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Abstract: This paper proposes a method for solving optimisation problems involving piecewise
quadratic functions. The method provides a solution in a finite number of iterations, and the
computational complexity of the proposed method is locally polynomial of the problem dimension,
i.e., if the initial point belongs to the sufficiently small neighbourhood of the solution set. Proposed
method could be applied for solving large systems of linear inequalities.

Keywords: optimisation problem; piecewise quadratic function; gradient method; system of linear
inequalities; locally polynomial complexity

1. Introduction

Let us consider the following optimisation problem:

min
x∈Rn

∥∥(A · x− b)+
∥∥2, (1)

where c+ := max{c, 0}, A is an m × n matrix , A =
{

aij
}

, x ∈ Rn, x = {xi}, b ∈ Rm,
b =

{
bj
}

, i = 1, . . . , n, j = 1, . . . m and ‖ · ‖ is the Euclidean norm of Rn.
In this paper, a method for solving the problem in (1) is proposed; moreover, the

number of iterations (equivalent to the computational complexity) required by the proposed
method with respect to m and n is locally polynomial, and in the worst-case scenario, it has
a geometric convergence rate.

Let us define the set of solutions of (1) as follows

X∗ :=
{

x∗
∣∣∣∣x∗ = arg min

x∈Rn

∥∥(A · x− b)+
∥∥2
}

. (2)

If some point sufficiently close to the set X∗ of solutions to (1) is known, then it is possible
to find a solution of (1) within a polynomial number of computational iterations; thus, the
computational complexity is of the order of O(m3 · n3).

Many methods for solving (1) have been proposed (cf. Karmanov [1], Golikov and Ev-
tushenko [2], Evtushenko and Golikov [3], Tretyakov [4], Tretyakov and Tyrtyshnikov [5]
and Han [6]). All of these methods have reasonable computational complexity but, as
mentioned above, to date, no strongly polynomial-time algorithm for solving (1) has been
proposed. In studies by Tretyakov and Tyrtyshnikov [7] and Mangasarian [8], linear pro-
gramming problems were solved by reducing them to the unconditional minimisation of
strongly convex piecewise quadratic functions. A solution is obtained within a finite poly-
nomial number of iterations if the starting point of the algorithm belongs to a sufficiently
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close neighbourhood of the unique solution to the problem. Unfortunately, the authors
imposed severe limitations on the functions to be minimised: they should be strongly
convex, the eigenvalues of the Hessian matrices should satisfy specific conditions, etc.

These results create significant limitations on the class of problems that can be solved:
it is required that (1) has only one unique solution, etc. The solution method described
by Tretyakov and Tyrtyshnikov [7] is based on exploiting information about the problem
being solved by analysing a sufficiently small neighbourhood of an arbitrary solution
of (1). Analogous methods were proposed by Facchinei et al. [9] for the forecasting
(identification) of the active constraints in a sufficiently close neighbourhood of the solution
to the problem. In papers by Tretyakov and Tyrtyshnikov [5] and Wright [10], locally
polynomial methods for solving quadratic programming problems based on similar ideas
were presented. Tretyakov [4] proposed the gradient projection method for solving (1);
this method involves finding a solution of (1) in a finite number of iterations and is a
combination of iterative and straightforward (e.g., Gaussian) methods.

This paper proposes a computational method for solving (1). When the starting
point of the proposed method is sufficiently close to the set X∗ of solutions to (1), then its
computational complexity is locally polynomial, i.e., it is of the order of O(m3 · n3).

We point out that solving a system of linear inequalities involves

A · x− b ≤ 0m, (3)

where the 0m – m-dimensional vectors of zeroes can be reduced to solve the problem (1).
This means that the number of computations required for establishing a solution (if a given
system of linear inequalities has one) is locally polynomial.

Let us denote
X := {x ∈ Rn| A · x− b ≤ 0m }. (4)

It is obvious that the set X might be empty in general, but our method, presented in this
paper, either determines this situation in a locally polynomial number of computations or
provides a solution to the system (3). The proposed method could be applied when solving
large systems of linear inequalities, which appear in many practical, industrial applications,
e.g., the simplex method (Pan [11]), Karmarkar’s method (Wright, [12]), Chubanov’s
method (Roos [13]), and Fourier–Motzkin elimination method (Khachiyan [14], I. Šimeček,
R. Fritsch, D. Langr, R. Lórencz [15]).

2. Definitions and Theoretical Results

Let
ϕ(x) =

1
2
· ‖(A · x− b)+‖2. (5)

Theorem 1. The function ϕ(x) is convex and has a nonempty set of minimal values

X∗ :=
{

x∗ ∈ Rn
∣∣∣∣ ϕ(x∗) = min

x∈Rn
ϕ(x)

}
. (6)

Proof. Theorem 1 follows immediately from the well-known features of quadratic-type
convex functions (see, e.g., [16]).

It is obvious that the elements x∗ ∈ X∗, cf. (6) satisfy

ϕ′(x∗)> =
m

∑
i=1

(〈ai, x∗〉 − bi)+ · ai = 0n = AT · (A · x∗ − b)+, (7)

where aT
i is the ith row of matrix A.
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Therefore, in the general case, our goal is to solve the following equation

ϕ′(x)> =
m

∑
i=1

(〈ai, x〉 − bi)+ · ai = AT · (A · x− b)+ = 0n, where x ∈ Rn. (8)

In the sequel, x∗ stands for an arbitrary element of X∗ (the minimum point of ϕ). If the
minimum value of ϕ is equal to zero, then X = X∗, and if the minimum value of ϕ is
positive, then X = ∅. Let us denote

fi(x) := 〈ai, x〉 − bi, i ∈ D = {1, . . . m},

and

J0(x) := {i ∈ D | fi(x) = 0}, J−(x) := {i ∈ D | fi(x) < 0},
J+(x) := {i ∈ D | fi(x) > 0}, (9)

where fi(x) is introduced to simplify the definitions of the sets J0(x) and J+(x).
According to (7) and the above notations, x∗ should satisfy the formula

∑
i∈J0(x∗)∪J+(x∗)

(〈ai, x∗〉 − bi)+ · ai = 0n. (10)

The formula (10) is equivalent to a condition that should be satisfied at point x∗

∑
i∈J0(x∗)∪J+(x∗)

(〈ai, x∗〉 − bi) · ai = 0n, (11)

In (11), it is considered that

(〈ai, x∗〉 − bi)+ = 〈ai, x∗〉 − bi, i ∈ J0(x∗) ∪ J+(x∗).

This, in turn, means that, in the general case, we should solve the following equations

∑
i∈J0(x)∪J+(x)

(〈ai, x〉 − bi)+ · ai = 0n, (12)

or

∑
i∈J+(x)

(〈ai, x〉 − bi)+ · ai = 0n, (13)

〈ai, x〉 − bi = 0, i ∈ J0(x).

Without loss of generality, we may denote

J−(x∗) := {1, . . . , l}, J0(x∗) := {l + 1, . . . , p}, J+(x∗) := {p + 1, . . . , m},

where l ≤ p ≤ m.
The main idea exploited in this paper is based on the following Lemma. For ε > 0 we

set Uε(x∗) := {x ∈ Rn : ‖x− x∗‖ ≤ ε}.

Lemma 1. Let x∗ be a solution to the problem (1). Then, there exists ε > 0, such that for any
x ∈ Uε(x∗), the inequality fi(x) ≥ 0 implies the inequality fi(x∗) ≥ 0.

Proof. If i ∈ J−(x∗), that is fi(x∗) < 0, then, by continuity of the function fi, there exists
εi > 0, such that fi(x) < 0 for all x ∈ Uεi (x∗). Set

ε = min
i∈J−(x∗)

εi.
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Then, for all i ∈ J−(x∗) and for all x ∈ Uε(x∗), we have fi(x) < 0. Consequently, if there
exists x ∈ Uε(x∗) such that fi(x) ≥ 0 with some i ∈ {1, . . . , m}, then i /∈ J−(x∗), that is
fi(x∗) ≥ 0.

By virtue of the above lemma, in a sufficiently small neighbourhood of some fixed
point x∗ ∈ X∗, for every x̄ ∈ Uε(x∗), the following hold

J0(x̄) ⊆ J0(x∗) and J+(x̄) ⊆ J0(x∗) ∪ J+(x∗), J−(x̄) ⊆ J0(x∗) ∪ J−(x∗).

Now, our goal is to correctly define the sets J0(x∗) and J+(x∗) based on the information
gained at point x̄ ∈ Uε(x∗). Let us denote

J̄0(x̄) := J0(x̄), J+(x̄) := J+(x̄), J−(x̄) := J−(x̄).

Let A(x̄) and b(x̄) represent the matrix and vector obtained from A and b, respectively.
The rows of A(x̄) and the coefficients of b(x̄) correspond to the index set, which is defined
by J0(x̄) ∪ J+(x̄). In this case, Equations (12)–(13) may be rewritten as

AT(x̄) · (A(x̄) · x− b(x̄)) = 0n, (14)

〈ai, x〉 − bi = 0, i ∈ J0(x̄).

Let Ā(x̄) denote the matrix in the equations in (14) corresponding to the maximum set of
linearly independent rows, and let b(x̄) denote the corresponding vector of constant terms
in (14).

The equations in (14) may be reformulated in the following way

Ā(x̄) · x− b̄(x̄) = 0n. (15)

Let us observe that, at point x∗, the following holds

AT(x∗) · (A(x∗) · x∗ − b(x∗))+ = 0n. (16)

This, in turn, means that
Ā(x∗) · x∗ − b̄(x∗) = 0n. (17)

M(x̄) := {x ∈ Rn | ∑
i∈J0(x̄)∪J+(x̄)

(〈ai, x〉 − bi) · ai = 0n (18)

and
〈

aj, x
〉
− bj = 0, where j ∈ J0(x̄)

}
.

If the rank of a matrix B of size r× n is equal to r, then the pseudoinverse matrix (operator)
B+ may be defined as B+ := BT · (B · BT)−1. We denote the quadratic matrix n× n orthogo-
nally projected on the space containing the rows of matrix B as(

BT)II := BT(B · BT)−1 · B = B+ · B, and its projection on the orthogonal complement of

the matrix is denoted as
(

BT)⊥ := I −
(

BT)II, where I is an all-ones matrix of size n× n.
Let a point z(x̄) be the projection of point x̄ on the set M(x̄). Let us observe that

x∗ ∈ M(x̄) if x̄ ∈ Uε(x∗) and ε is sufficiently small.
Moreover, if the constraints at point z(x̄) are fi(z(x̄)) ≤ 0 for a certain i ∈ J+(x̄), then

we define the set I− in the following way

I− =
{

i ∈ J+(x̄) | fi(z(x̄)) ≤ 0
}

; I− ⊆ J0(x∗).

Otherwise, if the constraints at point z(x̄) are fi(z(x̄)) ≥ 0 for a certain i ∈ J−(x̄), we define
the set I+ in an analogous way

I+ =
{

i ∈ J−(x̄) | fi(z(x̄)) ≥ 0
}

; I+ ⊆ J0(x∗).
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Now, we redefine J0(x̄), J+(x̄) and J−(x̄) as follows

J0(x̄) := J0(x̄) ∪ I− ∪ I+, J+(x̄) := J+(x̄) \ I−, J−(x̄) := J−(x̄) \ I+. (19)

Next, we project point x̄ on the new set M(x̄), cf. (18), and a new point z(x̄) is obtained.
Let

z(x) = PM(x̄)(x) =
(

AT(x̄)
)⊥
· x + Ā+(x̄) · b̄(x̄) (20)

define the operator for the projection of point x on set M(x̄).

3. Algorithm for Finding the Solution of (1)

In this section, the algorithm designed to find the solution to (1) is presented. The
main idea of this algorithm is based on information related to a current point x̄ belonging
to a sufficiently small neighbourhood of the point x∗ ∈ X∗. We also demonstrate how to
find such a point. The proposed method comprises two algorithms. The starting point of
the method can be arbitrary, because Algorithm 2 (gradient method with a special step
selection) starts at an arbitrary point and, on a certain iteration, it will provide a point
arbitrarily close to the solution set. Therefore, Algorithm 1 could start at the point specified
by Algorithm 2.

Algorithm 1. Initialisation Step: For the current point x̄, the sets of indices J0(x̄), J−(x̄) and
J+(x̄) are defined according to (9). If set J+(x̄) = ∅, then x̄ is the solution of (1) and Algorithm 1
is terminated. Otherwise, the Main Recursive Step is performed.

Main Recursive Step: Let z(x̄), the projection of point x̄ on the set M(x̄), be defined
according to (20). We check if the following condition is satisfied

I+ = ∅ and I− = ∅. (21)

Checking Step: If (21) holds, then z(x̄) ∈ X∗, and equation (10) is satisfied; z(x̄) is the
solution of (1), as defined in (2), and Algorithm 1 is terminated. Otherwise, if for certain values of
i ∈ D the condition (21) is violated and i ∈ I+ ∪ I−, we define J0(x̄), J+(x̄) and J−(x̄) according
to (19), M(x̄) is redefined according to (18), and the Main Recursive Step is repeated.

The set D is finite, and |D| = m; therefore, the number of changes to the index sets
J0(x̄), J+(x̄) and J−(x̄) does not exceed m, and finally, the point z(x̄) fulfilling (12) is
established. This means that z(x̄) is the solution of (1), as defined in (2).

It is of utmost importance that x̄ belongs to a sufficiently small neighbourhood of
the point x∗, because otherwise, z(x̄) may not satisfy (12). If this is not the case, it is
necessary to find another point x̄ that is closer to x∗. The process for accomplishing this is
described below.

Theorem 2. For a sufficiently small ε > 0 and for every x̄ ∈ Uε(x∗), Algorithm 1 provides
z∗ = z(x̄) as the solution for

ϕ′(x) = AT(x) · (A(x) · x− b)+ = 0n, (22)

and this is equivalent to finding the solution for (12) within a number of iterations of the order of
0(m3 · n3).

Proof. The proof is based on the observation that for x̄ belonging to a sufficiently small
neighbourhood of the point x∗, according to Lemma 1, the constraints fi(x̄) ≥ 0 correspond
to constraints fi(x∗) ≥ 0. Therefore,

J0(x̄) ∪ J+(x̄) ⊆ J0(x∗) ∪ J+(x∗).
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Let us determine z(x̄) as the projection of the point x̄ on the set M(x̄), which is defined
according to (18). It may happen that the set J0(x̄) becomes enlarged. However, the number
of iterations required when J0(x̄) becomes enlarged does not exceed m, the number of
elements in the set D. Therefore, at some iteration, (21) is satisfied. This means that
z(x̄) satisfies (12) or, equivalently, ϕ′(z(x̄)) = 0n. This demonstrates that z(x̄) is the
solution for (1), as defined in (2). The computational complexity of establishing each
projection z(x̄) is of order 0(m2 · n3); this process takes the computational effort related to
the multiplications of matrices into account. The number of iterations does not exceed m
and, therefore, the overall computational complexity is of order 0(m3 · n3).

To complement the presentation of this chapter, the gradient method for establishing
x̄ belonging to the sufficiently small neighbourhood Uε(x∗) of some fixed solution x∗ ∈ X∗

to (1) is described. This gradient method has the following scheme

xk+1 = xk − α · ϕ′(xk) (23)

where α = 1
L and gradient ϕ′(xk) fulfils the Lipschitz condition∣∣ϕ′(xk+1)− ϕ′(xk)

∣∣ ≤ L · |xk+1 − xk| where L = 2 ·
∥∥∥AT · A

∥∥∥.

The convergence of the gradient method (23) is considered in the following theorem, cf.
Karmanov [1].

Theorem 3. Let x0 ∈ Rn and the sequence {xk}, k = 0, 1, 2 . . ., be constructed according to (23).
Then,

xk → x∗, x∗ ∈ X∗, where k→ ∞ and ‖xk+1 − y‖ < ‖xk − y‖ ∀ y ∈ X∗.

Proof. The scheme in (23) produces a sequence that converges to a certain x∗ ∈ X∗.
Moreover, for every sufficiently small ε > 0, there exists k̄ = k(ε) such that {xk} ∈ Uε(x∗),
for all k ≥ k̄. This, in turn, means that at iteration k̄, the hypothesis of Theorem 2 is satisfied,
and we obtain a solution to (1).

Now, we have all the necessary prerequisites to present the solution algorithm for (3).

Algorithm 2. Initialisation Step: Let k = 0, and let x0 be an arbitrary point in Rn.
Main Recursive Step: Let

xk+1 = xk − α · ϕ′(xk).

Checking Step: If z(xk) is the solution for (3), then Algorithm 2 is terminated. Otherwise,
we set k := k + 1, and the Main Recursive Step is repeated.

Theorem 4. There exists a finite k̄ such that z(xk̄) ∈ X∗and z(xk̄) is the solution for (3).

Proof. The sequence {xk} converges to a fixed x∗ ∈ X∗ and therefore, at a certain iteration
k̄, the hypothesis of Theorem 2 is satisfied, and we obtain the solution z∗ = PM(xk̄)

∈ X∗.

Theorem 4 allows us to establish whether (3) has a solution or not.

Corollary 1. If
z∗ ∈ X,

then z∗ is the solution of (3). Otherwise (3) has no solutions.



Entropy 2021, 23, 465 7 of 9

4. Conclusions and Appendix

As previously mentioned, the locally polynomial complexity estimate is valid only if
the starting point of the proposed method belongs to a sufficiently small neighbourhood
of the set of solutions X∗. To reach such a desired point, the gradient method (23) is used.
There are accelerated gradient methods (see those of Nesterov [17] and Poliak [18]), but
these methods do not guarantee monotonic convergence to a set of solutions X∗. The
method presented in this paper monotonically converges to a certain point x∗, x∗ ∈ X∗.
It is obvious that the point x∗ depends on the initial point x0 and, therefore, the number
of iterations required by the gradient method for entering the proper neighbourhood of
point x∗ depends on the position of the initial point x0. Moreover, the ε radius of the
neighbourhood of point x∗, which the gradient method should reach, is unknown in the
general case and depends on the specific problem being considered. However, it appears
that we can guarantee a geometric convergence rate for the gradient method (23) while
minimising piecewise quadratic functions of the form (5).

Namely, for every strongly convex function ψ(x), the gradient method (23) has a
geometric convergence rate, i.e.,

ψ(xk)− ψ∗ ≤ c · δk, where 0 < δ < 1, c > 0,

where c is a constant that is independent of the size of the problem but depends on the
initial point x0. In the general case, for functions that are not convex in the strongest sense,
there is no proof of the geometric convergence of the gradient method (23). However,
in the case where the function ϕ(x) is given by (5), it is possible to prove the geometric
convergence of the gradient method (23). Let

l(xk) = {x∗ + β · (xk − x∗), β ≥ 0} and M(sk) = {x∗ + β · sk, β ≥ 0},

sk =
xk − x∗

‖xk − x∗‖ .

The theorem presented below proves the strong convexity of the function ϕ(x) in the
cone of convergence.

Theorem 5. The elements of the sequence {xk}, defined by (23), belong to the cone of strong
convexity of the function ϕ(x), namely ∀ x, y ∈ l(xk), the function ϕ(x) is uniformly strongly
convex for the sequence {xk}, i.e.,

ϕ(λ · x + (1− λ) · y) ≤ λ · ϕ(x) + (1− λ) · ϕ(y)− γ · λ · (1− λ) · ‖x− y‖2 (24)

where λ ∈ [0, 1], x, y ∈ l(xk), k = 0, 1 . . ., and γ > 0.

Proof. First, it should be pointed out that because the second derivative of the function
ϕ(x) has a finite number of points of discontinuity S̄ ∈ Rn in every direction, i.e., on the ray
x∗ + λ · S̄, there exists σ > 0 such that on the closed interval [x∗, x∗ + σ · S̄], the function
ϕ(x) has a continuous second derivative that obviously depends on S̄. Let us assume that
the theorem does not hold, i.e., there is not γ > 0, such that (24) holds. This means that for

l(xk) = {x∗ + β · sk, β ≥ 0}

the following must hold

∂2 ϕ(x∗)
∂s2

k
= γk → 0 when k→ ∞, (25)

or
∂2 ϕ(x∗)

∂s2
k

=
〈

AT · A · sk, sk

〉
= γk → 0 when k→ ∞.
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For vector s = lim
k→∞

sk, the following condition
〈

AT · A · s, s
〉
= 0 holds, or, due to the

construction of ϕ(x),

ϕ(x∗ + β · s) = 0 = ϕ(x∗) = min
∥∥(A · x− b)+

∥∥2,

where β ∈ [0, β̄], β̄ > 0 is a certain fixed constant. Let x∗k be (locally) the projection of xk on
the set M(s) ∈ X∗. Then, due to sk → s, k→ ∞, we have

‖xk − x∗k‖ = δk · ‖xk − x∗‖, where δk → 0, k→ ∞. (26)

Let us set δk sufficiently small and consider the points xk+r, r = 1, 2,. . . . Then, according to
Theorem 3, we have

‖xk+r − x∗k‖ < ‖xk − x∗k‖. (27)

On the other hand, according to (26), when r → ∞

‖xk+r − x∗k‖ ≥ ‖x
∗
k − x∗‖ − ‖xk+r − x∗‖ ≥

‖xk − x∗‖ − ‖xk − x∗k‖ − ‖xk+r − x∗‖ ≥
1
δk
‖xk − x∗k‖ − ‖xk − x∗k‖ − ‖xk+r − x∗‖ > ‖xk − x∗k‖.

This is contradictory to (27), and therefore Theorem 5 holds.

Theorem 5 allows for the estimation of the convergence rate of the gradient method (23).

Theorem 6. Under the assumptions of Theorem 5 for the sequence {xk}, constructed according to
(23), the following convergence rates hold

ϕ(xk)− ϕ∗ ≤ c1 · τk and ‖xk − x∗‖ ≤ c2 · τ
k
2 , (28)

where τ ∈ (0, 1), and c1 and c2 > 0; the constants c1, c2 are independent of the value of k but
depend on the initial point x0.

Proof. Let us denote
µk = ϕ(xk)− ϕ∗.

For the sequence {xk} and q ∈
(

1
2 , 1
)

the following holds

ϕ(xk)− ϕ(xk+1) ≥ α · q ·
∥∥ϕ′(xk)

∥∥2 ≥ α · q ·
〈

ϕ′(xk), sk
〉2

=
∂2 ϕ(xk)

∂s2
k
≥ (29)

≥ α · q · γ2 · (ϕ(xk)− ϕ∗)

or, equivalently,
µk − µk+1 ≥ α · q · γ2µk.

Therefore, for τ ∈ (0, 1), the following holds

µk ≤ c1 · τk or, equivalently, ϕ(xk)− ϕ∗ ≤ c1 · τk.

This proves the first part of (28), while the latter part of (28) follows from the strong
convexity of the function ϕ(x) in the cone of convergence.

The conduction computational experiments and comparison of the presented method
with other methods in the literature remains a topic for future research.
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