], led to the conclusion that this quantity was constant along z
in the channel (no statistical basis for rejecting this as the null hypothesis). The average values of the
diffusion coefficient were DK = 0.97 Å2/ps and DCl = 0.80 Å2/ps for K+ and Cl−, respectively..

p7 Diffusivities were calculated at 4 points along the channel, -12 Å,-5 Å, 2.5 Åand 7 Å(with respect
to the protein center-of-mass). Their values were, respectively, 0.07 Å2/ps, 0.09 Å2/ps, 0.11 Å2/ps and
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0.09 Å2/ps, which gives no statistical basis to reject the hypothesis that diffusivity in the channel is
constant. In the stochastic simulations we used an average diffusion coefficient of DCl = 0.09 Å2/ps.

GLIC Diffusivity was calculated as 0.01 Å2/ps and 0.008 Å2/ps at points -1 Å and -9 Å (with
respect to the protein COM), respectively . These points correspond to the narrowest points in the
channel region and, therefore, provide a good test if diffusion in the channel is Fickean rather than
single file. A diffusion coefficient of 0.009 Å2/ps was used in stochastic simulations.

S6. Connecting fluxes from crossing statistics to electrical displacement currents

We determine the ion fluxes from their crossing statistics. Ions can cross the pore in the direction
of the electric field, or against it. An ion is counted as crossing the pore only if it enters on one side of
the pore and exits the other side. Many ions enter the pore region and exit the same end. These ions do
not contribute to the crossing statistics.

An alternative to this approach is to calculate the displacement currents crossing the simulation
box [12–14]. Consider the instantaneous current in the simulation cell [12]

I(t) =
1
Lz

∑
all atoms

qi żi(t),

where Lz is the length of the simulation cell in the z-direction, perpendicular to the membrane, qi is the
charge on the ith atom in the system, and żi(t) is the velocity in the z-direction of the ith atom at time t.
As the trajectory is stored only every 10–50 ps, we consider the integrated form of this equation:

Q(t) =
1
Lz

∑
all atoms

qi[zi(t)− zi(0)],

where zi is the position of the ith atom, and Q(t) is the cumulative charge. This cumulative charge can
be broken down into the cumulative charges for the individual components of the system,

Qα(t) =
1
Lz

∑
iα

qiα [ziα(t)− ziα(0)],

where α runs over the components (α = Na+ or K+, Cl−, water atoms, lipid atoms and protein atoms),
qiα is the charge on atom i in component group α, and ziα(t) is its position. If the system is in a steady
state, then Q(t) should increase linearly with time with the slope equal to the total current in the
system. The individual Qα(t) are also expected to grow linearly with time or be equal to zero.

in Fig. S2, we plot Qα(t) for TTX and p7. First, we observe that the lipids and proteins do not
contribute to the total current. As the center of the system is defined by the protein and lipid, this is
expected as the net displacement the charges of those components can experience is small. Therefore,
the net displacement charge for these components of the system fluctuates around zero. Second, water
molecules are charge neutral and the net translocated charge carried by the water molecules is zero.
Thus, the total displacement charge due to water molecules is also small and fluctuates around zero.
Third, for the ions, we note that counting channel crossing events to obtain the cumulative charge is
almost identical to the results from the integrated current equation. Therefore, the current estimated
from the slope of the cumulative count of crossing events is the same as estimated from the integrated
current equation, which, in the long-time limits, yields the total electrical current. The results for
Na+ in GLIC (not shown) are similar, although the statistics are markedly worse, as only 22 net Na+

crossing events were observed. We note that these are fairly simple pores; we do not observe ion
binding in the pore region and do not expect non-diffusive behavior. Consequently, the lifetime of ions
in the pore is much shorter than the simulation time scale.

http://dx.doi.org/10.3390/e1010000
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Figure S2. Total displacement charge for TTX (a) , and for p7 (b). The integrated current equation for
K+ (blue) and Cl− (gold) is compared with cumulative charge from crossing events for K+ (red) and
Cl− (green). The integrated currents for water (yellow), lipid (magenta) and protein (black) are also
shown. The larger fluctuations in the integrated currents for TTX compared with p7 are due to the
smaller scale in TTX (Q 200 e) vs p7 (Q 650 e) and the finer sampling resolution for TTX (10 ps) vs. p7
(50 ps).

S7. Synthetic Datasets from Stochastic Simulations

We investigate how the ion crossing statistics affect the accuracy of the PMFs and the I-V curves
for ions in the channels studied here. To do this, we carry out stochastic simulations of ions traversing
the channel in the presence of the PMF to mimic the ion crossing statistics observed in the MD
simulations. We consider PMF only in the channel region, and we collect the crossing statistics by
initiating trajectories at each end of the channel.

Trajectories were generated using the Brownian dynamics algorithm [15,16]:

z(t + h) = z(t) +
D(z)F(z)

kBT
h +

dD(z)
dz

+
√
(2D(z))dW (S31)

where z(t + h) is the position at time t + h given that the ion was at z at time t, D(z) is the
diffusivity, F(z) is the force equal to the negative gradient of the free energy surface (PMF plus applied
electric field), dW is a Gaussian process with variance 1, T is temperature and kB is the Boltzmann
constant. The additional force term due to the derivative of D(z) is required, as the ED equation is a
form of the Smoluchowski equation, which has a fluctuation-dissipation term connecting F(z) and
the stochastic force [15,17]. If the diffusivity is position-independent, equal to the diffusion coefficient,
< D >, the derivative term vanishes and the standard Brownian Dynamics equation is recovered.
Since the diffusivity appears to be nearly constant in all three channels considered here, the values
of < D > listed in Section 5 were used. If a position-dependent D(z) is used, the density profiles
and committor probabilities are somewhat different than those for constant < D >. However, the
reconstructed free energy surface is the same. The Brownian dynamics approach used here to generate
trajectories on a 1-dimensional free energy surface (PMF + potential due to applied field) is distinct
from Brownian Dynamics method for calculating ionic currents in channels [18–23].

If the PMF is defined over the range [zmin, zmax] then we set absorbing boundaries at zmin and
zmax. We initiate trajectories at these two points and call them, respectively, forward and backward
trajectories. If we initiate N f stochastic trajectories at zmin, we denote n f as the number of trajectories
that cross the pore region and are absorbed at zmax. Similarly, if we initiate Nb trajectories at zmax, nb

trajectories will cross the pore region and be absorbed at zmin, while N-nb trajectories will be reabsorbed
at zmax. n f and nb are the number of forward and backward crossing events, respectively. The values of
n f (nb) will depend on N f (Nb) and the PMF, as well as other parameters, such as the diffusivity, D(z),
and the temperature, T. We choose values of N f and Nb such that the number of crossing events n f

and nb approximately correspond to the numbers of crossing events in both directions seen in the MD

http://dx.doi.org/10.3390/e1010000
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simulations. This set of N f and Nb simulations constitutes one dataset. We then carry out simulations
to generate m datasets. For each dataset, we calculate the 1-sided density profiles, ρ f (z) and ρb(z)
and the forward and backward committor probabilities, P f (z) and Pb(z). We then investigate the
distribution of outcomes over the m independent datasets to determine the size of the statistical errors.
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