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Abstract: Clustering is a major unsupervised learning algorithm and is widely applied in data
mining and statistical data analyses. Typical examples include k-means, fuzzy c-means, and Gaussian
mixture models, which are categorized into hard, soft, and model-based clusterings, respectively.
We propose a new clustering, called Pareto clustering, based on the Kolmogorov–Nagumo aver-
age, which is defined by a survival function of the Pareto distribution. The proposed algorithm
incorporates all the aforementioned clusterings plus maximum-entropy clustering. We introduce
a probabilistic framework for the proposed method, in which the underlying distribution to give
consistency is discussed. We build the minorize-maximization algorithm to estimate the parameters
in Pareto clustering. We compare the performance with existing methods in simulation studies and
in benchmark dataset analyses to demonstrate its highly practical utilities.

Keywords: k-means; fuzzy-c; Gaussian mixture model; Kolmogorov–Nagumo average; generalized
energy function; Pareto distribution

1. Introduction

In data analysis or data mining, there are two fundamental types of methodolo-
gies: clustering and classification [1]. Clustering, which is categorized as an exploratory
paradigm, detects the underlying structure behind the data and grasps the rough image
before proceeding to more intensive and comprehensive data analysis [2,3]. On the other
hand, classification predicts unknown class labels of test data based on models constructed
by training data with known class labels. The former is called supervised learning, while
the latter is called unsupervised learning in pattern recognition [4].

Clustering algorithms fall roughly into three categories: hierarchical, partitioning,
and mixture model-based algorithms [5]. In hierarchical clustering, each observation
is considered as one cluster in the initial setting. Then clusters are merged recursively
based on a similarity matrix defined beforehand. The resultant clusters are expressed as a
dendrogram. The partition algorithm starts with a fixed number of clusters and searches
for the cluster centers to minimize an objective function such as the squared distances
between the centers and observations. It finds the centers simultaneously. The model-based
algorithm assumes a mixture of probability distributions, which generates the observations
and assigns the distributions to one of the mixture components. A Gaussian-mixture
distribution-based approach is widely used in this context.

In this paper, we propose a new clustering, called Pareto clustering in the framework
of quasilinear modeling [6–8]. It combines the cluster components by the Kolmogorov–
Nagumo average [9] in a flexible way. We consider a generalized energy function as an
objective function to estimate cluster parameters, which is an extension of the energy
function proposed by [10]. The objective function consists of a survival function of the
Pareto distribution, which is widely used in extreme value theory [11]. We investigate the
consistency of the parameters, resulting in the underlying probability distribution of the
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generalized energy function. We find that k-means [12,13] and fuzzy c-means [14] have
the underlying probability distributions with singular points at the cluster centers. This
fact shows a clear difference from the model-based clustering such as a Gaussian-mixture
modeling. Moreover, we show that the quasilinear modeling based on the Kolmogorov–
Nagumo average connects k-means, fuzzy c-means, and a Gaussian-mixture modeling
using the hyperparameters of the generalized energy function. See [15,16] for the discussion
of the relation between k-means and fuzzy c-means.

The paper is organized as follows. In Section 2, we introduce the generalized energy
function as the objective function of the Pareto clustering and discuss the consistency
of the parameters. Moreover, we show that k-means, fuzzy c-means, and a Gaussian-
mixture are all derived from the generalized energy function as special cases. This fact
leads to the fact that the parameters can be estimated in a unified manner by the the
minorize-maximization (MM) algorithm [17], where the monotone decrease of generalized
energy function is guaranteed. In Section 3, we demonstrate the performance of the Pareto
clustering based on simulation studies and benchmark datasets and show its practical
utilities. We summarize the results of the Pareto clustering and discuss the extensions and
applications in various scientific fields.

2. Materials and Methods
2.1. Generalized Energy Function

Let T be a non-negative random variable with a probability density function f (t). The
survival function of T is defined as

S(t) = P(T > t), t ≥ 0. (1)

Then for d-dimensional random variables x1, . . . , xn, we define a generalized energy func-
tion to be minimized with respect to a parameter µ for clustering

LS(µ) =
1
τ

n

∑
i=1

S−1
( 1

K

K

∑
k=1

S(τ‖xi − µk‖2)
)

, (2)

where µ = (µ1, . . . , µK) is a set of centers and τ > 0 is the shape parameter. If we take
S(t) = exp(t), the function corresponds to the energy function proposed by [10], where
τ can be interpreted as the temperature in physics. The formulation in (2) is called the
Kolmogorov–Nagumo average [9,18] and is widely applied to bioinformatics, ecology,
fisheries, etc. [6,8,19].

In Equation (2), we express an average of probabilities that xi belongs to the kth
cluster over all K clusters using 1/K ∑K

k=1 S(‖xi − µk‖2), where ‖xi − µk‖2 is the energy of

xi associated with µk. Hence we view S−1
(

1/K ∑K
k=1 S(‖xi − µk‖2)

)
as the Kolmogorov–

Nagumo average of the energy of xi with the probabilistic meanings. In effect, we take
summation of the Kolmogorov-Nagumo average over the observations {x1, ..., xn}.

Remark 1. The generalized energy function (2) has a relation with the Archimedean copula
defined by

1− S
( K

∑
k=1

S−1(1− uk)
)

(3)

for {uk}K
k=1 in (0, 1), cf. [20] for an introductory discussion. In principle, the generalized en-

ergy function is a function from a vector of K cluster energy functions to a integrated energy
function. The Archimedean copula is that of K marginal cumulative distribution functions to the
joint cumulative distribution function. In this way, the generalized energy function expresses an
interactive relation for cluster energy functions analogous with the Archimedean copula expressing
the correlation among variables.
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We consider an estimator of the generalized energy function as

µ̂ = argmin
µ

LS(µ). (4)

If we assume that xi (i = 1, . . . , n) is distributed according to a probability density
function p(x, µ∗), the expected generalized energy function is given by

LS(µ) =
1
τ

∫
S−1

( 1
K

K

∑
k=1

S(τ‖x− µk‖2)
)

p(x, µ∗)dx. (5)

Here we define a function for a set of cluster centers as

Eµ(x) =
1
K

K

∑
k=1

S(τ‖x− µk‖2). (6)

Thus, we note that ∫
Eµ(x)dx = vdE(T

d
2 ), (7)

where vd is a volume constant 2πd/2/{τ1/2dΓ(d/2)} because E(T) =
∫ ∞

0 S(t)dt
(Appendix A). This property is a key idea in the following discussion.

Lemma 1. Assume that the survival function S(t) in (1) is convex in t. We define a function G of
(µ∗, µ) as

G(µ∗, µ) =
∫

S−1(Eµ(x)) f (S−1(Eµ∗(x)))dx, (8)

Then for any µ and µ∗

G(µ∗, µ) ≥ G(µ∗, µ∗) (9)

with equality if and only if µ = µ∗.

Proof. We observe that the function S−1(t) is a decreasing function of t given as

∂S−1(t)
∂t

= − 1
f (S−1(t))

(10)

because S(S−1(t)) = t and (∂/∂t)S(t) = − f (t). Similarly,

∂2S−1(t)
∂t2 = − f ′(S−1(t))

{ f (S−1(t))}3 , (11)

which is positive for all t ≥ 0 because (∂2/∂t2)S(t) = − f ′(t) > 0 from the convexity
assumption for S(t). Therefore, S−1(t) is also convex in t ∈ (0, 1). This leads to

G(µ∗, µ)− G(µ∗, µ∗) =
∫
{S−1(Eµ(x))− S−1(Eµ∗)} f (S−1(Eµ∗(x)))dx (12)

≥
∫
{Eµ(x)− Eµ∗(x)}

∂S−1(Eµ∗(x))
∂t

f (S−1(Eµ∗(x))dx (13)

= −
∫
{Eµ(x)− Eµ∗(x)}dx (14)

= 0. (15)



Entropy 2021, 23, 518 4 of 21

Here Equality in (13) holds if and only if µ = µ∗ from the convexity for S−1. The
Equality (14) is shown by

− f (S−1(t))
∂S−1(t)

∂t
= 1 (16)

for any t ≥ 0 as seen in (10). Equality (15) holds due to (7).

Theorem 1. If the p(x, µ∗) has a form such as

p(x, µ∗) = Z(µ∗) f (S−1(Eµ∗(x))), (17)

where Z(µ∗) > 0 is a normalizing constant. Then we have

LS(µ) ≥ LS(µ
∗). (18)

Proof. Note that

LS(µ)−LS(µ
∗) =

Z(µ∗)
τ
{G(µ∗, µ)− G(µ∗, µ∗)},

which concludes (18) from Lemma 1.

We note that µ̂ is asymptotically consistent to true parameter µ∗ if the probability
density function has the form in (17).

2.1.1. Pareto Distribution

Let us consider a generalized Pareto distribution, where the survival function and its
inverse function are defined by

S(t) = (1 + βt)−
1
β and S−1(t) =

t−β − 1
β

,

where β > 0 denotes the shape parameter. Then the generalized energy function is

Lτ,β(µ) =
1

τβ

n

∑
i=1

[{ K

∑
k=1

1
K
{1 + τβ‖xi − µk‖2}−

1
β

}−β
− 1
]
. (19)

If we consider β→ 0, then

lim
β→0

Lτ,β(µ) = −
1
τ

n

∑
i=1

log
{ K

∑
k=1

1
K

exp
(
− τ‖xi − µk‖2)}, (20)

which is reduced to the energy function proposed by [10]. Hence, we can understand that
Rose’s clustering (maximum-entropy clustering) is generated by a survival distribution
function of an exponential distribution. Then we have

lim
τ→∞

Lτ,β(µ) = lim
τ→∞

1
τβ

n

∑
i=1

{ K

∑
k=1

1
K
{1 + τβ‖xi − µk‖2}−

1
β

}−β

(21)

=
n

∑
i=1

{ K

∑
k=1

1
K
{‖xi − µk‖2}−

1
β

}−β

(22)

The gradient with respect to µk is given by

2
β

n

∑
i=1

1
K

[
{‖xi − µk‖2}−

1
β

∑K
`=1 π`{‖xi − µ`‖2}−

1
β

]1+β

(xi − µk), (23)
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which exactly leads to the estimation equations of fuzzy c-means if we take β = m− 1 [14].
Furthermore, we have

lim
τ→∞,β→0

Lτ,β(µ) =
n

∑
i=1

min
1≤k≤K

‖xi − µk‖2, (24)

which is the loss function of k-means. The corresponding survival function is limβ→0(1 +

βt)−
1
β = exp(−t). Note that the loss function is directly derived from (2) as

lim
τ→∞

1
τ

n

∑
i=1

S−1
( 1

K

K

∑
k=1

S(τ‖xi − µk‖2)
)
=

n

∑
i=1

min
1≤k≤K

‖xi − µk‖2. (25)

In addition, we have

lim
τ→0

1
τ

n

∑
i=1

S−1
( 1

K

K

∑
k=1

S(τ‖xi − µk‖2)
)
=

n

∑
i=1

1
K

K

∑
k=1
‖xi − µk‖2 (26)

because S(0) = 1.

2.1.2. Fréchet Distribution

Next, we consider Fréchet distribution with the survival function defined as

S(t) = 1− exp(−tγ). (27)

where γ < 0 is the shape parameter. The generalized energy function is given by

Lγ,τ(µ) =
n

∑
i=1

(
− 1

τγ
log
[ 1

K

K

∑
k=1

exp(−τγ‖xi − µk‖2γ)
]) 1

γ
. (28)

We find that

lim
τ→0

Lγ,τ(µ) =
n

∑
i=1

lim
τ→0

(
− 1

τγ
log
[ 1

K

K

∑
k=1

exp(−τγ‖xi − µk‖2γ)
]) 1

γ

=
n

∑
i=1

(
min

1≤k≤K
‖xi − µk‖2γ

) 1
γ

(29)

=
n

∑
i=1

min
1≤k≤K

‖xi − µk‖2.

Hence, this energy function is reduced to that of the K-means algorithm as shown in the
Pareto distribution case. The estimating equation is given by

∂

∂µk
Lγ,τ(µ) =

n

∑
i=1

ωk(xi, τ, γ)(µk − xi) = 0, (30)

where

ωk(xi, τ, γ) =
(
− 1

τγ
log
[ 1

K

K

∑
`=1

exp(−τγ‖xi − µ`‖2γ)
]) 1

γ−1

× exp(−τγ‖xi − µk‖2γ)

∑K
`=1 exp(−τγ‖xi − µ`‖2γ)

‖xi − µk‖2γ−2. (31)

When we assume the unbiasedness for the estimating function in (30), that is

E{ωk(X, τ, γ)(µk − X)} = 0, (32)
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the underlying distribution has a density function proportional to

(
− 1

τγ
log M(x, µ)

) γ
1−γ M(x, µ). (33)

where

M(x, µ) =
1
K

K

∑
`=1

exp(−τγ‖x− µ`‖2γ). (34)

We confirm that

ωk(xi, τ, γ) =

{
1 if ‖xi − µk‖2 = min1≤`≤K ‖xi − µ`‖2

0 otherwise
(35)

as τ goes to 0. Then we consider the limit of τ to ∞, which provides

limτ→∞ Lγ,τ(µ) = ∑n
i=1 limτ→∞

(
− 1

τγ log
[

1
K ∑K

k=1 exp(−τγ‖xi − µk‖2γ)
]) 1

γ

= ∑n
i=1

(
1
K ∑K

k=1 ‖xi − µk‖2γ
) 1

γ
(36)

which is equal to (22). This also leads to Fuzzy c-means if we take as γ = 1/(1−m) [14].

2.2. Estimation of Variances and Mixing Proportions in Clusters

In stead of the Euclidean distance ‖xi − µk‖2, we consider ‖xi − µk‖2
Σ−1

k
= (xi −

µk)
>Σ−1

k (xi − µk) to incorporate the variance structure around µk. Bezdek et al. [14] con-
sidered a common variance structure Σk = ∑n

i=1(xi − x̄)(xi − x̄)>, where x̄ = 1/n ∑n
i=1 xi

for k = 1, . . . , K. On the other hand, we estimate distinct Σk for each µk.
For this purpose, we modify the generalized energy function in (2) to allow for a

variances Σ1, . . . , ΣK and mixing proportions π1, . . . , πK (∑K
k=1 πk = 1 and πk ≥ 0 for

k = 1, . . . , K) as

LS(θ) =
1
τ

n

∑
i=1

S−1
( K

∑
k=1

πk|Σk|−
1
2 S(τ‖xi − µk‖2

Σ−1
k
)
)

, (37)

where θ = (µk, Σk, πk)
K
k=1. We assume that S(t) is convex so that the domain of S−1(t)

can be extended from [0, 1] to [0, ∞) to allow for |Σk|−
1
2 . The estimator of this modified

generalized energy function is given as

θ̂ = argmin
θ

LS(θ), (38)

The expected generalized energy function is given by

LS(θ) =
1
τ

∫
S−1

( K

∑
k=1

πk|Σk|−
1
2 S(τ‖x− µk‖2

Σ−1
k
)
)

p(x, θ∗)dx, (39)

where p(x, θ∗) is the underlying probability density function.
For a cumulative distribution function F(t) = 1− S(t) we have LS(θ) = LF(θ) if and

only if ∑K
k=1 πk|Σk|−1/2 = 1. On the other hand, it always holds that LS(µ) = LF(µ) for the

original generalized energy function in (2).
Similarly to (6), we define

Eθ(x) =
K

∑
k=1

πk|Σk|−
1
2 S(τ‖x− µk‖2

Σ−1
k
), (40)
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and we notice that
∫
Eθ(x)dx is also independent of µ as∫

Eθ(x)dx = vdE(T
d
2 ). (41)

Lemma 2. Assume that the survival function S(t) in (1) is convex in t. We define a function G of
(µ∗, µ) as

G(θ∗, θ) =
∫

S−1(Eθ(x)) f (S−1(Eθ∗(x)))dx. (42)

Then for any θ and θ∗

G(θ∗, θ) ≥ G(θ∗, θ∗) (43)

with equality if and only if θ = θ∗.

Proof. It is obvious from Lemma 1 and the fact that
∫
Eθ(x)dx is independent of µ.

From Lemma 2, we can easily show the following theorem regarding LS(θ).

Theorem 2. If the p(x, θ∗) has a form such as

p(x, θ∗) = Z(θ∗) f (S−1(Eθ∗(x))), (44)

where Z(θ∗) > 0 is a normalizing constant. Then we have

LS(θ) ≥ LS(θ
∗). (45)

For the Pareto distribution, we have from (37)

Lτ,β(θ) =
1

τβ

n

∑
i=1

[{ K

∑
k=1

πk|Σk|−
1
2 {1 + τβ‖xi − µk‖2

Σ−1
k
}−

1
β

}−β
− 1
]

(46)

=
1
τ

n

∑
i=1

φ

( K

∑
k=1

πkw(xi, µk, Σk)

)
, (47)

where

w(xi, µk, Σk) = |Σk|−
1
2 {1 + τβ‖xi − µk‖2

Σ−1
k
}−

1
β (48)

φ(t) =
t−β − 1

β
. (49)

From (44), the underlying probability density function is

pτ,β(θ
∗) = Zτ,β(θ

∗)

{ K

∑
k=1

π∗k w(xi, µ∗k , Σ∗k )
}1+β

, (50)

where Zτ,β(θ
∗) is a normalizing constant. When β→ 0, we have

lim
β→0

Lτ,β(θ) = −
1
τ

n

∑
i=1

log
{ K

∑
k=1

πk|Σk|−
1
2 exp(−τ‖xi − µk‖2

Σ−1
k
)

}
, (51)

which is the negative log likelihood function of the normal mixture distributions apart
from a constant term (2π)−d/2 when τ = 1/2.

Similarly, we have the estimation equation of fuzzy c-means allowing for the Maha-
lanobis distance when τ → ∞. Moreover, we have k-means with the use of the Maha-
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lanobis distance when τ → ∞ and β → 0. For the other extreme cases, we observe that
both limβ→∞ Lτ,β(θ) and limτ→0 Lτ,β(θ) diverge or converge to 0 depending on the values
of πk and Σk (k = 1, . . . , K). Hence we choose large values for τ and small values for β in
the subsequent data analysis.

2.3. Estimating Algorithm

The direct optimization of Lτ,β(θ) in (46) is difficult due to the mixture structure. Thus,
we employ the idea of expectation and maximization (EM) algorithm [21] and the minorize-
maximization (MM) algorithm [17] similar to [19]. Our proposed clustering method (Pareto
clustering) is as follows in Algorithm 1.

Algorithm 1: Pareto clustering

1. Set initial values (µ(0)
k , Σ(0)

k , π
(0)
k ) for k = 1, . . . , K.

2. Repeat the following steps for t = 0, . . . , T − 1 and
k = 1, . . . , K until convergence.

3.

q(t)k (xi) =
π
(t)
k w(xi ,µ

(t)
k ,Σ(t)

k )

∑K
`=1 π

(t)
k w(xi ,µ

(t)
k ,Σ(t)

k )
(52)

µ
(t+1)
k =

∑n
i=1

{
q(t)k (xi)

}1+β
xi

∑n
i=1

{
q(t)k (xi)

}1+β (53)

Σ(t+1)
k =

τ(2− dβ)∑n
i=1
{

q(t)k (xi)
}1+β

(xi − µ
(t+1)
k )(xi − µ

(t+1)
k )>

∑n
i=1
{

q(t)k (xi)
}1+β

(54)

π
(t+1)
k =

{
∑n

i=1
{

q(t)k (xi)
}1+β{w(xi, µ

(t+1)
k , Σ(t+1)

k )
}−β

} 1
1+β

∑K
`=1

{
∑n

i=1
{

q(t)` (xi)
}1+β{w(xi, µ

(t+1)
` , Σ(t+1)

` )
}−β

} 1
1+β

(55)

4. Output (µ̂k, Σ̂k, π̂k) = (µ
(T)
k , Σ(T)

k , π
(T)
k ) for k = 1, . . . , K.

The initial values (µ
(0)
k , Σ(0)

k , π
(0)
k ) are determined by the hierarchical clustering in

a similar way to the algorithm by [22]. The derivation of the estimating algorithm is as
follows. First, we have

Lτ,β(θ) =
1
τ

n

∑
i=1

φ
( K

∑
k=1

πkw(xi, µk, Σk)
)

(56)

=
1
τ

n

∑
i=1

φ

( K

∑
k=1

qk(xi)
πkw(xi, µk, Σk)

qk(xi)

)
(57)

≤ 1
τ

n

∑
i=1

K

∑
k=1

qk(xi)φ

(
πkw(xi, µk, Σk)

qk(xi)

)
(58)

where qk(xi) is a positive weight such as ∑K
k=1 qk(xi) = 1 and φ(t) is the convex function

defined in (49). The equality holds if and only if

π1w(xi, µ1, Σ1)

q1(xi)
= · · · = πKw(xi, µK, ΣK)

qK(xi)
, (59)

which is equivalent to

qk(xi) =
πkw(xi, µk, Σk)

∑K
k=1 πkw(xi, µk, Σk)

, (k = 1, . . . , K). (60)
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Based on q(t)k (xi) in (52), we define

Q(θ|θ(t)) = 1
τ

n

∑
i=1

K

∑
k=1

q(t)k (xi)

{(
πkw(xi, µk, Σk)

q(t)k (xi)

)−β

− 1
}/

β (61)

=
1

τβ

n

∑
i=1

K

∑
k=1

[
{q(t)k (xi)}1+βπ

−β
k |Σk|

β
2 {1 + τβ(xi − µk)

>Σ−1
k (xi − µk)} − q(t)k (xi)

]
(62)

=
1

τβ

n

∑
i=1

K

∑
k=1

[
{q(t)k (xi)}1+βπ

−β
k {|V

−1
k |

β
dβ−2 + τβ(xi − µk)

>V−1
k (xi − µk)} − q(t)k (xi)

]
, (63)

where V−1
k = |Σk|β/2Σ−1

k . Then we have

∂

∂µk
Q(θ|θ(t)) = −2π

−β
k V−1

k

n

∑
i=1
{q(t)k (xi)}1+β(xi − µk) (64)

= 0 (65)

which means that

µ
(t+1)
k =

∑n
i=1{q

(t)
k (xi)}1+βxi

∑n
i=1{q

(t)
k (xi)}1+β

. (66)

Similarly, we have

∂

∂V−1
k

Q(θ|θ(t))
∣∣∣∣
µk=µ

(t+1)
k

=
1

τβ

n

∑
i=1
{q(t)k (xi)}1+βπ

−β
k

{ β

dβ− 2
|V−1

k |
β

dβ−2 Vk + τβ(xi − µ
(t+1)
k )(xi − µ

(t+1)
k )>

}
(67)

=
1

τβ

n

∑
i=1
{q(t)k (xi)}1+βπ

−β
k

{ β

dβ− 2
Σk + τβ(xi − µ

(t+1)
k )(xi − µ

(t+1)
k )>

}
(68)

= 0, (69)

which means that

Σ(t+1)
k =

τ(2− dβ)∑n
i=1{q

(t)
k (xi)}1+β(xi − µ

(t+1)
k )(xi − µ

(t+1)
k )>

∑n
i=1{q

(t)
k (xi)}1+β

. (70)

Next we consider

R(θ|θ(t)) = Q(θ|θ(t)) + λ
( K

∑
k=1

πk − 1
)

, (71)

where λ is a Lagrange multiplier. Then

∂

∂πk
R(θ|θ(t))

∣∣∣∣
µk=µ

(t+1)
k ,Σk=Σ(t+1)

k

= − 1
τ

π
−β−1
k

n

∑
i=1
{q(t)k (xi)}1+βw(xi, µ

(t+1)
k , Σ(t+1)

k )−β + λ (72)

= 0, (73)

which means

π
(t+1)
k =

{∑n
i=1{q

(t)
k (xi)}1+βw(xi, µ

(t+1)
k , Σ(t+1)

k )−β}
1

1+β

∑K
`=1{∑

n
i=1{q

(t)
` (xi)}1+βw(xi, µ

(t+1)
` , Σ(t+1)

` )−β}
1

1+β

. (74)
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Remark 2. The generalized energy function in (46) is monotonically decreasing in the estimating
algorithm. That is, we have

Lτ,β(θ
(t+1)) ≤ Q(θ(t+1)|θ(t)) ≤ Q(θ(t)|θ(t)) = Lτ,β(θ

(t)). (75)

See Appendix B for more details.

Remark 3. The estimating algorithm of fuzzy c-means by [14] is given as

u(t)
ik =

[ K

∑
`=1

(‖xi − µ
(t)
k ‖

2

‖xi − µ
(t)
` ‖2

) 1
m−1
]−m

, (76)

µ
(t)
k =

∑n
i=1 u(t)

ik xi

∑n
i=1 u(t)

ik

, (77)

where {u(t)
ik }

1/m is called the membership function of xi in cluster k at the iteration step t. These
are special cases of (52) and (53) with τ → ∞, Σk = I, πk = 1/K and β = m− 1. Hence we
observe that the original algorithm of fuzzy c-means can be interpreted as the EM algorithm.

Remark 4. In analogy with the membership function of fuzzy c-means by [14], we define q(t)k (xi)
in (52) as a membership function of xi in cluster k at the iteration step t in Pareto clustering. Hence
we estimate cluster Ck as

Ck = {xi|q
(T)
k (xi) ≥ q(T)` (xi), ` = 1, . . . , K, i = 1, . . . , n}, (78)

where ∪K
k=1Ck = {x1, . . . , xn}.

Remark 5. In high-dimensional setting p� 1, we consider the ridge regularization for Σ(t+1)
k as

in [23]
Σ(t+1)

k (α) = αΣ(t+1)
k + (1− α)σ̂2

k I,

where α = 0.95 and σ2
k is the scalar variance estimated to be the maximum value of the diagonal

elements of Σ(t+1)
k . Moreover, we take β� 1 to make Σ(t+1)

k positive definite.

2.4. Evaluation of Clustering Methods

We compare the performances of k-means, fuzzy c-means, Gaussian mixture modeling
(Gaussian), partitioning around medoids (PAM), and Pareto clustering. To implement
these methods, we use the kmeans function in the stat package [24], the cmeans function in
the e1071 package [14], the Mclust in the mclust package [22] and the pam function in the
cluster package [25] in the statistical software R, where the default settings are used for
each function. In Pareto clustering, τ = 0.5 and β = 1 are used as the default settings. We
assume that the number of clusters K is known and compare the performances as in [26].

2.4.1. Metrics

Cluster Ck (k = 1, . . . , K) estimated by a clustering method is evaluated by a predefined
reference class set D` (` = 1, . . . , L) such as

Precision(Ck, D`) =
|Ck ∩ D`|
|Ck|

Recall(Ck, D`) =
|Ck ∩ D`|
|D`|

,
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where Recall(Ck, D`) = Precision(D`, Ck). Precision(Ck, D`) counts data points in cluster
Ck belonging to class `. Hence max` Precision(Ck, D`) represents the purity of cluster Ck
regarding the classes. By taking the weighted average, we have

Purity =
K

∑
k=1

|Ck|
n

max
`

Precision(Ck, D`),

where n is the sample size. Recall(Ck, D`) counts data points in a class set D` estimated
to be in cluster Ck. Precision and recall correspond to the positive predictive value and
sensitivity, respectively [27].

A metric combining precision and recall is proposed by [28] such as

F-value =
K

∑
k=1

|Dk|
n

max
`

F(Dk, C`),

where

F(Dk, C`) =
2× Recall(Dk, C`)× Precision(Dk, C`)

Recall(Dk, C`) + Precision(Dk, C`)
,

which is the harmonic mean of Precision(Dk, C`) and Recall(Dk, C`), and is called the
F-measure [29].

The cluster level similarity between the estimated center µ̂ = (µ̂1, . . . , µ̂K) and the ref-
erence value (ground truth) of center µ∗ = (µ∗1 , . . . , µ∗K) is the centroid index (CI) proposed
by [26] as

CI(µ̂, µ∗) = max(CI′(µ̂, µ∗), CI′(µ∗, µ̂)),

where

CI′(µ̂, µ∗) =
K

∑
k=1

orphan(µ∗k )

orphan(µ∗k ) =

{
1 q` 6= k ∀`
0 otherwise

q` = argmin
1≤k≤K

‖µ̂` − µ∗k‖
2.

Here, q` indicates the index of the element of the reference center µ∗ that is the nearest
to µ̂`. The function orphan(µ∗k ) indicates whether µ∗k is an isolated element (orphan) or
not, which is not nearest to any elements of µ̂. Hence CI′(µ̂, µ∗) indicates the dissimilarity
between µ̂ and µ∗. Due to the asymmetry of CI′(µ̂, µ∗) with respect to µ̂ and µ∗, we take
the maximum of CI′(µ̂, µ∗) and CI′(µ∗, µ̂). Hence CI(µ̂, µ∗) measures how many clusters
are differently located among µ̂ and µ∗.

Another metric to measure the similarity between µ̂ and µ∗ is defined as the mean
squared error (MSE) over the number of clusters K, which is given as

MSE =
1
K

K

∑
k=1
||µ̂k − µ∗k ||

2.

Differently from Purity and F-value, MSE can be calculated based on only estimated and
reference centers µ̂ and µ∗. This property is useful in a situation where the reference class
sets D1, . . . , DK are difficult to determine but µ∗ is easily identified. We use MSE in the
simulation studies to evaluate the accuracy of µ̂ and Purity and F-value in the analysis of
benchmark datasets.
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2.4.2. Simulation Studies

We generate samples according to the density function pτ,β(θ
∗) in (50) using the

Metropolis-Hastings algorithm [30,31] as

x ∼ Zτ,β(θ
∗)

{ K

∑
k=1

π∗k w(xi, µ∗k , Σ∗k )
}1+β

, (79)

where µ∗1 = (0, 0)>, µ∗2 = (5, 5), µ∗3 = (−5,−5)>, π∗1 = 0.5, π∗2 = 0.2, π∗3 = 0.3 and

Σ∗1 =

(
2 −0.5
−0.5 1

)
, Σ∗2 =

(
1 0
0 1

)
, Σ∗3 =

(
1 0
0 1

)
.

Figure 1 illustrates the perspective plots and contour plots for (τ, β) = (0.5, 1), (0.5, 0),
(10, 1). The shape of pτ,β(θ

∗) varies according to the values of τ and β. The Gaussian
mixture distribution corresponds with τ = 0.5 and β = 0 in panel (b). When β = 1,
the variance of each component increases and the contours connect with each other. On the
other hand, for a large value of τ = 10, the distribution shows high peaks around the
centers. This indicates that pτ,β(θ

∗), including fuzzy c-means when τ → ∞, has a quite
different shape from he Gaussian mixture distribution. Other versions of the shapes are
also illustrated in Appendix C. The performance of each method is evaluated by MSE
based on 100 simulated samples with sample size n = 3000.
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Figure 1. Perspective plots (left panels) and contour plots for pτ,β(θ

∗) with boundaries marked in red for (a) τ = 0.5, β = 1,
(b) τ = 0.5, β = 0 and (c) τ = 10, β = 1.

2.4.3. Benchmark Data Analysis

The performance of our proposed method is evaluated using benchmark datasets
prepared by [32]. It includes a variety of datasets with low and high cluster overlap, various
sample sizes, low and high dimensionalities and unbalanced cluster sizes. Hence, these
datasets are suitable for clarifying the statistical performance of the clustering methods.
In this setting, we compare the performance of k-means, fuzzy c-means, Gaussian, PAM,
and Pareto clustering as well as the variants of Pareto clustering with several values of
(τ, β) as explained in Table S1. The characteristics of the benchmark datasets such as the
sample sizes, the number of clusters, and dimensionality are summarized in Table S2.

3. Results

Figure 2 illustrates the results of MSE in the simulation studies. Pareto clustering pro-
vides the best performance in panel (a), where the samples are generated by the underlying
distribution p0.5,1(θ

∗) of Pareto clustering. The shape of the distribution is similar to Gaus-
sian mixture; however, the variance of each component becomes larger and the contour
lines are connected to each other as in panel (a) of Figure 1. On the other hand, in panel
(c), the variance of each component becomes smaller and contour lines are completely
separated. In the both cases, the performances of the Gaussian mixture are clearly degener-
ated. In the case of panel (b) in which the data are generated from the Gaussian mixture,
the performances are comparable to each other, suggesting that k-means, fuzzy c-means,
PAM, and Pareto clustering are robust to the underlying distributions to some extent.

In the benchmark data analysis, metrics of Purity, F-value, and CI are evaluated in
Tables S3–S5, where variance Σk and mixing proportion πk (k = 1, . . . , K) in Pareto clus-
tering are estimated. For the two-dimensional shape datasets such as Flame, Compound,
D31, Aggregation, Jain, Pathbased, and Spiral in the upper rows of Table S3, existing
methods such as k-means, fuzzy c-means, PAM, and Gaussian mixture outperform our
proposed methods. In high-dimensional data with d = 1024 (Dim1024), k-means and
a Gaussian mixture do not work well. Other methods achieved the maximum value (1)
of Purity. For datasets with a large number of clusters, D31 (K = 31) and A3 (K = 50),
PAM performs best. For datasets with large sample size of n ≥ 5000 and a moderate
number of clusters K = 8, 15, our proposed method performs best. As for the effect of τ,
it barely affects the performance of our proposed method. On the other hand, β slightly
affects the performance, resulting that the intermediates among Gaussian mixture, Pareto
clustering, k-means, and fuzzy c-means, such as GP, GPKF1, GPKF10, and GPKF100, show
relatively good performances as a whole. We observe similar tendencies regarding the
F-value (Table S4).
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(a) τ = 0.5, β = 1

(b) τ = 0.5, β = 0

(c) τ = 10, β = 1

Figure 2. Mean squared errors (MSE) on the log scale based on 100 random samples for each method.
The samples are generated based on pτ,β(θ

∗) with (a) τ = 0.5, β = 1, (b) τ = 0.5, β = 0 and (c)
τ = 10, β = 1.
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As for the CI, the values are relatively small for all methods, suggesting that cluster
locations are properly estimated. However, some methods do not work for some datasets:
Gaussian mixture for A3 (CI = 18), Birch1 (CI = 34) and Birch2 (CI = 49); k-means for D31
(CI = 7), Dim1024 (CI = 4), A3 (CI = 6), Birch1 (CI = 12) and Birch2 (CI = 23); and fuzzy
c-means for D31 (CI = 5), A3 (CI = 7), Birch1 (CI = 18) and Birch2 (CI = 25). On the other
hand, PAM and our proposed methods show stable results. The results, where Σk and
πk are not estimated and fix Σk = I and πk = 1/K in Pareto clustering, are shown in
Tables S6–S8.

4. Discussion

We propose a new clustering method based on the generalized energy function derived
from the Kolmogorov–Nagumo average. The survival function used in the generalized en-
ergy function plays an important role to ensure the minimum consistency of the parameters,
which is shown in Lemma 1 using the property of divergence G(µ∗, µ). We consider two
examples of the survival function based on the Pareto and Fréchet distributions and show a
connection among k-means, fuzzy c-means, and Gaussian mixture, leading to new methods
that are intermediates among them. For the underlying distribution of our method in (50),
we observe that k-means and fuzzy c-means do not have probabilistic interpretations
because the corresponding underlying distributions become singular. We also propose an
estimating algorithm for cluster locations, variances, and mixing proportions using the
MM algorithm.

Simulation studies and benchmark data analysis show that intermediates among k-
means, fuzzy c-means, and the Gaussian mixture perform well. This observation suggests
that our proposed method has a wide range of applications in which k-means, fuzzy
c-means, and the Gaussian mixture are used. For example, simultaneous deep learning
and clustering [33] in which a deep neural network and k-means are jointly used, image
segmentation using fuzzy c-means in a deep neural network [34], an application of fuzzy
c-means in classification problems [35] and a parallel computation for large datasets by
fuzzy c-means [36] can be investigated in the framework of the generalized energy function
by the Pareto distribution.

As for the tuning parameters τ and β, we consider an approach using the leave-one-
out cross validation in the Supplementary Materials in order to improve the clustering
performance. The objective function in the leave-one-out cross validation is derived from
an anchor loss as in [37] to estimate the optimal values of τ and β properly. The benchmark
data analysis suggests that the performance is insensitive to the values of τ but is sensitive
to the values of β. Hence, this approach should be useful to determine the optimal value
of β.

Banerjee et al. [38] has proposed a clustering method based on Bregman divergences
and clarified the relationship between the exponential families and the corresponding
Bregman divergences. They separately consider hard and soft clustering; the former
corresponds to k-means style clustering and the latter corresponds to mixture model
clustering. In our proposed model, the tuning parameters τ and β bridge the gap between
them and the performances are investigated by simulation studies and benchmark datasets.
The extension of our method by replacing the squared distance ‖xi − µk‖2

Σ−1
k

with Bregman

divergence should improve its practical flexibility and utility. When β or γ divergence is
used, the clustering method should be robust to contamination in observations as suggested
by [39,40].

It is well known that MM algorithm and EM algorithm converge to a local optimum
and the resultant clusters are sensitive to initial values [41]. One way to circumvent
this difficulty is to prepare several sets of initial values and select the best one among
them such as the global k-means algorithm [42]. Another approach is to combine MM
algorithm and genetic algorithm (GA) to expand thoroughly the search space for the
optimal solution [41,43]. The both approach can be incorporated into the Pareto clustering
to make it robust to the initial values and to escape from local optimal solutions.
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Appendix A. Derivation of the Volume Constant vd

We define

Eµ(x) =
1
K

K

∑
k=1

S(τ‖x− µk‖2). (A1)

Then we have∫
S(τ‖x− µk‖2)dx = τ−

1
2

∫
S(y>y)dy, (∵ y = τ

1
2 (x− µk)) (A2)

= τ−
1
2

∫ ∞

0
S(r2)

2π
d
2

Γ( d
2 )

rd−1dr, (from polar coordinate system) (A3)

=
π

d
2

Γ( d
2 )τ

1
2

∫ ∞

0
S(t)t

d−2
2 dt, (∵ t = r2) (A4)

=
π

d
2

Γ( d
2 )τ

1
2

{[
2
d

t
d
2 S(t)

]∞

0
+

2
d

∫ ∞

0
t

d
2 f (t)dt

}
, (∵ S′(t) = − f (t)) (A5)

=
2π

d
2

Γ( d
2 )τ

1
2 d

E[T
d
2 ] (A6)

The last equality holds under a condition that limt→∞ t
d
2 S(t) = 0. Hence we have

∫
Eµ(x)dx =

2π
d
2

Γ( d
2 )τ

1
2 d

E[T
d
2 ]. (A7)

When d = 2, we have ∫
Eµ(x)dx =

π

τ
1
2

E[T]. (A8)

https://www.mdpi.com/article/10.3390/e23050518/s1
https://www.mdpi.com/article/10.3390/e23050518/s1
http://cs.uef.fi/sipu/datasets/
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Appendix B. Monotone Decrease of the Generalized Energy Function

The Q function at iteration t in the estimating algorithm is defined as

Q(θ|θ(t)) = 1
τβ

n

∑
i=1

K

∑
k=1

[
{q(t)k (xi)}1+βπ

−β
k |Σk|

β
2 {1 + τβ(xi − µk)

>Σ−1
k (xi − µk)} − q(t)k (xi)

]
, (A9)

where

q(t)k (xi) =
π
(t)
k w(xi, µ

(t)
k , Σ(t)

k )

∑K
k=1 π

(t)
k w(xi, µ

(t)
k , Σ(t)

k )
, (k = 1, . . . , K). (A10)

The estimate of µk is given as

µ
(t+1)
k =

∑n
i=1{q

(t)
k (xi)}1+βxi

∑n
i=1{q

(t)
k (xi)}1+β

=
n

∑
i=1

v(t)k (xi)xi, (k = 1, . . . , K), (A11)

where

v(t)k (xi) =
{q(t)k (xi)}1+β

∑n
i=1{q

(t)
k (xi)}1+β

.

Here we observe that

n

∑
i=1

v(t)k (xi)(xi − µk)
>Σ−1

k (xi − µk) (A12)

=
n

∑
i=1

v(t)k (xi)(xi − µ
(t+1)
k )>Σ−1

k (xi − µ
(t+1)
k ) +

n

∑
i=1

v(t)k (xi)(µ
(t+1)
k − µk)

>Σ−1
k (µ

(t+1)
k − µk) (A13)

Hence we have

Q(θ|θ(t))−Q(θ|θ(t))|
µk=µ

(t+1)
k

(A14)

=
1

τβ
π
−β
k |Σk|

β
2

n

∑
i=1
{q(t)k (xi)}1+β{1 + τβ(xi − µk)

>Σ−1
k (xi − µk)} (A15)

− 1
τβ

π
−β
k |Σk|

β
2

n

∑
i=1
{q(t)k (xi)}1+β{1 + τβ(xi − µ

(t+1)
k )>Σ−1

k (xi − µ
(t+1)
k )} (A16)

=π
−β
k |Σk|

β
2 c(t)q

n

∑
i=1

v(t)k (xi){(xi − µk)
>Σ−1

k (xi − µk)− (xi − µ
(t+1)
k )>Σ−1

k (xi − µ
(t+1)
k )} (A17)

=π
−β
k |Σk|

β
2 c(t)q

n

∑
i=1

v(t)k (xi)(µ
(t+1)
k − µk)

>Σ−1
k (µ

(t+1)
k − µk) ≥ 0 (A18)

where

c(t)q =
n

∑
i=1
{q(t)k (xi)}1+β. (A19)

The estimate of Σk is given by

Σ(t+1)
k = τ(2− dβ)

n

∑
i=1

v(t)k (xi)(xi − µ
(t+1)
k )(xi − µ

(t+1)
k )>,

where dβ < 2. Hence we have
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Q(θ|θ(t))|
µk=µ

(t+1)
k
−Q(θ|θ(t))|

µk=µ
(t+1)
k ,Σk=Σ(t+1)

k
(A20)

=
1

τβ
π
−β
k |Σk|

β
2

n

∑
i=1
{q(t)k (xi)}1+β{1 + τβ(xi − µ

(t+1)
k )>Σ−1

k (xi − µ
(t+1)
k )} (A21)

− 1
τβ

π
−β
k |Σ

(t+1)
k |

β
2

n

∑
i=1
{q(t)k (xi)}1+β{1 + τβ(xi − µ

(t+1)
k )>Σ(t+1)

k

−1
(xi − µ

(t+1)
k )} (A22)

=
1

τβ
π
−β
k |Σk|

β
2 c(t)q

n

∑
i=1

v(t)k (xi){1 + τβ(xi − µ
(t+1)
k )>Σ−1

k (xi − µ
(t+1)
k )} (A23)

− 1
τβ

π
−β
k |Σ

(t+1)
k |

β
2 c(t)q

n

∑
i=1

v(t)k (xi){1 + τβ(xi − µ
(t+1)
k )>Σ(t+1)

k

−1
(xi − µ

(t+1)
k )} (A24)

=
1

τβ
π
−β
k |Σk|

β
2 c(t)q

[
1 + τβtrace

{
Σ−1

k

n

∑
i=1

v(t)k (xi)(xi − µ
(t+1)
k )(xi − µ

(t+1)
k )>

}]
(A25)

− 1
τβ

π
−β
k |Σ

(t+1)
k |

β
2 c(t)q

[
1 + τβtrace

{
Σ(t+1)

k

−1 n

∑
i=1

v(t)k (xi)(xi − µ
(t+1)
k )(xi − µ

(t+1)
k )>

}]
(A26)

=
1

τβ
π
−β
k |Σk|

β
2 c(t)q

[
1 + τβtrace

{
Σ−1

k
1

τ(2− dβ)
Σ(t+1)

k

}]
− 1

τβ
π
−β
k |Σ

(t+1)
k |

β
2 c(t)q

[
1 +

dβ

2− dβ

]
(A27)

Here we notice that

Q(θ|θ(t))|
µk=µ

(t+1)
k
−Q(θ|θ(t))|

µk=µ
(t+1)
k ,Σk=Σ(t+1)

k
≥ 0 (A28)

⇔
|Σ(t+1)

k |
β
2 2

2−dβ

|Σk|
β
2 [1 + β

2−dβ trace(Σ−1
k Σ(t+1)

k )]
≤ 1 (A29)

⇔ 2
2− dβ

≤ |Σ−1
k Σ(t+1)

k |−
β
2

{
1 +

β

2− dβ
trace(Σ−1

k Σ(t+1)
k )

}
, (A30)

where trace{Σ−1
k Σ(t+1)

k } = trace{Σ−1/2
k Σ(t+1)

k Σ−1/2
k } = λ1 + . . . + λd ≥ 0 with λj being

the non-negative eigen value of Σ−1/2
k Σ(t+1)

k Σ−1/2
k . Here we have

|Σ−1
k Σ(t+1)

k |−
β
2

{
1 +

β

2− dβ
trace(Σ−1

k Σ(t+1)
k )

}
(A31)

= (λ1 · · · λd)
− β

2

{
1 +

β

2− dβ
(λ1 + · · ·+ λd)

}
(A32)

≥
(

λ1 + · · ·+ λd
p

)− dβ
2 {

1 +
β

2− dβ
(λ1 + · · ·+ λd)

}
, (∵ β > 0) (A33)

= Λ−
dβ
2 p

dβ
2

(
1 +

β

2− dβ
Λ
)

, (A34)

where Λ = λ1 + · · ·+ λd ≥ 0. The last term attains the minimum at Λ = d, leading to

2
2− dβ

≤ |Σ−1
k Σ(t+1)

k |−
β
2

{
1 +

β

2− dβ
trace(Σ−1

k Σ(t+1)
k )

}
. (A35)

As for πk we define

R(θ|θ(t)) = Q(θ|θ(t)) + λ

( K

∑
k=1

πk − 1
)
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and we have

∂R(θ|θ(t))
∂πk

∣∣∣∣
µk=µ

(t+1)
k ,Σk=Σ(t+1)

k ,πk=π
(t+1)
k

= 0 (A36)

∂2R(θ|θ(t))
∂π2

k

∣∣∣∣
µk=µ

(t+1)
k ,Σk=Σ(t+1)

k

=
1 + β

τ

n

∑
i=1
{q(t)k (xi)}1+βπ

−β−2
k |Σ(t+1)

k |
β
2

× {1 + τβ(xi − µ
(t+1)
k )>Σ(t+1)

k

−1
(xi − µ

(t+1)
k )} (A37)

≥ 0, (A38)

where

π
(t+1)
k =

{∑n
i=1{q

(t)
k (xi)}1+βw(xi, µ

(t+1)
k , Σ(t+1)

k )−β}
1

1+β

∑K
`=1{∑

n
i=1{q

(t)
` (xi)}1+βw(xi, µ`, Σ(t+1)

` )−β}
1

1+β

. (A39)

Hence, we have

Q(θ|θ(t))|
µk=µ

(t+1)
k ,Σk=Σ(t+1)

k
−Q(θ|θ(t))|

µk=µ
(t+1)
k ,Σk=Σ(t+1)

k ,πk=π
(t+1)
k
≥ 0. (A40)

Inequations (A18), (A35) and (A40) hold for k = 1, . . . , K. As a result, we have

Q(θ|θ(t))−Q(θ(t+1)|θ(t)) ≥ 0, ∀θ (A41)

Hence we have

Lτ,β(θ
(t+1)) ≤ Q(θ(t+1)|θ(t)) ≤ Q(θ(t)|θ(t)) = Lτ,β(θ

(t)). (A42)

Appendix C. Perspective Plots and Contour Plots for pτ,β(θ
∗)
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Figure A1. Perspective plots (left panels) and contour plots (right panels) for pτ,β(θ
∗).
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