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Abstract: We study the role of entanglement and non-locality in quantum protocols that make
use of systems of identical particles. Unlike in the case of distinguishable particles, the notions of
entanglement and non-locality for systems whose constituents cannot be distinguished and singly
addressed are still debated. We clarify why the only approach that avoids incongruities and paradoxes
is the one based on the second quantization formalism, whereby it is the entanglement of the modes
that can be populated by the particles that really matters and not the particles themselves. Indeed,
by means of a metrological and of a teleportation protocol, we show that inconsistencies arise in
formulations that force entanglement and non-locality to be properties of the identical particles rather
than of the modes they can occupy. The reason resides in the fact that orthogonal modes can always
be addressed while identical particles cannot.

Keywords: entanglement theory; identical particles; quantum metrology; interferometry; quan-
tum teleportation

1. Introduction

Entanglement is the strongest among quantum correlations, rooted in the structurally
non-local behavior of quantum mechanics. It is a fundamental resource in most quan-
tum information protocols and processes, as shown in actual applications using different
physical settings, e.g., in quantum optics and atomic and molecular physics [1–6].

Although well established for systems of distinguishable particles [7,8], the notions of
non-locality and entanglement are challenging in systems of indistinguishable particles,
as in this case, particles cannot be individually addressed and measured. On the other
hand, many-body systems, made of identical constituents, are central to condensed matter
physics and therefore of utmost importance in actual applications. Our aim is to provide
instances in which the implementation of quantum protocols with systems of identical
particles results in being particularly effective, possibly stimulating a discussion on their
actual experimental realization.

Many-body systems are more easily treated by adopting the so-called “second-
quantization” approach; within this framework, the notions of non-locality and entan-
glement valid for distinguishable particles can be easily generalized to hold in systems
made of identical constituents, in a way applicable to all physical situations. Although
the quantum-enhanced performances of technological tasks can be achieved by exploiting
other quantum resources than solely entanglement [9,10], in the following, we focus on
quantum protocols that require entanglement and are implemented by means of systems
consisting of many identical particles. Specifically, we shall analyze two quantum protocols,
one in quantum metrology and the other one in teleportation, and describe in detail how for
identical particle systems, non-locality and entanglement can be used to reach accuracies
beyond those obtainable with classical methods.

Entropy 2021, 23, 479. https://doi.org/10.3390/e23040479 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-0712-2057
https://orcid.org/0000-0002-0424-2707
https://orcid.org/0000-0001-5592-759X
https://doi.org/10.3390/e23040479
https://doi.org/10.3390/e23040479
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23040479
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23040479?type=check_update&version=2


Entropy 2021, 23, 479 2 of 20

Concerning the first protocol, a paradigmatic quantum metrological task is the es-
timation of interferometric phases [9,11–14], which has applications for the detection of
gravitational waves [15], angular rotation [16–20], and temperature [21]. As we shall see,
the difference between distinguishable and indistinguishable particles is that the former
require initial state entanglement to beat classical performances, while the latter achieve
quantum enhancements with initial separable states as the same interferometers themselves
can generate the necessary indistinguishable particle entanglement [22,23]. Thus, particle
indistinguishability mitigates the needed efforts in actual experimental implementations.

On the other hand, the second protocol, quantum teleportation, is known to play a
prominent role in quantum computation [24–29] and quantum communication [30–33]. In
this respect, a particular application of teleportation is the so-called entanglement swapping,
which is the generation of quantum correlations between distant subsystems using their
entanglement with an auxiliary system; as discussed below, it can be effectively implemented
using identical particle systems.

Let us point out that recent technological advances in quantum optics [3–6,34–36], as
well as in ultracold atom physics [37–40] make these protocols likely in the reach of present
experimental abilities, thus paving the way to the adoption of many-body systems, made
of indistinguishable constituents, as the standard framework for the actual realization
of quantum information tasks. Indeed, identical particle systems offer clear advantages
in implementing quantum informational protocols with respect to the more standard
realizations using distinguishable qubits. First of all, using systems of singly addressable
constituents, one needs to keep them always well localized in order to preserve their
distinguishability, and this requires more resources. Moreover, as already mentioned
before, in order to get accuracies beyond the classical limit with systems of identical
particles, there is no need to initially prepare them in an entangled state before feeding
them to an apparatus implementing a specific quantum task.

Although we focus here on the notion of entanglement for indistinguishable particle
systems in the second quantized framework (the so-called mode entanglement) [41–47],
different approaches to identical particle entanglement have been proposed in the literature
(see [48] for a complete review). They have been introduced having in mind specific
physical models and applications to limited quantum tasks; in one way or the other,
they fail to provide a comprehensive and at the same time fully consistent theory of
identical particle entanglement valid in all situations. Indeed, the different definitions of
entanglement, alternative to mode entanglement, may produce contradictory results, e.g.,
in metrological applications, where beating the classical limit to the reachable accuracy is
apparently possible without any entanglement ether in the initial state or generated during
the protocol.

On the other hand, mode entanglement [48–50], the approach adopted in the present
investigation, has been proven to be free of such inconsistencies. As discussed in detail
below, in this approach, the subsystems to be entangled are identified with modes in
second quantization rather than (unaddressable) particles, a natural approach in quantum
optics [3,4], quantum field theory [51–56], and quantum statistical mechanics [51].

In the second part of the work, we examine different approaches to indistinguishable
particle entanglement alternative to mode entanglement; using established results provided
by the literature, we discuss in detail, through explicit examples, how these approaches fail
to properly identify quantum resources as a consequence of their inability to consistently
cope with the locality issue.

The structure of the paper is as follows. In Section 2, we introduce the theory of
mode entanglement, its motivations, techniques, and applications. In Section 3, the two
benchmark protocols, i.e., interferometric phase estimation and teleportation, are discussed
within the framework of mode entanglement. Then, in Section 4, we compare the predic-
tions relative to the two protocols provided by the mode entanglement point of view with
those of some alternative approaches. Conclusions are finally drawn in Section 5, while
more technical details are provided in Appendices A and B.
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We do hope that the present investigation will reinforce the attention on the advantages
of using many-body systems for performing quantum informational tasks, especially in
view of possible experimental realizations.

2. Mode Entanglement

The main reason behind the existence of different notions of identical particle entangle-
ment and their inconsistencies is the attempt of most of them to hinge on the particle picture
in a context where particles cannot be individually addressed and measured. Clearly, the
focus on the particle aspect is prompted by entanglement theory as it has been developed
for systems made of distinguishable particles. In order to appreciate the kind of difficulties
that arise by pursuing too close an approach to the standard one, let us consider two bosons
prepared in two orthogonal states |χ〉 and |φ〉. Because of their indistinguishability, we
can only say that one boson is in the state vector |χ〉 and the other one in the state vector
|φ〉 orthogonal to |χ〉, but we cannot attribute to any of them a specific particle label. The
corresponding normalized state must indeed be symmetric,

|Ψ〉 = |χ〉 ⊗ |φ〉 + |φ〉 ⊗ |χ〉√
2

, (1)

so that neither |χ〉 nor |φ〉 can be specifically attributed as a state to a specific particle. In
the case of two distinguishable particles, |Ψ〉 would be an entangled state. Is this so also
for two bosons?

This question has a counterpart that involves operators. Indeed, bipartite entan-
glement is strictly related to the notion of the locality of observables. In practice, given
two distinguishable particles, labeled by 1 and 2, one deals with observables of Parti-
cle 1 of the form X ⊗ 1, belonging to the set O1, respectively of Particle 2 of the form
1⊗ Y, in the corresponding set O2. These two sets of operators are subalgebras of the
algebra O = O1 ∪O2 containing the observables of the two-particle system. In particular,
two-particle observables of the following form, i.e., the product of two single-particle
operators, (

X⊗ 1
)(
1⊗Y

)
= X⊗Y, (2)

is called local; indeed all elements of O1 commute with all elements of O2, whence local
measurements of operators from O1 and O2 do not influence each other. It turns out that
entangled state vectors of the two particles are those |Ψ〉 that violate the factorization of
correlation functions of local observables:

〈Ψ|X⊗Y|Ψ〉 6= 〈Ψ|X⊗ 1|Ψ〉 〈Ψ|1⊗Y|Ψ〉 , (3)

for at least one commuting pair X ∈ O1 and Y ∈ O2. Notice that the equality in the previous
expression would witness the statistical independence of the two observables with respect
to the given bipartite state vector |Ψ〉. One easily checks that the entanglement of a state
as |Ψ〉 in (1) is then witnessed by the local observable Pχ ⊗ Pφ, where Pχ, respectively Pφ,
projects onto |χ〉, respectively |φ〉,

〈Ψ|Pχ ⊗ Pφ|Ψ〉 =
1
2
6= 〈Ψ|Pχ ⊗ 1|Ψ〉 〈Ψ|1⊗ Pφ|Ψ〉 =

1
4

.

In a nutshell, distinguishable particle pure state entanglement can be understood as the
ability of certain state vectors to make statistically dependent certain particle observables
that are algebraically independent, namely commuting.

Unfortunately, tensor products as X⊗1, 1⊗Y, and X⊗Y cannot be sensible operators
for identical particles. Indeed, they attach an operator to a specific particle, X to Particle 1
and Y to Particle 2, making them distinguishable; in order to make those tensor products
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meaningful observables for indistinguishable particles, one needs to symmetrize them,
yielding:

Xsym ≡ X⊗ 1 + 1⊗ X , Ysym ≡ Y⊗ 1 + 1⊗Y , (4)

for the single-particle operators and:

C = X⊗Y + Y⊗ X , (5)

for the two-particle ones. Only in this way does one avoid the association of a specific par-
ticle label either to X or Y. However, unlike X⊗Y, C is non-local from the distinguishable
particle point of view. Does the same conclusion hold true for identical particles?

In other words, the question is whether symmetrization, or anti-symmetrization for
fermions, automatically generates entanglement and non-locality.

Remark 1. There is however a further and deeper issue connected with the notion of locality for
identical particles when one tries to formulate it in terms of tensor products of single-particle
commuting operators. Although the single-particle operators Xsym and Ysym commute if and only
if [X, Y] = 0, their products yield operators of the form C in (5) if and only if XY = 0. There
are thus plenty of two-particle observables that one would deem local, but cannot be expressed as
products of single-particle observables. Such an observation is at the root of the fact that identical
particle locality cannot be consistently formulated hinging upon the notion of particles and upon the
ensuing description in terms of tensor products either of states or of operators [48]. A satisfactory
way out of this puzzle, as well as the answers to the two questions raised above come as follows.

Though identical particles can be addressed within the particle-based formalism
of first quantization, which labels particle degrees of freedom as exemplified in (1), the
most natural tools for describing the physics of many-body systems are those of second
quantization. In second quantization, one focuses on modes, namely single-particle state
vectors ψ, and on their creation a†

ψ and annihilation operators aψ, instead of on the particles
themselves. Acting on the vacuum |vac〉, such that aψ|vac〉 = 0, a†

ψ creates a particle in the
state |ψ〉, while its adjoint aψ destroys a particle in the state ψ:

a†
ψ|vac〉 = |ψ〉 , aψ|ψ〉 = |vac〉 . (6)

These operators satisfy the canonical commutation relations for bosons:

[aψ, a†
ϕ] ≡ aψ a†

ϕ − a†
ϕ aψ = 〈ψ|ϕ〉 , (7)

and anti-commutation relations for fermions,

{aψ, a†
ϕ} ≡ aψ a†

ϕ + a†
ϕ aψ = 〈ψ|ϕ〉 . (8)

Creation and annihilation operators are the building blocks for constructing firstly
polynomials, involving products of powers of them, and eventually generic functions of
them forming suitable algebras of operators.

Given two orthogonal subsets H1,2 of orthonormal modes {|ψj〉}n1
j=1 and {|ϕk〉}n2

k=1,
we shall denote by A1,2 the algebras generated by the creation and annihilation operators{

aψj , a†
ψj

}n1

j=1
, respectively

{
aϕk , a†

ϕk

}n2

k=1
. From the commutation relations, it follows that

any pair of elements A1 ∈ A1, A2 ∈ A2 commutes: [A1, A2] = 0. Having abandoned
the use of the tensor product structure inherent in the particle approach, one can now
consistently extend to systems of identical particles the characterization of entanglement
through the lack of factorization of two point correlation functions for local operators as
in (5). In this way, focusing on operator commutativity, one first generalizes:
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1. the notion of locality for distinguishable particles to mode-locality for identical particle
systems by declaring local any product:

A12 = A1 A2 , A1 ∈ A1 , A2 ∈ A2 ; (9)

and then:
2. the notion of bipartite entanglement for pure states, by declaring entangled those

state vectors |Ψ〉 for which:

〈Ψ|A1 A2|Ψ〉 6= 〈Ψ|A1|Ψ〉 〈Ψ|A2|Ψ〉 , (10)

for at least one couple A1, A2 of local operators.

We shall refer to the pair of commuting algebras
(
A1,A2

)
as an algebraic bipartition;

certainly, both mode-locality and mode entanglement depend on the choice of bipartition,
and the possible bipartitions are uncountably many, unlike in the standard distinguishable
particle setting where A1 and A2 are essentially fixed to be the algebras O1 and O2 of
the observables of Particle 1 and of Particle 2. Furthermore, it turns out (see [48] and the
references therein) that a state vector is separable, that is non-entangled, with respect to a
chosen algebraic bipartition

(
A1,A2

)
, if and only if:

|Ψsep〉 = f†1f
†
2 |vac〉 , (11)

where f†1,2 are functions of the creation operators
{

a†
ψj

}n1

j=1
in A1, respectively

{
a†

ϕk

}n2

k=1
in

A2. The operators f1,2 are chosen such that 〈vac|f1 f†1|vac〉 = 〈vac| f2 f†2|vac〉 = 1, whence:

〈Ψsep|Ψsep〉 = 〈vac|f2 f1 f†1 f†2|vac〉 = 〈vac| f1 f†1 f2 f†2|vac〉
= 〈vac|f1 f†1|vac〉 〈vac| f2 f†2|vac〉 = 1 . (12)

Remark 2. Notice that, when the total number of bosons is fixed, the number of particles in
f†1,2|vac〉 is also fixed. Hence, the state vectors that are eigenstates of the total boson number and are
separable with respect to the bipartition (A1,A2) must also be eigenstates of the number operators:

N1 =
n1

∑
j=1

a†
ψj

aψj
, N2 =

n2

∑
k=1

a†
ϕk

aϕk
(13)

counting the bosons in the modes that identify the commuting algebras A1,2.

In the context of mode entanglement, the two questions raised above have a definite
answer; indeed, in the second quantization formalism, the state in (1) reads:

|Ψ〉 = a†
χ a†

φ |vac〉 , (14)

and, according to (11), is thus separable with respect to an algebraic bipartition
(
A1,A2

)
with f†1 = a†

χ and f†2 = a†
φ where aχ, a†

χ ∈ A1 and aφ, a†
φ ∈ A2.

Furthermore, once an orthonormal set {|χj〉}j of modes in the single-particle Hilbert
space is given, the single-particle observables:

X = ∑
i,j

Xij |χi〉〈χj| , Y = ∑
k,`

Yk` |χk〉〈χ`| ,

in (5) have the following second quantized expressions (see (4)):

Xsym = ∑
i,j

Xij a†
χi

aχj , Ysym = ∑
k,`

Yk` a†
χk

aχ`
.
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Then, if Xsym belongs to the algebra A1 corresponding to the set of modes {|ψj〉}n1
j=1

and Ysym to the algebra A2 relative to the set of modes {|ϕk〉}n2
k=1, namely,

Xsym =
n1

∑
i,j=1

Xij a†
ψi

aψj , Xsym =
n2

∑
k,`=1

Yk` a†
ϕk

aϕ`
, (15)

the symmetrized observable C in (5) is local with respect to
(
A1,A2

)
; indeed, from the

commutativity of A1 and A2, it follows that:

C =
n1

∑
i,j=1

n2

∑
k,`=1

(
X⊗Y

)
ik,j` a†

ψi
a†

ϕk
aϕ`

aψj

=

(
n1

∑
i,j=1

Xij a†
ψi

aψj

)(
n2

∑
k,`=1

Yk` a†
ϕk

aϕ`

)
. (16)

It is also worth noting that, according to (9) and (10), mode-separable state vectors
|Ψsep〉 with respect to an algebraic bipartition

(
A1,A2

)
as in (11) remain separable under

the action of mode-local operations transforming |Ψsep〉 into:

|Ψ̃〉 := O1O2|Ψsep〉 , O1,2 ∈ A1,2 , (17)

where |Ψsep〉 is normalized as in (12), while O1 and O2 are suitably rescaled to satisfy
〈Ψsep|O†

1O1|Ψsep〉 = 〈Ψsep|O†
2O2|Ψsep〉 = 1. Indeed, the form (11) of separable states

is maintained by the action of O1O2; moreover, for arbitrary local observables A1 A2,
with A1,2 ∈ A1,2, setting Ã1,2 = O†

1,2 A1,2O1,2, from the fact that O†
1O†

2 A1 A2O2O1 =

O†
1 A1O1 O†

2 A2O2, using separability and the normalization conditions, one derives:

〈Ψ̃|A1 A2|Ψ̃〉 = 〈Ψsep|Ã1 Ã2|Ψsep〉 = 〈Ψsep|Ã1|Ψsep〉 〈Ψsep|Ã2|Ψsep〉
= 〈Ψsep|Ã1|Ψsep〉 〈Ψsep|O†

2O2|Ψsep〉 〈Ψsep|Ã2|Ψsep〉 〈Ψsep|O†
1O1|Ψsep〉

= 〈Ψsep|Ã1 O†
2O2|Ψsep〉 〈Ψsep|Ã2 O†

1O1|Ψsep〉 = 〈Ψ̃|A1|Ψ̃〉 〈Ψ̃|A2|Ψ̃〉 . (18)

Remark 3. The formulation of mode entanglement in Fermionic systems and the role of canonical
anti-commutation relations were discussed in [18,57–60]. In this case, the parity (−1)N , where
N is the total number of fermions, is a conserved quantity, and so, observable subalgebras can be
decomposed into an even and an odd part, which project N onto the subspace with even and odd
eigenvalues, respectively. The odd part of the subalgebras, A1 and A2, must anti-commute with
each other, while the even part of each subalgebra must commute with both the even and the odd
part of the other subalgebra. The definitions of mode-local operators (9) and of mode-entangled pure
states (10), as well as their general expression (11) remain unchanged: of course, Fermionic systems
are constrained to have at most one particle per mode.

Furthermore, mode entanglement can be extended to mixed states [48], thereby generalizing
Werner’s reformulation of entanglement for distinguishable particles [7], i.e., Equation (3), where,
as already stressed, algebras are made of single-particle operators. Mode entanglement recovers
Werner’s definition when modes are occupied by at most one particle. Notice that other existing
definitions of indistinguishable particle entanglement are not compatible with Werner’s formu-
lation [48,50]. Indeed, for any choice of subalgebras, A1 and A2, there are operators Aj ∈ Aj,
j = 1, 2, and pure states termed separable within these approaches that do exhibit correlations of the
type embodied by Inequality (10).

Theoretical Setting

In the following, we consider a simplified, yet rather illustrative setting consisting of
bosons with spatial S = L, R and internal, σ =↑, ↓, degrees of freedom corresponding to
the orthonormal basis:

|L, ↑〉 , |L, ↓〉 , |R, ↑〉 , |R, ↓〉 , (19)
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in the single-particle Hilbert space. One can then consider the corresponding mode creation
and annihilation operators aS,σ, a†

S,σ and proceed to bipartite the whole Bose algebra
constructed upon such mode operators into commuting algebras made of functions of the
left or of the right mode operators respectively, denoted, in a compact notation, by:

AL = {aL,σ, a†
L,σ}σ=↑,↓ , AR = {aR,σ, a†

R,σ}σ=↑,↓ . (20)

Products AL AR of observables AL ∈ AL and AR ∈ AR such as, for instance, the boson
number operators,

NL = ∑
σ=↑,↓

a†
L,σaL,σ , NR = ∑

σ=↑,↓
a†

R,σaR,σ , (21)

are mode-local with respect to the algebraic bipartition
(
AL,AR

)
.

Other choices of commuting algebras, e.g., A↑ = {aS,↑, a†
S,↑}S=L,R and

A↓ = {aS,↓, a†
S,↓}S=L,R, give rise to different kinds of mode entanglement. In all cases,

unlike particles that cannot in general be individually addressed, modes described by
commuting algebras can.

Though reduced to a few degrees of freedom, the above setting allows one to discuss
the usefulness for the quantum metrology and teleportation of N bosons occupying the
states |L, ↑〉 and |R, ↓〉. These N-boson states belong to a subspace spanned by state vectors
that, in first quantization, read:

S
(
|L, ↑〉⊗` ⊗ |R, ↓〉⊗(N−`)

)
, (22)

where S is the symmetrization projector and, in second quantization, become Fock number
states:

|ΨFock〉 =
(
a†

L,↑
)`

√
`!

(
a†

R,↓
)N−`√

(N − `)!
|vac〉, (23)

satisfying (see (21)):

NL|ΨFock〉 = ` |ΨFock〉 , NR |ΨFock〉 = (N − `) |ΨFock〉 . (24)

A generic normalized state vector spanned by the above Fock states reads:

|Ψ〉 =
N

∑
`=0

α`

(
a†

L,↑
)`

√
`!

(
a†

R,↓
)N−`√

(N − `)!
|vac〉 , α` ∈ C ,

N

∑
`=0
|α`|2 = 1 . (25)

Particular instances of these states can be manipulated and used as resources for
quantum protocols; indeed, we propose to focus on the following states as they exemplify
several resource states used in quantum information tasks:

1. a superposition of two Fock number states,

|Ψ`1,`2〉 =
√

ξ

(
a†

L,↑
)`1

√
`1!

(
a†

R,↓
)N−`1√

(N − `1)!
|vac〉

+ eiϕ
√

1− ξ

(
a†

L,↑
)`2

√
`2!

(
a†

R,↓
)N−`2√

(N − `2)!
|vac〉 , (26)

with 0 ≤ ξ ≤ 1, that reduces to the so-called NOONstate when `1 = N − `2 = 0 and
ξ = 1/2;
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2. a linear superposition of Fock states with uniform weights
1

N + 1
and arbitrary phases,

|Ψunif〉 =
N

∑
`=0

eiϕ`

√
N + 1

(
a†

L,↑
)`

√
`!

(
a†

R,↓
)N−`√

(N − `)!
|vac〉 ; (27)

3. a coherent state of the SU(2) group generated by the two modes (L, ↑) and (R, ↓),

|Ψcoh〉 =
1√
N!

(√
ξ a†

L,↑ + eiϕ
√

1− ξ a†
R,↓

)N
|vac〉 , 0 ≤ ξ ≤ 1 . (28)

With the exception of the Fock number state |ΨFock〉, which, according to (11), is mode
separable with respect to the bipartitions (AL,AR) and

(
A↑,A↓

)
, all other states are mode

entangled with respect to them. Moreover, the state |Ψunif〉 is maximally entangled as
quantified by several entanglement measures, like entanglement entropy and entanglement
negativity [61,62].

3. Two Quantum Protocols

In the following, we study the resourcefulness of the three states introduced above,
together with the Fock ones, with respect to two quantum tasks implementable in an
identical particle context; the first task is a metrological one and the second a mode-
teleportation one. For both tasks, we study how mode entanglement provides a quantum
advantage in the first case and enables the implementation of the second one.

3.1. Identical Particle Metrology

As a first protocol, let us consider the estimation of the phase-shift θ implemented
by a Mach–Zehnder interferometer acting on an N-boson state |Ψ〉 as in (25) by shifting
the relative phase of the modes |L, ↑〉 and |R, ↓〉. The action of such an interferometer is
described by the unitary operator:

Uθ = eiθ NLR , NLR := NL,↑ − NR,↓ , (29)

where NL,↑ = a†
L,↑aL,↑ and NR,↓ = a†

R,↓aR,↓ count the number of bosons in the modes |L, ↑〉
and |R, ↓〉.

In quantum metrology, the quantum Cramér–Rao inequality lower bounds the best
accuracy δ2θ reachable in the determination of θ by the inverse of the quantum Fisher
information F|Ψ〉(NLR) relative to the input state |Ψ〉 and the generator NLR of the trans-
formation [11–14]. The input state being pure, the quantum Fisher information reduces to
(four times) the variance ∆|Ψ〉NLR of the generator with respect to the state |Ψ〉. Then:

δ2θ >
1

F|Ψ〉(NLR)
=

1
4 ∆|Ψ〉NLR

, ∆|Ψ〉NLR = 〈Ψ|N2
LR|Ψ〉 − 〈Ψ|NLR|Ψ〉2 . (30)

The best accuracy achievable by classical interferometry is the inverse of the classical
Fisher information; it corresponds to the so-called shot-noise, namely to the Fisher infor-
mation increasing linearly with the number of particles. Whenever the Fisher information
exceeds the shot-noise threshold, quantum features, either in the initial state or in the
interferometer, need to be at work.

In the case of the metrological task depicted above, the required quantumness is the
mode entanglement of the state with respect to the bipartition

(
AL,AR

)
. In fact, according

to (9), the unitary operator Uθ in (29) is mode-local with respect to the bipartition
(
AL,AR

)
,

for NL,↑ and NR,↓ commute so that Uθ splits into a product of commuting unitary operators:

Uθ = eiθNL,↑ e−iθNR,↓ , eiθNL,↑ ∈ AL , e−iθNR,↓ ∈ AR . (31)
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It follows that mode entanglement in the initial state is necessary to beat the shot-noise,
if the interferometer is mode-local and the particle number is conserved [63,64]. This fact
can be best appreciated as follows: if the N-boson state |Ψ〉 were mode-separable with
respect to

(
AL,AR

)
, it would be of the form (11) with f†1 = f†L a suitable function of a†

L,↑
and a†

L,↓ and f†2 = f†R a suitable function of a†
R,↑ and a†

R,↓. Then, according to Remark 2 and
using (12), one computes:

〈Ψ|N2
LR|Ψ〉 = 〈fL|N2

L↑|fL〉 + 〈fR|N
2
R↓|fR〉 − 2 〈fL|NL↑|fL〉 〈fR|NR↓|fR〉 , (32)

where |fL,R〉 ≡ f†L,R|vac〉. It thus follows that:

F|Ψ〉(NLR) = 4 ∆|Ψ〉NLR = 4 ∆|fL〉NL,↑ + 4 ∆|fR〉NR,↑ = 0 . (33)

Indeed, since the total number of bosons is fixed to be N, |fL〉 and |fR〉 are as |ΨFock〉
in (23), hence eigenstates of the number operators NL,↑ and NR,↓. The vanishing variances
are in agreement with the fact that phase-changes and particle number operators are
conjugate observables so that perfect knowledge of one of them entails total ignorance
about the other one. This same situation occurs with any fixed, finite number of modes, or
for distinguishable particles with a fixed and finite single-particle Hilbert space dimension.

For the mode-entangled states in (25), one finds:

NLR|Ψ〉 =
N

∑
`=0

(2`− N) α`

(
a†

L,↑
)`

√
`!

(
a†

R,↓
)N−`√

(N − `)!
|vac〉 , (34)

whence (34) together with (30) yields:

F|Ψ〉(NLR) = 4
N

∑
`=0
|α`|2 `2 − 4

(
N

∑
`=0
|α`|2 `

)2

. (35)

In the case of the specific states in (26)–(28), the Fisher information reads:

F|Ψ`1,`2
〉(NLR) =4 ξ(1− ξ)(`1 − `2)

2, (36)

F|Ψunif〉(NLR) =
1
3
(N2 + 2N) (37)

F|Ψcoh〉(NLR) =4 ξ(1− ξ)N . (38)

It follows that F|Ψ`1,`2
〉(NLR) beats the shot-noise whenever F|Ψ`1,`2

〉(NLR) > N, e.g.,

for the NOON state when `1 = N − `2 = 0 and ξ = 1/2. In this case, F|Ψ0,N〉(NLR) = N2,
reaching the maximum value for the quantum Fisher information, the so-called Heisenberg
limit. As for the other states, F|Ψunif〉(NLR) always beats the shot-noise: indeed, if the
phases ϕ` ∝ `, |Ψunif〉 is the eigenstate of the phase operator canonically conjugated to
NLR [65]. Instead, F|Ψcoh〉

(NLR) never beats the shot-noise because |Ψcoh〉 is a coherent state
of the SU(2) group whose elements model linear interferometers and reproduce classical
performances. In particular, while Equation (33) shows that entanglement is necessary if
the particle number is conserved [63,64], Equation (38) implies that entanglement is not
in general sufficient to beat the shot-noise with local interferometers. It is indeed well
known also for distinguishable particles that not all entangled states are useful for quantum
metrological advantages.

Now, let us consider the unitary operator:

Vθ := ei θ TLR , TLR := a†
L,↑aR,↓ + a†

R,↓aL,↑ . (39)

It describes a transformation that is non-local with respect to the bipartition
(
AL,AR

)
and amounts to a phase-change operated through a rotation of the modes (L, ↑) and (R, ↓),
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implementable by means of beam splitters. By acting with Vθ on the state |ΨFock〉 in (23),
which we have seen to be mode-separable with respect to the bipartition

(
AL,AR

)
, one

can beat the shot-noise limit when ` 6= 0, N [22,23]. Indeed, one computes:

F|ΨFock〉(TLR) = 4
(
〈ΨFock|T2

LR|ΨFock〉 − 〈ΨFock|TLR|ΨFock〉2
)
= N + 2`(N − `) , (40)

which improves upon the shot-noise at least by a multiplicative constant for ` 6= 0, N, while
reaching the Heisenberg scaling F|ΨFock〉(TLR) ∼ N2/2 if ` ∼ N/2. Instead, when ` = 0, N,
the state |ΨFock〉 is of the coherent form of |Ψcoh〉 in (28) with ξ = 0, 1, which indeed ensures
only classical performances. On the other hand, if ` 6= 0, N, the resource able to provide
the entanglement in the output state necessary for quantum-enhanced performances is
the non-local action of the interferometer. It is therefore possible to achieve quantum
advantages with mode-separable states of N particles independently prepared in two
non-overlapping localizations and internal states. Namely, there is no need to entangle the
input state if the devices operates non-locally on the modes being used. Indeed, the theory
of mode entanglement identifies the entangling power of beam splitters as a quantum
resource [64,66,67], as also happens with violations of Bell’s inequalities in similar physical
situations [68,69].

3.2. Mode Teleportation Protocol

As well known, quantum teleportation [70] is a protocol for the transmission of an
unknown quantum state to a remote location using an entangled resource state, local
operations, and classical communication. In the standard framework of distinguishable
particles, states of a specific particle, say particle A, are teleported to a distant one, say
particle C. This latter particle is initially entangled with another particle, say particle B, that
is close to particle A. The sender performs a projective measurement onto Bell states of the
particles A and B; then, according to the obtained result, which is sent to him/her through a
classical communication channel, the receiver applies a local operation to particle C, whose
state finally turns out to coincide with the initial state of particle A. This protocol has been
generalized to three indistinguishable particles by considering a fully symmetrized or anti-
symmetrized state [71], whereby it was shown that symmetrization or antisymmetrization
cannot consistently generate entanglement useful for implementing teleportation.

In many-body systems, indistinguishable particles are not in general confined to
different locations, otherwise they could be distinguished, neither can they be individually
addressed, e.g., by ascribing them unambiguous properties. A full generalization of the
teleportation protocol in a many-body context consists of teleporting superpositions of
the occupation number eigenstates of suitable sets of modes in the Fock space, rather
than particle states as done in a first quantization approach [72–75]. This general protocol
recovers the standard teleportation protocols involving distinguishable particles when the
local particle occupation numbers of these modes are fixed. Indeed, in this case, addressing
modes coincides with addressing particles.

In order to be more specific, consider a state of M indistinguishable bosons distributed
between the two modes (X, ↑) and (Y, ↓) with spatial locations X and Y, according to
the state:

|Φ〉 =
M

∑
`=0

c`

(
a†

X,↑
)`

√
`!

(
a†

Y,↓
)M−`√

(M− `)!
|vac〉 , (41)

where the mode (Y, ↓) plays the role of particle A in the standard setting. The goal of
the protocol presented below is to teleport particle states from the mode (Y, ↓) to the
mode (R, ↓), which then corresponds to particle C in the standard setting. Such a mode
is accessible to N bosons described by a resource state |Ψ〉 as in Equation (25) that is thus
mode-entangled with respect to the algebraic bipartition

(
AL,AR

)
. In this scheme, the

remaining mode (L, ↑) plays thus the role of particle B in standard teleportation.
The protocol consists of:
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1. a projective measurement onto Bell-like states with fixed particle numbers relative
to the modes (Y, ↓) and (L, ↑) (see Appendix A), assuming that, as particles A and B
in the standard protocol, the location L is close enough to the location Y to allow for
coherent manipulations of states;

2. a local operation on the mode (R, ↓) conditioned to the Bell measurement outcome
that needs to be communicated between the locations L and R using classical devices.

The operations involved in the teleportation protocol are mode-local as they are
described in terms of operators relative to the fixed spatial locations Y and L on the one hand
and R on the other. The main difference with respect to the metrological setting discussed
in the previous section is that the analysis of the teleportation protocol needs the extension
of the two-mode subalgebra, AL, to a four-mode one, AYL = {aY,σ, a†

Y,σ, aL,σ, a†
L,σ}σ=↑,↓.

The teleportation performances are measured by the fidelity given by the overlap
between the input state |Φ〉 and the obtained state of the modes (X, ↓) and (R, ↑) (as if they
were in the same Hilbert space) averaged over all Bell measurement outcomes and over all
|Φ〉. For two-mode boson states, the teleportation fidelity turns out to be [74,75]:

f (|Ψ〉) = 2
M + 2

(
1 +

N

∑
k 6=j, k,j=0

max{0, M + 1− |k− j|}
2M + 2

×
〈vac|aN−k

R,↓ ak
L,↑|Ψ〉〈Ψ|

(
a†

L,↑
)k(a†

R,↓
)N−j|vac〉√

k!(N − k)!j!(N − j)!

. (42)

If the resource state is |Ψunif〉, the final state of modes (X, ↑) and (R, ↓) is the same as
the state |Φ〉 in (25) for a fraction (N −M + 1)/(N + 1) of measurement outcomes, while
other outcomes result in teleporting only some components of the same state. Thus, the
teleportation fidelity approaches one for a large particle number in the resource state:

f (|Ψunif〉) = 1− M
3N + 3

. (43)

Teleportation is not exact for all Bell measurement outcomes because of the particle
number conservation. When the resource state is |Ψcoh〉 with ξ = 1/2, the teleportation
fidelity also approaches one when N → ∞:

f (|Ψcoh〉) = 1−O
(

M2

N

)
. (44)

It is remarkable that coherent states |Ψcoh〉 provide very good teleportation perfor-
mances with negligible distortions for large N, although they behave classically for the
estimation of interferometric phases. Instead, the resource state |Ψ`1,`2〉 gives rise to poor
teleportation performances, very close to those of mode-separable states |ΨFock〉 in (23),
which yields:

f (|ΨFock〉) =
2

M + 2
. (45)

This fidelity equals the maximum fidelity for teleporting (M + 1)-level distinguish-
able particles; further, note that also the mode (Y, ↓) to be teleported by means of the
protocol discussed here has M + 1 orthogonal states. The case of N = M = 1 is particularly
suited to enlighten how mode entanglement is able to capture the role of indistinguisha-
bility. Indeed, in such a case, the states |Ψ〉 and |Φ〉 are single-particle states, and the
Bell-like measurement outcomes that provide perfect teleportation are associated with
projections onto single-particle states. It is therefore clear that correlations with respect to
the mode-algebraic bi-partitions, rather than among particles, is the relevant resource (see
Appendix B).
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The above protocol can also be applied to swap entanglement: the modes (X, ↑) and
(R, ↓) in the initial state are not entangled, while they are after the protocol. If the aim is
to distribute as much entanglement as possible, a measure of the entangled shared by the
modes (X, ↑) and (R, ↓) is a better figure of merit than the teleportation fidelity as the latter
carries information that is not relevant for the entanglement distribution [74,75].

4. Discussion

We showed that, in two specific quantum metrological and teleportation tasks based
on systems of indistinguishable particles, mode entanglement is the quantum resource
that allows for enhanced performances. Indeed, mode entanglement is the natural gener-
alization to identical particles of the notion of entanglement of distinguishable particles;
it provides a useful resource to beat the limitations due to local operations and classical
communication. According to the discussion at the end of Section 2, mode-separable
state vectors with respect to an algebraic bipartition remain separable under the action of
operations that are mode-local with respect to the same bipartition, while classical commu-
nications can only generate statistical mixtures of states resulting from local operations [76].

The notion of locality that appears very naturally in the second quantization context
cannot be consistently formulated in other approaches to indistinguishable particle en-
tanglement [48,50]. It is therefore interesting to compare the performances of the above
quantum information tasks within other entanglement theories. In particular, we consid-
ered two different approaches to identical particle entanglement that are based not on the
notion of modes, rather than on that of particles.

4.1. No-Label Approach

The no-label approach characterizes the entanglement of N indistinguishable particles
with at least two degrees of freedom within a formalism that avoids the use of unphysical
particle labels [77,78]; as a consequence, state vectors of particles with only one degree
of freedom turn out to be always unentangled. We adopted a reformulation in second
quantization that is more convenient especially for many-particle states (see [48,78]). In this
approach, the entanglement shared between n particles and the remaining N− n ones in an
N-boson state vector |Ψ〉 is (i) defined with respect to a given choice of a finite-dimensional
subspace K of the single-particle Hilbert space and (ii) evaluated by means of the von
Neumann entropy of a matrix ρ(n) that is derived from the N-particle projector |Ψ〉〈Ψ| as
follows. An orthonormal basis {|ψj〉}

p
j=1 is selected in the subspace K; then, a selective

measurement is performed based on the set of operators ∏
p
j=1 a

nj
ψj

with all possible choices

of occupation numbers of the corresponding modes such that ∑
p
j=1 nj = n, transforming

|Ψ〉〈Ψ| into:

ρ(n) =

∑
n1+···np=n

(
p

∏
j=1

a
nj
ψj

)
|Ψ〉〈Ψ|

(
p

∏
k=1

(
ank

ψk

)†
)

∑
n1+·+np=n

〈Ψ|
n

∏
j=1

(
a

nj
ψj

)†a
nj
ψj
|Ψ〉

. (46)

As regards ρ(n), two facts need be noticed:

1. while the von Neumann entropy of ρ(n) does depend on the chosen subspace K, it
does not depend on the chosen orthonormal basis of K;

2. the operators ∏
p
j=1 a

nj
ψj

remove n particles from the N-particle state |Ψ〉. Therefore,

ρ(n) is supported by the Fock sector with N − n particles; however, it is not an N − n-
particle reduced density matrix as would result from a partial trace with respect to
the discarded degrees of freedom: for instance, it does not reproduce the expectations
of (N − n)-particle observables [49].

In order to make a comparison between the mode and the no-label approaches to
identical particle entanglement in the case of the metrological task, let K be the two-
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dimensional subspace of C4 spanned by the vectors |L, ↓〉 and |L, ↑〉. This latter is the usual
choice in the applications of the no-label approach, which aims at addressing quantum
correlations between localized particles. The matrix ρ(n) results then:

ρ(n) =

n

∑
k=0

ak
L,↑ an−k

L,↓ |Ψ〉〈Ψ|
(
an−k

L,↓
)† (ak

L,↑
)†

n

∑
k=0
〈Ψ|
(
ak

L,↑
)†ak

L,↑
(
an−k

L,↓
)†an−k

L,↓ |Ψ〉
. (47)

In the case of states |Ψ〉 of the form (25), one finds:

ak
L,↑ an−k

L,↓ |Ψ〉 = δkn

N

∑
`=n

α`
an

L,↑
(
a†

L,↑
)`

√
`!

(
a†

R,↓
)N−`√

(N − `)!
|vac〉 , (48)

whence:

ρ(n) = |Ψ(n)〉〈Ψ(n)| , |Ψ(n)〉 = 1√√√√ N

∑
`=n
|α`|2

N

∑
`=n

α`

(
a†

L,↑
)`−n√

(`− n)!

(
a†

R,↓
)N−`√

(N − `)!
|vac〉 . (49)

In this case, the matrix ρ(n) is thus a pure state, and therefore, its von Neumann
entropy is zero for any n. As a consequence, according to the no-label approach, the states
|Ψ〉 are not entangled with respect to any particle partitioning.

Within the no-label approach, as much as the notion of entanglement, also that of
locality depends on the single-particle subspace K. In particular, single-particle operators
whose measurement projects single-particle states onto K are deemed local [77,79]. Then, it
follows that the unitary operator Uθ in (29) that implements the action of the interferometer
discussed in the metrological context is local the product of the two spatially local phase-
shifts in (31). The puzzle here is thus as follows: in the mode entanglement approach, the
metrological quantum advantage is due to the entanglement of the state relative to the
algebraic bipartition with respect to which the interferometer action is instead local. On
the contrary, in the no-label approach, neither the state is entangled nor the interferometer
is non-local, yet the quantum advantage is there as predicted by the behavior of the Fisher
information, which is only due to the structure of the state |Ψ〉 and of the unitary operator
Uθ . Experimental evidence that the shot-noise limit is beaten would then force one to accept
that, in the no-label approach, quantum metrological advantages might occur without
either quantum entanglement or quantum non-locality during any step of the protocol.

Analogously, in the no-label approach, operators of the form:

1⊗OL + OL ⊗ 1 with OL := |L〉〈L|O (50)

and O, a single particle operator, in first quantization, or:

∑
σ,σ′=↑,↓

〈σ|O|σ′〉 a†
L,σ aL,σ′ , (51)

in second quantization, are local. Such structures can be straightforwardly generalized so
that n-particle local operators have the form:

∑
σj ,σ′j=↑,↓

〈σ1| ⊗ 〈σ2| · · · ⊗ 〈σn|O|σ′1〉 ⊗ |σ′2〉 · · · ⊗ |σ′n〉
n

∏
j=1

a†
L,σj

aL,σ′j
. (52)

Therefore, the measurements in the teleportation protocol involve local observables
in the L and Y positions, and thus act locally on the states |Ψ〉. Furthermore, also the
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last step of the teleportation protocol is local as it acts unitarily with respect to the mode
(R, ↓) and possibly on nearby auxiliary modes. Like in the case of phase estimation with
local interferometers, the teleportation protocol interpreted within the no-label approach is
apparently implementable without either entanglement or quantum non-locality, quite a
paradoxical conclusion.

4.2. Particle Entanglement: Another Approach

Another particle-based approach to entanglement in systems of indistinguishable
particles, sometimes called particle entanglement, defines as separable states those where
all particles are in the same single-particle state |ψ〉, namely |ψ〉⊗N in first quantization, or
(a†)N |vac〉√

N!
for any mode-creation operator a† in second quantization [80–83].

This approach is a straight extension of the standard theory of entanglement to identi-
cal particles. Indeed, unlike in Section 2, symmetrization is taken as a legitimate source of
entanglement. For instance, in this way, all Fermionic state vectors turn out to be entangled.
Within this approach, we show that quantum advantages as teleportation emerges without
particle entanglement, for they are obtainable from particle-separable states. It then follows
that this particular type of particle entanglement is not consistent with the operational
point of view that asks for entanglement in order to achieve quantum advantages.

As a first example, let us consider the teleportation protocol discussed in Section 3.2,
and set N = M = 1. Then, the resource state (25) reduces to |Ψ〉 =

(
a†

L,↑ + a†
R,↓
)
|vac〉,

and thus to the states |Ψ`1=0,`2=1〉, |Ψunif〉 and |Ψcoh〉 in (26)–(28) with N = 1. The state
|Ψ〉 is mode-entangled, but as a single-particle state, it is trivially not particle-entangled.
On the other hand, the protocol uses projectors onto single-particle states that provide
probabilistically perfect teleportation, but, as such, cannot generate particle entanglement.
Therefore, the particle entanglement so far considered is not necessary for teleportation.

As a second instance where paradoxical results emerge adopting the above definition
of particle entanglement, let us consider a slightly different teleportation protocol that
aims at distributing entanglement at distant locations X and R, as done in entanglement
swapping. The protocol hinges upon an input state of coherent form,

|Φcoh〉 =
1√
M

(√
ζ a†

X,↑ + eiϑ
√

1− ζ a†
Y,↓

)M
|vac〉, (53)

and upon the resource state |Ψcoh〉 as in (28). Both of these states are particle-separable
according to the above definition of particle entanglement. Let us take as the protocol global
initial state the combination |Φcoh〉|Ψcoh〉; notice that this state is not particle-separable
since it is not the product of the same single-particle states, despite the fact that |Φcoh〉
and |Ψcoh〉 can be prepared independently at distant locations without any interactions
between the corresponding particles. In addition, let us replace the Bell-like measurement
with the following generalized measurement:

ρ −→
EiρE†

i
Tr(ρE†

i Ei)
, (54)

with outcomes i ∈ {0, 1} and:

E0 = |η, ω〉〈η, ω| , |η, ω〉 = 1√
n

(√
η a†

Y,↓ + eiω√1− η a†
L,↑

)n
|vac〉 , (55)

E1 = 1− E0 , (56)

where 0 ≤ η ≤ 1 and ω an arbitrary phase. Note that only E1 can generate entanglement
as E0 projects onto a particle-separable state. Nevertheless, by discarding the “1” outcome
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and concentrating on the “0” one, as the outcome of the protocol, one ends up with the
state:

E0|Φcoh〉|Ψcoh〉√
〈Φcoh|〈Ψcoh|E†

0 E0|Φcoh〉|Ψcoh〉
, (57)

with probability:
〈Φcoh|〈Ψcoh|E†

0 E0|Φcoh〉|Ψcoh〉 . (58)

For N = M = n, one explicitly finds:

E0|Φcoh〉|Ψcoh〉 =

= |η, ω〉 1√
N!

N

∑
k=0

(
N
k

)2(
η(1− ξ)(1− ζ)ei(ϑ+ϕ)

) N−k
2 (59)

×
(
ξζ(1− η)e−iω) k

2
(
a†

X,↑
)k(a†

R,↓
)N−k|vac〉. (60)

This final state turns out to be in general entangled with respect to the untouched
modes (X, ↑) and (R, ↓). Therefore, the above swapping protocol probabilistically gener-
ates entanglement starting from a state, |Φcoh〉|Ψcoh〉, which, as already stressed, can be
prepared using only local operations, quite a striking paradox.

Such an inconsistency originates from the impossibility of reconciling the above
definition of particle entanglement with any underlying notion of identical particle locality
(see Remarks 1 and 3).

A resource theory associated with the notion of particle entanglement here discussed
has been recently proposed [83]. In general, resource theories describe quantum resources
beyond entanglement [10]; they are based on defining resourceless states, called free states,
and resourceless operations, called free operators, as a subset (sometimes a proper subset
as in the case of resource theories of entanglement [76,84] and quantum coherence [85])
of operators that cannot transform free states into resourceful ones. It turns out that the
resource theory proposed in [83] identifies states of the form |Φcoh〉|Ψcoh〉 as resourceful,
but without specifying any notion of particle-local operations. Instead, in discussing
entanglement theory, the notion of locality is crucial in the definition of free operations,
which typically consist of local operations and classical communication [76].

5. Conclusions

We discussed a fully consistent generalization of entanglement theory to systems of
indistinguishable particles and some of its applications to quantum information processing.
Such a general theory, namely mode entanglement, is formulated in second quantization
and accounts for quantum correlations between modes in the Fock space. Indeed, identical
particles are not individually addressable, unless they are effectively distinguished by
unambiguous properties, i.e., orthogonal states of certain degrees of freedom. On the other
hand, modes are experimentally addressable [37–39], and mode addressability retrieves
particle addressability when identical particles become effectively distinguishable [48]. In
general, however, full physical consistency requires that the relevant degrees of freedom in
many-body quantum information processing be modes rather than particles.

We showed that mode entanglement is the relevant quantum resource for interfer-
ometric phase estimation and teleportation, two benchmark protocols that are central
in quantum technologies. Indeed, indistinguishability improves the capability of these
protocols with respect to those making use of distinguishable particles. First of all, identical
particles can be distinguished at the cost of sacrificing certain degrees of freedom that
can only be used as particle labels and not as an active part of information processing.
Secondly, indistinguishable particles lift off the load to generate entanglement at the input
of an interferometer in order to estimate the phase with quantum-enhanced accuracy, the
reason being that indistinguishability allows the interferometer itself to generate mode
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entanglement. Finally, mode entanglement in systems of indistinguishable particles enables
the implementation of mode teleportation that thus generalizes standard teleportation.

We also compared the above protocols with alternative approaches to indistinguish-
able particle entanglement within the context of resource analysis, pointing out logical
contradictions that arise in adopting those definitions. In particular, the no-label approach
that introduces an ad hoc formalism in order to avoid unphysical particle labels attributes
no role to entanglement in the realization of the protocols described above. Instead, the
other discussed approach to particle entanglement attributes entangling power to the
symmetrization of identical particle pure states. As such, it entails that teleportation can
be used to generate entanglement between distant particles using only non-entangling
operations.

These results clearly pinpoint internal inconsistencies in those definitions of “particle
entanglement”, making them unreliable in their physical predictions. Instead, in all so-far
tested physical applications, no inconsistencies emerge using second-quantized mode
entanglement in describing quantum correlations in system of identical particles: indeed,
this approach is able to correctly identify entanglement as a crucial ingredient in the
realization of quantum protocols.

We hope that these findings will stimulate further research on the use of many-
body systems consisting of identical constituents in quantum information processing,
and in particular encourage the development of quantum technological advances able to
experimentally confirm the above discussed results.
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Appendix A. Bell-Like Measurement

The Bell-like measurement in the teleportation protocol is a generalization of that used
in the teleportation of qudits [70]. It consists of projectors onto the following states:

|B`,λ〉YL =
M

∑
k=0

e2πi λk
M+1

√
M + 1

(
a†

Y,↓
)M−k√

(M− k)!
·
(
a†

L,↑
)k+`√

(k + `)!
|vac〉 , (A1)

where ` ∈ {0, 1, · · · , N −M} and λ ∈ {0, 1, · · · , M}.
The formal difference with respect to the Bell measurement for qudit teleportation can

be appreciated by re-writing:

(
a†

Y,↓
)M−k(a†

L,↑
)k+l |vac〉 =

√
(M− k)!(k + l)! |M− k, k + l〉YL .

Indeed, the sum k + ` is taken modulo N for qudits, and the dimensions of each
qudit Hilbert space are the same, while, in the Fock space, the qudit measurement violates
the conservation of the particle number that is imposed here. In order to overcome this
difficulty, we consider the standard sum k + ` and allow for larger occupation numbers
of the mode (L, ↑). Despite this generalization, the states (A1) do not span the state
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space available for the modes (Y, ↓) and (L, ↑), and the corresponding measurement
is not complete. Nevertheless, the ratio between the space spanned by (A1) and the

required space of the modes (Y, ↓) and (L, ↑) is
N −M + 1

N + 1
approaching one for N � M.

Furthermore, measurements with outcomes (`, λ) projecting onto states (A1) provide
perfect teleportation when using the resource state |Ψunif〉.

A complete measurement including projectors onto (A1) is a projective measurements
onto the following states:

|B`,λ〉YL =
min{M,N−`}

∑
k=max{0,−`}

e
2πi λk

C`
√
C`

(
a†

Y,↓
)M−k√

(M− k)!
·
(
a†

L,↑
)k+`√

(k + `)!
|vac〉,

C` =


M + `+ 1 if −M 6 ` < 0
M + 1 if 0 6 l 6 N −M
N − `+ 1 if N −M < ` 6 N

,

` ∈ {−M,−M + 1, · · · , N}, λ ∈ {0, 1, · · · , C` − 1}. (A2)

Projectors onto states (A2) not included in (A1) result in the teleportation only of some
components of input states |Ψ〉 and slightly increase the teleportation fidelity.

Appendix B. Teleportation for Distinguishable Particle

For a better comparison with the case of a distinguishable particle, it is instructive to
set N = M = 1 and rephrase the teleportation protocol presented in the previous Appendix
within the first quantization approach. The input and the resource states are, respectively,

|Φ〉 = c0|X, ↑〉+ c1|Y, ↓〉 ∈ Hinput, |Ψ〉 = α0|R, ↓〉+ α1|L, ↑〉 ∈ Hresource, (A3)

and the Bell-like measurement outcomes that provide perfect teleportation correspond to
projections onto the states:

|B±〉 =
|Y, ↓〉 ± |L, ↑〉√

2
. (A4)

Whether these projectors act either on the input state or on the resource state, it is not
possible to reproduce the desired output state, namely:

c0|X, ↑〉+ c1|R, ↓〉. (A5)

Indeed, standard teleportation protocols for distinguishable particle states requires
two- (or many-) particle resource states and Bell measurements. Teleportation in the
framework of mode entanglement recovers the standard protocol for a fixed particle
number in locations Y, L, and R [48,74,75]. An example is provided by the following input
state and resource state:

|Φ〉 = c0|Y, ↑〉+ c1|Y, ↓〉 ∈ Hinput , (A6)

|Ψ〉 =
|L, ↓〉 ⊗ |R, ↓〉+ |L, ↑〉 ⊗ |R, ↑〉√

2
∈ Hresource , (A7)

and by projectors onto the following states:

|B±〉 =
|Y, ↓〉 ⊗ |L, ↓〉 ± |Y, ↑〉 ⊗ |L, ↑〉√

2
, (A8)

|B′±〉 =
|Y, ↓〉 ⊗ |L, ↑〉 ± |Y, ↓〉 ⊗ |L, ↑〉√

2
. (A9)
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