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The approach for estimating and testing based on divergence measures has become,
in the last 30 years, a very popular technique not only in the field of statistics, but also in
other areas, such as machine learning, pattern recognition, etc. In relation to the estimation
problem, it is necessary to minimize a suitable divergence measure between the data and
the model under consideration. Some interesting examples of those estimators are the
minimum phi-divergence estimators (MPHIE), in particular, these minimum Hellinger
distance (MHD) and the minimum density power divergence estimators (MDPDE). The
MPHIE (Pardo [1], Morales et al. [2]) are characterized by asymptotic efficiency (BAN
estimators), the MHE (Beran [3]) by asymptotic efficiency and robustness inside the family
of the MPHIE, and the MDPDE (Basu et al. [4]) by their robustness without a significant
loss of efficiency as well as by the simplicity of getting them, because it is not necessary to
use a nonparametric estimator of the true density function.

Based on these estimators of minimum divergence or distance, many people have
studied the possibility to use them to obtain statistics for testing hypotheses. There are
some possibilities to use them with that objective: (i) plugging them in a divergence mea-
sure in order to obtain the estimated distance (divergence) between the model, whose
parameters have been estimated under the null hypothesis and the model evaluated in
all of the parameter space, see, for instance, Martín and Pardo [5], Menéndez et al. [6],
Salicrú et al. [7], Morales et al. [8,9]; (ii) extending the concept of the Wald test in the
sense of considering MDPDE instead of maximum likelihood estimators (MLE). These test
statistics have been considered in many different statistical problems: censoring, equality
of means in normal and lognormal models, logistic regression model, multinomial regres-
sion in particular, and GLM models in general, etc., see, for instance, Basu et al. [10–14],
Ghosh et al. [15], Castilla et al. [16], Ghosh et al. [17], and references therein; and, (iii)
extending the concept of the Rao’s test in the sense of considering MDPDE instead of MLE,
see Basu et al. [18] and Martín [19].

This Special Issue present new and original research papers that are based on MPHIE,
MHD, and MDPDE, as well as test statistics that are based on these estimators from a
theoretical and applied point of view in different statistical problems with special emphasis
on robustness. Manuscripts give solutions to different statistical problems as model selec-
tion criteria based on divergence measures or in statistics for high-dimensional data with
divergence measures as loss function are presented. It comprises nine selected papers that
address novel issues, as well as specific topics illustrating the importance of the divergence
measures or pseudodistances in statistics. In the following, the manuscripts are presented:

An important class of time-dynamic models is given by discrete-time integer-valued
branching processes, in particular (Bienaymé-) Galton-Watson processes without immigra-
tion (GW), respectively, with immigration (GWI), which have numerous applications in
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biotechnology, population genetics, internet traffic research, clinical trials, asset price mod-
elling, derivative pricing, and many others. As far as important terminology is concerned,
they shall subsume both models as GW(I) and, simply as GWI in the case that GW appears
as a parameter-special-case of GWI; recall that a GW(I) is called subcritical, respectively,
critical, respectively, supercritical if its offspring mean is less than 1, respectively, equal to
1, respectively, larger than 1.

In “Some dissimilarity Measures of Branching Processes and optimal Decision Making
in the Presence of Potential Pandemics”, Kammerer and Stummer, [20], compute exact
values respectively bounds of dissimilarity/distinguishability measures—in the sense
of the Kullback-Leibler information distance (relative entropy) and some transforms of
more general power divergences and Rényi divergences—between two competing discrete-
time Galton-Watson branching processes with immigration for which the offspring and
the immigration (importation) are arbitrarily Poisson-distributed; especially, they allow
for an arbitrary type of extinction-concerning criticality and, thus, for non-stationarity.
They apply this to optimal decision making in the context of the spread of potentially
pandemic infectious diseases (such as, e.g., the current COVID-19 pandemic), e.g., covering
different levels of dangerousness and different kinds of intervention/mitigation strategies.
Asymptotic distinguishability behavior and diffusion limits are also investigated by them.
In a more concrete way, this paper pursues the following main goals:

(A) for any time horizon and any criticality scenario (allowing for non-stationarities),
to compute lower and upper bounds—and sometimes even exact values—of the
Hellinger integrals Hλ(PA||PH), density power divergences Iλ(PA||PH), and Rényi
divergences Rλ(PA||PH) of two alternative Galton-Watson branching processes PA
and PH (on path/scenario space), where (i) PA has Poisson (βA) distributed off-
spring as well as Poisson (αA) distributed immigration, and (ii) PH has Poisson
(βH) distributed offspring as well as Poisson (αH) distributed immigration; the non-
immigration cases are covered as αA = αH = 0; as a side effect, they also aim for
corresponding asymptotic distinguishability results;

(B) to compute the corresponding limit quantities for the context in which (a proper
rescaling of) the two alternative Galton-Watson processes with immigration converge
to Feller-type branching diffusion processes, as the time-lags between the generation-
size observations tend to zero; and,

(C) as an exemplary field of application, to indicate how to use the results that are pointed
out in A) for Bayesian decision making in the epidemiological context of an infectious-
disease pandemic (e.g., the current COVID-19), where e.g., potential state-budgetary
losses can be controlled by alternative public policies (such as e.g., different degrees of
lookdown) for mitigations of the time-evolution of the number of infectious persons
(being quantified by a GW(I)). Corresponding Neyman-Pearson testing will also
be treated.

Because of the involved Poisson distributions, these goals can be tackled with a high
degree of tractability, which is worked out in detail with the following structure they
first introduce (i) the basic ingredients of Galton-Watson processes, together with their
interpretations in the above-mentioned pandemic setup, where it is essential to study all
types of criticality (being connected with levels of reproduction numbers), (ii) the employed
fundamental information measures, such as Hellinger integrals, power divergences, and
Rényi divergences, (iii) the underlying decision-making framework, as well as (iv) con-
nections to time series of counts and asymptotical distinguishability. Thereafter, they start
other detailed technical analyses by giving recursive exact values respectively recursive
bounds-as well as their applications-of Hellinger integrals Hλ(PA||PH), density power
divergences Iλ(PA||PH), and Rényi divergences Rλ(PA||PH). Explicit closed-form bounds
of Hellinger integrals Hλ(PA||PH) that will be worked are obtained as well as Hellinger
integrals and power divergences of the above-mentioned Galton-Watson type diffusion
approximations.
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The change point problem is a core issue in time series analysis because changes can
occur in underlying model parameters, owing to critical events or policy changes, and
ignoring such changes can result in false conclusions. Numerous studies exist on change
point analysis in time series models; refer to Kang and Lee, see [21] and Lee and Lee,
see [22], and the articles cited therein, for the background and history of change points
in integer-valued time series models. Lee and Lee [22], conducted a comparison study of
the performance of various cumulative sum (CUSUM) tests while using score vectors and
residuals through the Monte Carlo simulations. In their work, the conditional maximum
likelihood estimator (CMLE) is used for the parameter estimation and the construction
of the CUSUM tests. However, the CMLE is often damaged by outliers, and so is the
performance of the CMLE-based CUSUM test. In general, outliers easily mislead the
CUSUM test, since they can be mistakenly taken for abrupt changes; in the opposite, they
can misidentify change points in their presence on time series.

In the work “Monitoring Parameter Change for Time Series. Models of Counts
Based on Minimum Density Power Divergence estimator”, Lee and Kim [23] consider the
CUSUM monitoring procedure to detect a parameter change for integer-valued generalized
autoregressive heteroscedastic models (core area in time series analysis that includes
diverse disciplines in social, physical, engineering, medical sciences, etc. Integer-valued
autoregressive time series models and the integer-valued generalized autoregressive
conditional heteroscedastic models have been widely studied in the literature and applied
to various practical problems), whose conditional density of present observations over past
information follows one parameter exponential family distributions. For this purpose, they
use CUSUM of score functions that were deduced from the objective functions, constructed
for the MDPDE that includes the MLE, to diminish the influence of outliers. It is well-
known that, as compared to the MLE, the MDPDE is robust against outliers with little loss
of efficiency. This robustness property is properly inherited by the proposed monitoring
procedure. The CUSUM test has been a conventional tool to detect a structural change
in underlying models, and it has been applied not only to retrospective change point
tests, but also to on-line monitoring and statistical process control (SPC) problems, which
were designed to monitor abnormal phenomena in manufacturing processes and health
care surveillance. The CUSUM control chart has been popular due to its considerable
competency in early detection of anomalies. A simulation study is conducted to affirm
the validity of their method. Focus is placed on comparing the MDPDE-based CUSUM
test with the MLE-based CUSUM test for Poisson INGARCH models to demonstrate the
superiority of the former over the latter in the presence of outliers. A real data analysis
of the return times of extreme events of Goldman Sachs Group (GS) stock prices is also
provided to illustrate the validity of the proposed test. These authors, see [24], considered
the CUSUM tests based on score vectors for the MLE and MDPDE in exponential family
distribution INGARCH models.

In “Robust Change Point Test for General Integer-Valued Time Series Models Based
on Density Power Divergence” by Kim and Lee [24], the problem of testing for a parameter
change in general integer-valued time series models whose conditional distribution belongs
to the one-parameter exponential family when the data are contaminated by outliers is
considered. In particular, they use a robust change point test that is based on density power
divergence (DPD) as the objective function of the MDPDE. The results show that, under
regularity conditions, the limiting null distribution of the DPD-based test is a function of a
Brownian bridge. Monte Carlo simulations are conducted to evaluate the performance of
the proposed test and show that the test inherits the robust properties of the MDPDE and
DPD. They compare the DPD-based test and the score-based CUSUM test to demonstrate
the superiority of the proposed test in the presence of outliers. They provide a real data
analysis of the return times of extreme events that are related to Goldman Sachs Group
(GS) stock to illustrate the proposed tests.

MDPDE provides a general framework for robust statistics, depending on a parameter
α, which determines the robustness properties of the method. The usual estimation method
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is numerical minimization of the power divergence. In “Robust Regression with Density
Power Divergence: Theory, Comparisons, and Data Analysis”, by Riani et al. [25], is
considered to be the special case of linear regression developing an alternative estimation
procedure using the methods of S-estimation. The so obtained rho function is proportional
to one minus a suitably scaled normal density raised to the power α. We used the theory
of S-estimation to determine the asymptotic efficiency and breakdown point for this new
form of S-estimation. Two sets of comparisons were made. In one, S power divergence is
compared with other S-estimators using four distinct rho functions. The plots of efficiency
against breakdown point show that the properties of S power divergence are close to
those of Tukey’s biweight. The second set of comparisons is between S power divergence
estimation and numerical minimization. Monitoring these two procedures in terms of
breakdown point shows that the numerical minimization yields a procedure with larger
robust residuals and a lower empirical breakdown point, thus providing an estimate of α,
leading to more efficient parameter estimates.

Model selection is fundamental to the practical applications of statistics, and there
is substantial literature on this issue. Classical model selection criteria include, among
others, the Cp-criterion, the Akaike Information Criterion (AIC), based on the Kullback-
Leibler divergence, and the Bayesian Information Criterion (BIC), as well as a General
Information Criterion (GIC), which corresponds to a general class of criteria which also
estimates the Kullback-Leibler divergence. These criteria have been proposed, respectively,
in [26–28], and they represent powerful tools for choosing the best model among different
candidate models that can be used to fit a given data set. On the other hand, many classical
procedures for model selection are extremely sensitive to outliers and other departures from
the distributional assumptions of the model. Robust versions of classical model selection
criteria, which are not strongly affected by outliers, have been proposed, for example, in [29]
and [30]. Some recent proposals for robust model selection are criteria based on divergences
and minimum divergence estimators. Here, we recall the Divergence Information Criteria
(DIC) based on the density power divergences that were introduced in [31], the Modified
Divergence Information Criteria (MDIC) introduced in [32], and the criteria based on
minimum dual divergence estimators introduced in [33]. In [34,35] some model selection
criteria are presented. In “Robust Model Selection Criteria Based on Pseudodistances” by
Toma et al. see [34], a new class of robust model selection criteria are introduced. These
criteria are defined by estimators of the expected overall discrepancy using pseudodistances
and the minimum pseudodistance principle. The theoretical properties of these criteria
are proved, namely asymptotic unbiasedness, robustness, consistency, as well as the limit
laws. The case of the linear regression models is studied and a specific pseudodistance
based criterion is proposed. Monte Carlo simulations and applications for real data are
presented to exemplify the performance of the new methodology. These examples show
that the new selection criterion for regression models is a good competitor of some well
known criteria and may have superior performance, especially in the case of small and
contaminated samples.

Classical likelihood function requires the exact specification of the probability den-
sity function, but, in most applications, the true distribution is unknown. In some cases,
where the data distribution is available in an analytic form, the likelihood function is still
mathematically intractable due to the complexity of the probability density function. There
are many alternatives to the classical likelihood function; one of them is the composite
likelihood. Composite likelihood is an inference function that is derived by multiplying
a collection of component likelihoods; the particular collection used is a conditional de-
termined by the context. Therefore, the composite likelihood reduces the computational
complexity, so that it is possible to deal with large datasets and very complex models, even
when the use of standard likelihood methods is not feasible. Composite likelihood methods
have been successfully used in many applications concerning, for example, genetics, gener-
alized linear mixed models, spatial statistics, frailty models, multivariate survival analysis,
etc. Asymptotic normality of the composite maximum likelihood estimator (CMLE) still
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holds with the Godambe information matrix to replace the expected information in the
expression of the asymptotic variance-covariance matrix. This allows for the construction
of composite likelihood ratio test statistics, Wald-type test statistics, as well as score-type
statistics. Varin [36] provides a review of composite likelihood methods. They mentioned,
at this point, that CMLE, as well as the respective test statistics are seriously affected by the
presence of outliers in the set of available data. In this sense, [37–39] derived some new
distance-based estimators and tests with good robustness behavior without an important
loss of efficiency. In the context of the composite likelihood there are some criteria based
on Kullback-Leibler divergence, see, for instance [40–42] and references therein. To the best
of our knowledge, only Kullback-Leibler divergence was used to develop model selection
criteria in a composite likelihood framework. To fill this gap, our interest is now focused on
DPD. In “Model Selection in a Composite Likelihood Framework Based on Density Power
Divergence”, Castilla et al. see [35], consider the composite minimum density power diver-
gence estimator (CMDPDE), as introduced in [37], in order to present a model selection
criterion in a composite likelihood framework. The criterion introduced in [37] will be
called composite likelihood DIC criterion (CLDIC). The motivation, as pointed out by the
authors, of considering a criterion based on DPD instead of Kullback-Leibler divergence is
due to the robustness of the procedures based on DPD in statistical inference, not only in
the context of full likelihood, but also in the context of composite likelihood [37,38]. After
introducing the new model selection criterion, CLDIC, based on CMDPDE, some of its
asymptotic properties are studied. A simulation study is carried out and some numerical
examples are also presented.

Bounding the best achievable error probability for binary classification problems is
relevant to many applications, including machine learning, signal processing, and informa-
tion theory. The Bayes error rate is the expected risk for the Bayes classifier, which assigns
a given feature vector x to the class with the highest posterior probability. The Bayes error
rate is the lowest possible error rate of any classifier for a particular joint distribution.
The Bayes error rate provides a measure of classification difficulty. Thus, when known,
the Bayes error rate can be used to guide the user in the choice of classifier and tuning
parameter selection. In practice, the Bayes error is rarely known and it must be estimated
from data. The estimation of the Bayes error rate is difficult due to the non-smooth in
function within an integral. Thus, research has focused on deriving tight bounds on the
Bayes error rate based on smooth relaxations of the min function. Many of these bounds can
be expressed in terms of divergence measures between the pair of class distributions, such
as the Bhattacharyya distance or Jensen-Shannon divergence measure. Many techniques
have been developed for estimating divergence measures. These methods can be broadly
classified into two categories: (i) plug-in estimators in which we estimate the probability
densities and then plug them in the divergence function and (ii) entropic graph approaches,
in which the relationship between the divergence function and a graph functional in Eu-
clidean space is derived. Examples of plug-in methods include k-nearest neighbor (K-NN)
and Kernel density estimator (KDE) divergence estimators. Examples of entropic graph
approaches include methods that are based on minimal spanning trees (MST), K-nearest
neighbors graphs (K-NNG), minimal matching graphs (MMG), traveling salesman problem
(TSP), and their power-weighted variants. Recently, the Henze-Penrose (HP) divergence
has been proposed for bounding classification error probability. In “Convergence Rates
for Empirical Estimation of Binary Classification Bounds”, by Sekeh et al. see [43], the
problem of empirically estimating the HP-divergence from random samples is considered.
The first contribution of this paper is that they obtain a bound on the convergence rates
for the Friedman and Rafsky (FR) estimator of the HP-divergence, which is based on a
multivariate extension of the non-parametric run length test of equality of distributions.
This estimator is constructed using a multicolored MST on the labeled training set, where
MST edges connecting samples with dichotomous labels are colored differently from edges
connecting identically labeled samples. While previous works have investigated the FR
test statistic in the context of estimating the HP-divergence, to the best of the author’s
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knowledge, its minimax MSE convergence rate has not been previously derived. The bound
on convergence rate is established by using the umbrella theorem, for which they define a
dual version of the multicolor MST. The proposed dual MST in this work is different than
the standard dual MST that was introduced by Yukich in [44]. They show that the bias rate
of the FR estimator is bounded by a function of N, η and d, as O

(
N−η2/(d(η+1))

)
, where N

is the total sample size, d is the dimension of the data samples d > 2, and η is the Hölder
smoothness parameter 0 ≤ η ≤ 1. They also obtain the variance rate bound as O(N−1).
The second contribution of this paper is a new concentration bound for the FR test statistic.
The bound is obtained by establishing a growth bound and a smoothness condition for
the multicolored MST. Because the FR test statistic is not a Euclidean functional, we can-
not use the standard subadditivity and superadditivity approaches. Their concentration
inequality is derived using a different Hamming distance approach and a dual graph to
the multicolored MST. They experimentally validate their theoretic results comparing the
MSE theory and simulation in three experiments with various dimensions d = 2, 4, 8. They
observe that, in all three experiments, as sample size increases, the MSE rate decreases and,
for higher dimensions, the rate is slower. Our theory matches the experimental results in
all sets of experiments.

In “Distance-Based Estimation Methods for Models for Discrete and Mixed-Scale Data”
by Sofikitou et al. [45], robust methods for mixed-scale data are developed. Mixed-scale
measurements scenario have both discrete (categorical or nominal) and continuous type
random variables. Initially, they reviews basic concepts in minimum disparity estimation
(MDE), which has been extensively studied in models where the scale of the data is either
interval or ratio ([3,12]). It has also been studied in the discrete outcomes case. Specifi-
cally, when the response variable is discrete and the explanatory variables are continuous,
Pardo et al. [46] introduced a general class of distance estimators based on φ-divergence
measures, the MPHIE, and they studied their asymptotic properties. The estimators can
be viewed as an extension/generalization of the MLE. In Pardo et al. [47], the MPHIE is
used in statistic to perform goodness-of-fit tests in logistic regression models, while Pardo
and Pardo [48] extended the previous works to address solving problems for testing in
generalized linear models with binary scale data. The case where data are measured on
discrete scale (either on ordinal or generally categorical scale) has also attracted the interest
of other researchers. For instance, Simpson [49] demonstrated that minimum Hellinger
distance estimators fulfill desirable robustness properties and, for this reason, can be effec-
tive in the analysis of count data that are prone to outliers. Simpson [50] also suggested
tests based on the minimum Hellinger distance for parametric inference that are robust
as the density of the (parametric) model can be nonparametrically estimated. In contrast,
Markatou et al. [51] used weighted likelihood equations to obtain efficient and robust
estimators in discrete probability models and applied their methods to logistic regression,
whereas Basu and Basu [52] considered robust penalized minimum disparity estimators for
multinomial models with good small sample efficiency. Moreover, Gupta et al. [53], Martín
and Pardo [54], and Castilla et al. [55] used the MPHIE to provide a solution to testing
problems in polytomous regression models. Working in a similar fashion, Martín and
Pardo [56] studied the properties of the family of MPHIE for log-linear models with linear
constraints under multinomial sampling to identify the potential associations between
various variables in multi-way contingency tables. Pardo and Martín [57] presented an
overview of works that are associated with contingency tables of symmetric structure on
the basis of MPHIE and φ-divergence test statistics. Additional works include Pardo and
Pardo [58] and Pardo et al. [59]. Basu et al. [60] introduced alternative power divergence
measures. Afterwards, define various Pearson residuals appropriate for the measurement
scale of the data and study their properties. They further concentrate on the case of mixed-
scale data, which is, data measured in both categorical and interval scale. We study the
asymptotic properties and the robustness of MDE obtained in the case of mixed-scale data
and exemplify the performance of the methods via simulation. The results show that,
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depending on the level of contamination and the type of contaminating probability model,
the performance of the methods is satisfactory.

The asymptotic distributions of minimum Hellinger distance estimators has been well
investigated; nevertheless, the probabilities of rare events that are induced by them are
largely unknown. In “Event Analysis for Minimum Hellinger Distance Estimators via
Large Deviation Theory” by Vidayashankar and Collamore [61], rare event probabilities,
for the minimum Hellinger distance estimators of a family of continuous distributions
satisfying an equicontinuous condition, using large deviation theory under a potential
model misspecification, in both one and higher dimensions are analyzed. They show that
these probabilities decay exponentially, characterizing their decay via a “rate function”,
which is expressed as a convex conjugate of a limiting cumulant generating function. In
the analysis of the lower bound, in particular, certain geometric considerations arise, which
facilitate an explicit representation, also in the case when the limiting generating function
is non-differentiable. The analysis also involves the modulus of continuity properties of
the affinity, which may be of independent interest. The results that are presented in this
paper extend large deviation asymptotics for M-estimators that were given previously.
In contrast to the case for M-estimators, our setting is complicated due to its inherent
nonlinearity, leading to complications in the proofs of both the upper and lower bounds,
and an unexpected subtlety in the form of the rate function for the lower bound. The
results of Vidayashankar and Collamore (2021) suggest that one can, under additional
hypotheses, establish saddlepoint approximations to the density of minimum Hellinger
distance estimators, which would enable one to sharpen inference for small samples.

Similar results are expected to hold for discrete distributions. However, the equiconti-
nuity condition is not required in that case, since `1, unlike L1(S) (the space of integrable
functions on S), possesses the Schur property. Hence, the large deviation principle in the
weak topology of `1 can be derived (more easily) using a standard Gartner-Ellis argument
and, utilizing this, one can, in principle, repeat all of the arguments above to derive results
that are analogous to Theorems 2.2 and 2.3. Large deviations for other divergences under
weak family regularity (such as non-compactness of the parameter space) and their con-
nections to estimation and test efficiency are interesting open problems that require new
techniques beyond those that are described in this article.
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Innovación y Universidades (Spain).
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