
entropy

Article

A Noisy SAR Image Fusion Method Based on NLM and GAN

Jing Fang 1,2, Xiaole Ma 3 , Jingjing Wang 1,2 , Kai Qin 4, Shaohai Hu 3,* and Yuefeng Zhao 1,2,*

����������
�������

Citation: Fang, J.; Ma, X.; Wang, J.;

Qin, K.; Hu, S.; Zhao, Y. A Noisy SAR

Image Fusion Method Based on NLM

and GAN. Entropy 2021, 23, 410.

https://doi.org/10.3390/e23040410

Academic Editor: Jiayi Ma

Received: 15 January 2021

Accepted: 27 March 2021

Published: 30 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics
and Electronics, Shandong Normal University, Jinan 250014, China; fangjing@sdnu.edu.cn (J.F.);
wjj@sdnu.edu.cn (J.W.)

2 Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key
Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University,
Jinan 250014, China

3 Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China; maxiaole@bjtu.edu.cn
4 School of Environment Science and Spatial Informatics, China University of Mining and Technology,

Xuzhou 221116, China; qinkai@cumt.edu.cn
* Correspondence: shhu@bjtu.edu.cn (S.H.); yuefengzhao@sdnu.edu.cn (Y.Z.); Tel.: +86-0531-8618-1556 (Y.Z.)

Abstract: The unavoidable noise often present in synthetic aperture radar (SAR) images, such as
speckle noise, negatively impacts the subsequent processing of SAR images. Further, it is not easy to
find an appropriate application for SAR images, given that the human visual system is sensitive to
color and SAR images are gray. As a result, a noisy SAR image fusion method based on nonlocal
matching and generative adversarial networks is presented in this paper. A nonlocal matching
method is applied to processing source images into similar block groups in the pre-processing step.
Then, adversarial networks are employed to generate a final noise-free fused SAR image block,
where the generator aims to generate a noise-free SAR image block with color information, and
the discriminator tries to increase the spatial resolution of the generated image block. This step
ensures that the fused image block contains high resolution and color information at the same time.
Finally, a fused image can be obtained by aggregating all the image blocks. By extensive comparative
experiments on the SEN1–2 datasets and source images, it can be found that the proposed method
not only has better fusion results but is also robust to image noise, indicating the superiority of the
proposed noisy SAR image fusion method over the state-of-the-art methods.

Keywords: nonlocal matching; generative adversarial networks; image fusion

1. Introduction

As one of the active microwave imaging radars, synthetic aperture radar (SAR) can
work at any time and in any weather conditions. The many advantages of SAR includes,
among others, multi-polarization and variable angles, which allows SAR images to be
widely used in geological surveys, military exercises, etc. [1,2]; however, due to its special
coherent imaging mechanism, noise is inevitably generated in image acquisition, especially
for speckle noise, resulting in serious inconvenience to the subsequent interpretation of
the image processing; therefore, the effective suppression or removal of noise is one of the
essential tasks required for SAR image pre-processing [3]. SAR can penetrate the earth’s
surface as well as natural vegetation coverings, clearly and exhaustively map topography
and geomorphology, and obtain high-resolution images of the earth’s surface; however,
the color information of SAR images is relatively simple, and cannot adequately reflect the
scene’s spectral information. On the contrary, multi-spectral sensors can obtain images
with rich spectral information, such as color optical images [4]. Image fusion [5–7] is a
powerful image processing tool for integrating complementary information from different
sensors, by which a fused image with a more comprehensive and clearer description of
the scene can be obtained. Although an increasing number of papers about image fusion
are published every year—indicating the importance of image fusion—few papers are

Entropy 2021, 23, 410. https://doi.org/10.3390/e23040410 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-7578-7969
https://orcid.org/0000-0003-1597-1793
https://doi.org/10.3390/e23040410
https://doi.org/10.3390/e23040410
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23040410
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/23/4/410?type=check_update&version=2


Entropy 2021, 23, 410 2 of 17

published regarding noisy SAR image fusion, despite the urgent need for an effective and
practical SAR image fusion method.

Image fusion can be classified into pixel-level fusion, feature-level fusion, and decision-
level fusion [8,9]. Pixel-level fusion fuses the pixels of source images directly, which is
the basis of other level fusions; however, a significant amount of information has to be
processed. Feature-level fusion extracts feature information of images such as edge, shape,
texture, etc., then fuses them together; because it only extracts features for image fusion,
detailed information is often missing. The most advanced decision-level fusion is based on
feature-level fusion. After feature extraction, other image processing methods, including
classification, recognition, and comprehensive evaluation, are employed to make a final
decision. This kind of method is based on a cognitive model, which needs large databases
and expert decisions for analysis.

Normally, pixel-level image fusion methods can be classified into five categories [6],
including methods based on spatial domain, methods based on transform domain, methods
based on sparse representation, methods based on deep learning, and hybrid methods. The
methods based on spatial domain use some mathematical operations, such as “choose-max”
and “average-weighting” to process the pixel value of source images directly and obtain
the pixel value at the corresponding position of the fused image. The classic methods
include image fusion based on maximization [10], image fusion based on intensity-hue-
saturation (IHS) transform, principal component analysis (PCA) transform [11], and so
on. To make full use of the image features, we employ image transforms to filter images
into the feature domain. Image fusion can be realized in the transform domain. Similar
to image transforms, sparse representation also transfers source images from the spatial
domain to another image feature domain by the mathematical transformation; thus, this
can be considered a special method based on image transform. In order to make full use of
the characteristics of images in the spatial domain and the sparse features in the transform
domain, many scholars mixed different kinds of image fusion methods together to obtain
new image fusion methods, including image fusion based on the spatial domain and
transform domain, image fusion based on the transform domain and sparse representation,
and so on; however, these traditional methods usually involve fusion rule designing,
which is difficult to adapt to the characteristics of different source images and cost much
computing time [12].

In recent years, rapid progress has been made in deep learning, computer vision, and
image processing [13], and a significant amount of research is currently being conducted
in image fusion. For example, Liu [14] proposed a multi-focus image fusion method
with a deep convolutional neural network; Zhong [15] proposed a remote sensing image
fusion method with a convolutional neural network; Ma [12] is the first one who applied
generative adversarial networks (GAN) into infrared and visible image fusion and achieved
good fusion results; however, the construction of the existing FusionGAN-based method is
simple, and loss fusion is imperfect, which can lead to incomplete information transfer in
the fused image. Improved GAN-based methods have been proposed for image fusion,
such as Zhang [16], who proposed a new generative adversarial network with adaptive and
gradient joint constraints to fuse multi-focus images. Nevertheless, the methods mentioned
above are effective for other kinds of source images rather than remote sensing images,
and they are sensitive to the noise in an image. In this paper, we propose a noisy SAR
image fusion method based on nonlocal matching (NLM) and GAN, which is more robust
to noise and can serve more information from source images. The nonlocal theory is to find
similar blocks in the whole image rather than in a local window and has been widely used
in SAR image de-noising [17–21]. The nonlocal matching takes advantage of the existence
of a pattern or similar features in the non-adjacent pixels and exploits self-similarities in
the search neighborhood to estimate the true value of the noisy pixel. In this paper, NLM
is employed on source images to acquire similar image block groups. The generator of
GAN can generate a fused noise-free image block group, and the final fused image can be
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obtained by aggregating the blocks after the generator and discriminator are dynamically
balanced. The main contributions of this paper can be summarized as follows:

(1) Due to the existence of speckle noise, SAR image de-noising is a necessary pre-
processing technology; however, in our approach, we develop SAR image de-noising
and fusion simultaneously, which can avoid the complex pre-processing and save
more time;

(2) Nonlocal matching is employed as a pre-processing technology for GAN to obtain
similar block groups, which makes full use of similar information in source images
and provides more effective inputs for GAN;

(3) For image fusion, “standard, well-integrated” reference images often do not exist; i.e.,
when a deep learning method is used to fuse the source images, there is no reference
tag; therefore, GAN is employed to perform the image de-noising and fusion without
reference images by limiting the loss functions.

The rest of this paper can be summarized as follows. In Section 2, the conceptualization
of GAN and its family are described. Section 3 presents the proposed noisy SAR image
fusion method. Section 4 gives more details about the comparative experimental results
and analysis. Finally, the conclusion is made in Section 5.

2. GAN

Since GAN was proposed by Ian Goodfellow in 2014 [22], it has been widely used
in image processing and other fields, such as GAN-based synthetic medical image aug-
mentation [23], realistic image synthesis with stacked generative adversarial networks [24],
and so on. In addition, GAN is also favored by researchers for image fusion. For example,
Ma proposed Pan-GAN in remote sensing image fusion, which can obtain multi-spectral
images of high-resolution by fusing panchromatic images and multispectral images of low-
resolution [25], Li proposed coupled GAN with relativistic discriminators for infrared and
visible image fusion, where the simple yet efficient relativistic discriminator is applied [26],
and so on.

GAN, shown in Equation (1), is composed of two competing neural networks: a dis-
criminator and a generator, where the G tries to generate data being close to the distribution
Pdata of real data, and the discriminator D tries to distinguish between real data and data
generated by the generator. During the two network confrontations, the generator uses the
discriminator as the loss function and updates its parameters to produce more realistic-
looking data. On the other hand, the discriminator updates its generator parameters to
better identify false data from real data; it relies on the standard multilayer perceptron
architecture to realize the network.

min
G

max
D

V(D, G) = Ex∼Pdata(x)[log D(x)] + Ez∼Pz(z)[log(1 − D(G(z)))] (1)

Subsequently, convolutional operations are introduced into GAN and the deep convo-
lutional GAN (DCGAN) is generated. Sometimes, the loss of GAN fluctuates because the
generator and discriminator undermine each other’s learning. As a result, the progressive
growing of GAN (ProGAN) is a network that stabilizes GAN training by increasing the
resolution of the generated images. Because of its transformation architecture, self-attention
GAN (SAGAN) has also become much popular in recent years. Instead of focusing on cre-
ating more realistic images and improving the ability of GAN to perform fine control over
the generated images, StyleGAN can be employed with any GAN to produce better results.

3. The Proposed Method

In this section, we describe the proposed noisy SAR image fusion method based on
NLM and GAN. NLM is introduced first. Then, the network architecture of the proposed
method is given to make it clearer and more readable.
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3.1. NLM

NLM consists of image blocking and similarity grouping. To balance the effect and
efficiency of image blocking, we abandon high-level blocking methods such as methods
for image edges or regional features and adopt the traditional fixed-size sliding window
blocking method. Some classical methods mainly use a certain distance between image
blocks as a similar measurement. For two image blocks, the smaller their distance value
is, the more similar they are. Common distance calculation methods include the method
based on singular value, Euclidean distance, lp − norm and so on. Euclidean distance is
employed in this paper.

3.2. The Network of the Proposed Method

In order to retain the high spatial resolution of SAR image and color information of
optical image more completely at the same time, we proposed a noisy SAR image fusion
method based on NLM and GAN—shown in Figure 1. The similar image block groups
obtained by NLM are fed into the generator at first, and the fused noise-free image I f can
be generated by network training.

Figure 1. The network of the proposed method.

After that, the fused image and noisy SAR image Is are fed into the discriminator,
which aims to determine whether the spatial resolution of fused and SAR images is
consistent. More details about the network of the generator and discriminator are shown
in Table 1.

Table 1. The details of the generator and discriminator.

Layer Filter Normalization Activation

G

Encoder

En_1 5*5 Conv (n64) BN Leaky ReLU

En_2 3*3 Conv (n128) BN Leaky ReLU

En_3-En_5 3*3 Conv (n256) BN Leaky ReLU

Decoder

De_1 3*3 Conv (n256) BN Leaky ReLU

De_2 3*3 Conv (n128) BN Leaky ReLU

De_3 5*5 Conv (n1) - Sigmoid

D

D_1 3*3 Conv (n64) BN Leaky ReLU

D_2 3*3 Conv (n128) BN Leaky ReLU

D_3 3*3 Conv (n256) BN Leaky ReLU

D_4 3*3 Conv (n1) - Sigmoid
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At last, the loss function in Equation (2) of the proposed network contains two parts:
the loss function of the generator LG in Equation (3), and the loss of the discriminator LD
in Equation (5).

Loss = aLG + bLD (2)

where a and b are the weight factors that balance the contributions of the loss function of
the generator and discriminator.

LG = LPSNR(I f ) + l2(I f , Io) =
1
n∑ 1 −

PSNR(B f )

const
+
∥∥∥I f − Io

∥∥∥
2

(3)

where PSNR(B f ) denotes peak signal-to-noise ratio (PSNR) of the fused image.
PSNR is often used to measure the noise level in an image:

PSNR(B f ) = 10· log10

[
B2

max
MSE

]
(4)

The larger the PSNR, the better the image quality. const denotes a constant normalizing
the value of PSNR and is set to 35, which means the maximum value of PSNR in an image,
and the first term in Equation (3) can ensure that the fused image contains less noise;
l2(I f , Io) denotes l2 − norm loss of the optical image Io and fused image.

LD = LSSIM(I f , Is) + l2(I f , Is) =
1
n∑ 1 − SSIM(B f , Bs) +

∥∥∥I f − Is

∥∥∥
2

(5)

where n denotes the total number of image blocks in source images. SSIM(B f , Bs) denotes
the structural similarity (SSIM) index of image blocks in the fused image and SAR image,
which can be calculated as

SSIM(B f , Bs) =
2E[B f ]·E[Bs] + C1

E[B2
f ] + E[B2

s ] + C1
·

2cov[B f , Bs] + C2

Var[B f ] + Var[Bs] + C2
(6)

where B represents the image block, B f , Bs represent the fused image block and the SAR
image block, respectively. C1 and C2 denote constants that are not zero. SSIM is a number
greater than 0 and less than 1, which measures the correlation loss, brightness loss and
contrast loss between source images and the fused image. The closer SSIM is to 1, the more
similar the structure is.

4. Experimental Results and Analysis
4.1. Datasets and Parameter Settings

The training datasets were selected from SEN1–2 datasets [4], which contain more
than twenty hundred thousand SAR-optical image pairs with the size of 256 ∗ 256 collected
from across the globe and throughout all meteorological seasons. SAR images acquired by
Sentinel-1 are polluted by speckle noise, whereas optical images acquired by Sentinel-2
are noise-free.

When NLM is employed to process the source images, the size of the image block is
set to 32 ∗ 32, and the maximum image block in each similar group is 20. When training
the proposed network, the generator and discriminator are optimized alternately, and we
implemented our network in TensorFlow.

4.2. Compared Methods

To effectively evaluate the proposed noisy SAR image fusion method, in this sec-
tion, we conducted the compared experiments by 8 representative image fusion methods,
including image fusion based on guided filtering (GFF) [27], image fusion based on the
sparse model (SR) [28], wavelet-based image fusion (DWT) [29], image fusion with deep
convolutional neural network (CNN) [14], multi-scale weighted gradient-based fusion
(MWGF) [30], image fusion based on multi-scale transform and sparse representation (MST-
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SR) [31], image fusion method in nonsubsampled Shearlet transform domain (NSST) [32],
and a generative adversarial network for image fusion (GAN) [12]. Among all, MWGF and
GFF belong to the methods based on spatial domain, while DWT and NSST are representa-
tive methods based on transform. For NSST, the employed fusion rule is “choose-max”.
MST-SR is a hybrid method that combines diverse image fusion methods to implement
better fused results, and NSCT is employed as multi-scale transform in this paper. CNN
and GAN are popular methods based on deep learning. The codes of image fusion methods
could be downloaded from links in their corresponding papers, and the parameters were
set as recommended.

4.3. Valuable Metrics

To objectively evaluate different fusion methods, some objective metrics are employed
to calculate the corresponding values of fused images, such as entropy (EN), average
gradient (AVG), spatial frequency (SF), mutual information (MI), and QAB/F [33,34]. The
larger these metric values are, the better the fused image is. The calculations of these
metrics are as follows:

(1) EN

When we want to measure how much information an image contains, EN [33] is a
good choice, and it can reflect the average amount of information contained in the fused
image. It can be calculated by Equation (7).

EN = −
L−1

∑
i=0

pi × log2 pi (7)

where L denotes the total number of pixels in an image, and pi is the probability distribution
for pixels in each gray level.

(2) AVG

The calculation of AVG is shown in Equation (8). We can evaluate the ability to vary
tiny details and texture features in an image by the value of AVG.

AVG =
1

MN

M

∑
i=1

N

∑
j=1

√
∆I2

x + ∆I2
y

2
(8)

where ∆Ix = f (x, y)− f (x − 1, y) and ∆Iy = f (x, y)− f (x, y − 1).

(3) SF

SF is used to detect the total activity of a fused image in the spatial domain, which
represents the ability to contrast small details. It can be calculated by Equation (9).

SF(i, j) =
√
(RF)2 + (CF)2 (9)

where RF =

√
1

M×N

M
∑

i=1

N
∑

j=2
[ f (x, y)− f (x, y − 1)]2 represents row frequency while CF =√

1
M×N

M
∑

i=2

N
∑

j=1
[ f (x, y)− f (x − 1, y)]2 represents column frequency.

(4) MI

MI represents the amount of information in a fused image from the source images,
which also means the amount of information transferring from the source images to the
fused image. More details about it are shown in Equation (10).

MI = MIAF + MIBF (10)
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where MIAF = ∑
f ,a

PFA( f , a) log PFA( f ,a)
PF( f )PA(a) and MIBF = ∑

f ,b
PFB( f , b) log PFB( f ,b)

PF( f )PB(b)
. PFA( f , a)

and PFB( f , b) denote the joint probability densities between the fused image F and the
source images A,B, respectively, whereas PA(a) and PB(a) denote the probability densities
of the source images.

4.4. Results and Analysis
4.4.1. Experiments on SEN1–2

We randomly selected thirty thousand pairs of source images to perform the experi-
ments using our proposed network. Twenty thousand of them were used for the training
set, whereas the other ten thousand were used for the validation set. Figure 2 shows some
examples from the SEN1–2 datasets, which include images sourced from different seasons.
The first column in Figure 2 is the SAR source images with much speckle noise. The second
column in Figure 2 is the optical source images with rich color information. The third
column is the fused images by the proposed method. From the snow in Figure 2k, we can
conclude that the image was taken in winter; however, it is hard to infer the season only
from its corresponding SAR image, which has high resolution but no spectral information.
By comparing the source images to the optical images, the spatial resolution of fused images
has significantly improved, meaning the proposed method can extract spatial information
from noisy SAR images and color information from optical images simultaneously.

In order to better verify the proposed method in this paper, we performed comparative
experiments on SEN1–2, and the source images are shown in Figure 3. To ensure the fairness
of the experiments, image de-noising by SAR-BM3D [20] was done on noisy images for
subsequent image fusion in the compared methods. The fused images of Groups 1~4 in
Figure 3 are shown in Figures 4–7. We can see that there are significant color distortions
and black areas of the green lake in Figure 4a,e,g. The fused images in Figure 6f,i are easier
to distinguish due to the appropriate coloring. By carefully comparing the details of the
fused images in Group 4, it is obvious that the fused image in Figure 7i by the proposed
noisy SAR image fusion method has less speckle noise. All in all, from these fused images,
it can be found that the proposed noisy SAR image fusion method not only has better
fusion results but also is robust to image noise.

Moreover, valuable metrics are employed to evaluate the fused images. To make these
values clearer, we show the valuable metrics in Figure 8. By comparing these values in
Figure 8, we can conclude that the values in green are larger than the others, showing
that the images in Group 2 are better than the other groups; however, when comparing
the fused images in the same group by different fusion methods, it can be found that
the values of the fused images by the proposed method are better, in general, indicating
that the proposed method has more power on SAR image fusion. To further illustrate the
generalization of the proposed method, we continue by testing 10 groups of images in
SEN1–2 datasets randomly, and the average objective indicators are shown in Table 2. From
Table 2, we can see that the proposed method can also obtain higher objective indicators.

4.4.2. Experiments on Oslo City

To verify the superiority and practicability of the proposed method, we compared
experiments on source images of Oslo city, which are noise-free—see Figure 9.

The fused images of Figure 9 by different image fusion methods are shown in Figure 10.
There is some color distortion in Figure 10a,d,h, where the color of the forests is bright
green, whereas the color in the optical image is dark green. Besides, due to the multi-scale
transformation of the images, some detailed information of source images was missed
when fusing them using DWT, MST-SR, and NSST—see Figure 10c,f,g. By comparing the
fused images in Figure 10, the fused image by the proposed method in Figure 10i has a
better subjective effect and is more visually suitable to the human eye.
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Figure 2. Results of our experiments using the SEN1–2 datasets by the proposed method. The first column: noisy synthetic
aperture radar (SAR) images; the second column: optical images; the third column: fused images. (a–c) Group 1; (d–f)
Group 2; (g–i) Group 3; (j–l) Group 4.
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Figure 4. The fused images of Group 1 in Figure 3: (a) guided filtering (GFF); (b) sparse model (SR); (c) wavelet-based
image fusion (DWT); (d) convolutional neural network (CNN); (e) multi-scale weighted gradient-based fusion (MWGF);
(f) multi-scale transform and sparse representation (MST-SR); (g) nonsubsampled Shearlet transform domain (NSST);
(h) generative adversarial network (GAN); (i) the proposed method.

Table 2. Objective indicators of generalization on 10 test images from the SEN1–2 datasets.

EN AVG SF MI

GFF 7.2607 ± 0.0132 10.0256 ± 0.0636 24.6531 ± 0.2501 4.8751 ± 0.0082

SR 7.2251 ± 0.0161 9.6989 ± 0.1087 23.6590 ± 0.4291 6.8254 ± 0.0147

DWT 7.2426 ± 0.0114 10.1984 ± 0.0332 25.2251 ± 0.2619 6.3567 ± 0.0258

CNN 7.2675 ± 0.0503 9.9878 ± 0.1401 23.2157 ± 0.4069 4.6531 ± 0.0074

MWGF 7.2475 ± 0.0335 10.1538 ± 0.0408 25.3621 ± 0.2585 6.4256 ± 0.0361

MST-SR 7.2659 ± 0.0354 10.1596 ± 0.0395 25.0697 ± 0.2604 6.3751 ± 0.0292

NSST 7.3105 ± 0.1206 9.5635 ± 0.1537 23.2758 ± 0.4313 4.9253 ± 0.0102

GAN 7.2159 ± 0.0802 10.3756 ± 0.0819 25.5327 ± 0.3608 4.7754 ± 0.0146

Proposed 7.4225 ± 0.0205 10.8597 ± 0.0611 26.4568 ± 0.2503 7.5754 ± 0.0319
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Figure 5. The fused images of Group 2 in Figure 3: (a) GFF; (b) SR; (c) DWT; (d) CNN; (e) MWGF; (f) MST-SR; (g) NSST;
(h) GAN; (i) the proposed method.
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Figure 6. The fused images of Group 3 in Figure 3: (a) GFF; (b) SR; (c) DWT; (d) CNN; (e) MWGF; (f) MST-SR; (g) NSST;
(h) GAN; (i) the proposed method.
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Figure 7. The fused images of Group 4 in Figure 3: (a) GFF; (b) SR; (c) DWT; (d) CNN; (e) MWGF; (f) MST-SR; (g) NSST;
(h) GAN; (i) the proposed method.
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Figure 8. The valuable metrics of the fused images in Figure 3: (a) entropy (EN); (b) average gradient
(AVG); (c) spatial frequency (SF); (d) mutual information (MI).

Figure 9. Oslo city: (a) SAR image; (b) optical image.

To evaluate the fused images in Figure 10 more objectively, objective metrics and
computational time were employed, and the results are shown in Table 3. Although the
values of the fused image by GAN are near to ours in terms of EN, AVG, and SF, the value
of MI in Figure 10h is less than two. From Table 3, we can conclude that the fused image by
the proposed method has better values of objective metrics and costs less time than most of
the other methods.
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Figure 10. The fused images of Figure 8: (a) GFF; (b) SR; (c) DWT; (d) CNN; (e) MWGF; (f) MST-SR; (g) NSST; (h) GAN;
(i) the proposed method.

Table 3. The valuable metrics of the fused images in Figure 10.

EN AVG SF MI Time(s)

GFF 7.1684 10.9946 25.8843 1.1225 0.864875

SR 7.3631 12.3016 30.3622 3.4416 77.549845

DWT 7.3449 12.1866 30.2316 3.8044 30.458764

CNN 7.3566 13.4386 32.2077 1.4334 141.987512

MWGF 7.4543 12.6963 31.2014 6.3148 3.648574

MST-SR 7.4561 12.7560 31.3776 6.6831 71.457981

NSST 7.4293 13.2218 31.7040 2.1016 4.987545

GAN 7.3815 13.8934 32.0352 1.5428 58.145457

Proposed 7.4694 14.7699 32.4543 7.6206 53.125794

5. Conclusions

Making full use of similar structural features in an image, a robust noisy SAR image
fusion method based on NLM and GAN is proposed in this paper. Using the adversarial
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game of the generator and discriminator, a final fused noise-free image with high spatial
resolution and color information can be obtained, where the optimization of the proposed
network is realized by the constraint of the constructed loss function in this paper. By
comparing our experiments with the state-of-the-art image fusion methods on the SEN1–2
datasets and Oslo city, we demonstrated that the proposed noisy SAR image fusion is
robust to image noise and has a better fusion effect, which makes the images more suitable
for the human eye. The fusion images obtained by the proposed method have less residual
noise and color distortion. Meanwhile, it can retain the edge and texture details of the
source images more effectively compared with other methods. In conclusion, the proposed
method has excellent image de-noising performance and a better fusion effect. It is an
excellent image fusion method for noisy SAR images and optic images, which can be
extended to the multi-sensor image fusion.

However, the available datasets are limited and the trained model relies on the trained
datasets, which means that our results are difficult to generalize. In the future, we will
explore or create more datasets and test the noisy image fusion model further to improve
our method and obtain more ideal effects.
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