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Abstract: This paper investigates the asymptotic properties of estimators obtained from the so called
CVA (canonical variate analysis) subspace algorithm proposed by Larimore (1983) in the case when the
data is generated using a minimal state space system containing unit roots at the seasonal frequencies
such that the yearly difference is a stationary vector autoregressive moving average (VARMA) process.
The empirically most important special cases of such data generating processes are the I(1) case
as well as the case of seasonally integrated quarterly or monthly data. However, increasingly also
datasets with a higher sampling rate such as hourly, daily or weekly observations are available, for
example for electricity consumption. In these cases the vector error correction representation (VECM)
of the vector autoregressive (VAR) model is not very helpful as it demands the parameterization of
one matrix per seasonal unit root. Even for weekly series this amounts to 52 matrices using yearly
periodicity, for hourly data this is prohibitive. For such processes estimation using quasi-maximum
likelihood maximization is extremely hard since the Gaussian likelihood typically has many local
maxima while the parameter space often is high-dimensional. Additionally estimating a large number
of models to test hypotheses on the cointegrating rank at the various unit roots becomes practically
impossible for weekly data, for example. This paper shows that in this setting CVA provides consistent
estimators of the transfer function generating the data, making it a valuable initial estimator for
subsequent quasi-likelihood maximization. Furthermore, the paper proposes new tests for the
cointegrating rank at the seasonal frequencies, which are easy to compute and numerically robust,
making the method suitable for automatic modeling. A simulation study demonstrates by example
that for processes of moderate to large dimension the new tests may outperform traditional tests
based on long VAR approximations in sample sizes typically found in quarterly macroeconomic data.
Further simulations show that the unit root tests are robust with respect to different distributions for
the innovations as well as with respect to GARCH-type conditional heteroskedasticity. Moreover,
an application to Kaggle data on hourly electricity consumption by different American providers
demonstrates the usefulness of the method for applications. Therefore the CVA algorithm provides
a very useful initial guess for subsequent quasi maximum likelihood estimation and also delivers
relevant information on the cointegrating ranks at the different unit root frequencies. It is thus a
useful tool for example in (but not limited to) automatic modeling applications where a large number
of time series involving a substantial number of variables need to be modelled in parallel.

Keywords: cointegration; subspace algorithms; VARMA models; seasonality

JEL Classification: C13; C32

1. Introduction

Many time series show seasonal patterns that, according to [1] for example, cannot be
modeled appropriately using seasonal dummies because they exhibit a slowly trending
behavior typical for unit root processes.
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To model such processes in the vector autoregressive (VAR) framework, Ref. [2]
(abbreviated as JS in the following) extend the error correction representation for seasonally
integrated autoregressive processes pioneered by [3] to the multivariate case. This vector
error correction formulation (VECM) models the yearly differences of a process observed S
times per year. The model includes systems having unit roots at some or all of the possible
locations zj = exp( 2π j

S i), j = 0, ..., S − 1 of seasonal unit roots. In JS all unit roots are
assumed to be simple such that the process of yearly differences is stationary.

In this setting JS propose an estimator for the autoregressive polynomial subject to
restrictions on its rank (the so-called cointegrating rank) at the unit roots zj based on an
iterative scheme focusing on a pair of complex-conjugated unit roots (or the unit roots
zj = 1 or zj = −1 respectively) at a time. The main idea here is the reformulation of the
model using the so called vector error correction representation. Beside estimators JS also
derived likelihood ratio tests for the cointegrating rank at the various unit roots.

Refs. [4,5] propose simpler estimation schemes based on complex reduced rank
regression (cRRR in the following). They also show that their numerically simpler algorithm
leads to test statistics for the cointegrating rank that are asymptotically equivalent to the
quasi maximum likelihood tests of JS. These schemes still typically alternate between cRRR
problems corresponding to different unit roots until convergence, although a one step
version estimating only once at each unit root exists. Ref. [6] provides updating equations
for quasi maximum likelihood estimation in situations where constraints on the parameters
prohibit focusing on one unit root at a time.

The leading case here is that of quarterly data (S = 4) where potential unit roots are
located at±1 and±i, implying that the VECM representation contains four potentially rank
restricted matrices. However, increasingly time series of much higher sampling frequency
such as hourly, daily or weekly observations are available. In such cases it is unrealistic
that all unit roots are present. If a unit root is not present, the corresponding matrix in the
VECM is of full rank. Therefore in situations with only a few unit roots being present, the
VECM requires a large number of parameters to be estimated. Also in cases with a long
period length (such as for example hourly data with yearly cycles) usage of the VECM
involves the estimation of all coefficient matrices for lags for at least one year.

In general, for processes of moderate to large dimension the VAR framework involves
estimation of a large number of parameters which potentially can be avoided by using
the more flexible vector autoregressive moving average (VARMA) or the—in a sense—
equivalent state space framework. This setting has been used in empirical research for
the modeling of electricity markets, see the survey [7] for a long list of contributions.
In particular, ref. [8] use the model described below without formal verification of the
asymptotic theory for the quasi maximum likelihood estimation.

Recently, ref. [9] show that in the setting of dynamic factor models, typically used
for observation processes of high dimension, the common assumption that the factors are
generated using a vector autoregression jointly with the assumption that the idiosyncratic
component is white noise (or more generally generated using a VAR or VARMA model
independent of the factors) leads to a VARMA process. Also a number of papers (see for
example [10–12]) show that in their empirical application the usage of VARMA models
instead of approximations using the VAR model leads to superior prediction performance.
This, jointly with the fact that the linearization of dynamic stochastic general equilibrium
models (DSGE) leads to state space models, see e.g., [13], has fuelled recent interest
in VARMA—and thus state space—modeling in particular in macroeconomics, see for
example [14].

In this respect, quasi maximum likelihood estimation is the most often used approach
for inference. Due to the typically highly non-convex nature of the quasi likelihood function
(using the Gaussian density) in the VARMA setting, the criterion function shows many
local maxima where the optimization can easily get stuck. Randomization alone does not
solve the problem efficiently, as typically the parameter space is high-dimensional causing
problems of the curse of dimensionality type.
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Moreover, VARMA modeling requires a full specification of the state space unit root
structure of the process, see [15]. The state space unit root structure specifies the number
of common trends at each seasonal frequency (see below for definitions). For data of
weekly or higher sampling frequency it is unlikely that the state space unit root structure is
known prior to estimation. Testing all possible combinations is numerically infeasible in
many cases.

As an attractive alternative in this respect the class of subspace algorithms is inves-
tigated in this paper. One particular member of this class, the so called canonical variate
analysis (CVA) introduced by [16] (in the literature the algorithm is often called canonical
correlation analysis; CCA), has been shown to provide system estimators which (under
the assumption of known system order) are asymptotically equivalent to quasi maximum
likelihood estimation (using the Gaussian likelihood) in the stationary case [17]. CVA shares
a number of robustness properties in the stationary case with VAR estimators: [18] shows
that CVA produces consistent estimators of the underlying transfer function in situations
where the innovations are conditionally heteroskedastic processes of considerable general-
ity. Ref. [19] shows that CVA provides consistent estimators of the transfer function even for
stationary fractionally integrated processes, if the order of the system tends to infinity as a
function of the sample size at a sufficient rate.

In the I(1) case [20] introduce a heuristic adaptation of the algorithm using the as-
sumption of known cointegrating rank in order to show consistency for the corresponding
transfer function estimators. However, the specification of the cointegrating rank is no
easy task in itself. In case of misspecification of the cointegrating rank the properties
of this approach are unclear. Ref. [21] states without proof that also the original CVA
algorithm delivers consistent estimates in the I(1) case without the need to impose the true
cointegrating rank.

Furthermore for I(1) processes [20] proposed various tests for the cointegrating rank
and compared them to tests in the Johansen framework showing superior finite sam-
ple performance in particular for multivariate data sets with a large dimension of the
modeled process.

This paper builds on these results and shows that CVA can also be used in the seasonally
integrated case. The main contributions of the paper are:

(i) It is shown that the original CVA algorithm in the seasonally integrated case provides
strongly consistent system estimators under the assumption of known system order
(thus delivering the currently unpublished proof of the claim in the I(1) case in [21]).

(ii) Upper bounds for the order of convergence for the estimated system matrices are
given, establishing the familiar superconsistency for the estimation of the cointegrating
spaces at all unit roots.

(iii) Several tests for separate (that is for each unit root irrespective of the specification at
the other potential unit roots) determination of the seasonal cointegrating ranks are
proposed which are based on the estimated systems and are simple to implement.

The derivation of the asymptotic properties of the estimators is complemented by a
simulation study and an application, both demonstrating the potential of CVA and one of
the suggested tests. Jointly our results imply that CVA constitutes a very reasonable initial
estimate for subsequent quasi likelihood maximization in the VARMA case. Moreover
the method provides valuable information on the number of unit roots present in the
process, which can be used for subsequent investigation at the very least by providing
upper bounds on the number of common trends present at each unit root frequency.
Contrary to the JS approach in the VAR framework these tests can be performed in parallel
for all unit roots, eliminating the interdependence of the results inherent in the VECM
representation. Moreover, they do not use the VECM representation involving a large
number of parameters in the case of high sampling rates.

These properties make CVA a useful tool in automatic modeling of multivariate (with a
substantial number of variables) seasonally (co-)integrated processes.
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The paper is organized as follows: in the next section the model set and the main
assumptions of the paper are presented. The estimation methods are described in Section 3.
Section 4 states the consistency results. Inference on the cointegrating ranks is proposed in
Section 5. Data preprocessing is discussed in Section 6. The simulations are contained in
Section 7, while Section 8 discusses an application to real world data. Section 9 concludes
the paper. Appendix A contains supporting material, Appendix C provides the proofs
of the main results of this paper, which are based on preliminary results presented in
Appendix B.

Throughout the paper we will use the symbols o(gT) and O(gT) to denote orders of
almost sure convergence where T denotes the sample size, i.e., xT = o(gT) if xT/gT → 0
almost surely and xT = O(gT) if xT/gT is bounded almost surely for large enough T (that
is there exists a constant M < ∞ such that lim supT→∞ xT/gT ≤ M a.s.). Furthermore,
oP(gT), OP(gT) denote the corresponding in probability versions.

2. Model Set and Assumptions

In this paper state space processes (yt)t∈Z, yt ∈ Rs, are considered which are defined
as the solutions to the following equations for given white noise (εt)t∈Z, εt ∈ Rs,Eεt =
0,Eεtε

′
t = Ω > 0:

xt+1 = Axt + Kεt,
yt = Cxt + εt.

(1)

Here xt ∈ Rn denotes the unobserved state and A ∈ Rn×n, C ∈ Rs×n and K ∈ Rn×s define
the state space system typically written as the tuple (A, C, K).

In this paper we consider without restriction of generality only minimal state space
systems in innovations representation. For a minimal system the integer n is called the
order of the system. As is well known (cf. e.g., [22]) minimal systems are only identified up
to the choice of the basis of the state space. Two minimal systems (A, C, K) and (Ã, C̃, K̃)
are observationally equivalent if and only if there exists a nonsingular matrix T ∈ Rn×n

such that A = T ÃT −1, C = C̃T −1, K = T K̃. For two observationally equivalent systems
the impulse response sequences k0 = Is, k j+1 = CAjK = C̃ÃjK̃, j = 0, 1, ... coincide.

Ref. [15] shows that the structure of the Jordan normal form of the matrix A determines
the properties (such as stationarity) of the solutions to (1) for t ∈ Z. Eigenvalues of A on
the unit circle lead to unit root processes in the sense of [15] who also define a state space
unit root structure indicating the location and multiplicity of unit roots. A process (yt)t∈Z
with state space unit root structure ΩS = {(0, (c0)), (2π/S, (c1)), ..., (π, (cS/2))} for some
even integer S is called multi frequency I(1) (in short MFI(1)). Even S is chosen because
it simplifies the notation by implying that S/2 also is an integer and z = −1 is a seasonal
unit root. By adjusting the notation appropriately all results hold true for odd S as well).

If, moreover, such a process is observed for S periods per year, it is called seasonal
MFI(1). In this case the canonical form in [15] takes the following form:

A = diag(A0, A1, . . . , AS/2, A•),
A0 = Ic0 ,

Aj =

[
cos(ωj)Icj sin(ωj)Icj

− sin(ωj)Icj cos(ωj)Icj

]
, 0 < j < S/2,

AS/2 = −IcS/2 ,
C =

[
C0,R C1,R C1,I . . . . . . CS/2−1,R CS/2−1,I CS/2 C•

]
=

[
C0 C1 . . . CS/2−1 CS/2 C•

]
,

K =
[

K′0,R K′1,R K′1,I . . . . . . K′S/2−1,R K′S/2−1,I K′S/2 K′•
]′

(2)

where ωj = 2π j/S, j = 0, . . . , S/2 denote the unit root frequencies and Cj,R ∈ Rs×cj , Cj,I ∈
Rs×cj , Kj,R ∈ Rcj×s, Kj,I ∈ Rcj×s where 0 ≤ cj ≤ s, 0 ≤ j ≤ S/2. Furthermore for Cj,C :=
Cj,R − iCj,I it holds that C′j,CCj,C = Icj and Kj,C = Kj,R + iKj,I is of full row rank and
positive upper triangular (C0,I = CS/2,I = 0, K0,I = KS/2,I = 0), see [15] for details. Finally
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|λmax(A•)| < 1, where λmax(A) denotes an eigenvalue of the matrix A with maximal
modulus. The stable subsystem (A•, C•, K•) is assumed to be in echelon canonical form
(see [22]).

Using this notation the assumptions on the data generating process (dgp) in this paper
can be stated as follows:

Assumption 1. (yt)t∈Z has a minimal state space representation (A◦, C◦,K◦),A◦ ∈ Rn×n of
the form (2) with minimal (A◦,•, C◦,•,K◦,•),A◦,• ∈ Rn•×n• in echelon canonical form where
c = n− n• > 0.

Furthermore the stability assumption |λmax(A◦,•)| < 1 and the strict minimum-phase
condition ρ0 := |λmax(A◦ −K◦C◦)| < 1 hold.

The state at time t = 1 is given by x1 = [x′1,0, ..., x′1,S/2, x′1,•]
′ where x1,j ∈ Rδjcj (for

δj = 2, 0 < j < S/2 and δj = 1 else) is deterministic and x1,• = ∑∞
j=1A

j−1
◦,• K◦,•ε1−j is such that

(xt,•)t∈Z is stationary.
The noise process (εt)t∈Z is assumed to be a strictly stationary ergodic martingale difference

sequence with respect to the filtration Ft with zero conditional mean E(εt|Ft−1) = 0, deterministic
conditional variance E(εtε

′
t|Ft−1) = Ω > 0 and finite fourth moments.

Due to the block diagonal form of A the state equations are in a convenient form such
that partitioning the state vector accordingly as

xt =


xt,0
xt,1

...
xt,S/2
xt,•

, (3)

the blocks (xt,j)t∈Z, xt,j ∈ Rδjcj for cj > 0 are unit root processes with state space unit root
structure {(ωj, (cj))}. Finally (xt,•)t∈Z is assumed to be stationary due to the assumptions
on x1,•. If (ỹt)t∈N denotes a different solution to the state space equations corresponding to
x̃1 then (for t > 1)

ỹt − yt = CAt−1(x̃1 − x1) =
S/2

∑
j=0

Cj At−1
j (x̃1,j − x1,j) + C•At−1

• (x̃1,• − x1,•).

Note that Cj At−1
j z12 = cos(ωjt)z1 + sin(ωjt)z2, 0 < j < S/2 (for appropriate vectors

z12, z1, z2),
C0 At−1

0 = C0, CS/2 At−1
S/2 = (−1)t−1CS/2.

Therefore the sum ∑S/2
j=0 Cj At−1

j (x̃1,j − x1,j) can be modeled using a constant and

seasonal dummies. The term C•At−1
• (x̃1,• − x1,•) tends to zero with an exponential rate as

t→ ∞ and hence does not influence the asymptotics.
Assumption 1 implies that the yearly difference

yt − yt−S = CASxt−S + εt + ∑S
i=1 CAi−1Kεt−i − Cxt−S − εt−S

= (CAS − C)xt−S + vt = (C•AS
• − C•)xt−S,• + vt

is a stationary VARMA process where vt = εt + ∑S
i=1 CAi−1Kεt−i − εt−S since AS

j = Iδjcj .
Thus the process according to Assumption 1 is a unit root process in the sense of [15]. Note
that we do not assume that all unit roots are contained such that the spectral density of
the stationary process (yt − yt−S)t∈Z may contain zeros due to overdifferentiation and
hence the process potentially is not stably invertible. The special form of A0 implies that
I(1) processes are a special case of our dgp while I(d), d > 1, d ∈ N, processes are not
allowed for.
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3. Canonical Variate Analysis

The main idea of CVA is that, given the state, the system equations (1) are linear in the
system matrices. Therefore, based on an estimate of the state sequence, the system can be
estimated using least squares regression. The estimate of the state is based on the following
equation (for details see for example [17]):

Let Y+
t, f := [y′t, y′t+1, . . . , y′t+ f−1]

′ denote the vector of stacked observations for some

integer f ≥ n and let E+
t, f := [ε′t, ε′t+1, . . . , ε′t+ f−1]

′. Further define Y−t,p := [y′t−1, . . . , y′t−p]
′.

Then (for t > p)

Y+
t, f = O f xt + E f E+

t, f = O fKpY−t,p +O f (A◦ −K◦C◦)pxt−p + E f E+
t, f

= β1Y−t,p + N+
t, f

(4)

whereKp := [K◦, Ā◦K◦, Ā◦2K◦, . . . , Ā◦p−1K◦] for Ā◦ := A◦ −K◦C◦ andO f := [C ′◦,A′◦C ′◦,
. . . , (A f−1

◦ )′C ′◦]′. The strict minimum-phase assumption implies Ā◦p → 0 for p→ ∞.
Let 〈at, bt〉 := T−1 ∑

T− f+1
t=p+1 atb′t for sequences (at)t∈N and (bt)t∈N. Then an estimate of

β1 is obtained from the reduced rank regression (RRR) Y+
t, f = β1Y−t,p + N+

t, f under the rank

constraint rank(β1) = n. This results in the estimate Ô f K̂p := [(Ξ̂+
f )
−1ÛnŜn][V̂′n(Ξ̂

−
p )
−1]

of β1 using the singular value decomposition (SVD)

Ξ̂+
f β̂1Ξ̂−p = ÛŜV̂′ = ÛnŜnV̂′n + R̂n.

Here β̂1 = 〈Y+
t, f , Y−t,p〉〈Y

−
t,p, Y−t,p〉−1 denotes the unrestricted least squares estimate of β1

and
Ξ̂+

f := 〈Y+
t, f , Y+

t, f 〉
−1/2, Ξ̂−p := 〈Y−t,p, Y−t,p〉

1/2. (5)

Here the symmetric matrix square root is used. The definition is, however, not of im-
portance and other square roots such as Cholesky factors could be used. Ûn ∈ R f s×n

denotes the matrix whose columns are the left singular vectors to the n largest singular
values which are the diagonal entries in Ŝn := diag(σ̂1, σ̂2, . . . , σ̂n), σ̂1 ≥ · · · ≥ σ̂n > 0 and
V̂n ∈ Rps×n contains the corresponding right singular vectors as its columns. R̂n denotes
the approximation error.

The system estimate (Â, Ĉ, K̂) is then obtained using the estimated state x̂t := K̂pY−t,p, t =
p + 1, . . . , T + 1 via regression in the system equations.

In the algorithm a specific decomposition of the rank n matrix Ô f K̂p into the two

factors Ô f and K̂p is given such that K̂pΞ̂−p (Ξ̂−p )′K̂p
′
= In. It is obvious that every other

decomposition of Ô f K̂p produces an estimated state sequence in a different coordinate
system, leading to a different observationally equivalent representation of the same transfer
function estimator. Therefore, with respect to consistency of the transfer function estimator
it is sufficient to show that there exists a factorization of Ô f K̂p leading to convergent system
matrix estimators (Ã, C̃, K̃), even if this factorization cannot be used in actual computations,
as it requires information not known at the time of estimation.

In order to generate a consistent initial guess for subsequent quasi likelihood optimiza-
tion in the set of all state space systems corresponding to processes with state space unit
root structure ΩS := {(ω0, (c0)), ..., (ωS/2, (cS/2))}, however, we will derive a realizable
(for known integers cj and matrices Ej such that E′jC◦,j,C = Icj ) consistent system estimate.
To this end note that consistency of the transfer function implies (see for example [23])
that the eigenvalues λ̃l of Â converge (in a specific sense) to the eigenvalues λj of A◦.
Therefore transforming Â into complex Jordan normal form (where Â is almost surely
diagonalizable), ordering the eigenvalues such that groups of eigenvalues λ̃l(j), l = 1, ..., cj,
converging to λj are grouped together, we obtain a realizable system (Ǎ, Č, Ǩ) where the
diagonal blocks of the block diagonal matrix Ǎ corresponding to the unit roots converge to
a diagonal matrix with the eigenvalues zj on the diagonal:
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Ǎj,C =


λ̃1(j) 0 . . . 0

0 λ̃2(j)
. . .

...
...

. . . . . . 0
0 . . . 0 λ̃cj(j)

→ Aj,C =


zj 0 . . . 0

0 zj
. . .

...
...

. . . . . . 0
0 . . . 0 zj

.

Replacing Ǎj,C by the limit Aj,C and transforming the estimates to the real Jordan normal
form, we obtain estimates (Ă, Č, Ǩ) corresponding to unit root processes with state space
unit root structure ΩS.

Note, however, that this representation not necessarily converges as perturbation
analysis only implies convergence of the eigenspaces. Therefore in the final step the
estimate (Ă, Č, Ǩ) is converted such that we obtain convergence of the system matrix
estimates. In the class of observationally equivalent systems with the matrix

ĂC = diag(A0,C, A1,C, A1,C..., AS/2−1,C, AS/2,C, Ǎ•), Aj,C = Icj zj,

block diagonal transformations of the form T = diag(T0, T1, T1, ..., TS/2, I) do not change
the matrix ĂC. Here the basis of the stable subsystem can be chosen such that the cor-
responding transformed (Ă•, C̆•, K̆•) is uniquely defined using an overlapping echelon
form (see [22], Section 2.6). The impact of such transformations on the blocks of C is given
by Čj,CT −1

j . Therefore, if for each j = 0, ..., S/2 a matrix Ej ∈ Cs×cj is known such that

E′jC◦,j,C ∈ Ccj×cj is nonsingular, the restriction E′jC̆j,C = Icj picks a unique representative

(Ă, C̆, K̆) of the class of systems observationally equivalent to (Ă, Č, Ǩ).
Note that this estimate (Ă, C̆, K̆) is realizable if the integers cj (needed to identify the

cj eigenvalues of Â closest to zj), the matrices Ej (needed to fix a basis for xt,j) and the index
corresponding to the overlapping echelon form for the stable part are known. Furthermore,
this estimate corresponds to a process with state space unit root structure ΩS and hence
can be used as a starting value for quasi likelihood maximization.

Finally in this section it should be noted that the estimate of the state x̂t here mainly
serves the purpose of obtaining an estimator for the state space system. Based on this
estimate, Kalman filtering techniques can be used to obtain different estimates of the state
sequence. The relation between these different estimates is unclear and so is their usage
for inference. For this paper the state estimates x̂t are only an intermediate step in the
CVA algorithm.

4. Asymptotic Properties of the System Estimators

As follows from the last section, the central step in the CVA procedure is a RRR problem
involving stationary and nonstationary components. The asymptotic properties of the
solution to such RRR problems are derived in Theorem 3.2. of [24]. Using these results the
following theorem can be proved (see Appendix C.1):

Theorem 1. Let the process (yt)t∈Z be generated according to Assumption 1. Let (Â, Ĉ, K̂)
denote the CVA estimators of the system matrices using the assumption of correctly specified order
n with f ≥ n not depending on the sample size and finite and p = o((log T)ā) for some real
0 < ā < ∞, p ≥ −d log T/ log ρ0 for some d > 1 where 0 < ρ0 = |λmax(A◦ −K◦C◦)| < 1.
Let (A◦, C◦,K◦) be in the form given in (2) where (A◦,•, C◦,•,K◦,•) is in echelon canonical form
and for each j = 0, ..., S/2 there exists a row selector matrix Ej ∈ Rs×cj such that E′jC◦,j,C is
non-singular. Then for some integer a:

(I) ĈÂjK̂− C◦Aj
◦K◦ = OP((log T)a/

√
T) for each j ≥ 0.

(II) Using Dx = diag(T−1 Ic, T−1/2 In−c) where c = ∑S/2
j=0 cjδj we have

(Ă−A◦)D−1
x = OP((log T)a),

√
T(K̆−K◦) = OP((log T)a), (C̆− C◦)D−1

x = OP((log T)a)
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for some integer a < ∞.
(III) If the noise is assumed to be an iid sequence, then results (I) and (II) hold almost surely.

Beside stating consistency in the seasonal integration case, the theorem also improves
on the results of [20] in the I(1) case by showing that no adaptation of CVA is needed in order
to obtain consistent estimators of the impulse response sequence or the system matrices.
Note that this consistency result for the impulse response sequence concerns both the short
and the long-run dynamics. In particular it implies that short-run prediction coefficients
are consistent. Moreover the theorem establishes strong consistency rather than weak
consistency as opposed to [20]. (II) establishes orders of convergence which, however,
apply only to a transformed system that requires knowledge of the integers cj and matrices
Ej to be realized. No tight bounds for the integer a are derived, since they do not seem to
be of much value.

Note that the assumptions on the innovations rule out conditionally heteroskedastic
processes. However, since the proof mostly relies on convergence properties for covariance
estimators for stationary processes and continuous mapping theorems for integrated
processes, it appears likely that the results can be extended to conditionally heteroskedastic
processes as well. For the stationary cases this follows directly from the arguments in [18],
while for integrated processes results (using different assumptions on the innovations)
given for example in [25] can be used. The conditions of [25] hold for example in a large
number of GARCH type processes, see [26]. The combination of the different sets of
assumptions on the innovations is not straightforward, however, and hence would further
complicate the proofs. We refrain from including them.

It is worth pointing out that due to the block diagonal structure of A◦ the result
(C̆− C◦)D−1

x = OP((log T)a) implies consistency of the blocks C̆j corresponding to unit
root zj (or the corresponding complex pair) of order almost T−1. Using the complex valued
canonical form this implies consistent estimation of C◦,j,C by the corresponding C̆j,C. In
the canonical form this matrix determines the cointegrating relations (both the static as
well as the dynamic ones, for details see [15]) as the unitary complement to this matrix. It
thus follows that CVA delivers estimators for the cointegrating relations at the various unit
roots that are (super-)consistent. In fact, the proof can be extended to show convergence in
distribution of (C̆− C◦)D−1

x . This distribution could be used in order to derive tests for
cointegrating relations. However, preliminary simulations indicate that these estimates
and hence the corresponding tests are not optimal and can be improved upon by quasi
maximum likelihood estimation in the VARMA setting initialized by the CVA estimates.
Therefore we refrain from presenting these results.

Note that the assumptions impose the restriction ρ0 > 0 excluding VAR systems. This
is done solely for stating a uniform lower bound on the increase of p as a function of T.
This bound is related to the lag length selection achieved using BIC, see [27]. In the VAR
case the lag length estimator using BIC will converge to the true order and thus remain
finite. All results hold true if in the VAR case a fixed (that is independent of the sample
size) p ≥ n is used.

5. Inference Based on the Subspace Estimators

Beside consistency of the impulse response sequence also the specification of the
integers c0, ..., cS/2 is of interest. First, following [20] this information can be obtained by
detecting the unity singular values in the RRR step of the procedure. Second, from the
system representation (2) it is clear that the location of the unit roots is determined by the
eigenvalues of A◦ on the unit circle: The integers cj denote the number of eigenvalues
at the corresponding locations on the unit circle (provided the eigenvalues are simple).
Due to perturbation theory (see for example Lemma A2) we know that the eigenvalues
of Â will converge (for T → ∞) to the eigenvalues of A◦ and the distribution of the mean
of all eigenvalues of Â converging to an eigenvalue of A◦ can be derived based on the
distribution of the estimation error Â−A◦. This can be used to derive tests on the number
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of eigenvalues at a particular location on the unit circle. Third, if n ≤ s the state process is a
VAR(1) process and hence in some cases allows for inference on the number of cointegrating
relations and thus also on the integers cj as outlined in [4]. Tests based on these three
arguments will be discussed below.

Theorem 2. Under the assumptions of Theorem 1 the test statistic T ∑c
i=1(1− σ̂2

i ) converges in
distribution to the random variable

Z = tr

[
E(ε̃t,⊥ ε̃′t,⊥)

(∫ 1

0
W(r)W(r)′

)−1
]

where ε̃t,⊥ = ε̃t,1 − Eε̃t,1 ε̃′t,•(Eε̃t,• ε̃′t,•)
−1 ε̃t,• (for definition of ε̃t,1 and ε̃t,• see the proof in Ap-

pendix C.2) and where W(r) denotes a c-dimensional Brownian motion with variance

S−1

∑
i=0
Ai

uKuΩK′u(Ai
u)
′

with Au denoting the c× c heading submatrix of A and Ku denoting the submatrix of K composed
of the first c rows such that (Au, Cu,Ku) denotes the unstable subsystem.

The theorem is proved in Appendix C.2, where also the many nuisance parameters of
the limiting random variable are explained and defined. The proof also corrects an error in
Theorem 4 of [20], where the wrong distribution is given since the second order terms were
neglected.

As the distribution is not pivotal and in particular contains information that is un-
known when performing the RRR step, it is not of much interest for direct application. Nev-
ertheless the order of convergence allows for the derivation of simple consistent estimators
of the number of common trends: Let ĉT denote the number of singular values calculated
in the RRR that exceed

√
1− h(T)/T for arbitrary h(T)→ ∞, h(T) < T, h(T)/T → 0, for

T → ∞. Then it is a direct consequence of Theorem 2 in combination with σ̂j → σj < 1, j > c,
that ĉT → c in probability, implying consistent estimation of c. Based on these results
also estimators for c could be derived, for example along the lines of [28]. However,
as [29] shows, such estimators have not performed well in simulations and thus are not
considered subsequently.

The singular values do not provide information on the location of the unit roots. This
additional information is contained in the eigenvalues of the matrix A◦:

Theorem 3. Under the assumptions of Theorem 1 let λ̂i(m), i = 1, ..., cm denote the cm eigenvalues
of Â closest to the unit root zm, |zm| = 1. Then defining µ̂m = ∑cm

i=1(λ̂i(m)− zm) we obtain

Tµ̂m
d→ tr

[(∫
B(r)B(r)dr

)−1 ∫
B(r)dB(r)′

]

where B(r) denotes a cm-dimensional Brownian motion with zero expectation and variance Icm for
zm = ±1 and a complex Brownian motion with expectation zero and variance equal to the identity
matrix else.

Further if Ã := 〈xt+1, xt〉〈xt, xt〉−1 using the true state xt and µ̃m = ∑cm
i=1(λ̃i(m)− zm)

where λ̃i(m), i = 1, ..., cm denote the cm eigenvalues of Ã closest to zm, then T(µ̂m− µ̃m) = oP(1).

Therefore the estimated eigenvalues can be used in order to obtain a test on the
number of common trends at a particular frequency for each frequency separately. The test
distribution is obtained as the limit to

Ttr[〈K◦,m,Cεt, xt,m,C〉〈xt,m,C, xt,m,C〉−1]
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where xt,m,C = zmxt−1,m,C +K◦,m,Cεt−1, x1,m,C = 0. The distribution thus does not depend
on the presence of other unit roots or stationary components of the state. Furthermore it
can be seen that it is independent of the noise variance or the matrix K◦,m,C. Hence critical
values are easily obtained from simulations. Also note that the limiting distribution is
identical for all complex unit roots.

Therefore, for each seasonal unit root location zm we can order the eigenvalues of the
estimated matrix Â with increasing distance to zm. Then starting from the assumption
of H0 : cm = c̄ (for a reasonable c̄ obtained, e.g., from a plot of the eigenvalues) one can
perform the test with statistic Tµ̂m. If the test rejects, then the hypothesis H0 : cm = c̄− 1 is
tested, until the hypothesis is not rejected anymore, or H0 : cm = 1 is reached. This is then
the last test. If H0 is rejected again, no unit root is found at this location. Otherwise we do
not have evidence against cm = 1. In any case, the system needs to be estimated only once
and the calculation of the test statistics is easy even for all seasonal unit roots jointly.

The third option for obtaining tests is to use the tests derived in [4] based on the JS
framework for VARs. In the case n ≤ s the state process xt+1 = Axt +Kεt is a seasonally
integrated VAR(1) process (for n > s the noise variance is singular). The corresponding
VECM representation equals

p(L)xt =
S

∑
m=1

(In −Azm)X(m)
t−1 +Kεt−1 =

S

∑
m=1

αmβ′mX(m)
t−1 +Kεt−1

where zm = exp( 2πm
S i), m = 1, ..., S and

p(L) = 1− LS , pt = p(L)xt = xt − xt−S,

pm(L) =
p(L)

1− zmL
, X(m)

t = − pm(L)
pm(zm)zm

xt.

Note that in this VAR(1) setting no additional stationary regressors of the form p(L)xt−j
occur. Also no seasonal dummies are needed but could be added to the equation. In this
setting [4] suggests to use the eigenvalues λ̂i (ordered with increasing modulus) of the
matrix (the superscript (.)π denotes the residuals with respect to the remaining regressors
X(j)

t−1, j 6= m)

〈X(m),π
t−1 , pπ

t 〉〈pπ
t , pπ

t 〉−1〈pπ
t , X(m),π

t−1 〉〈X
(m),π
t−1 , X(m),π

t−1 〉
−1

as the basis for a test statistic

C̃m := −δm

cm

∑
i=1

log(1− λ̂i).

where δm = 2 for complex unit roots and δm = 1 for real unit roots. In the I(1) case this
leads to the familiar Johansen trace test, for seasonal unit roots a different asymptotic
distribution is obtained.

Theorem 4. Under the assumptions of Theorem 1 let Ĉm be calculated based on the estimated
state and let C̃m denote the same statistic based on the true state. Then for n ≤ s it holds that
Ĉm − C̃m = oP(T−1) and

TĈm
d→ tr

[∫
dB(r)B(r)′

(∫
B(r)B(r)dr

)−1 ∫
B(r)dB(r)′

]

where B(r) is a real Brownian motion for zm = ±1 or a complex Brownian motion else.

Thus again under the null hypothesis the test statistic based on the estimated state and
the one based on the true state reject jointly asymptotically with probability one. Therefore
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for n ≤ s the tests of JS can be used to obtain information on the number of common cycles,
ignoring the fact that the estimated state is used in place of the true state process.

After presenting three disjoint ideas for providing information on the number and
location of unit roots, the question arises, which one to use in practice. In the following a
number of ideas are given in this respect.

The criterion based on the singular values given in Theorem 2 is of limited information
as it only provides the overall number of unit roots. Since the limiting distribution is not
pivotal it cannot be used for tests and the choice of the cutoff value h(T) is somewhat
arbitrary. Nevertheless, using a relatively large value one obtains a useful upper bound on
c which can be included in the typical sequential procedures for tests for cj.

Using the results of Theorem 4 has the advantage of using a framework that is well
known to many researchers. It is remarkable that in terms of the asymptotic distributions
there is no difference involved in using the estimated state in place of the true state. The
assumption n ≤ s, however, is somewhat restrictive except in situations with a large s.

Finally the results of Theorem 3 provide simple to use tests for all unit roots, indepen-
dently of the specification of the model for the remaining unit roots. Again it is remarkable
that, under the null, inference is identical for known and for estimated state.

Since our estimators are not quasi maximum likelihood estimators the question of
a comparison with the usual likelihood ratio tests arises. For VAR models simulation
exercises documented in Section 7 below demonstrate that there are situations where the
proposed tests outperform tests in the VAR framework. Comparisons with tests in the state
space framework (or equivalently in the VARMA framework) are complicated by the fact
that no results are currently available in the literature of this framework. One difference,
however, is given by the fact that quasi likelihood ratio tests in the VARMA setting require
a full specification of the cj values for all unit roots. This introduces interdependencies such
that the tests for one unit root depend on the specification of the cointegrating rank at the
other roots. The interdependencies can be broken by performing tests based on alternative
specifications for each unit root. The test based on Theorem 3 does not require this but can
be performed based on the same estimate Â. This is seen as an advantage.

The question of the comparison of the empirical size in finite samples as well as power
to local alternatives between the CVA based tests and tests based on quasi-likelihood ratios
is left as a research question.

6. Deterministic Terms

Up to now it has been assumed that no deterministic terms appear in the model
contrary to common practice. In the VAR framework dealing with trends is complicated by
the usage of the VECM representation, see e.g., [30]. In the state space framework used in
this paper, however, deterministic terms are easily incorporated.

Theorem 5. Let the process (yt)t∈Z be generated according to Assumption 1 and assume that the
process (ỹt)t∈Z is observed where ỹt = yt + Φdt with

dt =
[

1, cos( 2π
S t), sin( 2π

S t), · · · (−1)t ]′ ∈ RS

and Φ ∈ Rs×S.
Then if the CVA estimation is applied to

ỹπ
t := yt −

(
T

∑
t=1

ytd′t

)(
T

∑
t=1

dtd′t

)−1

dt, t = 1, ..., T,

the results of Theorem 1 hold, i.e., the system is estimated consistently and the orders of convergence
for the transformed system (Ă, C̆, K̆) hold true.
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Furthermore the convergence in distribution results in Theorems 2–4 hold true where in the
limits the Brownian motions B(r) occurring in the distributions must be replaced by their demeaned
versions B(r)−

∫ 1
0 B(s)ds.

In this sense the results are robust to some operations typically termed preprocessing
of data such as demeaning and deseasonalizing using seasonal dummies. More general
preprocessing steps such as detrending or the extraction of more general deterministic
terms analogous to [30] can be investigated along the same lines.

7. Simulations

The estimation of the seasonal cointegration ranks and spaces is usually carried out
via quasi maximum likelihood methods that originated from the VAR model class. Typical
estimators in this setting are those of [2,4,5,31]. In the first two experiments we focus on
the estimation of the cointegrating spaces and the specification of the cointegration ranks
in the classical situation of quarterly data and show that there are certain situations in
which CVA estimators and the test in Theorem 3 possess finite sample properties superior to
those of the methods above. In a third experiment the test performance is evaluated for a
daily sampling rate. Moreover, the prediction accuracy of CVA is investigated as well as its
robustness to innovations exhibiting behaviors often encountered at such higher sampling
rates. All simulations are carried out using 1000 replications.

To investigate the practical usefulness of the proposed procedures we generate quar-
terly data using two VAR dgps of dimension s = 2 first and then two more general VARMA
dgps with s = 8. Each pair contains dgps with different state space unit root structures

{(0, (1)), (π/2, (cπ/2)), (π, (1))}, cπ/2 = 1, 2.

From all four dgps samples of size T ∈ {50, 100, 200, 500} are generated with initial values
set to zero. Although none of the dgps contains deterministics, the data is adjusted for
a constant and quarterly seasonal dummies as in [5]. For reasons of comparability, the
adjustment for deterministic terms is done before estimation.

In the third experiment we generate daily data with dimension s = 4 from a state
space system including unit roots corresponding to weekly frequencies (that is a period
length of seven days). In the simulations we use several years of data (excluding new
year’s day to account for 52 weeks of seven days each). The first 200 observations are
discarded to include the effects of different starting values. In this example the focus lies
on a comparison of the prediction accuracy. Furthermore we investigate the robustness
of the test procedures to conditional heteroskedasticity of the GARCH type as well as to
non-normality of the innovations.

To assess the performance of specifying the cointegrating rank at unit root z using CVA,
the following test statistic is constructed from the results in Theorem 3

Λ(c) = T|(1
c

c

∑
i=1

λ̂i)− z| . (6)

Here λ̂1, . . . , λ̂n are the eigenvalues of Â ordered increasingly according to the distance
from z. Note that a similar test in [20] only uses the c-th largest eigenvalue, whereas
here the average over the nearest c eigenvalues is taken. Critical values have been ob-
tained by simulation using large sample sizes (sample size 2000 (JS) and 5000 (CVA), 10,000
replications).

In our first two experiments usage of Λ(c) is compared with variants of the likelihood
ratio test from [2] (JS), [4] (Q1), and [5] (Q2, Q3). Q1 is Cubadda’s trace test for complex-
valued data, Q2 takes the information at frequency π/2 into account when the analysis is
carried out at frequency 3π/2, and Q3 iterates between π/2 and 3π/2 in the alternating
reduced rank regression (ARR) of [5]. For the procedure of [2] the likelihood maximization
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at frequency π/2 is carried out using numerical optimization (BFGS) with initial values
obtained from an unrestricted regression.

All tests are evaluated by comparing the percentages of correctly detected common
trends, or hit rates, with 0.95, the hit rate to be expected from a nominal significance level of
0.05. The testing procedure employed for all tests is the same: at each of the frequencies
it is started from a null hypothesis of s unit roots against less than s unit roots. In case of
rejection, s− 1 unit roots are tested versus less than s− 1 and so on, until there are zero
unit roots under the alternative.

For the first two experiments the estimation performance of CVA for the simultaneous
estimation of the seasonal cointegrating spaces is compared with the maximum likelihood
estimates of [2,4,31] (cRRR), and also with an iterative procedure (Generalized ARR or
GARR) of [5]. The comparison is carried out by means of the gap metric, measuring the
distance between the true and the estimated cointegrating space as in [32]. The smaller
the mean gap over all replications, the better is the estimation performance. Throughout a
difference between two mean gaps or two hit rates is considered statistically significant if it
is larger than twice the Monte Carlo standard error.

For all procedures used in this section, an AR lag length has to be chosen first. For CVA
this can be done using the AIC as in ([33], Section 5), as is done in the third experiment.

In the first two experiments where sample sizes are rather small, we estimate the lag
length via minimization of the corrected AIC (AICc) ([34], p. 432), k̂AICc, benefitting the
simulation results. For larger sample sizes the two criteria lead to the same choices. Due to
the quarterly data we work with, the lag length is then chosen to be k̂ = max{k̂AICc, 4}.

Other information criteria could be chosen here. An anonymous referee also suggested
the application of the Modified Akaike Information Criterion (MAIC) of [35], proposed
there for the I(1)-case. In an attempt to apply it to the seasonally integrated case considered
here, it performed considerably worse than the AICc. Thus we refrain from using the
MAIC in the following and also omit the results of that attempt. They can be obtained from
the authors upon request.

For CVA the truncation indices f and p are chosen as f̂ = p̂ = 2k̂ ([33], Section 5). The
system order n is estimated by minimizing ([33], Section 5)

SVC(n) = σ̂2
n+1 + 2ns

log T
T

. (7)

Here σ̂i denotes the i-th largest singular value from the singular value decomposition
of Ξ̂+

f β̂1Ξ̂−p (Step 2 of CVA). Note that selecting the number of states by SVC is made
less influential insofar as n̂ = max{c0 + 2cπ/2 + cπ , n̂SVC}, where n̂SVC denotes the SVC
estimated system order.

In Section 7.1 we start with the two VAR dgps and find that the likelihood-based
procedures are mostly superior. Continuing with the VARMA dgps in Section 7.2, CVA
performs better and is superior for the smaller sample sizes in terms of size and gap and
better for all sample sizes in terms of power. Section 7.3 evaluates the performance of the
tests for unit roots for larger sample sizes together with the prediction performance in this
setting. We find that the tests are robust to the distribution of the innovations as well as
to conditional heteroskedasticity of the GARCH type. Furthermore the empirical size of
the tests lies close to the size already for moderate sample sizes, where the tests also show
almost perfect power properties.

7.1. VAR Processes

The VAR dgps considered in this paper are given by,

Xt = Π1Xt−1 + Π2Xt−2 + Π3Xt−3 + Π4Xt−4 + εt, εt ∼ N
([

0
0

]
,
[

1 0.5
0.5 1

])
(8)



Entropy 2021, 23, 436 14 of 41

where (εt)t∈Z is white noise and the coefficient matrices are

Π1 =

[
γ 0
0 0

]
, Π2 =

[
−0.4 0.4− γ

0 0

]
,

Π3 =

[
−γ 0
0 0

]
, Π4 =

[
0.6− (γ/10) 0.4 + γ

0 1

]
.

This dgp is adopted from [5] with a slight adjustment to Π4. The corresponding VECM
representation in the notation of [5] equals

X0,t =

[
−0.2

0

][
1 + γ/8 −1

]
X1,t−1 +

[
0.2
0

][
1 + γ/8 −1

]
X2,t−1 +[

γ
0

][
1 + 0.05L −L

]
X3,t−1 + εt.

As can be seen from Table 1, the dgps possess unit roots at frequencies 0, π, and π/2,
where cπ/2 = 2[1] for γ = 0[0.2], respectively. Note that in all cases the order of integration
equals 1, while the number of common cycles at π/2 is varied.

Table 1. Eigenvalues of the coefficient matrix of the companion form.

j

1 2 3 4 5 6 7 8

γ = 0.2 zj −1 1 i −i 0.126 + i0.99 0.126 − i0.99 −0.790 0.737
|zj| 1 1 1 1 0.998 0.998 0.790 0.737

γ = 0 µj −1 i −i 1 i −i 0.775 −0.775
|µj| 1 1 1 1 1 1 0.775 0.775

Table 2 exhibits the hit rates from the application of the different test statistics. At
frequencies 0 and π, Λ is compared with the trace test of Johansen (J; based on [31] for unit
roots z = −1), whereas at π/2 it is competing with JS, Q1, Q2, and Q3. All competitors are
likelihood-based tests which is the term we are referring to when we compare Λ to them as
a whole.

Table 2. Hit rates for the different tests (VAR dgp). Twice the maximum (over all entries) Monte
Carlo standard error is 0.005.

0 π/2 π

T Λ J Λ JS Q1 Q2 Q3 Λ J

γ = 0

50 0.685 0.348 0.351 0.903 0.844 0.851 0.844 0.681 0.343
100 0.841 0.732 0.490 0.925 0.900 0.902 0.900 0.831 0.724
200 0.897 0.951 0.841 0.934 0.925 0.924 0.925 0.876 0.936
500 0.931 0.938 0.916 0.949 0.941 0.942 0.941 0.927 0.948

γ = 0.2

50 0.550 0.367 0.811 0.796 0.777 0.778 0.788 0.604 0.297
100 0.711 0.801 0.087 0.920 0.913 0.908 0.908 0.799 0.806
200 0.907 0.922 0.855 0.954 0.949 0.948 0.947 0.854 0.939
500 0.944 0.953 0.927 0.939 0.938 0.938 0.936 0.924 0.942

The results for 0 and π are very similar for both dgps in that Λ scores more hits than
the likelihood-based tests when the sample size is small, T ∈ {50, 100}. Convergence of its
finite sample distribution is slower than for the other test statistics, however, as J is closer
to 0.95 from T = 200 on. For T = 500 the distribution of Λ only seems to have converged
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to its asymptotic distribution when cπ/2 = 2 at frequency 0, whereas convergence of the
likelihood-based tests has occurred in all cases.

At π/2 the likelihood ratio test of JS strictly dominates all implementations of [5] for
all sample sizes and both dgps. It strictly dominates the CVA-based test procedure as well,
except for one case, it seems: when cπ/2 = 1 and T = 50 Λ scores slightly, but significantly,
more hits than the likelihood ratio test of JS. Surprisingly, Λ is drastically worse when
T = 100 with only 8.7%, only to be up at 85% for T = 200.

The behavior of Λ is explained by z5 and z6 being close to ±i when cπ/2 = 1, cf.
Table 1. For future reference we will call the corresponding roots false unit roots.

For T = 50 the estimates of eigenvalues corresponding to actual unit roots are rather
not very close to±i in contrast to the false unit roots. Thus the latter are mistaken for actual
unit roots (cf. the first panel in Figure 1), leading to a hit rate of 81.1%, one that is even
larger than the rates at 0 and π. As the sample size increases, the eigenvalue estimates of
the true unit roots become more and more accurate, visible from the second and third panel
in Figure 1. Accordingly they can be detected correctly more often. Unfortunately however,
for T = 100 the false unit roots remain to be detected such that often two instead of just
one unit root are found by Λ, resulting in a hit rate of only 8.7%. For T ∈ {200, 500} Λ is
able to distinguish the false unit roots from the true ones and the detection rate is getting
closer to the asymptotic rate, 85.5% and 92.7%, respectively.
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Figure 1. Eigenvalues around z = i of 1000 replications when γ = 0.2 (cπ/2 = 1).

When the VAR dgp without false unit roots and cπ/2 = 2 is considered, it is visible
that the hit rates of Λ at π/2 are monotonously increasing in the sample size again. The
rates are smaller than those of the likelihood-based tests, however, and also clearly worse
than those of Λ at 0 and π, cf. Table 2 again.

Taken together, at frequencies 0 and π which correspond to real-valued unit roots,
the use of Λ was advantageous for T = 50. It also scored more hits for T = 100 and
cπ/2 = 1. For higher sample sizes the likelihood-based tests clearly dominate Λ at these
two frequencies. At π/2 this superiority of the likelihood-based tests for all sample sizes
and both dgps continues. The example also points to a general weakness: if the sample
size is low and false unit roots are present, it can be difficult for Λ to distinguish them from
actual unit roots.

7.2. VARMA Processes

The second setup consists of VARMA data generated by a state space system (Ar, Cr, Kr),
r = 1, 2, as in (1), where the matrices A1 and A2 are constructed as in (2) and are taken to be

A1 =


1 0 0 0
0 −1 0 0
0 0 0 1
0 0 −1 0

, A2 =



1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

 . (9)

These two choices yield the same state space unit root structures as those of the two VAR
dgps with cπ/2 = 1 and cπ/2 = 2 for A1 and A2, respectively. The other two system
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matrices Kr ∈ R(2+2r)×s and Cr ∈ Rs×(2+2r) with s = 8 are drawn randomly from a
standard normal distribution in each replication and (εt)t∈Z is multivariate normal white
noise with an identity covariance matrix.

Note that these systems are within the VARMA model class such that the dgp is
contained in the VAR setting only by increasing the lag length as a function of the sample
size. While superiority of the CVA approach in such a setting might be expected, this is
far from obvious. Moreover, using a long VAR approximation is the industry norm in
such situations.

From the hit rates in Table 3 it can be seen that the combination of large s, small T, and
a minimal lag length of four render the likelihood-based tests useless at all frequencies with
hit rates below ten percent for T = 50. Λ in contrast does not suffer from this problem and
is already close to 95% for this sample size. Only when T = 200 do the likelihood-based
tests appear to work, exhibiting hit rates close to 95%.

Table 3. Hit rates for the different tests (VARMA dgp). Twice the maximum (over all entries) Monte
Carlo standard error is 0.005.

0 π/2 π

T Λ J Λ JS Q1 Q2 Q3 Λ J

A1

50 0.890 0.003 0.906 0.024 0.027 0.032 0.025 0.897 0.008
100 0.928 0.434 0.944 0.755 0.783 0.783 0.761 0.930 0.440
200 0.936 0.937 0.923 0.925 0.915 0.916 0.915 0.925 0.924
500 0.852 0.901 0.853 0.919 0.906 0.904 0.904 0.853 0.894

A2

50 0.863 0.008 0.785 0.062 0.047 0.063 0.039 0.867 0.006
100 0.917 0.500 0.880 0.582 0.596 0.596 0.571 0.916 0.518
200 0.931 0.927 0.882 0.908 0.915 0.913 0.911 0.919 0.922
500 0.824 0.882 0.786 0.878 0.860 0.859 0.861 0.812 0.865

For all tests alike, however, it is striking that hit rates move away from 95% when
T = 500. This behavior is most pronounced for Λ, e.g., from T = 200 to T = 500 its hit rate
drops from 93.1% to 82.4% at 0 when A2 is used. This phenomenon is a consequence of the
fact that f and k in the algorithm are chosen data dependent. An inspection of how the hit
rates depend on f and k and a comparison with the actually selected f̂ , k̂ reveals that for
T = 500 too large values of f and k are chosen too often and leave room for improvement
in the hit rates, cf. Figure 2. The figure stresses an important point: The performance of the
unit root tests is heavily influenced by the selected lag lengths for all procedures. We tested
a number of different information criteria in this respect. AICc turned out to be the best
criterion overall, but not uniformly. Figure 2 indicates advantages for this example of BIC
over AIC as it on average selects smaller lag lengths, associated here with higher hit rates.

To study the power of the different procedures, the transition dynamics Ar in (9) are
multiplied by ρ ∈ {0.8, 0.85, 0.9, 0.95} so that the systems do not contain unit roots at any
of the frequencies. Here empirical power is defined as the frequency of choosing zero
common trends. This is why for ρ = 1, when there are in fact common trends present
in our specifications, the empirical power values plotted in Figure 3 are not equal to the
actual size we could define as one minus the hit rate: our measure of empirical power in
this situation only counts the false test conclusion of zero common trends, but there are of
course multiple ways the testing procedure could conclude falsely.
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Figure 2. Relationship between hit rates and chosen values of f and k, illustration for the VARMA
dgp using A2. The lower x-axes show f or k, above are the choice frequencies of the selection criteria.
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Figure 3. Empirical power of the different test procedures (VARMA dgp with A2). Twice the Monte
Carlo standard error is 0.005.

As expected, rejection of the null hypothesis is easiest when ρ is small and is very
difficult when it is close to 1, cf. Figure 3 for the case of A2.

Further, there are almost no differences among the likelihood-based tests over all
combinations of sample size and frequency, only for T = 100 is JS significantly worse than
the Qi, i = 1, 2, 3 at π/2. It is also clearly visible at all frequencies that the likelihood-based
tests possess no or only very limited power when T = 50 and T = 100, respectively.
Λ, in contrast, is clearly more powerful in these cases. As the sample size increases to
T = 200, the power of each test improves, still Λ remains the most powerful option. Only
for T = 500 have the differences almost vanished with small, but significant, advantages
for Λ at 0 and π.
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The results are the same when A1 is used and cπ/2 = 1 and all of the differences
described here are statistically significant.

Next the estimation performance of CVA is evaluated by calculation of the gaps between
the true and the estimated cointegrating spaces. At all frequencies these gaps are compared
with the GARR procedure of [5] which cycles through frequencies. At π/2 CVA and GARR
are also compared with our implementation of JS and cRRR of [4], whereas it is also
compared with the usual Johansen procedure at 0 and π. All estimates are conditional on
the true state space unit root structure in the sense that the minimal number of states used
is larger or equal to the number of unit roots over all frequencies. Other than imposing a
minimum state dimension, the estimation of the order using SVC is not influenced. The
likelihood-based procedures, on the other hand, take the unit root structure as given, i.e.,
do not perform CI rank testing for this estimation exercise.

From the results in Table 4 it can be noted first that the likelihood-based procedures
show mostly equal mean gaps. Only for π/2 and T = 50 and both dgps does JS possess
significantly larger gaps than cRRR and GARR and other differences are not statistically
significant. Thus it does not matter in our example whether the iterative procedure is used
or not.

Second, CVA is again superior for T = 50 where it exhibits mean gaps that are signifi-
cantly smaller than those of the other estimators at all frequencies. This advantage is turned
around for higher sample sizes, though: mean gaps are smaller for the likelihood-based
procedures when T ∈ {100, 200, 500} and A2 is used, if only slightly. When A1 is used
instead, mean gaps do not differ significantly from each other at π/2 when T > 50 and at
0, π when T = 100 and those of CVA are only very modestly worse when T ∈ {200, 500} at
0, π.

Table 4. Mean gaps between estimated and true cointegrating spaces (VARMA dgp). 2MCse denotes
twice the maximal Monte Carlo standard error for the corresponding row.

0 π/2 π

T 2MCse CVA J GARR CVA JS cRRR GARR CVA J GARR

A1

50 0.016 0.116 0.189 0.192 0.091 0.147 0.130 0.130 0.111 0.192 0.197
100 0.004 0.047 0.048 0.048 0.039 0.035 0.035 0.035 0.047 0.046 0.046
200 0.003 0.023 0.019 0.019 0.019 0.016 0.016 0.016 0.024 0.019 0.019
500 0.003 0.012 0.007 0.007 0.008 0.008 0.006 0.006 0.011 0.007 0.007

A2

50 0.016 0.174 0.245 0.242 0.250 0.349 0.331 0.331 0.165 0.231 0.234
100 0.004 0.072 0.061 0.061 0.098 0.080 0.078 0.078 0.069 0.060 0.060
200 0.003 0.031 0.026 0.026 0.047 0.036 0.034 0.034 0.032 0.027 0.027
500 0.003 0.016 0.011 0.010 0.021 0.015 0.013 0.013 0.017 0.011 0.011

Thus, when it comes to estimating the cointegrating spaces, CVA is superior for T = 50
and equally good or only slightly worse than the likelihood-based procedures for higher
sample sizes. For the systems analyzed, decreasing cπ/2 leads to gaps that are smaller for all
methods and these improvements are slightly larger for CVA than for the other estimators.

7.3. Robustness of Unit Root Tests for Daily Data

In this last simulation example we examine the robustness of the proposed procedures
with regard to test performance and prediction accuracy with respect to the innovation
distribution and the existence of conditional heteroskedasticity of the GARCH-type, as
these features are often observed in data of higher frequency, for example in financial
applications. While our asymptotic results do not depend on the distribution of the
innovations (subject to the assumptions), the assumptions do not include GARCH effects.
Nevertheless, the theory in [25,26] suggests that the tests might be robust also in this
respect.
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We generate a state space system of order n = 8 using the matrix A = [Ai,j]i,j=1,...,8
where Ai,i+1 = 1, i = 1, ..., 6, A7,1 = 1, A8,8 = 0.8 and Ai,j = 0 else. This implies that
the eigenvalues of this matrix are λj = exp(2πij/7), j = 1, ..., 7, λ8 = 0.8. Therefore the
corresponding process has state space unit root structure

((0, (1)), (2π/7, (1)), (4π/7, (1)), (6π/7, (1))).

The entries of the matrices C and K are chosen as independent standard normally dis-
tributed random variables as before.

A process (yt)t=1,...,T is generated from filtering an independent identically distributed
innovation process (εt)t=−199,...,T+1 through the system (A, C, K). The first 200 observations
are discarded, the last are used for validation purposes. A total of 1000 replications are
generated where in each replication a different system is chosen.

With the generated data three different estimates are obtained: An autoregressive
model (called AR in the following) is estimated with lag length chosen using AIC of maximal
lag length equal to b

√
Tc. Second, an autoregressive model with large lag length (called

ARlong) is estimated. This estimate is used to hint at the behavior of an autoregression using
the lag length equal to a full year. This would correspond to estimating a VECM without
rank restrictions, when accounting for yearly differences. The third method consists of the
CVA estimates, where f = p = 2k̂AIC is chosen. The order is estimated by minimizing SVC.
However, we correct for orders smaller than n = 7 which would limit the possibilities of
finding all unit roots.

First, we compare the prediction accuracy for the three methods for two different
distributions of the innovations: Beside the standard normal distribution also the student
t-distribution with v = 5 degrees of freedom (scaled to unit variance) is used. This
distribution shows considerably heavier tails than the normal distribution but nevertheless
is covered by our assumptions.

Figure 4 provides the results for out-of-sample one day ahead mean absolute predic-
tion error (over all coordinates) for the sample sizes T = 364 days (one year), T = 1092
(3 years) and T = 3276 (nine years). The long AR model is estimated with lag lengths of
8 weeks for the smallest sample size, 10 weeks for the medium sample size and 12 weeks
for the largest sample size.

Figure 4. Mean of absolute value of one day ahead prediction error over all four components. CVA
(blue), AR (red) and long AR (black). Dash-dot lines refer to the t-distribution.

In the figure the results for the normally distributed innovations are presented as
well as the ones for the t-distributed residuals (scaled to unit variance). It can be seen
that for the two larger sample sizes the mean absolute error for the residuals for CVA is
smaller in all cases. For the smallest sample size, by contrast, results are mixed. For CVA the
results for the heavy tailed distribution in this case are much worse than for the normal
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distribution. For the larger sample sizes the differences are small. The maximal standard
error of the estimated means over 1000 replications for T = 1092 and T = 3276 amounts to
0.05. This allows the conclusion that CVA performs better for the two larger sample sizes.
For T = 364 there are no statistically significant differences between the performance of the
three methods: CVA seems to suffer more from few very large errors (using the root mean
square errors the CVA results are worse for T = 364 in comparison; if one uses the 95%
percentiles CVA performs best also for the smallest sample size). This results in a standard
error over the replications of the mean absolute error for T = 364 of 0.18 for normally
distributed innovations and 3.4 for t-distributed innovations. The long AR models are
clearly worse than the two other approaches. This happens even if we are still far from
using a full year as the lag length.

With regard to the unit root tests we investigate results for the tests of the hypotheses
H0 : cm = 1 versus H1 : cm = 0 at all frequencies 2πm/364, m = 0, ..., 363. The data
generating process features unit roots with cm = 1 at the seven frequencies 2πk/7, k =
0, ..., 6. Therefore the tests should not reject at these frequencies, but should reject at
all others.

Consequently we compare the minimum of the non-rejection rates for the seven unit
roots (called empirical size below) as well as the maximum of the non-rejection rates for
the non-unit root frequencies ωj = 2π j/364, j 6= 52k, k = 0, 1, 2, ..., 6 (called empirical
power below).

For the larger sample sizes the empirical size is practically 95% while the empirical
power is 100%. For T = 364 we obtain an empirical size of 90% for the normal distribution
and 91.5% for the t-distribution. The worst empirical power equals 89.3% (normal) and
87.6% (t-distribution). Hence even for one year of data the discrimination properties of the
unit root tests are good and we do not observe differences between the normal distribution
for the innovations and the heavy tailed t-distribution.

Finally we compare the empirical size and power of the tests for the various unit roots
for smaller sample sizes T ∈ {104, 208, 312, 416, 520}. For the experiments we consider
univariate GARCH models of the form

εt,i = ht,iηt,i, h2
t,i = 1 + αε2

t−1,i + βh2
t−1,i, i = 1, .., 4,

where (ηt,i)t∈Z is independent and identically standard normally distributed. α, β ≥ 0 are
reals. It follows that the component processes (εt,i)t∈Z show conditional heteroskedasticity,
the persistence of which is governed by α + β. Here 0 < α + β < 1 implies stationarity
while α+ β = 1 implies persistent conditional heteroskedasticity usually termed I-GARCH.
We include five different processes for the innovations:

1. norm: α = β = 0, no GARCH effects
2. G1: α = 0.8, β = 0.1
3. IG1: α = 0.8, β = 0.2
4. IG2: α = 0.5, β = 0.5
5. IG3: α = 0.2, β = 0.8

For the five different sample sizes 1000 replications of the estimates using the CVA
algorithm are obtained. For each estimate we calculate the test statistic for testing H0 : cm =
1 versus H0 : cm = 0 for m = 0, ..., 363 corresponding to the unit roots zm = exp(2πim/364).
This set of unit roots contains all seven unit roots exp(2πik/7), k = 0, ..., 6.

Figure 5 provides the mean over the 1000 replications of the test statistics Λ(1) for
zj, j = 0, ..., 363 and the five sample sizes. It can be seen that the test Λ(1) is able to pinpoint
the seven unit roots present in the data generating process fairly accurately even for sample
size T = 104. The zoom on the region around the unit root frequency 2π/7 shows that the
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mean value is larger than the cutoff value of the test (the dashed horizontal line) for the
adjacent frequency 2π 53

364 already for T = 312.

(a) Mean of unit root test statistics. (b) Zoom of mean unit root tests.
Figure 5. Results of the unit root tests for all seasonal unit roots jointly.

Table 5 lists the minimum of the achieved percentages of non-rejections of the test
statistic for the seven unit root frequencies as well as the maximum over all non-unit root
frequencies. It can be seen that for all GARCH models for T = 312 the test rejects unit
roots at all non unit root frequencies every time, while the empirical size is close to the
nominal 5%. For small sample sizes the tests are slightly undersized while for T = 208 a
slight oversizing is observed. The two larger sample sizes are omitted as the tests perform
perfectly there.

Table 5. Percentage of accept (minimum for all unit root frequencies) and reject (maximum for non
unit root frequencies) of Λ(1) test statistic.

Unit Root Frequencies Non Unit Root Frequencies

T norm G1 IG1 IG2 IG3 norm G1 IG1 IG2 IG3

104 0.94 0.89 0.87 0.88 0.87 0.87 0.82 0.79 0.82 0.79
208 0.98 0.96 0.95 0.94 0.96 0.78 0.75 0.72 0.72 0.69
312 0.97 0.96 0.96 0.95 0.95 0.00 0.00 0.00 0.00 0.00

It follows from the examples presented in this subsection that the test is robust also
in small samples with respect to heavy tailed distributions of the innovations (subject to
the assumptions). Furthermore also a remarkable robustness with respect to GARCH-type
conditional heteroskedasticity is observed.

8. Application

In this section we apply CVA to the modeling of electricity consumption using a data set
from [36]. The dataset contains hourly consumption data (in megawatts) from a number of
US regions, scraped from the webpage of PJM Interconnection LLC, a regional transmission
organization. The number of regions have changed over time, thus the data set contains
many missing values. It also contains data aggregated into regions called east and west,
which are not used subsequently.

In order to avoid problems with missing values, we restrict the analysis to four regions,
for which data over the same time period is available: American Electric Power (AEP; in
the following printed in blue), the Dayton Power and Light Company (DAYTON; black),
Dominion Virginia Power (DOM; red) and Duquesne Light Co. (DUQ; green). We use
data from 1 May 2005 until 31 July 2018. In this period only 3 data points are missing for
the four regions and their imputation is handled by interpolation of the corresponding
previous values. One observation in this sample is an obvious outlier which is corrected
for analogously.
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The data is split into an estimation sample covering observations up to the end of 2016
(102,291 observations on 4263 days) and a validation sample containing data in 2017 and
2018 (13,845 observations on 577 days). Data is equally sampled, but contains two hour
segments when switching from winter to summer time or back. Table 6 contains some
summary statistics.

Table 6. Summary of data sets.

Region
Daily Obs. (4263 est., 577 val.) Hourly Obs. (102,291 est., 13,845 val.)

Mean Mean(log) Std.(log) AIC BIC Mean(log) Std.(log) AIC BIC

AEP 371,844 12.82 0.127 43 12 9.63 0.168 782 532
DAYTON 48,897 10.79 0.144 43 3 7.60 0.193 772 531
DOM 262,727 12.47 0.158 17 3 9.28 0.215 795 554
DUQ 39,837 10.58 0.130 23 7 7.40 0.177 800 529

Figure 6 provides an overview of the data: Panel (a) shows the full data on an hourly
basis, while (b) presents aggregation to daily frequency. Panel (c) zooms in on a two
year stretch of daily consumption. Panel (d) finally provides hourly data for the first
month in the validation data. The figures clearly document strong daily, weekly and yearly
patterns. From these figures it appears that these seasonal fluctuations are somewhat
regular with changes throughout time. It is hence not clear whether a fixed seasonal pattern
is appropriate. Also note that the sampling frequency is on an hourly basis such that a year
roughly covers 8760 observations.

(a) Full hourly data (b) Log of daily consumption on estimation set

(c) Log of daily consumption from 2010 to 2012
(d) Log of hourly consumption on first month

of validation set
Figure 6. Electricity consumption data.

In the following we estimate (on the estimation part) and compare (on the validation
part) a number of different models, first for the full hourly data set and afterwards for
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the aggregated daily data. As a benchmark we will use univariate AR models including
deterministic seasonal patterns for daily, weekly and yearly variations. Subsequently we
estimate models using CVA including different sets of such seasonal patterns.

First in the analysis using dummy variables fixed periodic patterns have been es-
timated. We model the natural logarithm of consumption (to reduce problems due to
heteroskedasticity) and include dummies for weekdays, hours and sine and cosine terms
corresponding to the first 20 Fourier frequencies with respect to annual periodicity. The
corresponding results can be viewed in Figure 7. It is obvious that there is quite some
periodic variation. Also the four data sets show very similar patterns as expected.

After the extraction of these deterministic terms the next step is univariate autoregres-
sive (AR) modeling. Figure 8 shows the BIC values of AR models of lag lengths zero to 800
for the four series as well as the BIC of a multivariate AR model for the same number of
lags. The chosen values are given in Table 6.

(a) Yearly fluctuation (b) Weekly fluctuation (c) Daily fluctuation
Figure 7. Periodic patterns from dummy variables.

Figure 8. BIC values for univariate models and multivariate model (dashed line; divided by four
to fit).

The BIC curve is extremely flat for the univariate models. Noticeable drops in BIC
occur around lag 24 (one day), 144 (six days), 168 (one week), 336 (two weeks), 504 (three
weeks). BIC selects large lag lengths from 529 (DUQ) up to 554 (DOM). AIC selects lag
lengths close to the maximum allowed with a minimum at 772 lags. The BIC pattern of
the multivariate model differs in that the two drops at two and three weeks are missing.
Instead, the optimal BIC value is obtained at lag 194, well below the optimal lag lengths in
the univariate cases. AIC here opts for lag length 531, just over 22 days.

Subsequently CVA is applied with f = k̂BIC, p = k̂AIC as estimated for the multivariate
model. This differs from the usual recommendation of f = p = 2k̂AIC in order to avoid
numerical problems with huge matrices. The order is chosen according to SVC, resulting
in n̂ = 240. The corresponding model is termed Mod 1 in the following. Note that this
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configuration of f , n̂ does not fulfill the requirements of our asymptotic theory. The bound
f ≥ n ensures that the matrix O f has full column rank. Generically this will be the case
for f s ≥ n leading to a less restrictive assumption. In practice too low values of f will be
detected by n̂ estimated close to the maximum, which is not the case here.

As a second model we only use weekday dummies but neglect the other deterministics.
Again AIC (k̂AIC = 531) and BIC (k̂BIC = 195) are used to determine the optimal lag length
in the multivariate AR model. The corresponding CVA estimated model uses n̂ = 245
according to SVC, resulting in Mod 2.

The third model uses only a constant as deterministic term. Again similar AIC (555)
and BIC (195) values are selected. A state space model, Mod 3, using CVA is estimated with
n̂ = 209.

Figure 9 provides information on the results. Panel (a) shows the coefficients of the
univariate AR models. It can be seen that lags around one day and one to three weeks play
the biggest role for all four datasets. Panel (b) shows that the multivariate models lead to
better one step ahead predictions in terms of the root mean square error (RMSE). Mod 1
and Mod 2 show practically equivalent out of sample prediction error for all four data sets,
while Mod 3 delivers the best out of sample fit for all four regions.

(a) AR coefficients (b) RMSE on validation data set
Figure 9. Results for the hourly datasets.

In particular in financial applications data of high sampling frequency shows per-
sistent behaviour, also in terms of conditional heteroskedasticity, as well as heavy tailed
distributions of the innovations. For our data sets Figure 10 below provides some infor-
mation in this respect for the residuals according to Mod 3. Panel (a) provides a plot of
the residuals in the year 2018 (contained in the validation period). It can be seen that
large deviations occur occasionally, while else residuals vary in a tight band around 0.
The kernel density estimates for the normalized (to unit variance) residuals on the full
validation data set in panel (b) show the typical heavy tailed distributions. Panel (c) con-
tains an ACF plot for the four regions again calculated using the full validation sample. It
demonstrates that the model successfully eliminates all autocorrelations with only a few
ACF values occurring outside the confidence interval. Panel (d) provides the ACF plot for
the squared innovations to examine GARCH-type effects. While GARCH-effects are clearly
visible, the ACF drops to zero fast with occasional positive values (except maybe for the
Duquesne data).

Applying the eigenvalue based test Λ(1) for c = 1 and all Fourier frequencies ωj =
2π j/(365 ∗ 24) we find that for Mod 2 and Mod 3 the largest p-value is obtained for ω365
corresponding to a period length of one day with 0.0187 for Mod 2 (test statistic 6.6) and
0.02 for Mod 3 (with a statistic of 6.5). This implies that the unit root at frequency ω365 is
not rejected for a significance level of 1%, but is rejected for 5%. All other unit roots are
rejected at every usual significance level. For Mod 1 the test statistic for ω365 equals 41.2
corresponding to a p-value of practically 0. This implies that on top of a deterministic
daily pattern the series show strong persistence at the daily period. Excluding the hourly
dummies pulls the roots closest to ω365 closer to the unit circle resulting in insignificant
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unit root tests and improves the one step ahead forecasts. Including the dummies weakens
the evidence of a unit root while leading to worse predictions.

The analysis is repeated with data aggregated to daily sampling frequency. The
aggregation reduces the required lag lengths, as is visible from Table 6 in the univariate case,
and hence we use CVA with the recommended f = p = 2k̂AIC. Beside the univariate models,
in this case also a naive model of predicting the consumption for today as yesterday’s
consumption is used. Three multivariate models are estimated: Mod 1 contains weekday
dummies and sine and cosine terms for the first twenty Fourier frequencies corresponding
to a period of one year. Mod 2 only contains the weekday dummies, while Mod 3 only uses
the constant. Figure 11 provides the out-of-sample RMSE for one day ahead predictions
(panel (a)) and seven days ahead predictions (panel (b)).

(a) Residuals for 2018.
(b) Kernel density estimate for normalized

residuals. Blue dashed line refers to standard
normal distribution.

(c) ACF of residuals. (d) ACF of squared residuals.
Figure 10. Residual analysis.

(a) RMSE of one day ahead predictions (b) RMSE of seven day ahead predictions
Figure 11. Results for the hourly datasets.
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It can be seen that both Mod 1 and Mod 2 beat the univariate AR models in terms
of one step ahead prediction error, while Mod 3 performs better for seven days ahead
prediction. Mod 1 performs on par with Mod 2 for one step ahead prediction but performs
better in predicting seven steps ahead. In Figure 12 poles and zeros for the three estimated
state space models are plotted. Here the poles (marked with ‘x’) are the eigenvalues of
the matrix A. These are the inverses of the determinantal roots of the autoregressive
matrix polynomial in the equivalent VARMA representation. The zeros are the inverses
of zeros of the determinant of the MA polynomial. We can see that for Mod 3 with only a
constant, poles close to 2π j/7, j = 1, ..., 6 arise to capture the weekly pattern. The other two
models only show one pole close to the unit circle, a real pole of almost z = 1. The pole
corresponding to Mod 1 is closer to the unit circle than the one for Mod 2 (see (b)).

For Mod 3 we obtain p-values for the tests of three complex unit roots of 0.05 (ω =
2π/7), 0.165 (4π/7) and 0.01 (6π/7), which are hence all not statistically significant for
significance level α = 0.01. The corresponding test for z = 1 shows a p-value of 0.004.
This provides evidence against the null hypothesis of the root being present. For Mod 1 the
p-value for the test of z = 1 is 0.28 and hence we cannot reject the null. Mod 2 provides a
p-value of 0.023 and hence weak evidence for the presence of the unit root. This can be
seen from the distance of the nearest pole from the point z = 1 in Figure 12.

(a) Poles and zeros of the three models. (b) Zoom around z = 1.

Figure 12. Poles (x) and zeros (o) of the transfer functions corresponding to the three models: Mod 1
(red), Mod 2 (blue), Mod 3 (magenta).

Jointly this indicates that the location and strength of persistence due to the estimated
roots is influenced by the presence of deterministic terms: if the deterministic terms are
not included in the model, the cyclical patterns are generated by poles situated close to the
unit circle.

The decision whether on top of the deterministic seasonality unit roots exist, is not
easy in all cases: for the daily data the locations of the poles indicate that deterministic
seasonality is enough to capture weekly fluctuations while a unit root at z = 1 appears to
be needed to capture yearly variations. For hourly data there is evidence that the daily
cycle is best captured with a unit root at frequency ω365. This leads to the best predictive
fit. Finally note that temporal aggregation from hourly data to daily data implies that the
frequency ω365 for hourly data aliases to the frequency ω = 0 in the daily data. Therefore
the higher evidence of a unit root at z = 1 found in daily data might be a consequence of
the unit root at frequency ω365 found for hourly data, compare [37].

The system matrix estimates as well as the evidence in support of unit roots at ω365
for hourly data and z = 1 for daily data that we obtain from the CVA modeling can be taken
as starting points in subsequent quasi maximum likelihood estimation.

9. Conclusions

In this paper the asymptotic properties of CVA estimators for seasonally integrated
unit root processes are investigated. The main results can be summarized as follows:
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• CVA provides consistent estimators for long-run and short-run dynamics without
knowledge of the location and number of unit roots. Hence the algorithm is robust
with respect to the presence of trending components at frequency zero as well as at
the other seasonal unit root frequencies.

• The singular values calculated in the RRR step reveal information on the total number
of unit roots. The distance of the singular values to one can be used to construct a
consistent estimator of this quantity.

• The eigenvalues of Â can be used in order to test for the number of common trends.
Under the null hypothesis these tests are asymptotically equivalent to the correspond-
ing tests using the true state, making the derivation of asymptotic results and the
simulation of the test distribution simple.

• An analogous statement holds for the Johansen trace test in the I(1) case and anal-
ogous tests in the MFI(1) case calculated on the basis of the estimated state in the
restrictive setting of n ≤ s. Under the null hypothesis these tests reject and accept
asymptotically jointly with the corresponding tests calculated using the true state.

• From the simulation exercises we conclude that CVA performs best when the dgp is
of the more general VARMA type, the process dimension is moderate to large and
the sample size is small. Then it is superior to the likelihood-based procedures based
on VAR approximations in terms of the estimation performance and the size and
power of Λ, the test developed from CVA. For higher sample sizes the likelihood-based
procedures are clearly superior when it comes to the size of the corresponding tests,
whereas Λ remains the best test choice in terms of empirical power. The estimation
performance is about equal for all procedures when the sample size is high with slight
advantages for the likelihood-based procedures.

• The simulations also demonstrate that the unit root test results are robust with respect
to the distribution of the innovation sequence as well as some forms of conditional
heteroskedasticity of the GARCH-type.

Because of the promising performance of CVA and in particular its robustness it can be
recommended as a simple way to extract information on the number of common trends
from the estimated matrix of transition dynamics. This information can be used in order to
reduce the uncertainty in a subsequent likelihood ratio analysis where quasi maximum
likelihood estimates can be obtained starting from the CVA estimates. Since the CVA estimates
can be obtained for a range of orders numerically fast they are seen as a valuable starting
point for the empirical modeling of time series potentially including seasonal cointegration.
Moreover they can also be used in situations where the number of seasons is large or even
unclear as in hourly data sets as demonstrated in the case study.
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Appendix A. Supporting Material

Appendix A.1. Complex Valued Canonical Form

Additionally to the real valued canonical form (2) we will also use the corresponding
complex valued representation obtained by transforming each block corresponding to unit
root zj = cos(ωj) + i sin(ωj) with the transformation matrix

Tj =

[
Icj iIcj

Icj −iIcj

]

leading to the triple of system matrices in the j-th block as:

Aj,C =

[
zj Icj 0

0 zj Icj

]
, Kj,C =

[
Kj,C
Kj,C

]
, Cj,C =

[
Cj,C/2 Cj,C/2

]
,

such that

xt+1,j,C = zjxt,j,C + Kj,Cεt, xt,j = T −1
j

[
xt,j,C
xt,j,C

]
.

Lemma A1. Let xt = [x′t,0, x′t,1, . . . , x′t,S/2, x′t,•]
′ where xt,j is generated according to xt+1,j =

Ajxt,j + Kjεt, t ∈ N with Aj as in (2) and Kj = [K′j,R, K′j,I ]
′ ∈ Rδjcj×s using iid white noise

process (εt)t∈N where x0,j is deterministic. Further let (xt,•)t∈N denote the stationary solution to
the equation xt+1,• = A•xt,• + K•εt such that M• = Ext,•x′t,• > 0.
(I) Then using QT =

√
(log log T)/T for ut = ∑

q
i=0 ϕiεt+i for arbitrary q ∈ N, q < ∞, and

coefficients ϕi, i = 0, ..., q we have

〈xt,•, ut〉 = O(QT) , 〈ut−j, ut〉 −Eut−ju′t = O(QT),
〈xt,j, xt,•〉 = O(log T) , 〈xt,j, ut〉 = O(log T)

〈xt,j, xt,k〉/T = O(log log T) , j, k = 0, ..., S/2.

If (εt)t∈Z only fulfills Assumptions 1 then the order bounds hold in probability rather than almost
surely.
(II) Furthermore for 0 < j, k < S/2

〈xt,j,C, εt〉
d→ 1

2

∫ 1
0 WjdB′j,C =: Mj,

〈xt,j,C, xt,k,C〉/T d→
{

1
2

∫ 1
0 WjW ′j := Nj , j = k,

0 , j 6= k

〈xt,j, εt〉
d→

[
1
2

∫ 1
0 (Wj,RdB′j,R + Wj,I dB′j,I)

1
2

∫ 1
0 (Wj,I dB′j,R −Wj,RdB′j,I)

]
,

〈xt,k , xt,j〉/T d→


1
2

[ ∫ 1
0 (Wk,RW ′k,R + Wk,IW ′k,I)

∫ 1
0 (Wk,RW ′k,I −Wk,IW ′k,R)

−
∫ 1

0 (Wk,RW ′k,I −Wk,IW ′k,R)
∫ 1

0 (Wk,RW ′k,R + Wk,IW ′k,I)

]
, j = k

0 , j 6= k

where Wj = Wj,R + iWj,I = Kj,CBj,C, Kj,C = Kj,R + iKj,I , Bj,C = Bj,R + iBj,I and Bj,R, Bj,I are
two independent Brownian motions with covariance matrix Ω. For j = 0 and j = S/2 the results
hold analogously:

〈xt,0, εt〉
d→
∫ 1

0
W0,RdW ′0,R , 〈xt,0, xt,0〉/T d→

∫ 1

0
W0,RW ′0,R,

〈xt,S/2, εt〉
d→
∫ 1

0
WS/2,RdW ′S/2,R , 〈xt,S/2, xt,S/2〉/T d→

∫ 1

0
WS/2,RW ′S/2,R.

Proof. Most evaluations in (I) are standard, see for example Lemma 4 in [38].
(II) follows from the results in Section 4 of [2] for the complex valued representations or [39]
for the corresponding real case.
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Appendix A.2. Perturbation of Eigendecompositions

Lemma A2 (Rayleigh-Schrödinger expansion). Let Ât = A− δAt where ‖δAt‖ → 0 and
where A = UΛU−1 ∈ Rn×n, Λ = diag(λ1 Ic1 , ..., λJ IcJ ), ∑J

j=1 cj = n is diagonalizable. U =

[U1, ..., UJ ] ∈ Cn×n is a nonsingular matrix such that for U−1 = [V1, ..., VJ ]
′ we have V′j Uj = Icj .

Then for each circle B(λj, δ) around λj not containing any other eigenvalue of A there exist
from some t onwards

• cj eigenvalues of Ât in the circle B(λj, δ) around λj

• a basis Ût,j for the space spanned by the eigenspaces to these cj eigenvalues such that V′j Ût,j =
Icj ,

• a sequence of matrices B̂t,j = V′j ÂtÛt,j ∈ Ccj×cj .

Then Ût,j = ∑∞
k=0 Zk, B̂t,j = ∑∞

k=0 Ck where

Z0 = Uj , C0 = λj Icj ,

Zk = Σ(δAtZk−1 +
k−1

∑
i=1

Zk−iCi) , Ck = −V′j δAtZk−1.

Here Σ = U(Λ− Inλj)
+U−1 where diag(s1, ..., sn)+ = diag(s+1 , ..., s+n ) and x+ = 1/x, x 6= 0

and zero else, that is (Λ− Inλj)
+ denotes a quasi-inverse.

Furthermore for ρ = ‖δAt‖ < 1 we obtain: ‖Ck‖ ≤ µCρk, ‖Zk‖ ≤ µZρk, k ≥ 0.

The results follow directly from Section 2.9 of [23], see in particular Proposition 2.9.1
and the discussion below this proposition. Further note that the results hold for each root
separately and hence the restriction `j = 1 needs to hold only for the investigated root for
the results to apply. Finally note that a second order approximation Ût,j = Z0 + Z1 + Z2

and B̂t,j = C0 + C1 + C2 is accurate to the order o(‖δAt‖2).

Appendix A.3. Random Transformation of Systems

Lemma A3. Let the assumptions of Theorem 1 hold and use the same notation as given there. Let
(Ã, C̃, K̃) denote a sequence of systems converging a.s. to (A, C,K) such that (Ã − A)D−1

x =
O((log T)a),

√
T(K̃−K) = O((log T)a), (C̃ −C)D−1

x = O((log T)a) and letA0 = S0AS−1
0 =

diag(A0,11,A0,22),K0 = S0K, C0 = CS−1
0 . Further let

ST =

[
ST,11 ST,12

0 ST,22

]
→ S0

such that (ST − S0)D−1
x = O((log T)a). Let ∆S = (ST − S0)D−1

x , ∆A = (Ã − A)D−1
x and

denote the sequence of transformed systems as (Â, Ĉ, K̂) = (STÃS−1
T , C̃S−1

T , STK̃). Let the block
entries of S0 be denoted as Sij and the blocks of ∆S be denoted as ∆Sij. Then:

T(Â11 −A0,11) = (∆S11A11 −A0,11∆S11 + S11∆A11 + S12∆A21)S−1
11 + o(1),

√
T(Â12 −A0,12) = (S11∆A12 + S12∆A22)S−1

22 + ∆S12S−1
22 A0,22 −A0,11∆S12S−1

22 + o(1),

T(Â21 −A0,21) = S22∆A21S−1
11 + o(1),

√
T(Â22 −A0,22) = ∆S22S−1

22 A0,22 + S22∆A22S−1
22 −A0,22∆S22S−1

22 + o(1),
√

T(K̂ − K0) =

[
∆S12K2 + S11

√
T(K̃1 −K1) + S12

√
T(K̃2 −K2)

∆S22K2 + S22
√

T(K̃2 −K2)

]
+ o(1),

(Ĉ − C0)D−1
x = (C̃ − C)D−1

x

[
S−1

11 0
0 S−1

22

]
− C0

[
∆S11S−1

11 ∆S12S−1
22

0 ∆S22S−1
22

]
+ o(1).

Proof. The proof follows from straightforward computations using the various orders of
convergence by neglecting higher order terms.
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Appendix B. Reduced Rank Regression with Integrated Variables

The main results of this paper are based on a more general result documented in [24]
(henceforth called BRRR). BRRR uses a slightly different setting and in particular a different
dgp. The following lemma provides the essence of the results of BRRR that will be used
below.

Lemma A4. Let (yt)t∈N, (zr
t)t∈N, (zu

t )t∈N, yt ∈ Rs, zr
t ∈ Rm, zu

t ∈ Rl be three processes re-
lated via

yt = brzr
t + buzu

t + ut

where the zero mean stationary process (ut)t∈N is such that Eut(zr
t)
′ = 0,Eut(zu

t )
′ = 0,Eutu′t >

0 and where n = rank(br) < min(s, m), that is br is of reduced rank.
Further assume that there exist square nonsingular matrices Ty ∈ Rs×s, Tr ∈ Rm×m, Tu ∈

Rn×n such that

ỹt = Tyyt = (TybrT −1
r )(Trzr

t) + (TybrT −1
r )(Trzr

t) + Tyut = b̃r z̃t + b̃u z̃u
t + ũt

such that with c• = n− c we have

b̃r =

[
Ic 0 0
0 0 b̃r,•

]
, b̃r,• = Õ•Γ′•, Õ• ∈ R(s−c)×c• , Γ• ∈ Rm•×c• .

Here the partitioning corresponds to z̃′t = [z̃′t,1, z̃′t,2, z̃′t,•] where z̃t,1 ∈ Rc, z̃t,2 ∈ Rm−c−m• are
MFI(1) processes and (z̃t,•)t∈N, z̃t,• ∈ Rm• is stationary, z̃u

t = [(z̃u
t,1)
′, (z̃u

t,•)
′]′ where (z̃u

t,1)t∈N is a
MFI(1) process and (z̃u

t,•)t∈N is stationary and where the following bounds hold (z̃t,: = [z̃′t,1, z̃′t,2]
′):

〈ũt, ũt〉 = O(1) , 〈ũt, z̃t,•〉 = O(QT) , 〈ũt, z̃u
t,•〉 = O(QT),

〈ũt, ũt〉 −Eũtũ′t = O(QT) , 〈ũt, z̃t,:〉 = O(log T) , 〈ũt, z̃u
t,1〉 = O(log T),

M̂• = 〈
(

z̃t,•
z̃u

t,•

)
,
(

z̃t,•
z̃u

t,•

)
〉 , M̂−1

• = O(1) , M̂• = O(1), M• > 0

M̂1 = 〈
(

z̃t,:
z̃u

t,1

)
,
(

z̃t,:
z̃u

t,1

)
〉 , M̂1/T = O(log log T) , (M̂1)

−1 = O(Q2
T),

〈
(

z̃t,•
z̃u

t,•

)
,
(

z̃t,:
z̃u

t,1

)
〉 = O(log T) , M̂• −M• = O(QT).

Then the reduced rank regression estimator b̂RRR = [b̂r,RRR, b̂u,RRR] maximizing the Gaussian
likelihood subject to rank(βr) = n = c + c• is consistent: b̂RRR − b = O((log T)a/

√
T) for

some a < ∞. Furthermore b̃RRR,r − b̃r = [O((log T)a/T), O((log T)a/
√

T)] with b̃RRR,r =
Ty b̂RRR,rT −1

r , where the second block has m• columns and corresponds to the stationary components
of the regressor vector.

Proof. The theorem slightly extends the results of BRRR by adding high level assumptions
instead of low level assumptions on the data generating process. The proof hence consists
in adjusting the proof in BRRR. In the following we only indicate where arguments in
BRRR need to be replaced. A detailed proof would replicate much of the arguments in
BRRR and hence is omitted.

The representation of Theorem 3.1 in BRRR is contained in the assumptions. Then
consistency follows from examining the proof of the first part of Theorem 3.2 in BRRR:
essential for the norm bounds are Lemma A.1 (I) and (III). The norm bounds stated under
point (I) are directly assumed in this lemma except for the filtered version using nt in place
of xt. Instead, here the results for nt which are needed in the proof of Theorem 3.2 of BRRR
are directly assumed. (III) then follows. Lemmas A.3–A.5 in BRRR do not depend on
the assumptions on the various processes and hence continue to hold. Then the proof for
consistency in Appendix A.3.1 of BRRR only uses these norm bounds referring also to [38]
(which is also only based on the norm bounds contained in the assumptions of this lemma)
and hence continues to hold.
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Appendix C. Proofs of the Theorems

Appendix C.1. Proof of Theorem 1

For proving consistency of the transfer function estimators it is sufficient to find
a (possibly) random matrix S̃T such that the least squares estimates (Ã, C̃, K̃) of one
representation (A, C,K) of the true system obtained using x̃t := S̃T x̂t converges (a.s.) to
(A, C,K). This will be done in two steps: First a particular basis (which is not realizable in
practice) will be chosen such that K̃p −Kp = o(1) sufficiently fast such that in the second
step the regressions in the system equations based on the resulting state estimator x̃t are
consistent. The derivation of the first step will also provide an approximation of the error
term which can be used in order to derive the asymptotic distribution.

Appendix C.1.1. Proof of Theorem 1 (I)

The central step in CVA is the solution to the RRR problem. The following proof heavily
draws on the results contained in [24] (henceforth called BRRR) collected in Lemma A4
for easier reference. As in BRRR, in order to derive the asymptotic properties we first
transform the vectors in order to separate stationary and nonstationary terms. In order to
achieve the separation let Zt = [y′t−1, y′t−2, ..., y′t−S]

′ ∈ RsS. Then for p = kS we obtain

Y−t,p =



yt−1
yt−2

...
yt−S

yt−S−1
...

yt−kS


=


Zt

Zt−S
...

Zt−(k−1)S

.

It is easy to see that for each j the process (ZrS−j)r∈N is an I(1) process. Moreover the strict
minimum-phase condition for (A◦, C◦,K◦) implies that also for the system corresponding
to (ZrS−j)r∈N the strict minimum-phase condition holds.

Define the transformation TS := [OS,1,OS,⊥]
′ where OS,1 ∈ RsS×c denotes the matrix

containing the first c columns of OS for the system (A◦, C◦,K◦) in the canonical form.
Further OS,⊥ is a block column of an orthonormal matrix such that O′S,⊥OS,1 = 0. Then
the argument of [20] shows that in TSZt the first c components are integrated while the
remaining sS− c components are stationary. Then consider for p = kS < t ≤ T − f + 1
(using O†

S,1 = (O′S,1OS,1)
−1O′S,1)

z̃t,p :=



O†
S,1OS(xt − Āp

◦xt−p)

O′S,⊥Zt

O†
S,1(Zt − Zt−S)

O′S,⊥Zt−S
...

O†
S,1(Zt−(k−2)S − Zt−(k−1)S)

O′S,⊥Zt−(k−1)S


, ỹt :=

[
O†

f ,1
O′f ,⊥

]
Y+

t, f . (A1)

Here O f ,⊥ is a matrix such that O′f ,⊥O f ,1 = 0,O′f ,⊥O f ,⊥ = I. Obviously z̃t,p is a linear
transformation of Y−t,p and ỹt of Y+

t, f . It can be shown that the linear transformation is

nonsingular such that there is a one-one relation between Y−t,p and z̃t,p. In z̃t,p and ỹt only
the first c components are unit root processes, the remaining components being stationary.

For p 6= kS the final p− kS block rows of z̃t,p are defined as yt−(k−1)S−j − yt−kS−j, j =
1, ..., p− kS. Clearly also these components are stationary.

Partition z̃t,p = [z̃′t,1, z̃′t,•]
′, z̃t,1 ∈ Rc, into its first c and the remaining coordinates

(omitting the subscript p on the right hand side for notational convenience). Similarly
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partition ỹt = [ỹ′t,1, ỹ′t,•]
′, ỹt,1 ∈ Rc. Using these transformed matrices, Y+

t, f = β1Y−t,p + N+
t, f

can be written as

ỹt = b̃1z̃t,p + Ñ+
t, f ,p =

[
ỹt,1
ỹt,•

]
=

[
Ic 0
0 b̃•,p

][
z̃t,1
z̃t,•

]
+ Õ f Ā

p
◦xt−p +

[
ε̃t,1
ε̃t,•

]
(A2)

where

b̃1 =

[
Ic 0
0 b̃•,p

]
, b̃•,p = Eỹt,• z̃′t,•

(
Ez̃t,• z̃′t,•

)−1
= O•,pΓ′•,p, b̃1 = OpΓ′p

and where b̃•,p is of rank n− c providing a representation of the form given in Theorem 3.1
of BRRR except that the error term Ñ+

t, f ,p (defined by the equation) is not white. Finally (A2)

also defines the sub blocks ε̃t,i of Ñ+
t, f ,p which are hence linear combinations of E+

t, f and
therefore typically MA(f) processes. Note that z̃t,1, z̃t,•, ỹt,• depend on the choice of f and p
which is not reflected in the notation.

Here
(
Ez̃t,• z̃′t,•

)−1 and Eỹt,• z̃′t,• are worth a remark: for p = kS the results of [20]
can be directly used to obtain upper and lower bounds for the norms of these matrices
uniformly in k ∈ N. For p 6= kS the additional rows in z̃t,• add entries to Eỹt,• z̃′t,• that
are of order O(λp) for some 0 < λ < 1 as yt − yt−S is a VARMA process. Similarly the
smallest eigenvalue of Ez̃t,• z̃′t,• can be bounded from below based on arguments for p = kS
following [20] which in turn refer to Theorem 6.6.10 of [22]. The additional terms for p 6= kS
correspond to backward innovations with non-singular covariance matrix thus also leading
to a lower bound of the smallest eigenvalue uniformly in k. (The backward innovations
representation for a stationary VARMA process (yt)t∈Z equals yt = ∑∞

j=1 kb
j yt+j + εb

t and
can be obtained from the complex conjugate of the spectral density. Nonsingularity of
the spectral density implies that the backward innovation εb

t have nonsingular covariance
matrix. This implies a lower bound on the accuracy with which components of yt−(k−1)S−j
can be predicted based on yt−i, i ≤ (k− 1)S.)

Furthermore the strict minimum-phase assumption for the state space representation
(A◦, C◦,K◦) of the process (yt)t∈Z implies the strict minimum-phase assumption for the
sub-sampled process (ZkS+j)k∈Z. Thus the arguments of [20] show that [b̃•,p, 0] → b̃•,∞
where the norm of the difference is of order O(‖Āp

◦‖). The increase of p as a function of the
sample size jointly with the strict minimum-phase assumption implies that O(‖Āp

◦‖) =
o(T−1). This also implies that Õ f Ā

p
◦xt−p = op(T−1/2).

Correspondingly there exists a limiting decomposition b̃•,∞ = O•Γ′• such that Γ′•S• =
In−c where S• denotes a selector matrix whose columns contain the vectors of the canonical
basis of R∞. Since [K◦, (A◦ −K◦C◦)K◦, (A◦ −K◦C◦)2K◦, ..., (A◦ −K◦C◦)n−1K◦] is of full
row rank it can be assumed that S• only has nonzero entries in its first ns rows. Denoting
the submatrix of the first ps rows by Sp,2 then also [Γ′•]1:pSp,2 = In−c where [.]1:p denotes
the first p block columns of a matrix. This fixes a unique decomposition of b̃• and hence
O• and Γ• do not depend on p. Convergence of b̃•,p to b̃• jointly with the lower bound
on p(T) then implies convergence of order o(T−1) of O•,p to O• and Γ′•,p to [Γ′•]1:p using
the decomposition of b̃•,p such that Γ′•,pSp,2 = In−c. Correspondingly Op → O and
‖Γ′p − [Γ′]1:p‖ → 0.

Therefore the reduced rank regression in the CVA procedure shows the same structure
as investigated in Lemma A4 with the differences that z̃t,2 and z̃u

t do not occur, and z̃t,•
has increasing size as a function of the sample size. The next lemma therefore extends the
results of BRRR to the RRR used in CVA:

In the following we will use a generic a ∈ N in statements like O((log T)a), not
necessarily the same in each occurrence. In this sense e.g., the product of two terms that
are O((log T)a) is again taken to be O((log T)a).
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Lemma A5. Let the assumptions of Theorem 1 hold where additionally (εt)t∈Z is iid. Introduce
the notation

D̃z = diag(T−1/2 Ic, Ips−c), D̃y = diag(T−1/2 Ic, I f s−c), D̃x = diag(T−1/2 Ic, In−c).

Let Ḡp denote a solution to

(D̃z〈z̃t,p, ỹt〉D̃y)(D̃y〈ỹt, ỹt〉D̃y)
−1(D̃y〈ỹt, z̃t,p〉D̃z)Ḡp = (D̃z〈z̃t,p, z̃t,p〉D̃z)ḠpR̄2

using the notation of (A1) where R̄2 → Θ2 = diag(Ic, Θ•) ∈ Rn×n and where Ḡp is normalized
such that Ḡ1,1,p = Ic, Ḡ′•,2,pSp,2 = In−c for a selector matrix Sp,2. Further let

Γ̄p =

[
Ic 0
0 Γ̄•,p

]
, Γ̄′•,pSp,2 = In−c

denote the solution to the decoupled problem where the stationary and the nonstationary subproblem
are separated:(

〈z̃t,1, ỹt,1〉〈ỹt,1, ỹt,1〉−1〈ỹt,1, z̃t,1〉Γ̄1,1,p
〈z̃t,•, ỹt,•〉〈ỹt,•, ỹt,•〉−1〈ỹt,•, z̃t,•〉Γ̄•,p

)
=

(
〈z̃t,1, z̃t,1〉Γ̄1,1,pΘ̄1
〈z̃t,•, z̃t,•〉Γ̄•,pΘ̄•

)
.

(I) Then if f ≥ n fixed independent of T and p ≥ −d log T/ log ρ0, d > 1, p = o((log T)a) for
some a < ∞ the a.s. results of Lemma A.6 (I)-(III) and Lemma A.7 of [24] hold true for (log T)3

replaced by (log T)a for some integer a < ∞. In particular Ḡp − Γ̄p = O((log T)a/T1/2).
(II) Using the notation δGp := Ḡp − Γ̄p define

S̃T :=

[
Ic −

√
TδG′•,1,p〈z̃t,•, z̃t,•〉Γ̄†

•,p
0 Ips−c

]
, Γ̄†

•,p := Γ̄•,p(Γ̄′•,p〈z̃t,•, z̃t,•〉Γ̄•,p)−1.

Then for Γ̃′p := S̃T D̃−1
x Ḡ′pD̃z and

Γ′ =
[

I 0
0 Γ′•

]
we obtain Γ̃′p − [Γ′]1:p = [O((log T)a/T), O((log T)a/T1/2)] where the partitioning corresponds
to the partitioning of z̃t,p into z̃t,1 and z̃t,•. Here Γ′• denotes the right factor of b̃•,∞ = O•Γ′• such
that [Γ′•]1:pSp,2 = In−c holds.

(III) Let the assumptions of Theorem 1 hold. Then ẐT := Tvec
(
(Γ̃′p − [Γ′]1:p)

[
Ic
0

])
converges in distribution.

Proof. (I) First consider the entries of the vectors ỹt,• and z̃t,• (see (A1)) more closely.
Since in

O′f ,⊥Y+
t, f = O

′
f ,⊥(O f ,•xt,• + E f E+

t, f )

the nonstationary directions are filtered by definition, ỹt,• is stationary and does not depend
on T.

Further, also z̃t,• is stationary for fixed p as the nonstationary directions are either
filtered by pre-multiplication with O′S,⊥ or by yearly differencing Zt − Zt−S.

Therefore we obtain from stationary theory for fixed p = kS that

‖Eỹt,• z̃′t,•(Ez̃t,• z̃′t,•)
−1 − 〈ỹt,•, z̃t,•〉〈z̃t,•, z̃t,•〉−1‖ = o(1).

Here supp ‖(Ez̃t,• z̃′t,•)
−1‖ < ∞ has been discussed before. Now Eỹt,• z̃′t,•(Ez̃t,• z̃′t,•)

−1 =

β̃•,p + o(T−1/2) = O•,p[Γ′•]1:p + o(T−1/2) where the o(T−1/2) term appears due to ne-
glecting Õ f Āpxt−p. It follows that det

[
(β̃•,pSp,2)

′(β̃•,pSp,2)
]
= det[O′•,pO•,p] > 0 and
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hence ‖β̂•,p − β̃•,p‖Fr = o(1) implies limT→∞ det
[
(β̂•,pSp,2)

′(β̂•,pSp,2)
]
> 0 a.s. where

β̂•,p := 〈ỹt,•, z̃t,•〉〈z̃t,•, z̃t,•〉−1. Since Ô•,pΓ̄′•,p − β̃•,p = o(1) due to consistency, also

lim
T→∞

det
[
(Ô•,pΓ̄′•,pSp,2)

′(Ô•,pΓ̄′•,pSp,2)
]
= lim

T→∞
det Ô′•,pÔ•,p det(Γ̄′•,pSp,2)

2 > 0 a.s.

Since Γ̄•,p− Γ•,p = o(1) due to the definition of Γ̄•,p and the continuity of the solution of the
eigenvalue problem it follows that Ô•,p−O•,p = o(1) and therefore lim supT det Ô′•,pÔ•,p >

0. As in Lemma 6 of [40] it can be shown that Γ′•,p − [Γ′•]1:p = o(T−1) and O•,p =

O• + o(T−1) for the range of p given in Theorem 1 since these matrices correspond to
a stationary problem. Hence the chosen normalization of Γ̄•,p can be used a.s.

Next in order to obtain the convergence of Ḡ to Γ̄p, Lemma A.6 of BRRR is slightly
extended to the current situation (for details and notation see there). Lemma A.6 of BRRR
contains three parts: BRRR(I) gives bounds on the error in the matrices (with lT = log T)

δyz =

[ 1
T 〈ỹt,1, z̃t,1〉 1√

T
〈ỹt,1, z̃t,•〉

1√
T
〈ỹt,•, z̃t,1〉 〈ỹt,•, z̃t,•〉

]
−
[ 1

T 〈z̃t,1, z̃t,1〉 0
0 〈ỹt,•, z̃t,•〉

]
=

[
O( 1

T la
T) O( 1√

T
la
T)

O( 1√
T

la
T) 0

]
,

δyy =

[ 1
T 〈ỹt,1, ỹt,1〉 1√

T
〈ỹt,•, ỹt,•〉

1√
T
〈ỹt,•, ỹt,1〉 〈ỹt,•, ỹt,•〉

]
−
[ 1

T 〈z̃t,1, z̃t,1〉 0
0 〈ỹt,•, ỹt,•〉

]
=

[
O( 1

T la
T) O( 1√

T
la
T)

O( 1√
T

la
T) 0

]
,

δzz =

[ 1
T 〈z̃t,1, z̃t,1〉 1√

T
〈z̃t,1, z̃t,•〉

1√
T
〈z̃t,•, z̃t,1〉 〈z̃t,•, z̃t,•〉

]
−
[ 1

T 〈z̃t,1, z̃t,1〉 0
0 〈z̃t,•, z̃t,•〉

]
=

[
0 O( 1√

T
la
T)

O( 1√
T

la
T) 0

]
.

BRRR(II) deals with J = Q̄− Φ̄ =

D̃z〈z̃t, ỹt〉D̃y(D̃y〈ỹt, ỹt〉D̃y)
−1D̃y〈ỹt, z̃t〉D̃z −

[
1
T 〈z̃t,1, z̃t,1〉 0

0 〈z̃t,•, ỹt,•〉〈ỹt,•, ỹt,•〉−1〈ỹt,•, z̃t,•〉

]
and BRRR(III) shows that there exists a solution Ḡp converging to a solution Γ̄p of the
separated problem.

For showing the orders of convergence of δzz the arguments are unchanged except
for noting that in 〈z̃t,1, z̃t,•〉 the number of columns increases as a function of the sample
size. Since the a.s. bounds on the entries of this expression hold uniformly (as follows
straightforwardly from the arguments of Lemma A.1 of BRRR) this does not change the
arguments. With respect to δyz note that now ỹt = β̃1z̃t,p + ε̃t + Õ f Āpxt−p. Due to the
increase of p as a function of the sample size, Āp = o(T−1−ε) for small enough ε > 0
and therefore Õ f Āpxt−p = o(T−1/2−ε/2) since xt = o(T(1+ε)/2) (uniformly in 1 ≤ t ≤ T)
whether (xt)t∈Z is a unit root process or stationary. Hence 〈Õ f Āpxt−p, Õ f Āpxt−p〉 = o(1).
Further 〈Õ f Āpxt−p, ε̃t〉 = o(T−1/2) follows from 〈xt−p, ε̃t〉 = O(log T) (see Lemma A.1
(I)). This shows that the additional term is always of lower order and can be neglected.
The remaining arguments follow exactly as in the proof of Lemma A.6 of BRRR. The proof
of Lemma A.7 of BRRR only uses the order bounds derived above and hence follows
immediately. This shows (I).

(II) Using the definition of S̃T we obtain:

Γ̃′p = S̃T D̃−1
x Ḡ′pD̃z = S̃T

[
Ic

√
TδG′•,1,p

δG′1,2,p/
√

T Ḡ′•,2,p

]

=

[
Ic − δG′•,1,p〈z̃t,•, z̃t,•〉Γ̄†

•,pδG′1,2,p

√
TδG′•,1,p(I − 〈z̃t,•, z̃t,•〉Γ̄†

•,pḠ′•,2,p)

δG′1,2,p/
√

T Ḡ′•,2,p

]
.

From (I) and Lemma A.7 of BRRR δG•,1,p = O((log T)a/T1/2), δG1,2,p = O((log T)a/T1/2)

and Ḡ•,2,p − Γ̄•,p = o((log T)a/T1/2). Finally

δG′•,1,p(I − 〈z̃t,•, z̃t,•〉Γ̄†
•,pḠ′•,2,p) = δG′•,1,p(I − 〈z̃t,•, z̃t,•〉Γ̄†

•,p Γ̄′•,p) + O((log T)a/T) = O((log T)a/T)
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as in the proof of Lemma A.7 of BRRR. Using Lemma A.5 (III) of BRRR with Ξ̂ f =

〈ỹt,•, ỹt,•〉−1/2 it follows that Γ̄′•,p−Γ′•,p = O((log T)aT−1/2). Since Ḡ•,2,p− Γ̄•,p = o((log T)a/
T1/2) the same rate of convergence holds for Ḡ′•,2,p − Γ′•,p = O((log T)a/T1/2). It follows

that Γ̃′p − [Γ′]1:p = [O((log T)a/T), O((log T)a/T1/2)].
(III) From above we have

T(Γ̃′p − [Γ′]1:p)

(
Ic
0

)
=

[
−(
√

TδG′•,1,p〈z̃t,•, z̃t,•〉Γ̄†
•,p
√

TδG′1,2,p)√
TδG′1,2,p

]
+ oP(1). (A3)

Now from the proof of Lemma A.7 of BRRR we obtain

[
√

TδG•,1,p]
′ = ΞO•(I −Θ2

•)
−1Γ̄′•,p + oP(1).

Furthermore using the expression given in Lemma A.7 of BRRR:

√
TδG1,2,p =

√
TZ−1

11 [δ1•
zz Γ•,pΘ2

• − J1,•Γ•,p](I −Θ2
•)
−1 + oP(1)

=
√

TZ−1
11 [δ1•

zz Γ•,p(Θ2
• − I) + [δ1,•

zz − J1,•]Γ•,p](I −Θ2
•)
−1 + oP(1)

= −Z−1
11 〈z̃t,1, xt,•〉 − Z−1

11

√
T[J1,• − δ1,•

zz ]Γ•,p(I −Θ2
•)
−1 + oP(1)

= −Z−1
11 〈z̃t,1, xt,•〉 − Z−1

11 Eε̃t,1 ε̃′t,•(Eỹt,•(ỹt,•)
′)−1Eỹt,•x′t,•(I −Θ2

•)
−1 + oP(1).

This shows the result.

The transformations in the representation lead to an estimator Ḡ taking the place of
K̂p. Using S̃T as defined in Lemma A5 the corresponding estimator Γ̃′p = S̃T D̃−1

x Ḡ′pD̃z

fulfills Γ̃′p − Γ′p = [O((log T)a/T), O((log T)a/
√

T)].
Based on this result let (A, C,K) denote the realization of the true transfer function

in the state basis corresponding to Γ′p where Γ′pSp = In and let (Ã, C̃, K̃) denote the
(unfeasible) CVA estimates using x̃t := Γ̃′p z̃t,p. The next lemma then provides the main
ingredients for the rest of the proofs:

Lemma A6. Let the assumptions of Theorem 1 hold and define Dx := diag(IcT−1, In−cT−1/2).
Then there exists an integer a < ∞ such that

(Ã − A)D−1
x = O((log T)a), (C̃ − C)D−1

x = O((log T)a), (K̃ − K) = O((log T)a/T1/2).

Proof. First note that the regression of Y+
t, f onto Y−t,p includes time points t = p + 1, ..., T −

f + 1 whereas for estimating the system matrices we can use x̂t, t = p + 1, ..., T + 1 and
yt, t = p + 1, ..., T. Thus in this proof we use 〈at, bt〉Tp+1 := T−1 ∑T

t=p+1 atb′t instead of

〈at, bt〉 = T−1 ∑
T− f+1
t=p+1 atb′t.

The following orders of convergence are straightforward to derive using the re-
sults of Lemma A1, Āp = o(T−1), (Γ̃′p − [Γ′]1:p)D−1

z = O((log T)a) and x̃t − xt = (Γ̃′p −
[Γ′]1:p)z̃t,p− Āpxt−p, t > p according to Lemma A5 and Lemma A1 for the range of p given
in Theorem 1:

〈εt, x̃t − xt〉Tp+1 = O(p(log T)a/T) , D̃z〈z̃t,p, x̃t − xt〉Tp+1 = O(p(log T)a/T1/2)

D̃z〈z̃t+1,p, x̃t − xt〉Tp+1 = O(p(log T)a/T1/2) , D̃x〈xt, x̃t − xt〉Tp+1 = O(p(log T)a/T1/2)

〈x̃t − xt, x̃t − xt〉Tp+1 = O(p2(log T)a/T) .

Using these orders of convergence we obtain

D̃x〈x̃t, x̃t〉Tp+1D̃x = D̃x〈xt, xt〉Tp+1D̃x + O(p2(log T)a/T1/2) > 0 a.s.
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From Lemma A1 also (D̃x〈x̃t, x̃t〉Tp+1D̃x)−1 = (D̃x〈xt, xt〉Tp+1D̃x)−1(1+ o(1)) = O((log T)a).
Therefore

(C̃ − C)D−1
x =

√
T
(
〈εt, x̃t〉Tp+1 − C〈x̃t − xt, x̃t〉Tp+1

)
D̃x(D̃x〈x̃t, x̃t〉Tp+1D̃x)

−1

=
√

T〈εt, xt〉Tp+1D̃x(D̃x〈xt, xt〉Tp+1D̃x + o(1))−1 (A4)

−
√

TC〈x̃t − xt, xt〉Tp+1D̃x(D̃x〈xt, xt〉Tp+1D̃x)
−1 + o(1) = O(p(log T)a).

This in particular establishes consistency for the estimate. Next analogously (using the
notation δxt = x̃t − xt) we obtain (Ã − A)D−1

x =

√
T〈x̃t+1 −Ax̃t, x̃t〉Tp+1D̃x(D̃x〈x̃t, x̃t〉Tp+1D̃x)

−1

=
√

T
(
〈(x̃t+1 − xt+1) + (xt+1 −Axt) +A(xt − x̃t), x̃t〉Tp+1D̃x

)
(D̃x〈xt, xt〉Tp+1D̃x + o(1))−1

=
√

T
(
〈δxt+1, xt〉Tp+1 −A〈δxt, xt〉Tp+1 + 〈Kεt, xt〉Tp+1

)
D̃x(D̃x〈xt, xt〉Tp+1D̃x)

−1 + o(1) (A5)

= O(p(log T)a)

and therefore consistency for Ã is established. Finally note that for

ε̂t = yt − C̃ x̃t = εt + C(xt − x̃t) + (C − C̃)x̃t

it follows that 〈ε̂t, ε̂t〉Tp+1 = Ω + O(p2(log T)a/T1/2). Furthermore since ε̂t denotes the
residuals of the regression of yt onto x̃t it follows that 〈ε̂t, x̄t〉Tp+1 = 0. From this we obtain

√
T(K̃ − K) =

√
T(〈x̃t+1 −Kε̂t, ε̂t〉Tp+1(〈ε̂t, ε̂t〉Tp+1)

−1

=
√

T
(
〈(x̃t+1 − xt+1)−Aδxt +K(εt − ε̂t), ε̂t〉Tp+1

)
(〈ε̂t, ε̂t〉Tp+1)

−1

=
√

T
(
〈δxt+1 −Aδxt +K(εt − ε̂t), ε̂t〉Tp+1

)
Ω−1(1 + o(1)) (A6)

=
√

T
(
〈δxt+1 −Aδxt +K(εt − ε̂t), εt〉Tp+1

)
Ω−1(1 + o(1)) + o(1)

=
(√

T〈δxt+1, εt〉Tp+1

)
Ω−1 + o(1) =

(√
T〈(Γ̃′p − Γ′p)z̄t+1,p, εt〉Tp+1

)
Ω−1 + o(1)

= O(p(log T)a).

These expressions do not only show consistency of a specific order, but also give the
relevant highest order terms for the asymptotic distribution, which are used below.
As ĈÂjK̂ = C̃ÃjK̃ → CAjK = C◦Aj

◦K◦, Lemma A6 establishes consistency for the
impulse response sequence ĈÂjK̂ (thus proofs Theorem 1 (I)) as well as, jointly with
p = O((log T)a), the rate of convergence O((log T)a/T1/2) for the not realizable choice of
the basis and the impulse response sequence CAjK.

Appendix C.1.2. Proof of Theorem 1 (II)

In order to arrive at the canonical representation (Ǎ, Č, Ǩ) two steps are performed:
first the reordered Jordan normal form is calculated, afterwards the matrices C̃j,C are
transformed such that E′jČj,C = Icj holds. We will follow these steps below.

In the first step a transformation matrix Û needs to be found such that Ã = ÛÃÛ−1

is in reordered Jordan normal form. In this respect Ã and A are used in Lemma A2. Ac-
cordingly Ût = [Ût,1, ..., Ût,S/2, Ût,•] can be defined such that V′j Ût,j = Icj where U ∈ Rn×n

corresponds to the transformation from A to A◦ as given in the theorem. An appropriate
choice of z̃t,1 leads to U = In. Furthermore the basis in the space spanned by the columns
of Ût,• where Û′t,jÛt,• = 0 can be chosen such that [0, I]Ût,• = I for large enough T.

A first order approximation according to Lemma A2 then leads to

Ût,j = Uj + Z1 + O(‖Â −A‖2) = Uj − Σ(Â − A)Uj + O(‖Â −A‖2)



Entropy 2021, 23, 436 37 of 41

for j = 0, ..., S/2. Consequently ‖Ût,j −Uj‖ = O((log T)aT−1) and thus also Ût −U =

O((log T)aT−1). Consequently the order of convergence for the transformed system
(Â, Ĉ, K̂) is unchanged. In a second step an upper triangular transformation matrix Ũ can
be found transforming (Â, Ĉ, K̂) such that Ã corresponds to the reordered Jordan normal
form. Due to the upper block triangularity of this transform we can apply Lemma A3 to
show that the order of convergence remains identical.

For the second step note that Lemma A3 provides the required terms: An application
to the block diagonal transformation ST = diag(E′1C̃1,C, ..., E′S/2C̃S/2,C,ST,•), where ST,•
transforms the stationary subsystem to echelon form, concludes the proof.

Appendix C.1.3. Proof of Theorem 1 (III)

The only argument that uses the iid assumption is the almost sure convergence of
(D̃x〈xt, xt〉D̃x)−1. Weakening the assumptions on the noise implies that this order of
convergence still holds in probability while the almost sure version cannot be shown with
the tools of this paper. This concludes the proof of Theorem 1.

Appendix C.2. Proof of Theorem 2

Using the notation introduced in (A1),

X̂ = D̃z〈ỹt, z̃t,p〉D̃z(D̃z〈z̃t,p, z̃t,p〉D̃z)
−1D̃z〈z̃t,p, ỹt〉D̃z(D̃z〈ỹt, ỹt〉D̃z)

−1 → X◦ =
[

Ic 0
0 X◦,•

]
for a suitable matrix X◦,•. The eigenvalues of X̂ are the squares of the singular values of
the RRR problem in the first step of CVA. Therefore

T
c

∑
i=1

(1− σ̂2
i ) = −Ttr

[
U′c(X̂− X◦)[Uc − (X◦ − I)†(X̂− X◦)Uc]

]
+ oP(1)

= −Ttr
[
∆X11 − ∆X12(X◦,• − I)†∆X21

]
+ oP(1)

according to a second order approximation in the Rayleigh-Schrödinger expansions (Lemma A2).

Now, in the current situation we obtain (I − X̂)

[
I
0

]
=

=
(

D̃y〈ỹt, ỹt〉D̃y − D̃y〈ỹt, z̃t,p〉D̃z(D̃z〈z̃t,p, z̃t,p〉D̃z)
−1D̃z〈z̃t,p, ỹt〉D̃y

)
(D̃y〈ỹt, ỹt〉D̃y)

−1

[
I
0

]

=
(

D̃y〈ε̃t, ε̃t〉D̃y − D̃y〈ε̃t, z̃t,p〉D̃z(D̃z〈z̃t,p, z̃t,p〉D̃z)
−1D̃z〈z̃t,p, ε̃t〉D̃y

)
(D̃y〈ỹt, ỹt〉D̃y)

−1

[
I
0

]
.

Furthermore 〈ε̃t, z̃t,p〉D̃z(D̃z〈z̃t,p, z̃t,p〉D̃z)−1D̃z〈z̃t,p, ε̃t〉 = OP(T−1) and

(D̃y〈ỹt, ỹt〉D̃y)
−1
[

I
0

]
=

[
I

−〈ỹt,•, ỹt,•〉−1〈ỹt,•, ỹt,1〉/
√

T

]
(〈ỹπ

t,1, ỹπ
t,1〉/T)−1

where ỹπ
t,1 = ỹt,1 − 〈ỹt,1, ỹt,•〉〈ỹt,•, ỹt,•〉−1ỹt,•.

From this we get using Eε̃t,• ε̃′t,• = Eỹt,•ỹ′t,• − X◦,•Eỹt,•ỹ′t,•:

T(Ic − X̂1,1) =
(
〈ε̃t,1, ε̃t,1〉 − 〈ε̃t,1, ε̃t,•〉〈ỹt,•, ỹt,•〉−1〈ỹt,•, ỹt,1〉

)
(〈ỹπ

t,1, ỹπ
t,1〉/T)−1 + oP(1),

√
T∆X2,1 = (−〈ε̃t,•, ε̃t,1〉+ (I − X◦,•)〈ỹt,•, ỹt,1〉)(〈ỹπ

t,1, ỹπ
t,1〉/T)−1 + oP(1)√

T∆X1,2 = −Eε̃t,1 ε̃′t,•(Eỹt,•ỹ′t,•)
−1 + oP(1).
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Thus T ∑c
i=1(1− σ̂2

i ) =

= tr
[(
〈ε̃t,1, ε̃t,1〉 −Eε̃t,1 ε̃′t,•(Eỹt,•ỹ′t,•)

−1(I − X0,•)
−1Eε̃t,• ε̃

′
t,1

)
(〈ỹt,1, ỹt,1〉/T)−1

]
+ oP(1)

= tr
[(
〈ε̃t,1, ε̃t,1〉 −Eε̃t,1 ε̃′t,•(Eε̃t,• ε̃

′
t,•)
−1Eε̃t,• ε̃

′
t,1

)
(〈ỹt,1, ỹt,1〉/T)−1

]
+ oP(1)

d→ Z.

Appendix C.3. Proof of Theorem 3

The proof of Theorem 3 follows the same path as the proof of Theorem 1. In (A5) it
was shown that the asymptotic distribution of T(Ã11 −A◦,11) depends on

〈x̃t+1,j − xt+1,j, xt,k〉, 〈x̃t,j − xt,j, xt,k〉 , 〈εt, xt,j〉, 〈xt,k, xt,j〉/T

for j, k = 0, ..., S/2. Note that

δxt+i = x̃t+i − xt+i = (Γ̃′p − [Γ′]1:p)z̃t+i,p + oP(T−1)

for i = 0, 1. Then the results of Lemma A5 show that the first c columns of (Γ̃′p − [Γ′]1:p)
converge to a random variable (below denoted as ZΓ) when multiplied with T while the
remaining columns converge in distribution when multiplied with

√
T. Therefore

〈δxt+i, xt,k〉 = T(Γ̃′p − [Γ′]1:p)
〈z̃t+i,p, xt,k〉

T
+ oP(1) = T(Γ̃′p − [Γ′]1:p)

[
Ic
0

] 〈z̃t+i,1, xt,k〉
T

+ oP(1).

Due to the definition (A1), z̃t,1 = [xt,j]j=0,...,S/2 + o(T−1) and hence (usingA◦ = diag(A◦,u,A◦,•))

〈z̃t+1,1, xt,k〉/T = A◦,u〈z̃t,1, xt,k〉/T + o(1).

Considering now the complex-valued representation and using the notation

∆Γ1 := T(Γ̃′p − [Γ′]1:p)

[
Ic
0

]
, Sj = [0cj ,∑i<j ci , Icj , 0cj ,∑i>j cj ]

where Sj z̃t,1 = xt,j,C, it follows that the contribution of these two terms to the limiting
distribution of the diagonal block corresponding to the unit root zj amounts to (using
〈xt,j,C, xt,k,C〉/T → 0 for k 6= j and δxt,j,C = x̃t,j,C − xt,j,C)

〈δxt+1,j,C, xt,j,C〉 − A◦,jj〈δxt,j,C, xt,j,C〉 =

= Sj∆Γ1A◦,u
〈z̃t,1, xt,j,C〉

T
−A◦,jjSj∆Γ1

〈z̃t,1, xt,j,C〉
T

+ oP(1)

= Sj∆Γ1S′jA◦,jj
〈xt,j,C, xt,j,C〉

T
−A◦,jjSj∆Γ1S′j

〈xt,j,C, xt,j,C〉
T

+ oP(1)

= Sj∆Γ1S′jzj
〈xt,j,C, xt,j,C〉

T
− zjSj∆Γ1S′j

〈xt,j,C, xt,j,C〉
T

+ oP(1) = oP(1).

Therefore, for the diagonal blocks in (A5) these two terms do not contribute and the
asymptotic distribution is determined by

T〈K◦,jεt, xt,j〉〈xt,j, xt,j〉−1

for which the asymptotic results are provided in Lemma A1. This also shows that estimating
the state does not change the asymptotic distribution in the diagonal blocks as the impact
of Γ̃p − Γp is of lower order.
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In order to derive the distribution of the sum of the eigenvalues note that as in the
proof of Theorem 2, according to Lemma A2 the sum of the eigenvalues of Ã converging
to zj obeys the following second order approximation:

T
cj

∑
i=1

(λ̂i − zj) = Ttr
[
U′j(Â − A◦)[Uj −A◦(zj)

†(Â − A◦)Uj]
]
+ oP(T−1)

= Ttr
[
Â◦,jj − zj Icj

]
+ oP(1)

since (Â − A◦)Uj = O((log T)aT−1) in this case implying that the second order terms
vanish. Thus we obtain the asymptotic distribution under the null hypothesis as the
limiting distribution of

Ttr[〈K◦,j,Cεt, xt,j,C〉〈xt,j,C, xt,j,C〉−1].

It is easy to verify that this test statistic is pivotal for complex and real unit roots. This
proves Theorem 3.

Appendix C.4. Proof of Theorem 4

The result for C̃m can be shown using the results of [4]. As the eigenvalues are
insensitive to changes in the basis we can assume without restriction of generality that the
only unit root components in T X(m)

t are contained in the first cm rows:

c(m)
t := T X(m)

t =

[
c(m)

t,u

c(m)
t,•

]
, D̃c =

[
T−1 Icm 0

0 In−cm

]
.

Due to the filtering, c(m)
t,• is stationary while c(m)

t,u contains the unit root zm. Then the relevant
matrix X̂m can be written as

X̂m := 〈cπ
t−1, pπ

t 〉〈pπ
t , pπ

t 〉−1〈pπ
t , cπ

t−1〉〈cπ
t−1, cπ

t−1〉−1.

Since pt = Kεt−1 + ∑S
j=1,j 6=m αjβ

′
jX

(j)
t−1 + [0, α̃m]c

(m)
t−1, we consequently have pπ

t = Kεπ
t−1 +

[0, α̃m]cπ
t−1. Therefore, for the three components of X̂m we obtain with appropriate defini-

tions of the random variables Sm, Tm and using standard asymptotics

〈pπ
t , pπ

t 〉 = 〈Kεπ
t−1 + α̃mcπ

t−1,•,Kεπ
t−1 + α̃mcπ

t−1,•〉 → K
(
Eεt−1ε′t−1

)
K′ + α̃mEcΠ

t−1,•(c
Π
t−1,•)

′ α̃′m > 0,

〈pπ
t , cπ

t−1〉 = 〈Kεπ
t−1 + α̃mcπ

t−1,•, cπ
t−1〉

d→ [Sm, α̃mEcΠ
t−1,•(c

Π
t−1,•)

′],

〈pπ
t , cπ

t−1〉〈cπ
t−1, cπ

t−1〉−1D̃−1
c = [0, α̃m] + 〈Kεπ

t−1, cπ
t−1〉〈cπ

t−1, cπ
t−1〉−1D̃−1

c

〈Kεπ
t−1, cπ

t−1〉〈cπ
t−1, cπ

t−1〉−1D̃−1
c

d→ [Tm, 0].

Correspondingly the first block column X̂m,u of X̂m converges to zero such that TX̂m,u
converges in distribution while the second block column converges in probability without
normalization. This shows that

T
cm

∑
i=1

λ̂i = Ttr
[
U′m(X̂m − Xm)[Um − X†

m(X̂m − Xm)Um

]
+ oP(1) = tr

[
TX̂m,uu

]
+ oP(1)

converges in distribution. The limit is given in [4].
For the case of the estimated state note that the difference between the estimated and

the true state is given as

x̃t − xt = Γ̃′p z̃t,p − Γ′p z̃t,p − Āpxt−p = (Γ̃p − Γp)
′ z̃t,p − Āpxt−p.



Entropy 2021, 23, 436 40 of 41

The strict minimum-phase assumption and the assumption on the increase of p = p(T)
implies that the second term can be neglected being oP(T−1). Furthermore

(Γ̃p − Γp)
′ z̃t,p = (Γ̃p − Γp)

′D̃−1
z D̃z z̃t,p, (Γ̃p − Γp)

′D̃−1
z = OP(T−1/2).

Using this it can be concluded that

〈 p̂t, p̂t〉 = 〈pt, pt〉+ OP(T−1/2) , 〈 p̂t, ĉ(m)
t−1,•〉 = 〈pt, c(m)

t−1,•〉+ OP(T−1/2),

〈 p̂t, ĉ(m)
t−1,u〉 = 〈pt, c(m)

t−1,u〉+ OP(T−1/2) , 〈ĉ(m)
t,u , ĉ(k)t,u 〉 = 〈c

(m)
t,u , c(k)t,u 〉+ OP(1).

These equations imply that the difference between the expression using the true state and
the one using the estimated state converges to zero, implying that the two tests accept and
reject jointly asymptotically under the null hypothesis.
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