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Abstract: An analytical solution for a master equation describing the dynamics of a qubit inter-
acting with a nonlinear Kerr-like cavity through intensity-dependent coupling is established. A
superposition of squeezed coherent states is propped as the initial cavity field. The dynamics of
the entangled qubit-cavity states are explored by negativity for different deformed function of
the intensity-dependent coupling. We have examined the effects of the Kerr-like nonlinearity and
the qubit-cavity detuning as well as the phase cavity damping on the generated entanglement.
The intensity-dependent coupling increases the sensitivity of the generated entanglement to the
phase-damping. The stability and the strength of the entanglement are controlled by the Kerr-like
nonlinearity, the qubit-cavity detuning, and the initial cavity non-classicality. These physical parame-
ters enhance the robustness of the qubit-cavity entanglement against the cavity phase-damping. The
high initial cavity non-classicality enhances the robustness of the qubit-cavity entanglement against
the phase-damping effect.

Keywords: qubit-cavity detuning; Kerr-like medium; phase-damping; entanglement

1. Introduction

The study of quantum coherence dynamics induced by open nonlinear qubit-photon
systems has recently become a significant area that contributes to the development of
potential quantum information applications [1–6]. We can cite as examples of potential ap-
plications in quantum teleportation protocol [7], cryptography [8], and computation [9,10],
generation of entangled states [11]. Entanglement is an essential quantum information
resource in quantum communication [12], it has been extensively explored theoretically and
experimentally [13,14]. For pure states and closed quantum systems, the entropy is a good
measure of entanglement [15]. However, for the mixed states and open systems (specially
qubit-photon system that has (2⊗ n)-quantum state), the entanglement dynamics can be
quantified by the negativity and concurrence.

Interaction of a qubit with a nonclassical light cavity field has fundamental and
practical roles in the enhancement or generation of quantum effects [16,17] as quantum
coherence and quantum correlations. Therefore, non-classicality in the cavity field needs to
be explored further for the quantum information resources. An important resource of the
cavity field non-classicality is the squeezed coherent state that was proposed as extension
for the coherent state and has essential contributions in quantum optics [17–19]. The key
feature that distinguishes quantum from classical is the superposition of quantum states.

Entropy 2021, 23, 496. https://doi.org/10.3390/e23050496 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-4596-137X
https://doi.org/10.3390/e23050496
https://doi.org/10.3390/e23050496
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23050496
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23050496?type=check_update&version=1


Entropy 2021, 23, 496 2 of 11

The superposition of coherent state is potentially useful in many quantum information
applications [20–23]. The superposition of coherent state has been experimentally realized
in several systems such as superconducting Josephson junctions, [24,25] and linear optical
systems [26]. We suggest here a new superposition scheme of squeezed coherent states to
prepare a nonclassical light cavity field with a strong non-classicality.

Resources of the nonlinearity effects in qubit-photon interactions (including Kerr-like
nonlinearity and intensity-dependent coupling) were realized experimentally in artifi-
cial qubit systems as superconducting circuits [27,28], optomechanical systems [29]. The
nonlinearity effects have the ability to excite the qubit-photon interactions to improve
the generated quantum coherence [30,31]. The qubit-field interactions are generalized
to intensity-dependent qubit-field coupling [32]. The effects of the intensity-dependent
coupling on the non-classical effects have been studied in a hybrid Cooper pair box qubit
interacting with a resonator [33,34]. It is used to enhance the non-local correlations of two
coupled qubits [35].

In open systems, the quantum qubit-photon coherence dynamics suffer from the
irreversible effects [36–39] as: dissipation and decoherence. Different types of damping
for the qubit and the cavity arise from these dissipation/decoherence effects, such as:
amplitude damping, phase-damping, and thermal damping. There are several approaches
to describe the effects of the coupling between the system and its surrounding reservoir.
For diagonal effective Hamiltonian, qubit-photon coherence dynamics has been studied for
a phase and thermal damped cavity [40]. The dynamics of quantum correlations in several
qubit-photon systems were investigated without the effects the coupling to the surround-
ing environment [41–44]. The method used in this paper can be used to investigate the
dynamics of quantum information resources in other qubit-photon structures while taking
into account the implications of coupling to the external environment.

In this paper, we analyze the effects of intensity-dependent coupling, Kerr nonlinear-
ity, phase cavity damping and qubit-cavity detuning on the dynamics of the qubit-cavity
entanglement. The paper is organized as follow; In the Section 2, the model of dissipative
nonlinear qubit-cavity interactions is presented with its analytical solutions. In Section 3,
the dynamics of the generated qubit-cavity entanglement are investigated. We end up with
a conclusion.

2. Physical Model

Here, the proposed physical model is motivated by the realizations of: (1) the nonlin-
earity in artificial qubit system [45], for examples: Resonator self-Kerr-nonlinearity was
realized with the SQUID cosine potential to include nonquadratic corrections [28]. (2)
The intensity-dependent coupling was constructed based on a Cooper-pair box with a
superconducting loop embedded in a microwave cavity field [32,46]. Therefore, we con-
sider a two-level atom (qubit with the upper state |1〉 and the lower |0〉 states) interacting
off-resonantly with a dissipative nonlinear Kerr-like cavity through intensity-dependent
coupling. We assume that the environment is at zero temperature and the system deco-
herence is due to a phase-damping reservoir. This interaction preserves the energy of the
system. The Hamiltonian of the system-reservoir is,

ĤSR = ω f ψ̂†ψ̂ + ωq
σz
2 + χψ̂2†ψ̂2 + ∑i ωiπ̂

†
i π̂i + λ(ψ̂Y(ψ̂†ψ̂)|1〉〈0|

+Y(ψ̂†ψ̂)ψ̂†|0〉〈1|) + ηi(π̂
†
i ψ̂†ψ̂ + ψ̂†ψ̂π̂i).

(1)

Here ψ̂†(ψ̂) represents the cavity field operators, and λ is the qubit-cavity coupling. ωq
and σz = |1〉〈1| − |0〉〈0| are the frequency and the population inversion operator of the
qubit. Where π̂i and ωi denote the operators and frequencies of i-th bath oscillators, and
ηi represents the system-bath coupling strength. χ > 0 is the Kerr-like nonlinearity, i.e.,
the two-photon coupling strength proportional to the third-order nonlinear susceptibility.
However, Ŷ(ψ̂†ψ̂) denotes the function that describes the intensity-dependent qubit-field
coupling, if Ŷ(ψ̂†ψ̂) = Î and χ = 0, the Hamiltonian reduces to that of the standard
Jaynes-Cummings model.
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The dynamics of the qubit-cavity state R̂(t) under the phase cavity damping is ex-
plored by [47]

dR̂(t)
dt

= −i[Ĥ, R̂] + γ([ψ̂†ψ̂R̂(t), ψ̂†ψ̂] + [ψ̂†ψ̂, R̂(t)ψ̂†ψ̂]), (2)

where the system Hamiltonian is given by: H = ω f (ψ̂
†ψ̂ + 1

2 σz) +
∆
2 σz + χψ̂2†ψ̂2

+λ(ψ̂Y(ψ̂†ψ̂)|1〉〈0|+ h.c.). ∆ = ωq −ω f represents the qubit-cavity rate. γ = η(2n̄ + 1) is
the phase-damping with a mean occupation number n̄, and ηi = η is the coupling to the
reservoir of oscillators [48].

To find analytical solution of Equation (2) in the strong coupling regime, we use the
dressed-states method [49]. The Hamiltonian preserves the number of excitations in the sys-
tem (which is not the same as preservation of energy). This allows one to look for solutions
separately in each manifold with a fixed number of excitations, i.e., in the form of super-
positions of the eigenstates |E±n 〉. In the qubit-cavity basis: {|i, n〉}(i = 0, 1, n = 0, 1, 2, ...,
and |n〉 is the number state), the eigenstates |E±n 〉 and the eigenvalues V±n of the system
Hamiltonian H are

|E0〉 = |0, 0〉, V0 = −
ωq

2
,

|E±n 〉 = X±n |1, n〉 ± X∓n |0, n + 1〉, (3)

V±n = ω(n +
1
2
) +

1
2
[Kn + Kn+1]±Λn, (4)

Λn =
√
[δ + Kn − Kn+1]2 + λ2(n + 1)Y2(n),

with the Kerr-like nonlinearity function: Kn = n2χ− nχ and

X±n =
1√
2

√
1± δ + Kn − Kn+1

Λn
.

We apply now the canonical transformation,

Ȧ(t) =
∂

∂t
{eiĤtR̂(t)e−iĤt}, (5)

then in the basis: {Ŝm
11 = |E+

m〉〈E+
m |, Ŝm

12 = |E+
m〉〈E−m |, Ŝm

21 = |E−m〉〈E+
m |, Ŝm

22 = |E−m〉〈E−m |},
the Equation (2) takes the form

Ȧ(t) = 2γ
∞

∑
m,n=0

(TmŜm
11 + GjŜm

11)A(TnŜn
11 + GnŜn

11)

+DmDn(Ŝm
12 AŜn

21e2iβmnt + Ŝm
21 AŜn

12e−2iβmnt) (6)

−γ
∞

∑
m=0

(T2
m + D2

m)(Ŝ
m
11 A + AŜm

11) + (G2
m + D2

m)(Ŝ
m
22 A + AŜm

22),

where Tm = m + (X−m )2, βmn = Λm −Λn, Gm = m + (X+
m )2, and Dm = X+

m X−m .
To find analytical solutions, we consider that the initial state of the system is given by

R̂(0) = A(0) = ∑i,j=0 PiPj|1, i〉〈1, j| = ∑i,j=0 PiPj [X+
i X+

j |E
+
i 〉〈E

+
j |

+X+
i X−j |E

+
i 〉〈E

−
j |+ h.c.],

(7)

The upper state |1〉 is considered to be the initial state for the qubit. The initial cavity field is
a superposition of coherent squeezed coherent states (SCs) |ζS〉, which is the most general
Gaussian pure state. It is defined as
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|ζS〉 =
√

N[|ζ, r〉+ s| − ζ, r〉] =
∞

∑
n=0

Pn|n〉, (8)

where the coherent squeezed coherent state [18] is given by

|ζ, r〉 =
∞

∑
n=0

1√
n!α

(
β

2α
)

n
2 e−

1
2 |ζ|

2+
β

2α ζ2
Hn(

ζ√
2βα

)|n〉. (9)

We have used here α = cosh r, β = eiθ sinh r. Hn(x) is the Hermite polynomial of the
order n. where |ζ|2 represents the initial mean photon number operator, and s is the SCs
parameter. The SCs can be reduced to squeezed coherent state for s = 0. Even squeezed
coherent state is realized for s = 1. The normalization factor N has the following expression,

N =
1

[1 + s2 + 2s〈−ζ, r|ζ, r〉] . (10)

By using the initial density matrix A(0) of Equation (12) and applying the strong coupling
approximation (γ� λ) (i.e., we neglect the oscillatory terms from Equation (5)), then the
elements Hεκ

mn = 〈Eε
m|A(t)|Eκ

n〉 (for all ε = ±, κ = ±, and for m 6= n) of the density matrix
A(t) are given by

H++
mn = PmPnX+

m X+
n e−γt[[m−n+X+2

m −X+2
n ]2+(X+

m X+
n )2+(X+

n X+
m )2],

H−−mn = PmPnX−m X−n e−γt[[m−n+X−2
m −X−2

n ]2+(X+
m X+

n )2+(X+
n X+

m )2],
H+−

mn = PmPnX+
m X−n e−γt[[m−n+X+2

m −X−2
n ]2+(X+

m X+
n )2+(X+

n X+
m )2],

H−+mn = PmPnX−m X+
n e−γt[[m−n+X−2

m −X+2
n ]2+(X+

m X+
n )2+(X+

n X+
m )2].

(11)

For m = n, the elements Hεκ
n = 〈Eε

n|A(t)|Eκ
n〉 (for only ε = κ = ±) verify

Ḣ±±n = 2γ(X+
n X−n )2H∓∓n − 2γ(X+

n X−n )2H±±n . (12)

Now, we use the expressions of the elements Hεκ
mn of the density matrix A(t) and the inverse

canonical transformation of Equation (5): R̂(t) = e−iĤt A(t)eiĤt, to determine the solution
of the master equation in the basis: {|i, n〉}(i = 0, 1) which is:

R̂(t) = ∑m,n=0[X++
mn H̃++

mn + X++
mn H̃+−

mn + X++
mn H̃−+mn + X−+mn H̃−−mn ]|1, n〉〈1, n|

+ [X+−
mn H̃++

mn + X−−mn H̃+−
mn − X++

mn H̃++
mn − X−+mn H̃−−mn ]|1, n〉〈0, n + 1|

+ [X−+mn H̃++
mn − X++

mn H̃+−
mn + X−−mn H̃−+mn − X+−

mn H̃−−mn ]|0, n + 1〉〈1, n|
+ [X−−mn H̃++

mn − X+−
mn H̃+−

mn − X−+mn H̃−+mn + X−+mn H̃−−mn ]|0, n + 1〉〈0, n + 1|.

(13)

where Xε,κ
mn = Xε

mXκ
n and H̃ε,κ

mn = Hεκ
mne−i(Eε

m−Eκ
n)t.

Now if we take γ→ ∞, then the off-diagonal elements Hεκ
mn vanish, but the diagonal

elements are given by: H±±n = 1
2 PnPn. Therefore, the qubit and the cavity field end up in a

separable (non-entangled) state: R̂(γ→ ∞) = 1
2 (|1〉〈1|+ |0〉〈0|)⊗ |ζS〉〈ζS|. The qubit is in

a statistically mixed state while the cavity returns to the state |ζS〉.
In the following section we use the density matrix elements derived here to study

the dynamical properties of entropies and entanglement taking into account the cavity
phase damping.

3. Qubit-Cavity Entanglement Dynamics

Here, we employ the negativity to quantify the qubit-cavity entanglement. For an
arbitrary dimension (m ⊗ n)-quantum state (m << n) R̂(t), the negativity is defined
by [50,51],

N(t) =
1

m− 1
[‖R̂PT‖1 − 1]. (14)
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where ‖R̂PT‖1 represents the trace norm of the partial transpose matrix R̂PT of the state R̂
with respect to the qubit subsystem. The negativity can be generalized for qubits (n > 2)
instead of qubits [50] to analyze quantitatively the entanglement between their sub-systems.
Consequently, the negativity is used to investigate the entanglement in (2⊗ n)-[52] and
(3⊗ n)-quantum systems.

Based on the cavity basis {|n〉}(n = 0, 1, 2, ...), we define the cavity matrices
M̂ij = 〈i|R̂(t)|j〉 (i, j = 1, 0), and represent the qubit-cavity density matrix of Equation (13) as:

R̂(t) =
(

M̂11 M̂10
M̂01 M̂00

)
. (15)

Therefore, the partial transpose matrix R̂PT(t) of the qubit-cavity state R̂(t) in the basis
{|1〉, |0〉} is defined by

R̂PT(t) =
(

M̂11 M̂01
M̂10 M̂00

)
. (16)

By using the negative eigenvalues µk of the partial transpose matrix, the qubit-cavity
negativity is given by:

N(t) = −∑
k

µk. (17)

If N(t) = 0.5, then the qubit-cavity system is in a maximally entangled state while N(t) = 0
means that the system is in a disentangled state. Otherwise, for 0 < N(t) < 0.5, the qubit-
cavity state has partial entanglement.

3.1. Case of Ŷ(ψ̂†ψ̂) = Î

Figure 1a shows of the generated amount of the qubit-cavity entanglement when
the intensity-dependent coupling is constant Ŷ(n) = 1 and the cavity field is initially
in squeezed coherent state with different values of the Kerr-like nonlinearity. For the
vanishing Kerr-like nonlinearity, the qubit-cavity detuning and the phase-damping, the
qubit-cavity interaction generates a partial and maximal qubit-cavity entanglement with
stochastic oscillations. Dashed curve of Figure 1a proves that the Kerr-like nonlinearity
reduces the amplitudes of the negativity oscillations. The qubit-cavity entanglement is
more stable and oscillate with 2π-period. For the off-resonant case ∆ = 7λ, see dashed-
dotted curve of Figure 1a, we find that the enhancement of the qubit-cavity detuning
decreases the upper values of the negativity. During the time interval λt ∈ [0, 4π], the
negativity rapidly oscillates with high frequencies. For λt > 4π, dashed-dotted curve
of Figure 1b shows that the negativity is time-independent, i.e., the qubit-cavity system
reaches a partially entangled state. This generated time-independent entangled state can
be used to implement quantum computation [9].

Figure 1b shows the effect of the phase cavity decoherence γ = 0.1λ on the qubit-
cavity entanglement dynamics. The rising of the phase coupling to the environment
reduces the amplitudes of the negativity oscillations. After a particular time, the qubit-
cavity entanglement vanishes. This means that the qubit and the cavity field are dis-
entangled due to the increase of the phase decoherence. After a particular time, the
dashed and dashed-dotted curves show that the robustness of the generated qubit-cavity
entanglement can be enhanced in the presence of the Kerr-like nonlinearity and the
qubit-cavity detuning. The vanishing of the qubit-cavity entanglement, due to the phase
decoherence, can be delayed. For the Kerr-like nonlinearity χ > 0, the green dashed
plot shows that the phenomena of the sudden death and birth in the entanglement
dynamics occur around λt/π = 4 [53–56]. Figure 2 shows the effect of the initial cav-
ity non-classicality by considering that the cavity is initially in the even superposition
squeezed coherent state s = 1 with the same the parameter values of Figure 1. We note
that the high squeezed coherent non-classicality enhances the strength and the stability
of the generated entanglement compared to the one generated with the coherent state.
For the resonant case, the negativity has regular oscillatory behavior. Solid curve of
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Figure 2a shows that the qubit-cavity state can be stabilized in a maximally entangled state
in particular time intervals in which N(t) = 0.5. Dashed curve of Figure 2a confirms the
effect of the Kerr-like nonlinearity that is observed in the previous cases. The amplitudes
of the negativity decrease. The qubit-cavity entanglement oscillates with a π-period, and
its amount is less than the one of the case s = 0. The initial even coherent states (s = 1)
induce stronger entanglement. Figure 2b illustrates the combined effects of the phase cavity
damping, the Kerr-like, and the detuning as well as the high initial field non-classicality.
The negativity is plotted with the same parameter values of Figure 2a but for γ = 0.1λ.
We find that the high squeezed coherent non-classicality reduces the effect of the phase-
damping, and inhibits the vanishing qubit-cavity entanglement. It is more robust against
the phase-damping with the increase of the Kerr-like nonlinearity and the detuning.
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Figure 1. Dynamics of the entanglement for r = 0.5, Ŷ(ψ̂†ψ̂) = Î, and the mean photon number |ζ|2 = 16 when the cavity
field is initially in squeezed coherent state with different values of the Kerr-like nonlinearity and qubit-cavity detunings.
For γ = 0 in (a) and γ = 0.1λ in (b).
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Figure 2. Qubit-cavity entanglement dynamics for r = 0.5, Ŷ(ψ̂†ψ̂) = Î, and |ζ|2 = 16 when the cavity field is initially in
the even squeezed coherent state with different values of the Kerr-like nonlinearity and the detuning. For γ = 0 in (a) and
γ = 0.1λ in (b).

3.2. Case of Ŷ(ψ̂†ψ̂) =
√

ψ̂†ψ̂

Figures 3–5 shows of the generated amount of the qubit-cavity entanglement when

the intensity-dependent coupling is described by the function Ŷ(ψ̂†ψ̂) =
√

ψ̂†ψ̂ and
the cavity field is initially in different squeezed coherent states with different values of
the Kerr-like nonlinearity and the detuning as well as the phase cavity decoherence. By
comparing Figures 1a and 3a, where the effects of the Kerr-like medium, the detuning and
the damping are absent, we find that the qubit-cavity interaction through the intensity-
dependent coupling generates π-periodic entanglement. Dashed curves show that the small
value of the Kerr-like nonlinearity enhances the entanglement with irregular oscillatory
behavior. This entanglement can be stabilized during a short time. For a large value of the
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Kerr-like medium, see dashed-dotted curve, the amplitudes of the negativity is reduced
with additional irregular fluctuations.
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Figure 3. Dynamics of the entanglement for r = 0.5, |ζ|2 = 16, Ŷ(ψ̂†ψ̂) =
√

ψ̂†ψ̂ with different values of the Kerr-like
nonlinearity in the absence of the dissipative phase-damping. We use ∆ = 0 in (a) and ∆ = 7λ in (b).

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

λ t/π

N
eg

at
iv

ity

a

χ = 0 λ

χ = 0.5 λ

χ = 2 λ

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

λ t/π

N
eg

at
iv

ity

b

χ = 0 λ

χ = 0.5 λ

χ = 2 λ

Figure 4. Dynamics of the entanglement for r = 0.5, |ζ|2 = 16, Ŷ(ψ̂†ψ̂) =
√

ψ̂†ψ̂ with different values of the Kerr-like
nonlinearity for the phase-damping coefficient, γ = 0.2λ. We use ∆ = 0 in (a) and ∆ = 7λ in (b).
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Figure 5. Negativity dynamics for r = 0.5, |ζ|2 = 16, Ŷ(ψ̂†ψ̂) =
√

ψ̂†ψ̂ and the squeezed even coherent state with different
values of the Kerr-like nonlinearity and the qubit-cavity detuning. We use γ = 0 in (a) and γ = 0.2λ in (b).

Figure 3b shows the effect of the higher detuning ∆ = 7λ in the presence of the
intensity-dependent coupling. We find that the detuning reduces the amplitudes of the
negativity oscillations with rapid stochastic oscillations.

In Figure 4, we note that the phase cavity damping reduces the entanglement in
the presence of the intensity-dependent coupling. In this case, the intensity-dependent
coupling enhances the sensitivity of the generated entanglement to the effect of the phase-
damping. The qubit-cavity entanglement is deteriorated rapidly compared to the case
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where Ŷ(ψ̂†ψ̂) = Î. In Figure 4a, the dashed and solid curves demonstrate that the en-
tanglement phenomena of sudden death and birth can occur. The phenomena disappear
due to the increase of the Kerr-like nonlinearity and the qubit-cavity detuning. Figure 4b
confirms that after a particular time, the Kerr-like nonlinearity and the qubit-cavity de-
tuning enhance the robustness of the generated entanglement against the phase-damping.
Figure 5 illustrates the dependence of the qubit-cavity entanglement (in the presence of
the Kerr-like medium, the detuning and the damping) for an even coherent state as ini-
tial state. Please note that the high cavity non-classicality leads to notable changes in
the qubit-cavity entanglement dynamics as: (1) The stability intervals of the generated
maximally entangled qubit-cavity state is strengthened, see solid and dashed curves of
Figure 5a. (2) By comparing the effects of the initial states for different non-classicality
(s = 1 and s = 1), we observe that for s = 1, the periodicity of the entanglement oscilla-
tions are reduced to 0.5π. (3) The different effects of the Kerr-like nonlinearity and the
detuning against the phase-damping are enhanced. The high initial cavity non-classicality
enhances the robustness of the qubit-cavity entanglement against the phase-damping effect.
Figure 6 illustrates how the entanglement depends on the qubit-cavity detuning
∆ ∈ [0, 20]λ. From Figure 6a, we note that for ∆ ∈ [0, 5]λ, the qubit-cavity state has
a higher degree of entanglement. After that, the increase of the detuning reduces the nega-
tivity entanglement. The entanglement stability is enhanced by increasing the qubit-cavity
detuning. When the phase-damping is raised, the negativity is reduced. The qubit-cavity
state reaches a non-entangled one, see Figure 6b. The reduction of the entanglement is
accelerated as the qubit-cavity detuning is enhanced.
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Figure 6. Entanglement dynamics for r = 0.5, χ = 0, |ζ|2 = 16, Ŷ(ψ̂†ψ̂) =
√

ψ̂†ψ̂ when the squeezed coherent state s = 0
with different qubit-cavity detuning values ∆ ∈ [0, 20]λ. We use γ = 0 in (a) and γ = 0.1λ in (b).

Figure 7 shows the dependence of the entanglement on the Kerr-like nonlinearity
χ ∈ [0, 4]λ. Please note that for small Kerr-like nonlinearity values χ ∈ [0, 2]λ, the
qubit-cavity negativity shows a high degree of entanglement, see Figure 7a. Figure 7b
demonstrates that the reduction of the entanglement induced by the phase cavity damping
effect can be realized faster by increasing the Kerr-like nonlinearity.

Figure 8 shows the effect of the initial cavity non-classicality of the even squeezed
coherent state s = 1 on the reduced entanglement entanglement due to the phase cav-
ity damping.

By comparing Figures 6b and 7b with Figure 8, we find the high-squeezed even-
coherent non-classicality enhances the degree and the stability of the generated entangle-
ment. According to Figure 8, the reduced entanglement and its stability are more sensitive
to the Kerr-like nonlinearity than to the qubit-cavity detuning.
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Figure 7. Entanglement dynamics for r = 0.5, ∆ = 0, |ζ|2 = 16, Ŷ(ψ̂†ψ̂) =
√

ψ̂†ψ̂ when the squeezed coherent state s = 0
with different Kerr-like nonlinearity values χ ∈ [0, 2]λ. We use γ = 0 in (a) and γ = 0.1λ in (b).
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Figure 8. Qubit-cavity entanglement dynamics of the same parameter values of Figures 6b and 7b are in (a) and (b),
respectively, but when the cavity field is initially in the even superposition squeezed coherent state.

4. Conclusions

In this work, we analytically solved the master equation of the phase cavity damping
effect to explore the dynamics of a qubit interacting off-resonantly with a nonlinear Kerr-
like cavity with intensity-dependent coupling. Based on the negativity, the dynamics of
the entanglement between the qubit and the cavity is investigated when the cavity field is
initially in a superposition of coherent squeezed coherent states. For different cases of the
intensity-dependent coupling, the generated entanglement is explored under the effects
of the Kerr-like nonlinearity, qubit-cavity detuning, the phase-damping as well as for two
different initial coherent states. It is found that the stability and the degree of the generated
entanglement can be controlled by the Kerr-like nonlinearity, the qubit-cavity detuning,
and the initial cavity states.

The small values of the Kerr-like nonlinearity and the qubit-cavity detuning enhance
the generated qubit-cavity entanglement due to their interactions. However, for large
values of the Kerr-like medium and detuning, the entanglement stability is accelerated. By
comparing the degree, robustness, and stability of the entanglement generated with the
coherent state, the squeezed even coherent state improves the entanglement’s resistance to
phase-damping. We have also observed that the intensity-dependent coupling increases
the sensitivity of the generated entanglement to the phase-damping.
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