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Abstract: Edge detection is a fundamental image analysis task, as it provides insight on the content
of an image. There are weaknesses in some of the edge detectors developed until now, such as
disconnected edges, the impossibility to detect branching edges, or the need for a ground truth that is
not always accessible. Therefore, a specialized detector that is optimized for the image particularities
can help improve edge detection performance. In this paper, we apply transfer learning to optimize
cellular automata (CA) rules for edge detection using particle swarm optimization (PSO). Cellular
automata provide fast computation, while rule optimization provides adaptability to the properties
of the target images. We use transfer learning from synthetic to medical images because expert-
annotated medical data is typically difficult to obtain. We show that our method is tunable for
medical images with different properties, and we show that, for more difficult edge detection tasks,
batch optimization can be used to boost the quality of the edges. Our method is suitable for the
identification of structures, such as cardiac cavities on medical images, and could be used as a
component of an automatic radiology decision support tool.

Keywords: edge detection; evolutionary algorithms; cellular automata; particle swarm optimization;
image processing; transfer learning; cardiac MRI

1. Introduction

Edge detection is an important tool in many computer vision tasks. To solve the prob-
lem of edge detection, the first algorithms relied on local pixel information without prior
knowledge about the image. Subsequently, newer edge detectors (e.g., based on neural
networks) learn abstract representations of the data from an a priori training process [1].

We use cellular automata (CA) for this task because cellular automata are discrete local
models that are easily adaptable for computer vision problems [2]. They are intrinsically
parallel models, which facilitates an efficient implementation, and they operate on local
neighborhoods, thus they work well for measuring local disparities in pixel values [3,4].

The edge detection problem has been approached using cellular automata with fixed
rules, e.g., linear rules [5] or custom, threshold-based rules [6]. Cellular automata models
have also been applied to image segmentation, a related computer vision problem [7].
Additionally, there are methods which rely on automatically finding suitable rules by
performing an exhaustive search [8], or by applying other models for this task, such as
cellular learning automata [9] or particle swarm optimization (PSO) [10]. In Reference [10],
the evolutionary model optimizes a two-step fuzzy cellular automaton rule. There are
other approaches based on fuzzy logic, such as Reference [11], which uses cuckoo search
and genetic algorithms to optimize fuzzy rules for edge detection, or Reference [12], which
proposes framework for the dynamic adaptation of PSO parameters.
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As an optimizer for the cellular automata rule, we use particle swarm optimization
(PSO), a population-based optimization model. One of the advantages of using this
algorithm is that the optimization problem does not need to be differentiable, as it is
the case with gradient-based methods [13]. The disadvantage of not being guaranteed
to find an optimal solution is mitigated by the swarm memory feature, which prevents
the degradation of partial solutions and makes this method perform well in local search
problems [14,15]. Swarm memory also helps the model converge faster and thus require a
smaller computational cost compared to other evolutionary algorithms [13].

In our approach we combine the use of local information and the adaptive component
by optimizing the parameters of a cellular automata rule using PSO. In our previous
research, we introduced an optimization framework for edge detectors based on transfer
learning [16]. We used a synthetic set of images to optimize the cellular automata rule,
which we then applied on a test set of cardiac magnetic resonance imaging (MRI) scans. In
Reference [17], we improved our edge detection framework and outperformed the Canny
edge detector on a subset of the Brodatz dataset [18]. In this paper, we apply our refined
model for the problem of edge detection for cardiac MRI, with the goal of identifying the
boundaries of the cardiac cavities.

Original Contribution

Our main contribution regards the adaptability of the edge detector, given by the PSO
optimization step and enhanced by a transfer learning technique.

First, we prove the adaptability of our edge detection framework. For this purpose, we
use a test set of MRI scans from our in-house performed clinical study (Imaging-based, Non-
invasive Diagnosis of Persistent Atrial Fibrillation—imATFIB). This test set contains examples
with various properties in terms of grey levels and image noise. We found that, instead of
applying the same rule to the entire set, we can split it into two categories based on these
disparities, optimize separate CA rules for each, and improve the quality of the edges.

Furthermore, to increase the power of generalization within these two datasets, we
explored the idea of optimization on image batches and found that, in certain cases, a
well-chosen batch size can further improve the resulted edge detector. Additionally, we
used the transfer learning technique from machine learning, which consists of training a
model on a set of examples and applying it on a different set of related examples [19]. In
our case, we optimized the CA rule on synthetic images created to emulate the properties
of the MRI test set, thus minimizing the need for manually annotating medical data, which
can be time-consuming and requires expert knowledge [20].

2. Materials and Methods
2.1. Edge Detection

We define edge detection as the problem of identifying sharp disparities in pixel values
within a local neighborhood of an image. The instrument that outputs a binary edge map
from a grayscale image received as input is called an edge detector. In our approach, we
work with the Moore neighborhood, which defines the neighbors of a given point (x0, y0)
in a two-dimensional image as

N(x0,y0)
= {(x, y) : |x− x0| ≤ r, |y− y0| ≤ r}, (1)

where r represents the radius of the neighborhood, which we set to 1 [21,22]. A visual
representation of the Moore neighborhood can be seen in Figure 1a.

Edge detectors can be split in two main categories: the ones that use local information
to label edges and no a priori knowledge about the images (such as Sobel, Prewitt, or
Canny), and contextual detectors which make use of a priori knowledge [22].
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(a) (b)

Figure 1. (a) A visual representation of the Moore neighborhood with radius 1. (b) A visual
representation of the nine fundamental rules for a 2D cellular automaton with a Moore neighborhood.

The Canny edge detector [23] is based on three edge detection criteria: good detection
or maximization of the signal-to-noise ratio, good localization of the edges, and a single
response to an edge. The Canny edge detector consists of smoothing the input image using
a Gaussian filter, followed by considering the points located at the maxima of the gradient
modulus in the gradient direction. The selected points are then categorized based on a
double thresholding step: if the gradient is greater than the higher threshold, the point is
labeled as a strong edge, if it falls between the two threshold values, it is labeled as a weak
edge; otherwise, it is discarded. The last step is selecting only the strong edges and the
weak edges that are connected to a strong edge [22,23].

2.2. Cellular Automata

A cellular automaton is defined by the five-tuple CA = {C, N, S, s0, ρ}, where C
represents a set of cells, N with |N| = n their neighborhoods, and S is a set of possible
states which are assigned with a transition rule ρ : Sn → S, starting from an initial state
s0 ∈ S [24].

In this paper, we use linear transition rules, which are obtained through EX-OR
operations among the neighbors [4]. We represent a linear rule by a binary number in
the following way: we assign the value 1 to a neighbor that we take into account when
computing the next state and the value 0 to a neighbor that we do not take into account. In
Figure 1b we define a convention by which we assign powers of 2 to the neighbors. Using
this convention in conjunction with the binary representation, we can map the neighbors
that contribute to the next state to a binary number, which we use to identify the linear
rule [2,3,25].

2.3. Cellular Automaton Model

We use the representation of Reference [10] in which a pixel at position (i, j)—denoted
Xi,j—in the input image corresponds to a cell of the automaton. The first step of the
transition rule is computing the edge membership value according to a linear rule:

µ(Xi,j) =
φ(Xi,j)

∆ + φ(Xi,j)
, (2)

where φ(Xi,j) = ∑k ∑l |Xi,j−Xi+k,j+l |, ∆ ∈ {0, ..., 255}, and k, l are selected from {−1, 0, 1}.
The second step of the transition rule is passing the obtained values through a thresh-

old function F : X 7→ {0, 1} given by:

F(Xi,j) =
{ 1, if µ(Xi,j) > τ

0, if µ(Xi,j) ≤ τ,
(3)

where τ ∈ [0, 1).
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In this composite rule there are three parameters that require optimization: ∆, which is
inversely proportional to the number of detected edges, the linear rule, which controls the
neighbors that we consider when computing the edge membership, and τ, which controls
how many points pass as edges.

2.4. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based optimization model which
improves the candidate solutions, known as particles, iteratively with respect to a measure
of quality or fitness function [14].

We define a particle k by its position xk and its velocity vk. The swarm moves across
the search space at each time step t and every particle changes its position based on the
velocity, defined as:

vk(t + 1) = w ∗ vk(t) + r1 ∗ c1 ∗ (pbestk
− xk(t)) + r2 ∗ c2 ∗ (gbest − xk(t)), (4)

where w controls the oscillation of the particle, pbestk
is the personal best position of the

particle k, gbest is the global best position in the swarm, c1 and c2 are the swarm history
and swarm influence factors, respectively, and r1, r2 ∈ (0, 1) are random uniform variables.
xk(t) is updated by

xk(t + 1) = vk(t + 1) + xk(t), (5)

and it represents the particle position at time t [13,14].

2.5. PSO Optimizer

We use PSO to optimize the ∆, τ and linear rule r from the cellular automaton rule
described in Section 2.3. A candidate solution is represented by the triplet (∆, τ, r), where
∆ and τ are defined in Equations (2) and (3), and r ∈ {0, ..., 511}. We normalize this
representation by mapping ∆ and r to a continuous domain and we obtain the final
representation (∆′, τ, r′), where ∆′ = ∆/255 and r = r/511.

We use the Dice Similarity Coefficient (DSC) [26] to measure the fitness of the particles,
which is defined as

DSC = (2 · TP)/(2 · TP + FP + FN), (6)

where TP, FP, and FN represent the number of true positives, false positives, and false
negatives, respectively. In the edge detection problem, we consider the positive class to
be an edge point and the negative class a non-edge point. The fitness function is the DSC
value for the edge map obtained by applying the optimized CA rule. We choose this
fitness function because it accounts for the class imbalance in an edge image (the points
corresponding to the negative class outnumber the points corresponding to the positive
class), as opposed to alternative metrics, e.g., accuracy.

We optimize the edge detection rule on a set of images to achieve generalization and
to eliminate the overhead of repeating the optimization step for each input image.

3. Results
3.1. Experimental Setup
3.1.1. Edge Detection Framework

We validate our experiments by comparing the results with the Canny edge detector
implemented in the Scikit-image library [27]. To use a similar framework to the Canny
edge detector, we test our method under three scenarios:

1. applying the CA rule with no additional processing—CA− ED;
2. applying the CA rule followed by a post-processing step—CA− EDpost;
3. pre-processing the input, followed by applying the CA rule and then the post-

processing step—CA− EDpre−post.

For post-processing, we introduce thinning and the removal of disconnected edges,
similarly to the Canny method. For pre-processing, we apply a Gaussian filter on the input
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images as the Canny edge detector does, and we test multiple standard deviations for this
filter, which we denote by σsmooth [23].

3.1.2. Optimizer Setup

We parameterize the PSO optimizer as follows: we use a swarm of 100 particles, we
iterate the algorithm for 25 epochs per input image, and we choose ω = 0.05, c1 = 2.1,
c2 = 1.2. For the Canny edge detector, we use the default threshold values in the Scikit-
image library, specifically 10% and 20% of the maximum value of the data type (255 in our
case), respectively.

3.1.3. Metrics

We use two metrics to quantify the edge quality: Peak signal-to-noise-ratio (PSNR) [28],
which indicates the amount of noise in an image with respect to the amount of information,
and Structural Similarity (SSIM) [29], which evaluates the perceptual similarity between the
result and the ground truth.

3.1.4. Dataset

The optimizer is tested on a subset of the cardiac MRI data taken from our in-house
performed clinical study—Imaging-based, Non-invasive Diagnosis of Persistent Atrial
Fibrillation (imATFIB). The study is registered at clinicaltrials.gov (NCT03584126) and
obtained ethical approval from the local Ethics committee (Nr. 20117/04.10.2016). All
subjects gave their written informed consent to participate in the study. Patients and
healthy volunteers underwent cardiological evaluation using ECG and echocardiography,
followed by cardiac MRI measurements with a 3T whole-body MRI system (3.0T Discovery
MR750w General Electric MRI scanner) using a dedicated body coil for signal reception.

Upon visual assessment, we split the available MRI slices based on grey levels in two
separate test sets, which we call low intensity and high intensity, respectively. To validate this
split, we computed the average signal-to-noise ratio (SNR) over each resulted test set, and we
obtained 2.570± 0.869 for the low intensity and 10.571± 3.66 for the high intensity set. The
test sets contain 132 low intensity and 328 high intensity cardiac MRI slices from 32 patients
and healthy volunteers from the imATFIB study. For the supervised rule optimization, we
used synthetic training sets consisting of 20 low intensity and 20 high intensity images of
circles of size 128 × 128 pixels. We used synthetic images because they are easy to produce,
as opposed to MRI scans, and circular shapes emulate the types of structures found in our
cardiac MRI. The images were filtered with a Gaussian filter and injected with Gaussian
noise in order to better emulate MRI scans, and some of them were distorted. Examples
from these datasets can be seen in Figure 2a,b for the high intensity set and Figure 3a,b for
the low intensity set, respectively.

(a) (b)
Figure 2. (a) Low intensity optimization set, and (b) 6 representative images from the low intensity test set (Imaging-based,
Non-invasive Diagnosis of Persistent Atrial Fibrillation (imATFIB) clinical study).
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(a) (b)
Figure 3. (a) High intensity optimization set, and (b) 6 representative images from the high intensity test set (imATFIB
clinical study).

3.2. Robustness Analysis

In this section, we performed a series of preliminary experiments in order to establish
a baseline for our method. For this part, we used the following optimization protocol:

1. an image from the optimization set is passed to the optimizer;
2. the rule is optimized on this image for a set number of epochs;
3. the next image is passed to the optimizer, and the global best is reset in order to avoid

the particles getting stuck in local optima.

3.2.1. Comparing CA− ED, CA− EDpre and CA− EDpre−post

We tested the three variations of our method under the same conditions to find the
most robust one for further experiments. For this purpose, we used the original test images
from each dataset, as well as the same examples injected with Gaussian noise, which we
denoted by σnoise ∈ {1, 2, 3}. We plotted the average values of the metrics with respect to
σnoise for each variation in Figure 4. For CA− EDpre−post, we pre-filtered the images with a
Gaussian filter with σ = 1.5.

(a) (b)

Figure 4. Cont.
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(c) (d)
Figure 4. Average Peak signal-to-noise-ratio (PSNR) and Structural Similarity (SSIM) values with respect to the standard
deviation of the Gaussian noise injected in the images for the low intensity dataset—(a,b), and for the high intensity
dataset—(c,d).

3.2.2. CA− EDpre−post against the Canny Edge Detector

We further analyzed CA− EDpre−post by identifying the optimal value for the standard
deviation of the Gaussian filter used in the pre-processing step, which we denoted by
σsmooth. In this regard, we averaged the metrics over each dataset obtained for several
values of σsmooth. In Figure 5, we show results for σsmooth ∈ {0.0, 0.5, 1.0, 1.25, 1.5}.

(a) (b)

(c) (d)

Figure 5. Average PSNR and SSIM values with respect to the standard deviation of the Gaussian filter used for pre-processing
for the low intensity dataset—(a,b), and for the high intensity dataset—(c,d).
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3.2.3. Optimization Analysis

In this section, we focused on evaluating the impact of using different batch sizes in
the optimization of the edge detector. The batch size denotes how many images we pass to
the PSO model at a time. For this part, we used the following procedure:

1. a fixed number of images from the optimization set are passed to the optimizer;
2. the rule is optimized on the batch for a set number of epochs by averaging the fitness

computed for the individual images;
3. the next batch is passed to the optimizer, and the global best is reset to avoid the

particles getting stuck in local optima.

3.2.4. Impact of Batch Size over the Optimization Process

We measured the average PSNR and SSIM values of CA− EDpre−post with σsmooth = 1.5,
where the rule was optimized by passing a set number of images at a time. For our
experiments we used fixed batch sizes of 1, 3, 5, 7, 10, and 20 images. In machine learning,
training data is passed in batches for computational efficiency. To be able to use the same
technique for a PSO model, we need to assess whether the batch size affects the result of
the optimization process or not. In Figure 6, we show the average metrics with respect to
the batch size for the low intensity and high intensity datasets. To provide a more general
analysis, in Figure 7, we also plotted the metrics with respect to the batch size for all the
values of σsmooth that we tested before. This shows that the previous results are a function
of the optimization of the rule and not of the CA-based component.

(a) (b)

(c) (d)

Figure 6. Average PSNR and SSIM values with respect to the batch size on the test images (σsmooth = 1.5) for the low
intensity dataset—(a,b), and for the high intensity dataset—(c,d).
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(a) (b)

(c) (d)

Figure 7. Average PSNR and SSIM values with respect to the standard deviation of the Gaussian filter used for pre-
processing using different batch sizes, denoted as BS, for the low intensity dataset—(a,b), and for the high intensity
dataset—(c,d).

3.2.5. Evaluating the Difficulty of Edge Detection with Respect to Batch Size

For both datasets, we wanted to see if the differences in results can be justified by
the difficulty of the edge detection problem. The low intensity dataset consists of dark,
high-contrast images, while the high intensity dataset has opposite properties. From an
edge detection perspective, these datasets pose very different problems.

We measured the difficulty of an image by computing the mean gradient, using the
Sobel operator [30]. In Figure 8, we plotted the metrics obtained for each image in the test
set with respect to the mean gradient to see how difficulty affects the metrics. In addition,
we computed the Pearson correlation between the average PSNR and SSIM values and the
mean gradient averaged over the entire dataset, as shown in Table 1.

Table 1. Correlation between the PSNR and SSIM values and the difficulty of the test images given
by the mean gradient.

Pearson Correlation (Low Intensity Set) Pearson Correlation (High Intensity Set)

PSNR −0.605 −0.049
SSIM −0.580 0.191
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(a) (b)

(c) (d)
Figure 8. PSNR and SSIM values for each image with respect to the mean gradient (σsmooth = 1.5) for the low intensity
dataset—(a,b), and for the high intensity dataset—(c,d).

4. Discussion
4.1. Robustness Analysis
4.1.1. Comparing CA− ED, CA− EDpre, and CA− EDpre−post

We performed a preliminary experiment to determine whether adding pre- and post-
processing to the CA-based edge detector improves the final result. The results in Figure 4
show a clear advantage of CA− EDpre−post.

We see that CA − ED and CA − EDpre have a similar progression with respect to
the noise level in the test images; however, the baseline metrics on the original images
are the best for CA− EDpre−post and the worst for CA− ED. Moreover, for both datasets
PSNR decreases monotonously because the amount of noise in the edge image increases
along with the σnoise. In the case of SSIM, we notice that it converges to the same value for
CA− ED and CA− EDpre with respect to σnoise although there is a larger gap at σnoise = 1.
This is because, for lower amounts of noise, the post-processing does help clear out incorrect
(disconnected) edge points; however, higher amounts of noise produce more false positive
edge points, which are more likely to be connected to one another; thus, they are not
removed in the post-processing step. This affects the structural similarity with respect
to the ground truth as a result. The numbers are comparable among the two datasets,
and we see that CA− EDpre−post remains robust due to the Gaussian filtering step, which
successfully clears out the noise without removing relevant edge information.
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4.1.2. CA− EDpre−post against the Canny Edge Detector

We compared the best-performing edge detector, CA− EDpre−post, with Canny by
testing several values of the σsmooth parameter. The results in Figure 5 show that CA−
EDpre−post performs better for each value. Previous results on a different dataset [17]
showed that CA− EDpre−post reached its optimal result for a lower value of σsmooth than
Canny (an advantage since heavier pre-filtering has a higher chance of removing edge
information); however, in this case, they both peak at σsmooth = 1.5, mainly due to the
difficulty of edge detection on the cardiac MRI datasets. It is also worth mentioning that
our method performs better than Canny with no pre-filtering (σsmooth = 0), and this gap is
larger in the low intensity dataset.

4.2. Optimization Analysis
4.2.1. Impact of Batch Size over the Optimization Process

Figure 6 shows that on our MRI datasets a batch size of 3 images is optimal for the
best results. In Figure 7 we confirm this by testing CA− EDpre−post with multiple values
for σsmooth, and they are consistent with the first set of curves. In particular, for the high
intensity dataset, we observe a more stable behavior with respect to variations in the level
of pre-processing. Furthermore, for this dataset, the metrics converge to closer values at
higher σsmooth, which is also reflected in Figure 6.

4.2.2. Evaluating the Difficulty of Edge Detection with Respect to Batch Size

Based on the above presented results, we analyze the different behavior of the two
datasets with respect to the batch size. For this, we measure the difficulty of the test images
and we plot these values for each data point with respect to the PSNR and SSIM values
in Figure 8. We observe that, in the case of the low intensity dataset, the edge detector
produces better edges for the images with a lower difficulty score, especially from the
perspective of structural similarity. Furthermore, in Table 1, we see a negative correlation
between difficulty and metrics for the low intensity images, which is absent in the case of
high intensity images. Computing the median difficulty scores for the two datasets, we
find a median score of 138.25 with a range of 723.62 for the low intensity dataset and a
median score of 85.69 with a range of 498.58 for the high intensity dataset. Given that there
is high variance in the difficulty scores, we may infer that the difference in these results is
given by the SNR of the dataset, meaning that, in the case of noisier images (low intensity),
the choice of batch size has a higher impact on the final results.

5. Conclusions

We performed an extensive comparative analysis of our CA-based edge detector with
respect to Canny, a state-of-the-art method for edge detection. We see an improvement
in our CA-based method after introducing the pre- and post-processing steps in terms
of overall edge quality and robustness to noise. The proposed method performed better
than Canny on average on our cardiac MRI dataset, on unaltered images, as well as on
images with various amounts of injected noise. Additionally, we analyzed the impact of
the number of images fed to the optimizer at each step on the optimization process. We
found that for datasets with higher levels of noise choosing an optimal batch size can aid
the optimizer in finding a suitable edge detection rule on that dataset.

As opposed to other edge detectors, our method adapts to the target images through
the supervised optimization framework. In the case of cardiac MRI scans, we showed that
our CA-based detector can optimize a transferable edge detection rule in a supervised
manner from synthetic data, without the need of medical data annotated by experts. Our
method is thus suitable for aiding the identification of cardiac structures on medical images
and can be used as a component of a radiology decision support tool.

As future improvements, we are studying the extension of the CA model to the 3D
space by working on volumetric images and also transferring the rules to other types
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of medical images and anatomical structures. Additionally, we are considering a more
extensive comparison with related edge detection methods from the literature.
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