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Abstract: Domain adaptation-based models for fault classification under variable working conditions
have become a research focus in recent years. Previous domain adaptation approaches generally
assume identical label spaces in the source and target domains, however, such an assumption may
be no longer legitimate in a more realistic situation that requires adaptation from a larger and more
diverse source domain to a smaller target domain with less number of fault classes. To address
the above deficiencies, we propose a partial transfer fault diagnosis model based on a weighted
subdomain adaptation network (WSAN) in this paper. Our method pays more attention to the
local data distribution while aligning the global distribution. An auxiliary classifier is introduced
to obtain the class-level weights of the source samples, so the network can avoid negative transfer
caused by unique fault classes in the source domain. Furthermore, a weighted local maximum
mean discrepancy (WLMMD) is proposed to capture the fine-grained transferable information and
obtain sample-level weights. Finally, relevant distributions of domain-specific layer activations across
different domains are aligned. Experimental results show that our method could assign appropriate

check for weights to each source sample and realize efficient partial transfer fault diagnosis.
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hitps://dol.org/10.3390/ 23040424 As indispensable parts of rotating machinery, the fault identification and diagnosis of

bearings and gears are crucial for the normal operation of the machinery. Since traditional
fault diagnosis methods rely on manual processing of vibration signals, it is difficult to ex-
plore the depth of fault diagnosis knowledge. With the widely application in industry and
academia of deep learning technology, it is possible to mine effective diagnosis knowledge
from massive amounts of fault data [1-3]. Therefore, such methods have been extensively
applied in fault diagnosis of rotating machinery [4-7].

Li et al. [8] proposed a fault diagnosis framework based on multi-scale permutation
entropy (MPE) and multi-channel fusion convolutional neural networks (MCFCNN). Since it
considers the structure and spatial information between different sensor measurement points,
the fault diagnosis with high accuracy and speed is realized. Valtierra-Rodriguez et al. [9]
proposed a methodology based on convolutional neural networks for automatic detection
of broken rotor bars by considering different severity levels. This method applies a notch
filter to remove the fundamental frequency component of the current signal, and the short-
time Fourier transform (STFT) is used to obtain time-frequency plane. Experimental results
show that the methods is capable of identifying the healthy condition of the induction motor.
However, the distributions of the collected datasets may different due to the change of the
operating environments. The diagnostic knowledge in the original training data will no longer
conditions of the Creative Commons D€ fully applicable to the new testing data when the working condition changes [10-14]. In this
Attribution (CC BY) license (https://  case, the fault diagnosis methods under variable working conditions based on transfer learning
creativecommons.org/licenses /by / come into being. Recently, some transfer learning-based methods have been developed to
40/). solve cross domain fault diagnosis problem. Mao et al. [15] proposed a deep dual temporal
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domain adaptation (DTDA) model which could recognize whether an early fault occurs
and achieve an earlier detection location and lower false alarm rate. An et al. [16] proposed
to apply the maximum mean discrepancy (MMD) based on multiple kernels to intelligent
fault diagnosis, and the features of different layers were involved in the domain adaptation
process. Wang et al. [17] presented a deep adaptive adversarial network (DAAN) which
could narrow the discrepancy to learn domain-invariant features. Chen et al. [18] proposed
an unsupervised domain adaptation method which could maximize the mutual information
between the target feature space and the entire feature space and minimize the feature-
level discrepancy between the two domains. Hasan et al. [19] proposed a multitask-aided
transfer learning-based diagnostic framework. This method applies multitask learning-based
convolutional network to identify working conditions, and then identifies health status of the
rolling element bearings based on transfer learning. In a word, transfer learning techniques
provide an efficient solution to cross domain fault diagnosis problems.

Although transfer learning-based methods have made great progress, partial transfer
fault diagnosis problem has not been well solved. The partial transfer diagnosis means
that the number of fault types in the test data is less than that in the training data. Since
the machine is in a healthy working state most of the time, the test data may contain only
a few types of fault data. That is, the distribution of two domains is different and the
label space of target domain is a subset of that of the source domain [20-22]. As many
different health types as possible can be involved by training data through a long period
of data accumulation, while it is difficult to guarantee the symmetry of health types in
testing data and training data. Therefore, this setting is closer to engineering practice
compared with the scenario for which the standard domain adaptation is targeted. Since
most of the transfer fault diagnosis methods use all source samples for domain adaptation,
the unique types of source samples can enable the network to learn false classification
knowledge during domain adaptation, which is the major challenge in partial transfer fault
diagnosis. Actually, partial transfer problem has been studied in the field of target detection
and computer vision. Cao et al. [23] proposed a selective adversarial network (SAN) to
facilitate positive transfer by selecting the source samples highly correlated with the target
samples. Chen et al. [24] proposed reinforced transfer network (RTNet) which could apply
both high-level and pixel-level information to solve partial transfer problem. In addition,
importance weighted adversarial nets [25] and example transfer network (ETN) [26] also
obtained excellent performance in the image classification task. These works have laid a
solid foundation for solving the problem of partial transfer in mechanical fault diagnosis.

Recently, the partial transfer problem has made initial progress in fault diagnosis.
Jiao et al. [27] applied weighted cross entropy loss to give smaller weight to the unique
source samples, and such weight is determined by the predicted outputs of two classi-
fiers [28]. Li et al. [29] presented a weighted adversarial transfer network (WATN) which
used adversarial training to reweight the source domain samples. Yang et al. [30] proposed
a deep partial transfer learning network (DPTL-Net) which could learn domain-asymmetry
factor to weight the source samples and finally block unnecessary knowledge. The pre-
vious partial domain adaptation methods mainly tried to get the weight of the source
samples from a global perspective without considering the relationships between two
subdomains [31] in source and target domains, which is not conducive to obtaining the
fine-grained transferable information in each type of data. To solve the above problem,
this paper proposed a weighted subdomain adaptation network (WSAN) to improve the
efficiency of partial transfer diagnosis of machinery. All the samples are divided into class-
level subdomains, and the subdomain distributions of deep features in multiple layers
are aligned. In order to block the samples of outlier source types, an auxiliary classifier is
introduced to conduct adversarial training with the feature generator to obtain the class-
level weights. To achieve weighted subdomain adaptation, we propose a weighted local
maximum mean discrepancy (WLMMD) to measure the Hilbert-Schmidt norm between
kernel mean embedding of empirical distributions between relevant subdomains. The main
innovations of this work are summarized as follows:



Entropy 2021, 23, 424

3o0f14

(1) A WSAN framework is presented to solve the partial transfer fault diagnosis problem.
Relevant subdomains are built to capture fine-grained transferable information and
avoid negative transfer caused by redundant source samples.

(2) The class-level weights are obtained through the adversarial training between the
auxiliary classifier and the feature generator. WLMMD is designed to measure
the distribution discrepancy between relevant subdomains and obtain fine-grained
transferable information. As a result, proper alignment of relevant subdomains in
specific activation layers is realized.

The remainder of this work begins with the background of theory in Section 2. In
addition, Section 3 provides an introduction to the methodology presented, and Section 4
applies the proposed model to partial transfer fault diagnosis and verifies the advantages of
the model by comparing other methods. Finally, some conclusions are drawn in Section 5.

2. Theoretical Background
2.1. Partial Transfer Fault Diagnosis

For standard domain adaptation-based frameworks, target domain D; and source
domain D; are collected under different but related working conditions [26]. As shown
in the upper part of Figure 1, the job of standard transfer fault diagnosis is to facilitate a
knowledge transfer from the labeled source data {X, Cs} to the unlabeled target dataset X;.
However, different from the closed transfer fault diagnosis, the source label space Cs and
target label space C; are different in partial transfer diagnosis problem. In the bottom part
of Figure 1, there are more source classes than target classes, i.e., C; C C,. In addition, it
should be noted that the sample types in the target domain do not deviate from the scope
of the source domain, which ensures the authority of the diagnostic knowledge in source
domain. The purpose of partial transfer fault diagnosis is to find the categories associated
with the source domain and classify them accurately.

4 @ * Source Sample Target Sample

Source Domain  g¢andard Transfer 1arget Domian

Fault Diagnosis

——)

Partial Transfer
Fault Diagnosis

Figure 1. Comparison of standard transfer fault diagnosis and partial transfer fault diagnosis.

2.2. Subdomain Adaptation

The source and target domains may consist of some subdomains that can be defined
according to different criteria, such as class or category. For partial transfer fault diagnosis,
the number of sample types in the source domain must be no less than that in the target
domain, so is practicable to delimit the subdomains based on the number of types in the
source domain, although this may not be appropriate for the target domain, but it ensures
alignment of local data distribution discrepancy. As can be seen from Figure 2a,b, it is
difficult to match two data distributions directly in the process of global or partial domain
adaptation. In Figure 2¢,d, subdomain adaptation is of superior feature representation
ability because the fine-grained transferable information within the subdomains is uti-
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lized [31]. However, the problem with this is that the data in the target domain is unlabeled,
which prevents target domain from being partitioned. Fortunately, we take the prediction
probability output of the model for the target samples as pseudo-labels to divide them into
some subdomains. In this way, subdomain adaptation enables the model to focus more on
local data distribution differences.

4+ ® A Source Sample 4+ @® A Target Sample

(c) Global Subdomain Adaptation (d) Weighted Subdomain Adaptation

Figure 2. Comparison of standard domain adaptation (a,b) and subdomain adaptation (c,d). The box represents the data

distribution range and the arrows represent the domain or subdomain adaptation process. The dotted circles represent the

divided subdomains.

2.3. Weighted Local Maximum Mean Discrepancy

In the field of transfer learning, MMD [32] is a common nonparametric metric that
measures the discrepancy between two distributions. It takes the mean embeddings of
two distributions in a Reproducing Kernel Hilbert Space (RKHS) as a distance calculation
to avoid the density estimation. MMD can be defined as:

dy(Ds, Di) 2 |[Eyp(x°)] — Eg[o(x)] 15, (1)

where ¢(-) is the feature mapping function that maps the original data to RKHS #. There-
fore, an estimate of the MMD compares the square distance between the empirical kernel
mean embeddings as:

2
du(Ds,Dt) = || L ¢x)—7 L ¢(x)
x;€Ds x; €Dy H
s Mg ny Ny
:lz Yy, Zk<xf,x5)—|—l2 Y Zk(xlt,xt> )
5 =1 j=1 17 i3> J
ns Mg
2
—2 k(xf,x?)
i=1j=1

where dy(p,q) is an unbiased estimator of dy;(p,q). ns and n; are the number of source
samples and target samples, respectively.
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Most previous domain adaptation methods apply MMD to narrow the distribution
discrepancy without considering the internal distribution of the data. However, such meth-
ods may result in poor alignment because the relationship between related subdomains
is ignored. Furthermore, these methods also fail to selectively involve source samples
in the adaptation process due to the asymmetry of data types across the two domains.
Considering the above problems, we propose the WLMMD to achieve weighted subdo-
main adaptation:

dy(Ds, Dr) = Ee || E, o [¢(x*)] — By [¢(x")] 13, ©)

where x° and x! are the instances in D, and Dy, and p(c) ,and q(c) are the distributions of Ds@

and Dt(c), respectively. So we can calculate an unbiased estimator of WLMMD as:

dy (D, Dy) = Z I Y wkoi) - ¥ wip(x) 13, @

k=1 xSEDb x]’.EDt

where wfk and w]tk denote the weights of x5 and x! belonging to class k, respectively.

Obviously, ¥/ | wSk =y wk =1, and wk for the sample x; can be computed as:

Wk = Yik ) 5

! Z(x]-,y]-)ED Yik ©)
where ;. is the k-th entry of vector y;. Since the source samples are labeled with a one-hot
vector, we can directly calculate the weight wls-k by the labels. Although the samples of
the target domain are unlabeled, it is feasible to use pseudo labels to partition related
subdomains. Note that the predicted output §! given by the classifier can be used as
pseudo target labels which measures the probability that the target sample belongs to
the corresponding category. ! can be regarded as the probability of assigning x! to each
of the C classes, and the weight wltk of target samples could be acquired. Thus, we can
approximate Equation (5) as:

n C
(P, D)=ty % z wkwik (2, =)
k=1 i=1j=1
n n
LYY w”‘w”‘k( 2 ) 6)
i=1j=1
ng
] Z Z wskwtkk( ] )]
i=1j=1

where z! is the Ith layer activation of L layers. By using Equation (6), the distribution
discrepancy between the two subdomains at a particular activation layer can be calculated.

3. Proposed Method
3.1. Weighted Subdomain Adaptation Network

In order to achieve efficient partial transfer fault diagnosis, we design a novel weighted
subdomain adaptation network (WSAN). The details of the proposed model are clearly
presented in Figure 3. The feature generator G is a deep structure based on one dimensional
convolutional neural network (ID-CNN) that is expected to extract domain invariant deep
features. The auxiliary classifier Cy is set to obtain the class-level weights of the source
samples, which is achieved by adversarial training. After acquiring class-level weights,
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weighted subdomain adaptation can be carried out in activation layers of the classifier C
based on WLMMD. The objective function can be written as:

ns
Fo(6G,6c) = 72 Le(G(xy) vy)

2 Y La(D(G(xi),dy) )
x;€(DsUDy)

+Y0d) (Ds, Dy)

where Ay and 7 are the penalty coefficients, y5; and d; are the source sample label and
domain label, and L denotes the condition prediction loss.

Figure 3. The structural composition of the proposed model.

3.2. Adversarial Training-Based Class-Level Weights Obtaining

Due to the asymmetry of the fault classes in the two domains, samples of redundant
types in the source domain may cause a negative transfer. Therefore, these redundant
subdomains must be selected to block the classification knowledge that is unfavorable to
the recognition of target samples. Inspired by generative adversarial networks (GAN),
we set up an auxiliary classifier C4 to play the mini-max game with the feature generator.
Specifically, given input x; or x; with the label 1 or 0, after multiple layers of extraction, the
feature generator G narrows the domain shift to make classifier cannot distinguish the true
source of the input sample. The auxiliary classifier is trained to give the correct label. The
objective of the adversarial training can be defined as:

mimréaxﬁ(CA,G) = l % log(Ca(G(xy)))
A

G
—I—nt ‘Z log(l —Cy (G(xt].)))

=1

®)

The distribution differences of the deep features of shared fault types will be narrowed
in the training process, so the auxiliary classifier will be unable to distinguish samples of
these types and give an output close to 0, while the output of the unique source samples
will be close to 1. The aim of adversarial training is to learn the relative importance of
source samples, suggesting that the outlier samples should be assigned a relatively small
weight. Therefore, the weight function is inversely related to C4(G(x)) and the importance
weights function can be defined as:

we(x) =1 —Ca(G(x)), ©
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After obtaining the class weights of the source samples, the overall objective can be
rewritten as:

ns
F(GGIGC) = nlsz D ,wC]'LC(G(xsz)’ysi)
! xsiepé

+41 E Y. wejlog(Ca(G(xy)))

=1 xsiepé
Ayt _ |
+2 Ellog(l Ca(Glxy)))
+’)’d[ (DSI Di’)

(10)

F(0c,) = L ¥ T welog(Ca(Glxy)))

=1 xsiGDé (11)

where w,; and Dé denote the weights and samples for the j-th source class, ys is the source
sample labels and 7y is a penalty coefficient.

4. Experiments
4.1. Dataset Introduction

The proposed framework is verified with the datasets collected in our laboratory
to validate the performance in partial transfer fault diagnosis. Figure 4a indicates the
experimental equipment used in our laboratory. The platform consists of a motor, two bal-
ancing rotors, two bearing seats, a planetary gearbox, and a magnetic brake for controlling
load. Vibration sensors are installed on fixed holders at both ends of the gearbox, and the
sampling frequency is 25.6 kHz.

Figure 4. Representation for rotating machinery fault diagnosis test bed in our laboratory (a) and
different types of bearing fault (b) and gear fault (c). Red box indicates the location of damage.
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(1) Bearing fault dataset

Five health conditions are involved in the bearing fault dataset, namely, normal, inner
ring fault, outer ring fault, rolling element fault, and combined fault of the rolling element
and outer ring. The fault parts are shown in Figure 4b. There are two damage sizes for
each type of fault, specifically, 0.2 and 0.4 mm. Thus, the bearing fault dataset contains
samples of nine health types, namely, NC, IF1, IF2, OF1, OF2, RF1, RF2, RO1, and RO2.
Four datasets are obtained under different loads, specifically, L1 (80 N), L2 (60 N), L3 (40 N),
and L4 (20 N). And the engine speed is 2000 r/min.

(2) Gear fault dataset

As shown in Figure 4c, the gear fault dataset contains samples of seven health types,
namely, normal condition (NC), sun gear fracture (SF), sun gear pitting (SP), sun gear
wear (SW), planet gear fracture (PF), planet gear pitting (PP), and planet gear wear (PW).
We collected three datasets at different rotational speeds (without load), specifically,
S1 (2200 r/min), S2 (2000 r/min), and S3 (1800 r/min).

The number of each type of samples is 500. Thus, the number of samples in bearing
and gear datasets are 4500 and 3500, respectively. In order to give full play to the feature
extraction and weight learning ability of the proposed method, 40% of the samples were
used for training and the remaining for testing.

4.2. Compared Methods

To show the superior performance of the proposed model, four comparative methods
are adopted as follows:

(1)  Supervised training without classification knowledge transfer is adopted as a basic
comparative method (Basic), and it obtained classification knowledge only from the
source domain samples.

(2) Domain adaptation framework based on multiple kernel variant of maximum mean
discrepancy (MKMMD) [16]: Efficient kernel method is adopted in different lay-
ers of the network, and excellent performance was achieved on the global domain
adaptation task.

(3) Deep subdomain adaptation network (DSAN) [31]: As a typical global domain adap-
tation approach, it does not include class-level weight acquisition, that is, the auxiliary
classifier is not adopted in the network. In this method, local maximum mean differ-
ence (LMMD) is used for effective subdomain adaptation.

(4) Example transfer network (ETN) [26]: It is an adversarial discriminative domain
adaptation method, and the adversarial training is adopted to obtain the weights of
the source samples. Similar to the proposed method, an auxiliary domain discrim-
inator and an auxiliary classifier are adopted to obtain the sample weights in the
source domain.

4.3. Implementation Details

As detailed in Table 1, we randomly discarded a number of fault types to design
different partial transfer diagnosis tasks on the basis of the two fault diagnosis datasets. For
the dataset, each sample consists of 2400 data points, then fast Fourier transformation (FFT)
is applied to transform the time-domain signal to frequency-domain signal that contains
1200 Fourier coefficients. The structure of the framework are illustrated in Table 2. The
learning rate is set as 0.0001, and the maximum training epoch is 1000. In order to avoid
the effects of random cause, we conducted 10 experiments on each task. The running
steps of the proposed model are shown in Algorithm 1. In the test process, the spectral
data of the target domain can be directly input into the model for classification. The code
programming of the model is implemented on the Pytorch platform.
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Algorithm 1: Weighted Subdomain Adaptation Network (WSAN)

Model: Feature generator G; Auxiliary classifier C4; Classifier C.
Input: Labeled source data {Xs, Cs} and unlabeled target data X;.
For i in epochs:

Step 1: The feature generator G outputs the high-dimensional features of the two
domains and inputs them into the feature generator G and classifier C.

Step 2: Auxiliary classifier C4 obtains the class-level weights. The classifier gives
prediction probability output on the target samples and obtains sample-level weights to guide
WLMMD to perform subdomain adaptation.

Step 3: Train the feature generator G and classifier C to obtain the optimal parameters 6
and ¢ by minimizing F(6¢, 6¢);

Step 4: Train the auxiliary classifier C4 to obtain the optimal parameters ¢ L, by
minimizing F(6c, );

Table 1. Descriptions of the diagnosis tasks.

Dataset Task Transfer Target Source
Bl L1-L2 All types
B2 L1-L3 NC, IF1, IF2, OF1, OF2, RF1, RF2, RO2
B3 L1-14 NC, IF1, IF2, OF2, RF1, RO2
Bearing B4 L2—L3 NC, IF1, OF2, RF1, RO1 All types
B5 L2—L1 NC, OF1, OF2, RO1
B6 L3—L4 IF1, OF1, RF1
B7 L3—L1 IF1, IF2
B8 L4—L3 RO2
Gl S1-S2 NG, SF, SP, SW, PE, PP
G2 S1—S3 NC, SF, SP, SW, PF
G3 5253 SF, SP, SW, PF All't
Gear G4 52581 SF, SP, SW ypes
G5 S3—S1 NC, SP
G6 S3—52 PW
Table 2. Structural composition of the proposed model.
Module Layer Size Channels x Kernel Size Stride Activation
Input data 1200 / / /
Conv 8 x 300 8x3 4 ReLu
MaxPool 8 x 150 8 x2 2 /
Conv 16 x 150 16 x 3 1 ReLu
MaxPool 16 x 75 16 x 2 2 /
Feature Generator Convy 32 x 75 32 % 3 1 ReLu
MaxPool 32 x 37 32 x2 2 /
Conv 32 x 37 32x2 1 ReLu
MaxPool 32 x 17 32 x2 2 /
Fc 512 / / /
Fc 256 / / /
Classifier Fc 128 / / /
Fc C / / Softmax
Fc 256 / / /
Auxiliary Classifier Fc 128 / / /
Fc 1 / / Sigmoid

4.4. Experimental Results

As mentioned in Section 2, the deep features in different activation layers of the
model are involved in subdomain adaptation. In order to obtain the best performance
for subdomain adaptation, the deep features with dimensions 128, 256 and 512 in fully
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connected layers of the classifier and feature generator (named L1, L2 and L3, respectively)
are extracted and combined for comparison. B7 task was selected to verify the combination
of different layers, and the experiment was conducted for 15 times. As shown in Figure 5, it
is clear that L1 achieves the best performance during the single layer, while L3 performs the
worst. It means that the model needs to carry out deep operation to extract more separable
domain invariant features. In the multi-layer combination, L1 + L2 performed better than
single layer while L1 + L2 + L3 has a lower performance than L1 + L2. This indicates
that some non-invariant features may exist in the shallow layers and using subdomain
adaptation to align these features will degrade the performance of the model. Therefore,
we apply the combination of L1 + L2 for the designed tasks.

100 - T T T ¥ Bl 7
. 0 — ﬁ
| |
9%+ | B
| ‘ | L
|
> | |
r 1
é 92 + } 1
& e
<
’§ [
— 88t i ]
84 1
N
L3 L2 LI Li+L2 Li+L2+L3

Figure 5. Boxplot for the performance of different layer combinations under the same task.

The average accuracy of the proposed method and the comparison method in all tasks
are detailly shown in Table 3. In general, our method obtains the highest average accuracy
and the lowest standard deviation. This indicates that WSAN has excellent and stable
performance in both global and partial domain adaptation tasks. Since the basic approach
does not include any domain adaptation operations, it obtains the worst performance
on all tasks. MKMMD achieves the highest accuracy on the non-partial transfer fault
diagnosis task B1, but performed poorly on the partial transfer tasks. This indicates that
the domain adaptation methods based on MMD has superior performance in the fault
diagnosis task under variable conditions, but it is not feasible to directly apply it to partial
transfer scenarios. DSAN performed better than MKMMD in most tasks, and its average
accuracy is 4.2% higher than that of MKMMD. But it still lags behind the other two partial
transfer methods because it does not carry out any weight learning operation. WSAN
achieved an average accuracy of 97.7%, which was 4.7% higher than ETN, 13.2% higher
than DSAN, and 17.4 higher than MKMMD.

It can be noted that ETN and WSAN, as two domain adaptation methods with
weighted learning, perform significantly better than other methods in partial transfer
diagnosis tasks. In addition, it can be found that the proposed method gets more ahead of
ETN with the increasing degree of domain class asymmetry. For task B2, the accuracy of
WSAN is 1.4% higher than that of ETN, while WSAN is 5.6% higher than that of ETN on
task B8. The same phenomenon can be observed for tasks G1 and Gé.
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Table 3. Experimental results of the average testing accuracies in all tasks (%).
Task Basic MKMMD DSAN ETN WSAN (Ours)
Bl 731 (£21) 995 (+0.1) 98.3 (£0.3) 98.8 (+0.2) 99.4 (£0.1)
B2 65.5 (+4.5) 90.1 (£0.3) 92.6 (+0.8) 97.1 (+£0.3) 98.5 (£0.1)
B3 63.7 (£3.4) 87.2 (0.8) 90.3 (£1.1) 95.5 (40.5) 98.6 (£0.2)
B4 59.1 (£5.8) 80.4 (£2.1) 90.1 (£1.5) 92.5 (£0.6) 98.5 (£0.2)
B5 59.7 (£4.6) 82.3 (£2.0) 85.4 (£2.6) 93.0 (£0.7) 97.9 (£0.2)
B6 64.0 (+5.8) 79.6 (+3.9) 80.1 (£3.9) 91.4 (£1.0) 98.0 (£0.1)
B7 45.2 (£8.1) 68.2 (£7.3) 75.2 (£5.4) 88.5 (£1.1) 97.8 (£0.3)
BS 42.4 (£6.5) 63.1 (+8.0) 78.9 (£7.2) 92.4 (£0.6) 98.0 (£0.2)
Gl 60.2 (£4.4) 88.1 (+0.3) 90.6 (+0.5) 98.4 (40.6) 99.2 (£0.1)
G2 55.1 (£5.0) 85.2 (£0.8) 90.0 (£1.1) 92.5 (£0.9) 97.1 (£0.1)
G3 50.7 (£5.3) 80.4 (£2.1) 84.1 (£1.5) 94.3 (£1.7) 98.2 (£0.2)
G4 52.0 (+3.8) 82.3 (42.0) 85.4 (£2.6) 92.4 (+2.0) 95.6 (£0.3)
G5 41.2 (£4.0) 69.6 (£3.9) 71.2 (£3.5) 88.5 (£1.8) 95.1 (£0.3)
G6 35.4 (£5.6) 68.2 (£5.3) 70.2 (44.0) 88.1 (£0.9) 95.5 (0.6

Average 55.2 80.3 84.5 93.0 97.7

To demonstrate the feature classification effect of our method intuitively, the high-
dimensional features extracted of the model are processed with the well-known t-SNE [33]
technology for dimension reduction. The dimension reduction results of B3 are shown
in Figure 6. In Figure 6a, we can see that the feature separability and clustering effect
obtained by the basic method are inefficient. Features become separable but shared types
and outliers are still cannot be distinguished in Figure 6b,c when domain adaptation is
adopted. Although MKMMD and DSAN perform efficient global domain adaptation,
the existence of outlier types would enable the model to extract classification knowledge
that is not applicable in the target domain. This also indicates that the global adaptation
methods only pays attention to the alignment of the two domains, but does not consider the
relationship between the subdomains within the domain. In Figure 6d, it can be seen that
ETN basically separates outlier samples but the alignment of shared type features is not
accurate enough, which indicates that the classifier cannot carry out effective sample-level
alignment after obtaining class-level weights and it may leads to inaccurate classification.
There are some confusions between the source samples of RO2 and RF1 types. In this
case, ETN may treat the RF1 samples as outliers and filter out some useful classification
knowledge. For the proposed method, precise alignment of the related subdomains is
performed while blocking the outlier types in Figure 6e. After obtaining accurate class-level
weights, WSAN can use the proposed WLMMD to perform effective subdomain alignment
which involves the sample-level weights learning.

In order to further explore how the weights learned affect the alignment of deep features,
the similarity matrix of source and target features in deep layer is drawn on task G4. According
to [30], the similarity matrix can be calculated by G(x;x;) = exp(—||x; — ]-||2/ 200) wherein
x;€ D’and x; € D!. Figure 7a shows the actual correspondence between the source and target
labels. In Figure 7b, only the samples of SW type can be identified to a certain extent, while
the features extracted from the other two target types of samples are highly similar to various
source types, which is extremely unfavorable for classification. Obviously, the deep features
extracted by the basic method are chaotic due to the lack of domain adaptation operation. In
Figure 7c,d, the corresponding samples of SP and SW types have low similarity degree, and
some of the samples have great similarity with other types. Consequently, global domain
adaptation methods may extract fuzzy deep features when dealing with partial transfer
problem. Figure 7e shows that ETN can assign large weight to shared types, but there are
still some outlier samples with large weights, resulting in a higher similarity between target
features of SP and source features of PP and PW. By comparison, Figure 7f indicates that
WSAN obtains more accurate weights, which is reflected in the large similarity between the
extracted features of the target domain and corresponding features of source domain, and
only a few samples are weakly similar to other source types. In general, the proposed method



Entropy 2021, 23, 424 12 of 14

can make the shared samples fully participate in the subdomain adaptation and block outliers.
Thus, the extracted domain invariant features own high similarity among the corresponding
shared types.

(b) MKMMD (c) DSAN

O w O Source = Target
% \ E o 00000 [
NC IFl IF2 OF10F2RF1 RF2RO1R02

+ + ++ o+
b

@

(d) ETN (e) WSAN

Figure 6. t-SNE visualization results of (a) Basic, (b) MKMMD, (c) DSAN, (d) ETN, and (e) WSAN in task B3. The samples
circled in red are outlier types.
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(a) Ture label
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(d) DSAN (e) ETN (f) WSAN
Figure 7. Similarity matrix of learned features by (a) ture label, (b—e) comparison methods, and (f) the proposed method.

The abscissa and ordinate represent the source sample sequence and target sample sequence, respectively. The depth of the
color indicates the similarity between the corresponding samples.
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5. Conclusions

A weighted subdomain adaptation network (WSAN) is presented to solve partial
transfer fault diagnosis problem of machinery. Different from the previous global domain
adaptation approaches, we divide all samples into different subdomains according to
sample types of the source domain, and design WLMMD to perform accurate subdomain
alignment. In addition, in order to obtain class-level weights, an additional auxiliary classi-
fier is set up to conduct adversarial training with the feature generator. Under the guidance
of class-level weights, the prediction probability output of the target domain by the clas-
sifier is used as the sample-level weights, so that the model could capture fine-grained
transferable information within the relevant subdomains. The optimal layer combination
was found by exploring the performance of the deep features in different activation layers
participating the subdomain adaptation. The best diagnostic performance can be obtained
under the combination of fully connected layers (L1 + L2) with dimensions 128 and 256.
Experimental results on the bearing and gear datasets collected in our laboratory indicates
that the average accuracy of the proposed method on the designed fault diagnosis task
is 97.7%, which is higher than that of several comparison methods. This means WSAN
could solve the partial transfer fault diagnosis problem more efficiently compared several
popular methods. -SNE dimension reduction and correlation matrix show that WSAN can
learn accurate weights and carry out accurate weighted subdomain adaptation.

Although the proposed weighted subdomain adaptation approach achieves superior
performance on the partial transfer fault diagnosis tasks, the laboratory works on the
premise that the target data is available during training. It is difficult to guarantee the
performance of such a model under unknown working conditions. Such approaches may
fail when we need real-time diagnosis. However, this problem may be solved with the help
of domain generalization technology [34], and we will explore this issue in depth in our
future work.
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