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Abstract: Image-to-image translation is used to convert an image of a certain style to another of
the target style with the original content preserved. A desired translator should be capable of
generating diverse results in a controllable many-to-many fashion. To this end, we design a novel
deep translator, namely exemplar-domain aware image-to-image translator (EDIT for short). From a
logical perspective, the translator needs to perform two main functions, i.e., feature extraction and
style transfer. With consideration of logical network partition, the generator of our EDIT comprises of
a part of blocks configured by shared parameters, and the rest by varied parameters exported by an
exemplar-domain aware parameter network, for explicitly imitating the functionalities of extraction
and mapping. The principle behind this is that, for images from multiple domains, the content
features can be obtained by an extractor, while (re-)stylization is achieved by mapping the extracted
features specifically to different purposes (domains and exemplars). In addition, a discriminator is
equipped during the training phase to guarantee the output satisfying the distribution of the target
domain. Our EDIT can flexibly and effectively work on multiple domains and arbitrary exemplars
in a unified neat model. We conduct experiments to show the efficacy of our design, and reveal its
advances over other state-of-the-art methods both quantitatively and qualitatively.

Keywords: image-to-image translation; neural style transfer; unsupervised learning; generative
adversarial network

1. Introduction

Visual scenes can be expressed in various manners using sketches, semantic maps,
photographs, and painting artworks, to name just a few. Basically, the way that one
portrays the scene and expresses his/her vision is the so-called style, which can reflect
the characteristic of either a class/domain or a specific case. Image-to-image translation
(I2IT) [1] refers to the process of converting an image I of a certain style to another target
style St with the content preserved. Formally, seeking a desired translator T can be written
in the following form:

min C(It, I) + S(It, St) with It := T (I, St), (1)

where C(It, I) is to measure the content difference between the translated It and the original
I, while S(It, St) is to enforce the style of It following that indicated by St.

1.1. Previous Work

With the emergence of deep techniques, a variety of I2IT strategies have been pro-
posed with great progress made over the last decade. In what follows, we briefly review
contemporary works along two main technical lines, i.e., one-to-one translation and many-
to-many translation.
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1.1.1. One-to-One Translation

Methods in this category aim at mapping images from a source domain to a target
domain. Benefiting from the generative adversarial networks (GANs) [2], the style of
translated results satisfies the distribution of the target domain Y, achieved by S(It, St) :=
D(It,Y), where D(It,Y) represents a discriminator to distinguish if It is real with respect
to Y. An early attempt by Isola et al. [1] uses conditional GANs to learn mappings between
two domains. The content preservation is supervised by the paired data, i.e., C(It, I) :=
C(It, Igt

t ) with Igt
t the ground-truth target. However, in real-world situations, acquiring

such paired datasets, if not impossible, is impractical. To alleviate the pressure from data,
inspired by the concept of cycle consistency, cycleGAN [3], DualGAN [4], DiscoGAN [5] in
an unsupervised fashion were proposed, which adopt C(It, I) := C(FY→X(FX→Y(I)), I)
with FX→Y the generator from domain X to Y and FY→X the reverse one. Afterwards,
many works [6–9] further extend the translation between two domains to that cross multiple
domains in a single model. Though the effectiveness of the mentioned methods has been
witnessed by a wide spectrum of specific applications such as photo-caricature [10,11],
make-up removal [12], and face manipulation [13], their main drawback comes from the
nature of deterministic (uncontrollable) one-to-one mapping.

1.1.2. Many-to-Many Translation

The goal of approaches in this class is to transfer the style controlled by an exemplar
image to a source image with content maintained. Arguably, the most representative
work goes to [14], which uses the pre-trained VGG16 network [15] to extract the content
and style features, then transfer style information by minimizing the distance between
Gram matrices constructed from the generated image and the exemplar E, say S(It, St) :=
S(Gram(It), Gram(E)). Since then, numerous applications on 3D scene [16], face swap [17],
portrait stylization [18] and font design [19] have been done. Furthermore, a number of
schemes have also been developed towards relieving the limitations of [14] in terms of
speed and flexibility. For example, to tackle the requirement of training for every new
exemplar (style), Shen et al. [20] built a meta-network, which takes in the style image
and produces a corresponding image transformation network directly. Risser et al. [21]
proposed the histogram loss to overcome the training instability. Huang and Belongie [22]
designed a more suitable normalization manner, i.e., AdaIN, for style transfer. Li et al. [23]
replaced the Gram matrices with an alternative distribution alignment manner from the
perspective of domain adaption. Johnson et al. [24] trained the network with a specific
style image and multiple content images while keeping the parameters at the inference
stage. Chen et al. [25] introduced a style-bank layer containing several filter-banks, each of
which represents a specific style. Gu et al. [26] proposed a style loss to make parameterized
and non-parameterized methods complement each other. Huang et al. [27] designed a
new temporal loss to ensure the style consistency between frames of a video. In addition,
to consider the style of a domain/class, several works, for instance [28–30], advocated to
separately take care of domain invariant content c(I) and domain-specific style s(I) subject
to I ' c(I) ◦ s(I) with ◦ the combination operation. They manage to control the translated
results by combining the content of an image with the style of the target domain, i.e.,
c(I) ◦ s(E). Besides their performance is inferior to our method in visual quality, diversity,
and style preservation as observed from comparisons, they have two main weaknesses:
one is that a domain pair usually requires an independent model; another is that their
exemplars are constrained to be from the target domains. Please see Figure 1 for images
generated by our method that handles multiple domains and arbitrary exemplars in a
unified model.
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Figure 1. Several results by the proposed EDIT. Our EDIT is able to take arbitrary exemplars as reference for translating
images across multiple domains including photo-painting, shoe-edge, and semantic map-facade in one model.

1.2. Challenges and Motivations

Developing a practical I2I translator remains challenging because the capabilities of
preserving content information after translation, and handling multiple domains as well as
arbitrary exemplars should be considered jointly. We list the challenges as follows:

• How to rationally disentangle the content and style representations of images from
different domains in a unified fashion (multi-domain in one model)?

• How to effectively ensure the content of the translated result being consistent with
that of the original image in an unsupervised manner (content preservation)?

• How to flexibly manipulate an image by considering both the style of a target domain
and that of a specific exemplar (exemplar-domain style awareness)?

Our principle is that, for images from different domains, the content features can be
obtained by an explicit uniform extractor, while (re-)stylization is achieved by mapping the
extracted features specifically to different purposes. We note that the network size can be
significantly reduced through logical network partition, which will be verified in Section 3.
This principle is rational: taking artwork composition for example, given a fixed scene, the
physical content is the same, but the styles of presentation can be much diverse by different
artists. For the style factor, one may generally like the paintings by Monet (domain), and
among so many pieces of art, a particular one, e.g., “Water Lilies” (exemplar), is his/her
favorite. In other words, the domain-level and exemplar-level should be simultaneously
concerned during style transfer. Moreover, to maintain the content information after
translation, the cycle consistency can be employed due to its effectiveness and simplicity. It
is worth emphasizing that, a single generator instead of a pair, like cycleGAN [3], could be
sufficient if the content and style are well-disentangled.

1.3. Contributions

Motivated by the above principle, we propose a novel network to overcome the men-
tioned challenges. Concretely, our primary contributions can be summarized as follows:

• We design a network, namely EDIT, to produce diverse results in an unsupervised
controllable (many-to-many) fashion, which can flexibly and effectively work on
multiple domains and arbitrary exemplars in a unified neat model.

• The generator of our EDIT comprises of a part of blocks configured by shared parame-
ters to uniformly extract content features for images from multiple domains, and the
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rest by varied parameters exported by an exemplar-domain aware parameter network
to catch specific style information.

• To preserve the content between input and generated result in an unsupervised man-
ner, the cycle consistency is employed. Plus, a discriminator is equipped during the
training phase to guarantee the output satisfying the distribution of the target domain.

• We conduct extensive experimental results to reveal the efficacy of our design, and
demonstrate its advantages over other state-of-the-art methods both quantitatively
and qualitatively.

Several previous works, with feature transform in [31], style decoration in [32], and
feature normalization transfer in [33] as representatives, insert an extra step, say feature
manipulation, between the trained encoder and decoder to achieve style transfer, the
spirit of which is seemingly similar but much different to ours. We achieve the style
transfer in the decoder dynamically generated. Even if there is no exemplar provided, the
model still can produce results according to the target domain (by setting the exemplar to
e.g., a black image or a noise image), which is more flexible than traditional style transfer
methods like [31,32] having no domain information considered. Please notice that although
DRIT [28], cd-GAN [29], MUNIT [30] and EGSC-IT [33] achieve exemplar guided many-
to-many translation, they require to independently train different models for different
domain pairs, and constrain the exemplars to be inside the target domains. Specifically,
they introduce two encoders for each domain (four encoders for a pair of domains), to
respectively extract the domain invariant content c(·) and domain specific style s(·) from
an image, respectively. The combination of the content c(I) from an image I, and the style
s(E) from an exemplar E, i.e., c(I) ◦ s(E), is the I2I translation result. The domain-specific
style/information of these methods can only be extracted from the exemplar image, say
the style of a domain and an exemplar are not well-decoupled, resulting in their exemplar
images must be inside the target domains. In comparison, our method is able to embrace
multiple domain pairs and arbitrary exemplars in one neat model.

2. Methodology
2.1. Problem Analysis

A desired translator should be capable to generate diverse results in a controllable
(many-to-many) fashion. Again, we emphasize the core principle behind this work: for
images from different domains, the content features can be obtained by an explicit uniform
extractor, while (re-)stylization is achieved by mapping the extracted features specifically
to different purposes. In other words, we assume that the content c(·) and the style
s(·) of an image are independent, i.e., p(I) = p(c(I), s(I)) = p(c(I)) · p(s(I)). Suppose
that the whole style space is

⋃
i Si, where Si is the style subspace corresponding to the

domain i. Mathematically, the problem can be expressed and solved by maximizing the
following probability:

p(Iy
x |Ix, Iy) := p(c(Iy

x ), s(Iy
x )|c(Ix), s(Ix), c(Iy), s(Iy))

∝ p(c(Iy
x )|c(Ix)) · p(s(Iy

x )|s(Iy))

= p(c(Iy
x )|c(Ix)) ·∑

i
p(s(Iy

x )|s(Iy),Si) · p(Si)

= ∑
i

p(c(Iy
x )|c(Ix)) · p(s(Iy

x )|s(Iy),Si) · p(Si).

(2)

The relationship of the second row holds by the problem definition in Equation (1)
and the independence assumption (our core principle). Furthermore, the style of Iy may
appear in more than one domains, for instance, a semantic map can also be a painting. This
situation makes p(s(Iy

x )|s(Iy)) a mixture of ∑i p(s(Iy
x )|s(Iy),Si) · p(Si) (the equality of the

third row). Please see Figure 2 for evidence. Therefore, we specify the domain label to clear
the mix-up. By doing so, the problem turns to maximize the following:
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p(Iy∈Si
x |Ix, Iy ∈ Si)

:=p(c(Iy
x )|c(Ix)) · p(s(Iy

x )|s(Iy),Si).
(3)

As given in Equation (3), the entire problem can thus be divided into two subproblems.
The first component p(c(Iy

x )|c(Ix)) corresponds to the uniform content extractor, while
the second term p(s(Iy

x )|s(Iy),Si) yields the exemplar-domain aware style mapping. The
above logical partition strategy decomposes the parameter space, and thus expecting the
reduction in storage and training costs.

1

(a) (c) (d)(b)
Figure 2. Visual results by EDIT with and without specifying the target domain. Panels (a,b) contain
the inputs Ix and exemplars Iy, respectively. Panels (c,d) give the translated results without and with
domain specification, respectively.

2.2. Architecture Design

The blueprint of our EDIT is schematically illustrated in Figure 3, from which, we
can see that the generator G of EDIT is composed by a part of blocks configured by shared
parameters θs, and the rest by varied parameters θp exported by an exemplar-domain
aware parameter auxiliary network. In addition, a discriminator D is equipped during the
training phase to guarantee the output satisfying the distribution of the target domain.

The generator is used to produce desired images through

Iy∈Si
x := G(Ix, Iy ∈ Si; θ), (4)

where θ is the trainable parameters for the whole generator. The generator consists of
three gradually down-sampled encoding blocks, followed by 8 residual blocks. Then, the
decoder processes the feature maps gradually up-sampled to the same size as input. Each
block performs in the manner of Conv + InstanceNorm + ReLU. As stated, a part of the
generator should respond to extract features uniformly for images no matter what styles
they are in. In other words, a number of blocks (in white as shown in Figure 3, uniform
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content extractor) are shared across domains, the parameter set of which is denoted by
θs. As for the rest blocks (in black as shown in Figure 3) related to (re)-stylization (feature
selection and reassembling). Inspired by [20,34], the corresponding parameters can be
dynamically generated by a parameter network, that is:

θp := GP(Iy ∈ Si; ψ), (5)

where ψ is its trainable parameters. Please notice that our parameter network only covers a
part, instead of all of the blocks in the generator as [20,34], which significantly saves the
storage space and increases the convergence speed. Specifically, the parameter network
contains the VGG16 network pre-trained on the ImageNet and fixed, followed by one
fully-connected layer and one group fully connected layer. Feeding an exemplar (style
image) and its target domain label (a one-hot vector) into the parameter network gives the
parameters required by the exemplar-domain aware style mapping. Now, we can express
the generator in the following shape:

Iy∈Si
x := G(Ix; θp := GP(Iy ∈ Si; ψ), θs), (6)

where both θs and θp form θ.

Figure 3. The model architecture of our EDIT. The procedure of mapping X→ Y is in blue, while the reverse of mapping
Y→ X is in red. Ix and Iy are samples from domain X and Y, respectively. The whole network comprises a generator and a
discriminator. The generator contains a part of blocks configured by shared parameters, and the rest by varied parameters
exported by an exemplar-domain-aware parameter network. The parameter network generates the specific parameters
based on an exemplar and its domain label. The content is preserved by adopting the cycle consistency. The discriminator
takes a generated result and its domain label as input to judge if the result is distinguishable from the target domain. Kk
means that the kernel size is k× k, while Ss represents that the stride is s. The number of channels is given below each block.

Based on the analysis on domain specification, it is important to clear the style mix-up
issue as revealed in Figure 2. Merely providing the domain ID to the parameter network
is insufficient to capture the domain characteristic, as it is blind to the distribution of the
target domain. To guide the training process and produce high-quality images satisfying
the distribution of the target domain, we further employ a discriminator built upon the
70× 70 Patch-GAN architecture [35], which tries to determine whether each local image
patch, rather than the whole image, is real or fake. More details about the discriminator
can be found in the corresponding paper or in Appendix A. It is worth noting that the
exemplar-domain aware style mapping is actually achieved by the dynamic part in the
generator together with the discriminator.

One may wonder why inserting dynamic (black) blocks into fixed (white) blocks. First,
considering the generation of dynamic parameters, the complexity of the fully connected
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layers will dramatically grow as the number of dynamic parameters (e.g., all the blocks in
the decoder) required to generate increases. From another point of view, style mapping can
be viewed as a procedure of feature selection and reassembling. Some operations should
be in common for features from different domains. Taking the above concerns, we adopt
the organization fashion as shown in Figure 3, which performs sufficiently well in practice
and makes the volume of the parameter network compact. The primary merit of our EDIT
is that it can handle arbitrary exemplars and be trained for multiple domains at the same
time in one neat model. More details of EDIT are given in Appendix A.

2.3. Loss Design

We adopt a combination of a cycle consistency loss, a style loss and an adversarial loss
for training the network.

Cycle consistency loss. Taking a sample pair Ix ∈ X and Iy ∈ Y for an example, let Ix̄
and Iȳ be G(G(Ix, Iy ∈ Y), Ix ∈ X) and G(G(Iy, Ix ∈ X), Iy ∈ Y), respectively. To preserve
content between generated and original images, the cycle consistency loss is employed,
which is written as:

ζcyc := ‖Ix̄ − Ix‖1 + ‖Iȳ − Iy‖1, (7)

where ‖ · ‖1 is the `1 norm.

Style loss. For allowing users to control the style by giving an exemplar, a measurement
for style difference is required. As advocated in [23], the batch normalization statistics
based loss is adopted instead of the Gram matrix based one, for ease of computation. By
denoting Ix̂ := G(Ix, Iy ∈ Y) and Iŷ := G(Iy, Ix ∈ X), we have:

ζsty :=
NL

∑
l=1

Ml

∑
m=1

(
(µl,m

ŷ − µl,m
x )2 + (σl,m

ŷ − σl,m
x )2

)
NL ×Ml

+
NL

∑
l=1

Ml

∑
m=1

(
(µl,m

x̂ − µl,m
y )2 + (σl,m

x̂ − σl,m
y )2

)
NL ×Ml

,

(8)

where NL and Ml are the number of involved layers (in this work, we use the relu1_2,
relu2_2, relu3_3, relu4_3 and relu5_1 layers in the VGG16) and that of feature maps in the
l-th layer. In addition, µ and σ are the mean and the standard deviation of the correspond-
ing feature map.

Adversarial loss. The adversarial loss is standard [2] as:

ζadv := logD(Ix,X) + log(1−D(G(Ix, Iy ∈ Y),Y))
+ logD(Iy,Y) + log(1−D(G(Iy, Ix ∈ X),X)).

(9)

Final objective. Our optimization is carried out on the total loss, i.e., the sum of the above
losses, as follows:

min
G

max
D

EIx∼Pdata(X)EIy∼Pdata(Y) ζtotal ,

where ζtotal := ζadv + λζcyc + ηζsty,
(10)

where η and λ are coefficients to balance the loss terms. In order to keep the common
features effectively, we set λ to a relatively large value 10. As for η, we observe that setting
it in the range from 0.01 to 0.1 works well.
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3. Experimental Validation
3.1. Implementation Details

Our EDIT is implemented in PyTorch and performed on a GeForce RTX 2080Ti GPU.
We exert the strategy proposed in [36] to improve the training stability, which uses historic
generated images to update the parameters of the discriminator. Our optimization adopts
an Adam solver. The decays of the first and second-order momentums are as default. The
learning rate is set to 0.001 at the beginning and linearly decreases as the number of epochs
grows. During the training phase, the input images are resized to 256× 256 and augmented
by random horizontal flip.

3.2. Competitors and Evaluation Metrics

The competitors involved in comparisons contain neural style transfer (NST) [14],
cycleGAN [3], metaNST [20], DRIT [28], MUNIT [30], WCT [31], EGSC-IT [33], and
art2real [37]. The codes of the compared methods are all downloaded from the authors’
websites. The elapsed time of testing, model size, inception score (IS) [38] and Fréchet
inception distance (FID) [39] are employed as our metrics to quantitatively reveal the per-
formance difference between our EDIT with the other competitors. In addition, to measure
how well the content and style are preserved, by following [14], the content error and style
error are also adopted. Take the mapping: X→ Y as an example, the content error Econt is
defined as the L2 distance between feature maps of the input image Ix and the generated
one Iy∈Y

x , i.e., ||φl(Ix)− φl(Iy∈Y
x )||2, where φl(·) means the feature maps of the l-th layer in

the VGG-16 model. The style error is the average L2 distance between the Gram matrices
of the generated image Iy∈Y

x and the exemplar Iy. Assume Graml(·), Hl , and Wl are the
Gram matrix, height and width of the each feature map in the l-th layer, the style error
can be expressed as 1

NL
∑NL

l=1
1

4M2
l H2

l W2
l
||Graml(Iy)−Graml(Iy∈Y

x )||22. It is worth noticing

that the content error and the style error are complement and expected to be a trade-off.
Solely focusing on one of the two metrics cannot practically reflect the performance of
I2I translation. For instance, a case without any change (style transfer) obtains 0 content
error. Analogous problem happens to only staring at the style loss without consideration
of content preservation.

3.3. Comparisons

To quantitatively measure the performance of different competitors, we conduct the
experiments on the translation from photo to painting (Monet). The training and testing
data are from [3]. The competitors are well-trained on the training data, and tested on the
750 testing data of the photoset with 10 exemplars from the Monet set. This is to say, each
compared model generates 7500 images, on which the content error, the style error, the
inception score and the Fréchet inception distance are computed.

From Table 1, we can observe that in terms of the content error, our EDIT slightly
falls behind cycleGAN, while outperforms the others. The analogous analysis serves the
inception score and Fréchet inception distance terms. We again emphasize that there exists
a trade-off between the content and the style consistency in I2I translation. Notice that
cycleGAN pays more attention to the content loss while only guaranteeing the domain
style without the consideration of exemplars. As for the style loss, EDIT takes first place
among all the compared methods with a large margin. The cycleGAN is unable to take
exemplars as references. Thus, we do not provide its style error. In terms of model
size, we provide two sets of comparisons: one for one pair domain translation and the
other for n = 4 pairs. Most of the methods including MUNIT, cycleGAN, DRIT, and
EGSC-IT require training multiple independent models to handle multiple pairs of the
domain. While EDIT can deal with multiple domain pairs in one model, thanks to either the
dynamic parameter generators according to exemplars. The dynamic parameter generators
for both EDIT and metaNST have several fully connected layers, making their models
relatively large. A large part of the parameters in metaNST (10 Mb vs. 64 K for shared
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part) is from the parameter generator, leading to an 870 Mb storage. Ours demands the
parameter network to produce about 2.9 Mb (vs. 3.3 Mb for the shared part) parameters
dynamically, significantly decreasing the storage (409 Mb) compared with metaNST. In
addition, different from NST, metaNST and WCT, EDIT further takes into account the
domain knowledge/style and the cycle consistency. The above verifies, as previously
stated in our principle, that the feature extraction can be done using a uniform extractor
and part of feature reassembling can also be in common for different images from different
domains. In this work, we consider four domain pairs, but it is possible to embrace more
pairs in our EDIT.

Table 1. Quantitative comparison with the state-of-the-art methods. The two columns of model size (parameters) are for
one domain pair and n domain pairs, respectively. For the Fréchet inception distance, content and style error, lower value
indicates better performance. While for the inception score, the higher the better.

Methods Time (sec.) Paras. (Mb|1 pair) (n = 4 pairs) Content Error ↓ Style Error ↓ IS ↑ FID ↓
cycleGAN [3] 3.5× 10−3 45 + 45 (45 + 45)×n 1.70 ± 0.60 − 6.02 70.37
MUNIT [30] 3.9× 10−2 114.7 114.7×n 2.43 ± 1.28 0.19 ± 0.15 4.58 114.18
DRIT [28] 1.2× 10−2 780 780×n 2.83 ± 1.17 0.14 ± 0.09 5.06 80.07
NST [14] 4.3× 102 576 576×n 3.43 ± 1.04 1.28 ± 0.56 5.85 83.63
metaNST [20] 5.3× 10−3 64K + 10[+870] 64K + 10[+870] 2.97 ± 0.93 0.13 ± 0.09 4.74 91.24
WCT [31] 1.7× 100 283.6 283.6 4.92 ± 0.15 0.13 ± 0.07 3.09 89.73
EGSC-IT [33] 8.2× 10−1 135 135×n 2.71 ± 1.29 0.26 ± 0.19 5.50 75.65

EDIT w/o Adv 4.3× 10−3 3.3 + 2.9[+409] 3.3 + 2.9[+409] 3.39 ± 0.98 0.26 ± 0.10 4.59 107.98
EDIT Residual 4.5× 10−3 3.3 + 2.9[+409] 3.3 + 2.9[+409] 0.80 ± 0.20 0.33 ± 0.21 5.96 121.23
EDIT Unet 4.7× 10−2 3.2 + 4.1[+612] 3.2 + 4.1[+612] 5.47 ± 1.53 0.24 ± 0.14 5.84 95.24
EDIT 4.3× 10−3 3.3 + 2.9[+409] 3.3 + 2.9[+409] 2.60 ± 0.59 0.06 ± 0.04 5.92 72.48

In terms of speed, NST takes a much longer time, i.e., about 420 s to process a case
with a size of 256× 256, than the others, due to its processing way. The fastest method
goes to cycleGAN (3.5 ms), as it does not need to consider exemplars. Among the methods
that consider exemplars, our EDIT is the most efficient one (4.3 ms), slightly slower than
cycleGAN. In addition, WCT is relatively slower (1.7 s) because of the requirement of
SVD operation that has to be executed in CPU. In Table 1, we also report the numbers
corresponding to EDIT with the discriminator disabled, which reveals the importance of
the adversarial mechanism for the target task. Figure 4 depicts three visual comparisons to
qualitatively show the difference among the competitors. From the pictures, we can see
that our EDIT can very well preserve the content of input and transfer the style of exemplar,
making the final results visually striking. It is worth noting that art2real is specifically
designed for translation from arts/paintings to realistic photos without using any exemplar,
which if reasonably modified, needs multiple models for different domain pairs in nature.
Figure 5 additionally gives a comparison between art2real and EDIT. The result by art2real
indeed has some features of paint removed, however, the unnatural-looking of which is
still obvious. While, by taking an exemplar into consideration, EDIT produces a more
realistic result. We provide other visual results by EDIT on painting↔ painting, edge→
shoe, edge→ handbag, and semantic map↔ facade in Figure 6. More results can be found
at https://forawardstar.github.io/EDIT-Project-Page/ accessed on 30 April 2021. Our
code is made publicly available at https://github.com/ForawardStar/EDIT accessed on
30 April 2021. Comprehensively, the proposed EDIT is arguably the best candidate.

https://forawardstar.github.io/EDIT-Project-Page/
https://github.com/ForawardStar/EDIT
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Figure 4. Visual comparison among the competitors on photo to painting, painting to photo, and edge to handbag.

Input art2real Ours

Figure 5. Visual comparison between art2real and EDIT.
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Figure 6. More visual results by our proposed EDIT.

3.4. Ablation Study
3.4.1. Alternatives of the Dynamic Parameters

There are various alternatives with respect to which part of parameters in the generator
are dynamically generated by the parameter network or uniformly trained. We further
conduct several experiments on different domain pairs to study the effects of two additional
new settings of the generated blocks, including (1) the parameters of first-half blocks are
generated by the parameter network while the rest parameters are uniformly trained
(denoted as EDIT Front), and (2) the whole set of parameters are generated (EDIT Full). The
visual results are shown in Figure 7, while the quantitative results are shown in Table 2.

Input Exemplar EDIT Front EDIT Full Ours

Figure 7. The comparison between various alternatives of the generated blocks. The 1st and 2rd rows are photos→Monet
and photo→Ukiyoe, respectively.
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Table 2. Quantitative comparison with various alternatives of the generated blocks. The first column
is the corresponding dataset.

Datasets Methods Content Error ↓ Style Error ↓ IS ↑ FID ↓
photo
↓

Monet

EDIT Front 2.48 ± 0.67 0.11 ± 0.10 5.94 74.29
EDIT Full 2.44 ± 0.63 0.07 ± 0.05 5.97 69.37

EDIT 2.60 ± 0.59 0.06 ± 0.04 5.92 72.48

Monet
↓

photo

EDIT Front 3.34 ± 1.29 0.33 ± 0.35 3.48 99.57
EDIT Full 3.39 ± 1.33 0.27 ± 0.31 3.55 89.67

EDIT 3.55 ± 1.30 0.22 ± 0.27 3.49 78.39

photo
↓

Ukiyoe

EDIT Front 2.58 ± 0.66 0.13 ± 0.08 5.02 84.11
EDIT Full 2.48 ± 0.67 0.12 ± 0.07 4.87 80.55

EDIT 2.56 ± 0.68 0.09 ± 0.06 4.80 81.88

Ukiyoe
↓

photo

EDIT Front 3.21 ± 1.20 0.33 ± 0.42 3.51 127.89
EDIT Full 3.27 ± 1.25 0.28 ± 0.37 4.00 124.98

EDIT 3.52 ± 1.28 0.23 ± 0.31 3.56 106.91

label
↓

facade

EDIT Front 6.53 ± 1.42 0.85 ± 0.93 1.91 104.00
EDIT Full 6.56 ± 1.33 0.83 ± 1.00 2.10 114.60

EDIT 6.33 ± 1.52 0.78 ± 0.86 2.25 105.61

facade
↓

label

EDIT Front 10.08 ± 1.89 3.72 ± 2.73 2.50 127.46
EDIT Full 9.96 ± 2.05 4.01 ± 2.77 2.86 154.40

EDIT 12.30 ± 2.18 3.68 ± 2.55 2.91 115.57

It is obvious that in terms of the style error, EDIT Front performs worse than EDIT
and EDIT Full, indicating that the parameters in shallow layers of the generator are more
about extracting the content features of input images, which can be shared across domains,
while the deeper layers are used to map the style features, which need to be dynamic
with respect to domains and exemplar images. The performance of EDIT is competitive
to that of EDIT Full proves that generating a part of, rather than all of, parameters of
the generator is sufficient, as numerically and visually reported in Table 2 and Figure 7,
respectively. In addition, EDIT Full is of much higher complexity than EDIT (1143 Mb vs.
409 Mb in size of the parameter network), and is unstable at the training stage, leading
to slow convergence. The convergence behavior of EDIT Full and EDIT is shown in Figure 8.

Figure 8. The comparison in convergence behavior of EDIT Full and EDIT.
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3.4.2. Alternatives of the Network Architecture

We compare our original architecture with two other alternatives. One is an Unet
architecture adding skip connections to the original encoder–decode architecture, the other
is using original architecture for residual learning whose output is added to the input
image to get translated results. The results are shown in Table 1 and Figure 9. It can
be seen that adding skip connections to an encoder–decoder leads to worse results. The
reason is, directly feeding the low-level features extracted by the shallower layers into
the deeper layers may disturb (high-level) style mapping operation. While the residual
learning strategy tends to maintain the original input, since the generator merely learns
the residual between input and translated results. Therefore, the residual learning strategy
may be suitable for low-level tasks like denoising, dehazing and image smoothing, but not
for the task of image-to-image translation/style transfer.

Figure 9. The comparison between various alternatives of the network architectures. All the rows are photo→Monet.

3.5. Extensions

In this section, we demonstrate that there are several extensions including style
interpolation, and using exemplars outside the domains. The network architectures for
these extensions are the same as the original EDIT, but the training and testing strategies
are changed accordingly.

3.5.1. Style Interpolation

One may want to take two or more exemplars/domains as a style reference, and
produce results simultaneously containing those styles in a controllable fashion. Consid-
ering that the dynamic parameters correspond to the exemplars, they can be viewed as
their representations in the implicit manifold. Suppose the manifold is continuous and
smooth, we can linearly combine the generated parameters to achieve the style interpola-
tion. Figure 10 displays two cases of style interpolation. The second and the sixth columns
offer the translated results by fully using different exemplars. The pictures shown in the
middle columns are results by linearly interpolating the parameters of the second and the
last columns. As can be seen, via controlling the parameter combination, the visual results
vary smoothly between two styles with the content well-preserved.
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Figure 10. Interpolation results. The left-most column contains two inputs. The second and right-
most columns are the results with respect to two different exemplars. The three columns in the
middle are the interpolated results by EDIT.

3.5.2. Exemplars Outside the Domains

As an image may belong to more than one domain, we design our EDIT to use arbitrary
exemplar images for multiple target domains, even the label/ID of the exemplar image
and the target domain mismatch and the domains of the exemplar images are unknown or
unseen during training. The results are shown in Figure 11, from the first two cases, we can
see that if the exemplar falls in the domain distribution’s tail, EDIT still tries to produce
results taking into account both domain and exemplar information. However, when the
exemplars are totally outside of the target domain, EDIT will ignore the exemplars and
rely on the domain only, as shown in the last case of Figure 11. Note that [28–30,33] cannot
handle such cases, since they do not decouple the style of exemplars and domains, and
must extract the domain-specific information from the exemplars. Furthermore, one may
simply want to gain diverse translated results from one input image without any exemplar.
Since we use a one-shot vector as domain label/ID instead of exemplar images to control
the target domain, we can replace the exemplar images with random Gaussian noises to
generate diverse results as shown in Figure 12.
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Input Exemplar Result

Figure 11. The results of using the exemplar images whose domains are different from the target
domain. The 1st, 2nd, 3rd and 4th rows are photo→ Ukiyoe with the facade as an exemplar, photo
→Monet with the handbag as an exemplar, and facade→ semantic map with Monet’s painting as
an exemplar, respectively.

Input Result1 Result2 Result3 Result4 Result5

Figure 12. The results of replacing exemplar images with noises. The 1st and 2rd rows are both photo→Monet.
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4. Conclusions

In this paper, we have proposed a network, called EDIT, to translate images from dif-
ferent domains with consideration of specific exemplars in a unified model. The generator
of EDIT is built upon a part of blocks configured by shared parameters to uniformly extract
features for images from multiple domains, and another part by dynamic parameters
exported by an exemplar-domain aware parameter network to catch specific style informa-
tion. The concepts of cycle consistency and adversarial mechanism make the translation
preserve the content and satisfy the distribution of the target domain. Both theoretical
findings and experimental results are provided to demonstrate the efficacy of the proposed
framework. The quantitative experimental results demonstrate that our EDIT only takes
less than five milliseconds to process a 256× 256 image on a GTX 2080Ti GPU, and improve
the image-to-image translation performance by around 5% in terms of inception score and
Fréchet inception distance. We have also conducted extensive experiments to reveal the
superiority of our method over other state-of-the-art alternatives.
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EDIT-Project-Page/ accessed on 30 April 2021.
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Appendix A. Network Details

Appendix A.1. Parameter Network

Our parameter network includes the convolution layers of VGG16 followed by one
fully connected layer and one group fully connected layer. The detailed architecture is
shown in Table A1. The c, k, s and p stand for the channel number, the kernel size, the
stride step and the padding size, respectively. The Nneuron, Ngroup, Npara and Ml

para in the
bottom part are the number of neurons in a layer of each group, the number of group
of a group fully-connected layer (Ngroup=1 if is not a group fully-connected layer), the
number of layers in the generator whose parameters need to be generated and the number
of parameters in the l-th layer where 1≤ l ≤ Npara, respectively.

Appendix A.2. Generator

The generator has an encoder-decoder architecture. We notice that the more param-
eters needed to be generated using the parameter network, the larger the model size is
required for the parameter network. As shown in Table A2, our generator begins with
three down-convolution layers to extract and encode the features of input images. Af-
terwards, nine residual blocks are used to process the style-related features according to
exemplars. Trainable indicates whether the layer is jointly trained with the parameter
network (Trainable = True) or generated by the parameter network (Trainable = False).

Appendix A.3. Discriminator

The discriminator adopts the architecture of 70 × 70 patchGAN, which owns the
ability to generate high-quality and high-resolution images. The discriminator consists of
four Conv2d-IN-LeakyReLU blocks followed by one zero pad layer and one Conv2d layer.
The detailed architecture is given in Table A3.

https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/
https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/
https://forawardstar.github.io/EDIT-Project-Page/
https://forawardstar.github.io/EDIT-Project-Page/
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Table A1. The parameter network architecture.

Convolution Layers

Output Size Operator c k s p

256× 256 Conv2d-ReLU 64 3 1 1
256× 256 Conv2d-ReLU (relu1_2) 64 3 1 1
128× 128 MaxPool2d - - - -
128× 128 Conv2d-ReLU 128 3 1 1
128× 128 Conv2d-ReLU (relu2_2) 128 3 1 1

64× 64 MaxPool2d - - - -
64× 64 Conv2d-ReLU 256 3 1 1
64× 64 Conv2d-ReLU 256 3 1 1
64× 64 Conv2d-ReLU (relu3_3) 256 3 1 1
32× 32 MaxPool2d - - - -
32× 32 Conv2d-ReLU 512 3 1 1
32× 32 Conv2d-ReLU 512 3 1 1
32× 32 Conv2d-ReLU (relu4_3) 512 3 1 1
16× 16 MaxPool2d - - - -
16× 16 Conv2d-ReLU (relu5_1) 512 3 1 1

Intermediate Processing

Input Operation Output Size

relu1_2,relu2_2, calculate mean
relu3_3,relu4_3 and standard 1 × 2944

relu5_3 deviation

Fully-Connected Layers

layer Nneuron Ngroup

1 128 × Npara 1
2 Ml

para Npara

Table A2. The generator architecture.

Name Operator Trainable Repeat c k s

down-conv
Conv2d-IN-ReLU True

1
32 9 2

Conv2d-IN-ReLU True 64 3 2
Conv2d-IN-ReLU True 128 3 2

residual block Conv2d-IN-ReLU True 8 128 3 1
Conv2d-IN-ReLU False 128 3 1

up-conv
Upsample-Conv2d-IN-ReLU True

1
128 3 1

Upsample-Conv2d-IN-ReLU False 64 3 1
Conv2d-Tanh True 32 9 1

Table A3. The discriminator architecture.

Output Size Operator c k s p

128 × 128 Conv2d-LeakyReLU 64 9 2 1
64 × 64 Conv2d-IN-LeakyReLUReLU 128 3 2 1
32 × 32 Conv2d-IN-LeakyReLU 256 3 2 1
16 × 16 Conv2d-IN-LeakyReLU 512 3 2 1
17 × 17 ZeroPad2d - - -
16 × 16 Conv2d 1 4 1 1
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