M entropy

Article

Scattering in Terms of Bohmian Conditional Wave Functions for
Scenarios with Non-Commuting Energy and
Momentum Operators

Matteo Villani ¥©®, Guillermo Albareda 23¥® , Carlos Destefani (0, Xavier Cartoixa 1

and Xavier Oriols 11

check for

updates
Citation: Villani, M.; Albareda, G.;
Destefani, C.; Cartoixa, X.; Oriols, X.
Scattering in terms of Bohmian
conditional wave functions for
scenarios with non-commuting
energy and momentum operators.
Entropy 2021, 23, 408. https://
doi.org/10.3390/e23040408

Academic Editor: Carlo Cafaro

Received: 4 February 2021
Accepted: 24 March 2021
Published: 30 March 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Electronic Engineering, Universitat Autonoma de Barcelona, Campus de la UAB,
08193 Bellaterra, Barcelona, Spain; matteo.villani@uab.es (M.V.); Carlos.Destefani@uab.es (C.D.);
Xavier.Cartoixa@uab.es (X.C.)

Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149,

22761 Hamburg, Germany; guillermo.albareda@mpsd.mpg.de

Institute of Theoretical and Computational Chemistry, Universitat de Barcelona, Gran Via de les Corts
Catalanes 585, 08007 Barcelona, Spain

*  Correspondence: xavier.oriols@uab.es

1t These authors contributed equally to this work.

Abstract: Without access to the full quantum state, modeling quantum transport in mesoscopic
systems requires dealing with a limited number of degrees of freedom. In this work, we analyze
the possibility of modeling the perturbation induced by non-simulated degrees of freedom on the
simulated ones as a transition between single-particle pure states. First, we show that Bohmian
conditional wave functions (BCWFs) allow for a rigorous discussion of the dynamics of electrons
inside open quantum systems in terms of single-particle time-dependent pure states, either under
Markovian or non-Markovian conditions. Second, we discuss the practical application of the method
for modeling light-matter interaction phenomena in a resonant tunneling device, where a single
photon interacts with a single electron. Third, we emphasize the importance of interpreting such a
scattering mechanism as a transition between initial and final single-particle BCWF with well-defined
central energies (rather than with well-defined central momenta).

Keywords: quantum dissipation; Bohmian mechanics; collision; conditional wave function; decoher-
ence; open systems; many-body problem

1. Introduction

Due to the well-known many-body problem, electron transport in nanoscale devices
must be modeled as an open quantum system [1]. The contacts, cables, atoms, electro-
magnetic radiation, etc. are commonly considered part of the environment. The effect of
this environment on the dynamics of the simulated degrees of freedom, i.e., the electrons
in the active region, can be recovered using some type of perturbative approximation.
There are different formalisms in the literature to deal with such environmental perturbation
(Green’s functions [2—4], density matrix [5,6], Wigner distribution function [7-11], Kubo
formalism [12], Pauli quantum Master equation [13,14], pure states [15,16], etc). In this
work, we analyze the possibility of modeling the quantum nature of such simulated de-
grees of freedom with single-particle time-dependent pure states and their environmental
perturbation as a transition between such single-particle time-dependent pure states.

In particular, we are interested in modeling the collision of an electron with a phonon
or/and photon in an active region with tunneling barriers, i.e., in a scenario where the
energy and momentum operators do not commute. The path to achieve this goal requires
first the answer to the following question: Is it possible to model an open system in terms of
single-particle pure states?. Once this conceptual question is answered, the next practical
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question that needs to be addressed is the following: How do we select the single-particle pure
states before and after the collision? In this paper, we answer both questions. It will be shown
that the alternative Bohmian formulation of quantum transport [17] provides a rigorous
and versatile tool to describe collisions in open quantum systems in terms of single-particle
time-dependent pure wave functions. This work is part of a long-term research project
for the development of a general-purpose nanoelectronic device simulator, the so-called
BITLLES simulator [18], using Bohmian trajectories.

The structure of the paper is the following. In Section 2, the answer to the first question
about using single-particle pure states for open systems is provided from the Bohmian
description of quantum phenomena. In Section 3, we provide an exact model for matter—
light interaction in a closed system. Some simulation results are reported for different
conditions of the total energy and a final discussion on the interaction between active region
and environment to extend this description to an open system is provided. In Section 4, the
practical implementation of the transition between pre-selected and post-selected states
is discussed. This transition is performed for two different models: model A deals with
energy conservation, and model B deals with momentum conservation. In Section 5 these
two models, computed in a flat potential and in an arbitrary potential, are compared. Our
conclusions are summarized in Section 6.

2. Is It Possible to Model an Open System in Terms of Single-Particle Pure States?

As we have stated, the active region of an electron device is, strictly speaking, an open
quantum system interacting with the contacts, atoms in thermal motion, radiation, etc. As
a consequence, in principle, one is not allowed to describe the electron in the active region
in terms of pure states, but one has to rely on the use of the reduced density matrix.

Most approaches to open systems revolve around the reduced density matrix built
by tracing out the degrees of freedom of the environment [1]. The ability to describe open
systems with pure states can be partially justified when dealing with Markovian systems.
In a pragmatical definition of Markovianity [19], the correlations between system and
environment decay in a time scale that is much smaller than the observation (or relevant)
time interval of the system. Thus, it can be assumed that every time we observe the system,
it is defined by a pure state. For Markovian evolutions, the Lindblad master equation [20]
for the reduced density matrix is a standard simulation tool. In addition, in Markovian
scenarios where the off-diagonal terms of the reduced density matrix become irrelevant,
a quantum master equation can be implemented, dealing with transitions between pure
states [13,14].

In fact, it is possible to develop stochastic Schrédinger equations to unravel the
reduced density matrix in terms of a pure-state solution for either Markovian or non-
Markovian systems. The pure-state solution of stochastic Schrodinger equations can
be interpreted as the state of the Markovian system while the environment is under
(continuous) observation. However, such a physical interpretation cannot be given to
the solutions of the stochastic Schrodinger equations for non-Markovian systems [21-30],
where pure states can provide the correct one-time ensemble value but cannot be used to
compute time correlations.

Therefore, for general non-Markovian quantum processes, when we are interested in a
time-resolved description of the electron device performance, it is not possible to define the
open system in terms of orthodox pure states. As described in [31] and explained below, a
proper solution for treating electrons in non-Markovian open systems as single-particle
pure states comes from the Bohmian formalism.

To explain how the Bohmian theory allows for a general description of a many-body
quantum system in terms of wave functions, we consider a simplified scenario with only
two degrees of freedom: one degree of freedom x belonging to the system plus one degree of
freedom y belonging to the environment. Thus, the pure state in the position representation
solution of the unitary Schrodinger equation is ¥(x, y, ). For each experiment, labelled
by j, a Bohmian quantum state is defined by ¥ (x, y, t) plus two well-defined trajectories,
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XJ[t] in the x-physical space and Y/[t] in the y-physical space. The role of the many-body
wavefunction ¥ (x, y, t) is guiding each trajectory X/[t] with a velocity that reads [17,32,33]

_aXil) LIV 1 aS(xy,b)

dat Y[t Y[, 02 m* ox

ht]

, ¢y

x=Xi{t] y=Yi[t

where J¢(x,y,t) = hlm (‘I’* (x,y, t)%‘l’(x, Yy, t))) /m* is the current density with m* the
mass of the x-particle, and where S(x, y, t) is the phase of the wave function written in
polar form ¥ (x,y,t) = [¥(x,y,1) Syt /1, Analogous definitions are possible for the
Y7[t] trajectory. By construction, the two positions {X’[t], Y/[t]} in different j = 1,..., W
experiments are distributed (obeying quantum equilibrium [32,33]) at any time as

W . .
¥ (x,y, 1) = % ;5(96 = XI[t))o(y = YI[t]). @)
]:

The identity in (2) requires W — co. Numerically, we only require a large enough W to
reproduce ensemble values given by the Born law in agreement with the orthodox theory.
From a computational point of view, to ensure that (2) is satisfied at any time {, we only
have to select the initial position {X/[0], Y/[0]} at time t = 0 according to the distribution
¥(x,y,0) /2.

The Bohmian theory opens the possibility to deal with a wave function of a subsystem
through the concept of Bohmian conditional wave function (BCWEF) [33,34]. The BCWF is
defined for the x-degree of freedom during the j-th experiment as

W (x,t) =¥ (x, YI[t],t). ®3)

We emphasize that ¢/ (x, t) provides a rigorous (Bohmian) definition of a single-particle
wave function for an open system [32] that still includes the correlations with the other
degrees of freedom y. Notice that the reason why the BCWF has a relevant role in Bohmian
theory is because the trajectory X/[t] is equivalently guided by ¥(x,y, t) or by ¢/ (x,t). In
other words, the velocity v} [t] in (1) can be equivalently computed from the BCWF as

jo_ 4 RO 1 asi(xt)
ST T o T s

4)

x:Xf[t]’

where [/ (x,£)[2 = [¥(x, YI[t], )2, Ji(x,t) = hIm(lpj’*(x,t)%lpf(x,t))) /m*, and s/ (x, t)

is the angle of the BCWF in polar form ¢/ (x, t) = |¢/(x, t)|e’ ¥ )/ Notice that we have
not performed any approximation about the Markovianity of the quantum system in the
definition of the BCWE. Thus, at the conceptual level, we conclude that any quantum
open system can be analyzed in terms of single-particle pure states (i.e., BCWF) using the
Bohmian formalism. This is a well-known result [31] and provides a definitive positive
answer to the initial question: Is it possible to model open system in terms of single-particle pure
states? Yes. Notice that the BCWF ¢/ (x, t) will be a time-dependent function either because
¥ (x,y,t) is a time-dependent function or because the trajectory Y/[t] is moving.

Let us discuss now a more realistic scenario with N electrons inside the active region
with degrees of freedom {x1, xp, ..., x5} that we want to simulate explicitly (for simplicity,
each electron is assumed to be defined in a 1D space). There are, however, M envi-
ronmental degrees of freedom {y1, 1>, ..., ym} that we do not want to simulate explicitly.
The new many-body wave function of such a scenario is ¥ (x1, X2, ..., XN, Y1, Y2, -, YM),

which is numerically inaccessible. We define Xg [t] = {x|[t], .., xi-1[t], x] St e X[t}

as the set of all Bohmian trajectories of the system except xf (t) for the i-particle in the
j-experiment. Notice that we are dealing now with a superindex j indicating the ex-
periment and subindex i indicating each particle in a given experiment. We also de-
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fine Y/[t] = {y}[t],...... ¥}, [t]} as the set of all trajectories of the environment for the j-
experiment. Then, the set of equations of motion of the resulting N single-electron BCWF
Wi (x1,t) = ¥ (xq, X[, Y[, ), o 9l (xn, t) = F (2, X [H], Y/[H], t) inside the active region
can be written as follows:

ihw = _—Zhrivil + ugff(xl,t)l W (x1, 1)
P (5)
ih% = —zrl;vfw + ugff(xN,t)] ¥ (xn, 1)
The effective single-particle potential Ug £ f(xl-, t) = Ug £ f(xl-, X{ [t], YI[t], t) is
Wy (i) = U (i 8) + V(1) + Al (i, 1) + i8] (x;, 1), ©)

where U/(x;,t) is an external potential acting only on the system degrees of freedom x;,
Vi(x;, t) is the Coulomb potential between x; and the rest of particles at fixed positions X/[¢]
and Y/[t], and A/ (x;,t) and B/ (x;, t) are potentials responsible for the remaining of quantum
correlations between the degrees of freedom of the system and the environment [31]. A
mandatory clarification is needed here. Are the set of BCWFs in (5) solving the many-body
problem? No. If you want to use the coupled system of equations of motion of the N
BCWF in (5) to describe a given experiment, first, you have to solve the Poisson (Gauss)
equation to find u’ (x;,t) and Vi (x;,t) explicitly and, second, you have to know the exact
solution of the many-body wave function ¥ (x1, x2, ..., XN, Y1, Y2, - Yum) to find Al (x;,t)
and Bi(x;,t) for all electrons [31]. The last step is numerically inaccessible. The merit of
the system of equations in (5) is showing that such a type of solution to the many-body
function exists and that we can look for educated guesses on the shape of A/(x,t) and
BJ(x,t) to provide reasonable approximations. Notice that a similar procedure is followed
in Density Functional Theory: it shows a method to rewrite the many-body wave function
in terms of single-particle wave functions, but the procedure requires knowledge of the
exchange-correlation functional, which is only known once the many-body wave function
is known. See further details and an explanation on Al(x, t) and Bi(x,t) in [18,31-33,35,36].

To better appreciate the details of this simulation technique for electron devices,
we notice that the total current I/(t) at time ¢ for the j-experiment, after solving the set
of BCWF from (5) with the appropriate approximations for A/(x, t) and B/(x,t), can be
defined from the Bohmian trajectories with the help of a quantum version of the Ramo—
Shockley—Pellegrini theorem [37] as follows:

=
—

o ‘
V() = 7 Y- o (1, %18, VL), )

Il
—_

where L is the distance between the two (metallic) contacts that define the active region,
¢ is the electron charge (with sign), and v/, (x{ [t], )_(f [t], YI[t]) is the Bohmian velocity of
the ith electron inside the active region in the j-experiment. Notice that the observables are
computed from the trajectories (not from the BCWF) and that they are linked to a particular
experiment j (which can be understood as a single configuration of the environment). The
different possible values of x}[t],X![t] and Y/[#] for the same (preparation of the) many-body
wave function ¥ (x1, x2, ..., XN, Y1, Y2, --, Ym) introduce the inherent quantum randomness in
any experiment. As such, if one is interested in ensemble average values, one can repeat the
calculation for all environment configurations Y/[t] and particle distributions x/[#] and X![#].
Typically, in electronics, this ensemble average of the current I/(t) over many experiments
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j =1,...,00is interesting in evaluating DC values of the electrical current under ergodic
assumptions. In the laboratory, however, a large time-average of the current I/ (¢) in a single
j-experiment is usually performed. If one is interested in noise or time-correlations of the
current at different times, I/(t;) and I/ (t,), then the access to the individual experiment
offered by the BCWF is very relevant.

Finally, we mention which are the computational advantages of this simulation frame-
work. It is a microscopic description of the transport in the sense that it provides an
individual description for each electron inside the active region. It provides a rigorous
estimation (a part from the approximations for A/(x;,t) and B/(x;,t)) to the quantum
dynamics of electrons in the active region (open quantum system) for Markovian and
non-Markovian systems. It is a versatile approach in the sense that it can simulate many
different scenarios, from steady-state DC to transient and AC, including fluctuations of the
current (noise). Notice that I/(#) in (7) includes the particle and displacement current, even
at THz frequencies, when multi-time measurements are implicit. In this sense, we argue
that the amount of information that this simulator framework can provide in the quantum
regime is comparable to the predicting capabilities of the traditional Monte Carlo solution
of the Boltzmann transport equation [38] in the semi-classical regime.

3. How Do We Select the Single-Particle Pure States Before and after the Collision?

To discuss how electron—photon scattering can be included in this simulation frame-
work, we provide, first, an exact computation of the interaction between a single electron
and a single photon in a closed system in terms of BCWF and Bohmian trajectories and,
second, some indications on how such interaction can be modeled in an open system.

3.1. Exact Solution in a Closed System

The full quantum Hamiltonian H = H, + H, + H; that describes light-matter in-
teraction is given by the sum of the electron Hamiltonian H,, the electromagnetic field
Hamiltonian I:IW, and the electron-photon interaction Hamiltonian H 1. In particular, for
a single electron in a semiconductor, the position representation for H, (assuming a 1D
system for the electron with degree of freedom x) is given by

n? 92

Hy=—— 2
¢ 2m* dx?

+ V(x), ®)
where V(x) includes both the internal and external electrostatic potentials. See the blue
electron wave packet and the scalar potential V(x) for a double barrier region of length
2L, in the horizontal x-axis of Figure 1a.

We consider that the electromagnetic field is described by a single mode with angular
frequency w inside a closed cavity of length 2Lj;. See the cyan mirrors in the horizontal x-
axis of Figure la,b. A typical description of the electric field will be E(x, t) o q cos(kx — wt)
with the wave vector k = 27/A related to the angular frequency as ¢ = w/k with ¢
being the speed of light. The variable g represents the instantaneous amplitude of the
electromagnetic field along the polarization vector. Under the assumption Ly; > Ly,
meaning that the wave-length for the electromagnetic wave (=500 nm) is much larger than
the active region (=20 nm), we can neglect the spatial dependence x of the electromagnetic
field. Then, the Hamiltonian of the electromagnetic field in second quantization can be
written as H, = hw(1/2 4 4'4). The relationship between the now quantized amplitude
of the electric field g and the creation 4* and annihilation operators 4 is given by

a= . ¥ _,_Ei PL e _Ei 9)
“Va\"Twa) " TV m\T wag)
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Then, the g-representation of H, is

n ot W? 2
H, = — 2an+

(10)
where the electromagnetic vacuum state with zero photons |0) solution of H., corresponds
to the ground state of a harmonic oscillator y(q) = (4/0), while the state solution of H,,
with one photon corresponds to the first excited state of a harmonic oscillator ;(q) =
(9la* ). o

The interaction Hamiltonian in the dipole approximation can be written as H; = —eXE,
where ¢ is the (unsigned) electron charge and the electrical field operator is given by
E = e(a+a'), with e the strength of the electric field, or explicitly as

H; = axq, (11)

where o/, which depends on € and other parameters of the cavity, controls the strength of
the light-matter interaction. Finally, the wave function ¥(x, g, t) that describes the quantum
nature of electrons and the electromagnetic field simultaneously in the g-representation is
the solution to the following two-dimensional Schrodinger equation:

L o¥(x,q,t) h? 92¥(x,q,t)
W2 0%¥ (x,q,t)

T
2 o o T
+ a'xq¥(x,q,t). (12)

To simplify our discussion on emission and absorption of a photon by an electron, let
us assume that only the zero photon state, Po(q) = (9/0) = (q|¢o), and the one photon
state, P1(q) = (g|a™|0) = (g|1), are relevant in our active region. Notice that we discuss
the interaction of a single electron with a single photon in a closed system. Then, we can
rewrite the wave function ¥ (x, g, t) solution of (12) as

¥(x,0,1) = palx,g0(0) + ya(x, 1 (0) (13)

with
palot) = [ () (x.q, ) (14)
vo(x.t) = [ 910 (x,q,)dg. (15)

The equation of motion of 4 (x,t) and Pg(x,t) can be obtained by introducing the
definition (13) into (12) and by using the orthogonality of ¢9(q) and 1 (g) as follows:

L 0Pu(x, n? 92 , 1
zh% = - %% + (V(x) + zhw) Ya(x, t) +axypp(x,t), (16)
L owg(x, n? g (x, 3
1h% = — %%xt) + <V(x) + 2hw> Pp(x,t) + axpa(x, t), (17)

where we defined « = &’ [ ¢9(q)q1(q)dg and we assumed [ $o(q)q¢po(q) dq =
J¥1(@)aga(q) dg = 0.
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(@) (b)

| /]\MQ(\TX
Ly L L Ly

Figure 1. Schematic representation of the time evolution of the wave function for an electron

|
L

impinging upon a double barrier region with electromagnetic radiation. In (a,b), we consider a cavity
small enough so that the electromagnetic light does not radiate and so that no interaction with an
environmental degree of freedom outside the active region is included. Only the information on
the electron degree of freedom x and the internal degree of freedom of the light g (not plotted) are
relevant. The Bohmian position of the electron X[t] is indicated as a solid black circle. The Q|[¢]
trajectory of the electromagnetic field is not indicated. Notice that, in (a), the initial electron wave
function is P4 (x,t = 0) # 0 (blue curve for the electron) and g (x, t = 0) = 0 while, in (b), we get
Pp(x,t = t) # 0 (red curve) due to spontaneous emission.

We simulate now an initial electron impinging on a double barrier with a potential
energy V(x), as shown in Figure 2a. It corresponds to the conduction band of a typical
resonant tunneling diode (RTD) with a 10 nm-well width, barrier thickness of 2 nm, and
barrier height of 0.5 eV. In Figure 2b, the transmission coefficient of the double barrier is
plotted, showing two resonant energies inside the well at E; = 0.058 eV and E; = 0.23 eV.
The positive energies correspond to energy eigenstates impinging from the left and negative
energies from the right side of the RTD device.

10%
0.5} — — ~ :
z
<~ 0.4} = _
> B 107}
N -D F
— 03¢ o
X &
;’0.2- = 101
01} =
a
0.0 r . () 10-5>.|.|. L
340 350 360 -02 01 00 01 0.2
Position x (nm) E (ev)

Figure 2. (a) Potential profile and (b) transmission coefficient T in function of injection energy E of a
GaAs/AlGaAs resonant tunneling device (RTD) device with 10 nm well width. Positive energies
means eigenstates injected from the left and negative energies eigenstates injected from the right.

At the initial time, we assume that there are no photons inside the active region. In
other words, the (vacuum) electromagnetic field is given by an amplitude g with probability
lo(q)|?. Thus, we define ¢4 (x,0) as a Gaussian wave packet outside of the barrier
region with a central energy equal to the second resonant level of the double barrier
E; and a spatial dispersion of 30 nm, as seen in the blue wave packet in the x-axis of
Figure 1a, and ip(x,0) = 0. Thus, the initial electron—-photon wave function in Expression
(13) is given only by ¥(x,q,t) = ¥a(x,t)Po(g). When solving (16) and (17) together,
with &« =2.5-10” eV/m and w = (E, — E1)/h, we obtain that 5(x,t) # 0 so that the
global wave function in (13) becomes ¥(x,q,t) = a(x,t)po(q) + Pp(x,t)1(g). This
process of spontaneous emission cannot be understood without the quantization of the
electromagnetic field performed in (12).
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Next, to compute how much probability inside the well can be assigned to ¢4 (x, t)
and Pp(x,t), at each resonant level, we define

E{+Ey
1 [ee]
Paa) =g Jy * lCaEBOPAE  Pas(t) = 5 [oy., lea(E0)PdE, (18)
with .
e(E,f) = [ plxgE(x)ax (19)

The subindex A in ¢(E, t) and (x, t) is assumed in (19). The functions ¢ (x) are the energy
eigenstates of the electron Hamiltonian H, in (8). Notice that we are only interested in the
probability inside the barrier region with limits given by x = £L,. Identical definitions
can be provided for P 1(t) and P (t) with the normalization constant N, ensuring that
Py1(t) + Paa(t) + Ppa(t) + Ppo(t) = 1.

In Figure 3, we plot P 1(f), Pax(t), Pp1(t), and Pgy(t), showing the typical Rabi
oscillation. The initial value P4 ,(0) = 1 in Figure 3 indicates an electron injected with a
central energy equal to the second eigenvalue of the well without photons. The vertical
dashed lines in Figure 3 indicate two times when the system passes from one electron in
the first level and one photon (P4, ~ 0 and Pp; =~ 1 in blue dashed line) to one electron in
the second level and zero photons (P4, ~ 1 and Pp; ~ 0 in red dashed line).

— [ I b

0 0.8} 3 08} (®)

9 © J A2

® 0.6} § 0.6¢ | 62

= b | i

Z 04} ® 04}

< =

S 02; = 0.2-J

et Neo]

% 00 200t : :

0.0 0.0 0.1 0.2 0.3

Time (ps) Time (ps)

Figure 3. Evolution of the P4 1, P4 2, Pp 1, and Pp for the first (a) and second (b) eigenstates of the
quantum well described in Figure 2, when the Bohmian conditional wave function (BCWF) is injected
in the second eigenstate of the quantum well.

From the whole wave function ¥(x,q,t) = Wa(x, )po(q) + ¢p(x,£)P1(g), we can
compute the probability presence in the x-space as follows:

P(x,t) = [ daf (0,00 = [galx D + la(x, ). 0

In Figure 4a, we show the evolution of P,(x, t) computed from (20) as a function of time
together with some selected trajectories X/[t]. Such trajectories X/[t] are computed from
the guiding total wave function ¥(x,q,t) = Pa(x, t)Po(q) + ¥p(x, t)P1(q) together with
the trajectories Q/[t] belonging to the electromagnetic degree of freedom g following
the velocities defined in (1) for the same simulation presented before. The evolution of
P.(x,t) inside the well shows qualitatively the alternate transition from one maximum
(first eigenstate) to two maxima (second eigenstate). The Bohmian trajectories follow this
evolution, since they alternatively move from one side to the center of the quantum well.
The trajectories show a velocity close to zero when each eigenstate is well-defined and
a large velocity during the transitions between the two eigenstates. All this dynamical
information is in agreement with the physics of the Rabi oscillations depicted in Figure 3
where the electron emits a photon into a single-mode electromagnetic cavity and then
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reabsorbs it. As a technical detail, we mention that, as expected, Bohmian trajectories do
not cross into the x — g space (not plotted) but they cross in the subspace x of Figure 4a. In
addition, one can expect some chaotic behavior in 2D systems [39,40] that is not present in
the 1D system that is shown in the Figure 4a.

In Figure 4b, we plot the probability of the energy states |c(E, t)|? given by Equation (19)
at the two times indicated by horizontal read and blue dashed lines in Figure 4a that
correspond to the vertical dashed lines in Figure 3. The BCWF in Equation (19) has been
defined as ¥(x,t) = ¥(x, Q/[t],t) = wa(x, t)Po(QI[t]) + wp(x, t)P1(QI[t]) for a selected
trajectory Q/[t] of the j-experiment. Notice that such a definition of the BCWF corresponds
to (x,t) =~ ¢p(x,t) for the blue wave packet while the red wave packet corresponds to
P(x,t) = Pa(x,t) because of the values of Py, and Pp; indicated by vertical dashed lines
in Figure 3.

Probability
Density (a.u.) —~ 35
1.5x10° > [—katt<t
© 30 —katt>t,
6
5.5x10 % 251
20x10° & 20!
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74x10° 2 15}
2.7x10° ig 107
o 2 s L ®
0 _ : ‘ : o
-08 -04 00 04 0.8
Position x (nm) Energy (eV)

Figure 4. (a) Evolution of P,(x, t) for the electron interacting with the RTD device described in
Figure 2, while emitting and absorbing electromagnetic radiation. The solid black lines show Bohmian
trajectories X/[t] for a selected set of experiments. The green vertical lines indicate the position of the
potential barriers. (b) Probability distribution of the Hamiltonian eigenstates for the BCWF given by
(x, t) =¥(x, QIt], ) = pa(x, ) o (QI[t]) + Yp(x, t) 1 (Q/[t]) for a selected trajectory Q/[t] at two
different times indicated by the horizontal dashed lines in (a). We define the scattering time t; as the
time of the blue horizontal dashed line.

As expected, the fact that the conservation of the total energy has to be satisfied from
(12) has important consequences on the type of electron—photon interaction allowed. We
now repeat the simulation when the electron (with no photon) is injected with a central
energy corresponding to the first resonant level. No electron transition (or spontaneous
emission) takes place, giving 1p(x, ) ~ 0 because the initial energy E; + fiw /2 cannot be
converted into a much higher final energy E; + 3fiww /2. The result is shown in Figure 5.

1.0 1.0
soal (a) [ (b)
0 0.8} © 08}
% _PA,1 '8 _PA'Z
:.2 08 _PB,1 3 0.6¢ _PB,z
> 3
= 04+ g 0.4+t
5 £
2 02} S 02t
e el
A : : L 00— : .
0.05 0.15 0.25 0.05 0.15 0.25
Time (ps) Time (ps)

Figure 5. Evolution of P41, P4, Pp1, and Pp; for the first (a) and second (b) eigenstates of the
quantum well when the initial electron is injected in the first resonant level of the quantum well.
Because of the conservation of energy, no matter-light interaction is possible.
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We now repeat the same simulation done in Figure 3, where the initial electron had a
mean energy equal to the second eigenvalue of the well, E,, but considering a new photon
energy fiw = 0.26 eV much larger than E; — E; = 0.172 eV. In this case, no light-matter
interaction takes place since it would imply a violation of the conservation of whole energy.
The initial energy E; + fiww/2 does not coincide with a possible final energy E1 + 3hiw /2.
This simulation is shown in Figure 6.

1.0 1.0
3 T v ()
% 0.8} (a) 308
[0]
o —F’A1 o _PA2
- J C g
B 06/ 5. § 06} _p,,
> 3
= 04+ - 04+
QO =
202 3 02}
o
2 oo%\ S 0.0l

0.00 010 020 030 040 ™ 000 010 020 030 040

Time (ps) Time (ps)

Figure 6. Evolution of P4 1, P4, Pp1, and P for the first (a) and second (b) eigenstates of the quan-
tum well when the BCWF is injected in the second eigenstate of the quantum well and fiw = 0.26 eV.
Because of the conservation of energy, no matter-light interaction is possible.

3.2. Approximate Solution with BCWF for an Open System

In the previous subsection, we discussed the interaction of a single electron with
a single photon in a closed system. Here, we discuss how such an interaction can be
generalized to include the possibility to detect a photon at a position y, far from the
active region.

The proper simulation of such a scenario as a closed system is far from the scope of
the present paper. Apart from considering the detector outside of the active region as a
new electron with degree of freedom y, the transition of the electromagnetic energy from
the active region to the environment will require an electromagnetic field with an arbitrary
shape different from the one considered in the previous section. A Fourier transform
of such an arbitrary electromagnetic field will imply dealing with several components
E(x,t) « g cos(kx — wt) at different frequencies. In any case, without an explicit solution
of such problem, only from the conservation of energy, we can anticipate what will be the
expected behavior of the whole system.

The process of spontaneous emission of a photon inside the active region and its
posterior detection far from the active region can be anticipated as follows:

e At theinitial time, f = 0, we consider an electron in the active region, with degree of
freedom x with a central energy E; linked to zero photons wave function ¢(q) plus
another electron far from the active region with degree of freedom y and energy E.y;
linked to zero photons ¢y (g). At this initial time, the total energy involved in such a
scenario is Ey 4 fiw /2 in the active region plus the energy E.»: + fiw /2 outside.

e At the intermediate time, we consider that a spontaneous emission of a photon
happens inside the active region. As seen in Figure 3, such an internal process ensures
energy conservation. Therefore, the new photon inside the active region implies a
change in energy there, Ey + fiw/2 — Ej + 3hiw/2, while the energy outside of the
active region remains the same as before, E,y; + fiw /2. The total energy is the same as
the initial one.

e At the final time ¢, we detect a photon at position y, far from the active region. Thus,
the electron at y is now linked to one photon wave function ¢;(g), which implies
an increment in the energy of fiw far from the active region, E.x; + ficw /2 — Eext +
3hw /2. The conservation of the total energy implies that the same amount of energy
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is eliminated in the active region when the photon leaves, E; + 3fiw /2 — E + hw /2.
The electron in the active region will have a new energy E; linked to the zero photons
wave function ¢p(g). As we have seen in Figure 5, under such new energy conditions
in the active region, such an electron will no longer be able to generate spontaneous
emissions inside the RTD. Thus, the Rabi oscillations seen in Figure 3 for a closed
system will not be present when we assume that the photon leaves the cavity.

In summary, we conclude that the spontaneous emission in the active region can
be modeled by an initial BCWF 1(x,0) with central energy E, that changes to a final
BCWEF (x, t) with energy E;. Such a process will be allowed as far as the photon energy
coincides with E; — E;. Identically, absorption in the active region can be modeled by
an initial BCWF (x, 0) with central energy E; that changes to a final BCWF (x, t) with
energy E, with the photon energy given by E; — E;. Notice that the conservation of energy
enables the photon absorption to be accompanied, for example, by a subsequent process of
spontaneous emission that returns the photon energy to the environment outside of the
active region.

4. Implementation of the Transition from Pre- to Post-Selected BCWF

In this section, we describe practical issues on how such types of transitions between
initial and final states can be implemented in a transport simulator for real electron devices
based on Bohmian mechanics.

To implement the transition from pre- to post-selected BCWFE, a definition of the initial
i) and the final |f) states is needed. Although the contacts do not allow us to perfectly
prepare the wave description of electron, we can have some reasonable arguments to an-
ticipate some of its properties. One option could be to deal with Hamiltonian eigenstates,
which extend to infinite in both sides (left and right) of the device. Although these infinitely
extended states are useful tools to model (steady-state) DC transport properties of quantum
devices, they are less useful in describing other device performances, for example, the fluc-
tuations of the electrical current due to the partition noise in a tunneling barrier. The initial
electron, after impinging with the barrier, is either located to the left (reflection) or to the
right (transmission) of a barrier but not on both sides of it. Such randomness (transmission
or reflection) translates into current fluctuations. To model such fluctuations, a localized
wave function seems appropriate to model electrons. However, the wave function cannot
have a very narrow localization in position since the Heisenberg uncertainty principle
would lead to extremely large momentum and energy uncertainties (larger than thermal
energies). Thus, a definition of an electron, deep inside the contact, as a Gaussian wave
packet with well-defined central position and central energy seems reasonable. We add
that such a limited spatial extension of the electron wave function can be related to the
coherence length of the sample.

In classical mechanics, an electron with a well-defined energy is compatible with
an electron with a well-defined momentum. However, this is not the case for quantum
electrons. As a general rule, two properties can be simultaneously well-defined if their
operators commute. In our case, the energy (linked to the Hamiltonian operator H) and
the momentum (linked to the momentum operator p) can be simultaneously defined when
[H, p] = 0. In the position representation, knowing that the Hamiltonian operator is the
sum of the kinetic energy operator ($)?/2m, which obviously commutes with p, plus the
potential energy operator V, momentum and energy are well-defined properties when

0

d . 0V (x)
3]

= [V(x), —ih=] = il =0. (21)

[H,—ih 3, 3

Thus, only when dealing with flat potentials we can assume that a wave packet with
a reasonable well-defined energy has also a reasonable well-defined momentum. This
restriction seems relevant to transport models developed in phase-space (the Wigner
distribution function), where information on only momenta and positions are available.
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In the next two subsections, we discuss the implementation of the transition from a pre-
to a post-selected BCWF when using well-defined energies (model A) or momenta (model
B). In Section 5, we compare the numerical results of these two different implementations.

4.1. Model A: Change in the Central Energy

We consider an electron defined by a single-particle BCWF that, at time ¢;, undergoes
a scattering event. We define t; = t; — At as the time just before and t] = t; + Af; as
the time just after the scattering event. For simplicity, we consider At; — 0, but we have
seen in Section 3 that such a transition between initial and final BCWFs takes a finite time
because, from a conceptual point of view, it has to guarantee the continuity of the BCWF
in space and time. The initial and final BCWFs are ¢(x,t; ) and ¢(x, t] ), which satisfy
(E(tf)) = (E(t;)) + E,, with E, the energy of a photon. Within the energy representation,
the wave packet can be decomposed into a superposition of Hamiltonian eigenstates ¢r (x)
of the electron H, in (8) as

Wit ) /dEaEt)<pE() 22)
with a(E, t) = [dx (x,t) ¢p5(x). The central energy (E(t;)) is
(E(7)) = [dEE Ja(E 1), @)
which can be increased to obtain the new central energy at t; as
(E(tH)) = (E(E ))+E7—/dE (E+E,) |a(E, £ /dE’ E' [a(E' — E, )2
= [aEE | (E P, (24)

where we have defined a'(E, ) = a(E — E,, t; ). Thus, the new wavepacket after the
collision is

P, ) / dE a'(E, ) ¢ (x / dE a(E' — E,, £7) ¢ (2). (25)

This transition corresponds to the absorption of energy by the electron. Emission can be
identically modeled by using (E(t}")) = (E(t;)) — E,. If required, the technical discontinu-
ity between 9 (x, t,- ) and 9 (x, t,+ ) can be solved by assuming that the change in energy is
produced in a finite time interval Aty = Ny, At, with At being the time step of the simulation.
Then, at each time step of the simulation, the change in the wave packet central energy is
E,/N,. A continuous change in both energy and wave packet will be obtained as far as
At — 0. This continuous evolution of the BCWF can be represented as a Schrodinger-like
equation, as explained in [31].

4.2. Model B: Change in Central Momentum

In Reference [34], we explain how a change in momentum p, in a wave packet in
free space can be performed with a unitary Schrodinger equation. That algorithm can be
understood as a pre- and a post-selection of the initial BCWE, ¢(x, t; ), and of the final
BCWF, y(x,t]), respectively. At time t; , the BCWF can be written as a supersposition of
momentum eigenstates ¢, (x) (which are a basis of the electron in the x space) as

P to) = [apbipto) gp(), 26)

with b(p, t,-) = [dxyp(x,t;-) ¢p(x). The central momentum (p(t; )) is

(i) = [dpplb(pt )P, @7)
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which can be increased to get the new central momentum (p(t;)) = (p(t;)) + py at tJ as

(p(th) = <p(t;)>+p7=/dp(p+m) Ib(p,ts—)lzé/'dp’p’ b(p' = po,ts-)
= [ap'p b ), 28)

where we have defined b(p, t,+) = b(p — py, ts— ). In this particular scenario, we know the
explicit shape of the momentum eigenstates, ¢,(x) = 1/+v2mexp(ipx/h), so that

pet) = [dpblpte) ¢p(x) = [dpb(p—pyte) gp(x)
= [ap [axpxte) 95y, (p(x) 29)

_ /dp/dx lP(X,fs—) %eip(xffx)/heipvxl/h _ eipvx/hlp(x,t57)'

With the condition 9 (x, tf) = ePr*/Mp(x, t,-), it can be easily found the unitary equation
satisfied by the BCWF. If we define ¢’ (x, t) as the wave function solution of the following
/ 2
Schrédinger equation, ihw = 5L (—ih%) Y (x,t) + V(x)yp'(x, t), with initial condi-
tion at t = t; given by ¢/ (x, t5) = (x, ), then the solution ¢’ (x, t) for t > t; is identical
2
to the following Schrédinger equation, ihal‘bgif’t) = 5L (—ih% + py) P(x, )+ V(x)p(x,t),
for the original ¥(x, t) and with its original initial condition for t > f;. Finally, a single
equation for ¢ (x, t) valid for all times is simply

2
2 (i 0 ) it VR, (30)

where Oy, is a Heaviside function equal to 1 for t > ts and zero otherwise. Thus, a
description of the evolution of the wave function (x, t) during the collision process can
be made from a unitary Schrodringer equation, where the momentum operator —ih% is
changed for the new momentum operator —ih% + p,Oy,, as indicated in [34]. Notice that
the probability presence of the scattered wave packet satisfies [¢(x, t,+ )|? = |p(x, ts-)|?
because only a global phase e/?7*/" is added.

It is quite easy to see from (4) that the Bohmian velocity of the electron after the
collision computed from (x,t}) is just the old velocity computed from ¢(x,t; ) plus
py/m*,

- 1 9s(x,t))

1 9s(x,t;
o] = L2 S

1) = ax

le—xify T Py/m" (31)
The collision increases the velocity of the electron by the same amount that we add in
(30). Unfortunately, as discussed at the beginning of the section, a global mechanism of
scattering valid for scenarios with potential barriers requires dealing with a change in the
energy as presented in model A (not with change of the momentum as presented in this

model B).

5. Numerical Results

We present now the numerical results of our two models for the transition between
initial and final single-particle BCWFE, as explained in the previous section. We first study
electron—photon collisions in free space, when energy and momentum operators commute,
and then electron—photon collisions in a scenario with a double barrier potential profile,
when energy and momentum operators do not commute. This last case will be compared
with numerical results of the exact model presented in Section 3 and used to verify the
physical soundness of the two models.
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5.1. Collisions in Flat Potentials

In this section, we study the interaction of an electron and a photon in free space. The
electron evolves in a flat potential. We consider the absorption of a photon by an electron. In
flat potential, the momentum and energy conservation is ensured during the collision. Thus,
since the momentum of the photon is negligible, in this section, we assume that the electron
interacts with a phonon and a photon. The phonon will not be needed in Section 5.2. We
consider that the final BCWF will be modeled by a final electron (post-selected state) with
an energy increase of ficw (E, > 0) plus the corresponding increase of momentum (provided
by the phonon) with respect to the initial electron energy (pre-selected state).

In Figure 7, we show the simulation of the electron—-photon collision in a flat potential.
The collision is modeled by exchanging the energy E, = 0.1 eV in Figure 7a,b and by
exchanging the momentum p,, = /2E, /m* in Figure 7c,d. As expected, in this scenario,
both models give identical results. After the scattering event, the Gaussian wave function
evolves with a higher velocity, as indicated in (31). We notice that the wave function suffers
a continuous evolution during the collision because it is a solution of the Schrédinger-
like Equation (30). Analogous results (not shown) are obtained for emission. The main
conclusion of this subsection is that model A and model B are, as expected, numerically
equivalent in the case of a flat potential.

05 . Model A 25 - Model A.
a
20A( ) 207( )
£ 15| £ 15!
() (]
£ 10} £ 10}
= =
5t 5L
100 600 100 600
Position X (nm) Position X (nm)
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C
20_( ) 20_( )
£ 15| £ 15
() (0]
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l_
5t 5l

100
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Position X (nm)
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Figure 7. The evolution of the BCWF ¢/ (x, t), undergoing photon absorption with E, = 0.1 eV,
shown as function of position and time. The wavefunctions are simulated (a) without collision
and (b) with collision using model A, and (c) without scattering and (d) scattered using model B.
The trajectories X/[t] guided by the BCWF ¢/ (x,t), where j = 1,...,10, are some representative
experiments and are shown in black. In a flat potential, the results of models A and B are identical.
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5.2. Collisions in Arbitrary Potentials

As in Section 5.1, we study the absorption of a photon using an electron modeled by
a final electron (post-selected state) with an energy increase of fiw (E, > 0) with respect
to the initial electron energy (pre-selected state). Now, we use a double barrier potential
V(x) identical to the one mentioned in Section 3.1, with the same two resonant energies
E; =0.058eV and E; = 0.23eV.

In Figure 8, the evolution of y/(x,t) and the trajectories X/[t] are shown when the
electron absorbs a photon while impinging on the potential barrier of the RTD. The position
of the barriers is shown by the green vertical lines. The energy of the photon is equal to the
difference of the resonant energies in the quantum well, E, = E; — E;, and the BCWF is
injected with a central energy equal to the first resonant energy E = E;. A transition from
E; to E; is expected during the collision ¥4 (x, t;) — ¢p(x, ).

Model A Model A Probability

i Density (a.u.)
5.0x10’ 5.0x10’
_200¢ 4.0x10 4.0x10
%150 3.1x10’ 3.1x10’
E 2.1x10 2.1x107
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10° 10°
00720 40 60 0020 40 60
Position X (nm) Position X (nm)
400 ModeIB% ' Proba}bility
= - Density (a.u.)
350 — 5.0x107 | mr 5.0x107
300 4.0x107 4.0x10
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Figure 8. Gaussian wavefunctions interacting with a double barrier potential profile with and without
scattering with a photon: (a) a wavepacket and some selected trajectories with unitary evolution
(without scattering). (b) The same wave packet and the same selected trajectories when scattering
with energy E, = 0.186 eV using model A occurs. (c,d) are identical to (a,b) when model B is used.
In all figures, the Gaussian wave packet is injected from the left at energy E = E; = 0.058 eV. The
trajectories X/[t] guided by the BCWF /(x, t) are plotted in black. The set of trajectories in plot (a) is
different from the one in plot (c), with the goal of selecting those trajectories that interact most in the
quantum well in each case. The trajectories in plot (b) are the same as in plot (a), and the trajectories
in plot (d) are the same as in plot (c). The energy of the photon is equal to the distance between the
two first energy levels, E, = E; — Ej.
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In Figure 8a, we plot the time evolution of the electron interacting with the barrier
but without photon collision. In Figure 8b, an electron—photon collision is produced
at t; = 150 fs using model A. The wavepacket undergoes a shift in energy probability
distribution of the Hamiltonian eigenstates ¢ (x) towards higher values. As expected,
the evolution of (x, t) is a transition from the first eigenstate of the well (with one peak
of probability in the middle of the well) to the second one (with two probability peaks).
The same trajectories X/[t] that were first reflected by the barrier in Figure 8a are now
transmitted through the well in Figure 8b because the second resonant level has a wider
transmission probability, as shown in Figure 2b. The results in Figure 8b have a reasonable
agreement with the results in Figure 4a at times equivalent to the blue and red horizontal
lines of Figure 4a. Clearly, we also notice that the simulated result in Figure 4a belongs to a
simulation with the active region as a closed system, where the photon energy does not
disappear, and the electron is continuously emitting and absorbing such photon energy,
as explained in Section 3.1. On the contrary, Figure 8b corresponds to a simulation of the
active region as an open system, where the photon energy appears/disappears at/from
the active region only once, as explained in Section 3.2.

The same plots are reproduced in Figure 8c,d when using model B. Now, an oscillatory
behaviour on the BCWF and on the trajectories X/[t] is shown after time t; = 250 fs. Such
results can be understood by noticing that model B produces an increase in velocity in the
Bohmian trajectories, but such faster Bohmian trajectories are not the natural behavior of
the trajectories in the well when associated with only one eigenstate (they are expected
to remain inside the well for a large time with a velocity close to zero). However, since
the eigenstates of the quantum well form a complete basis, the mentioned oscillatory
BCWEF can be a solution to the Schrodinger equation there at the price of using many more
eigenstates (with higher energies) to describe the new accelerated wave packet. Thus, the
combination of several eigenstates in the well produces the oscillatory behaviour that we
see in Figure 8d.

To better understand that model A provides a natural transition while model B pro-
vides an unnatural one, we show in Figure 9 the probability of the energy states |c(E, t)|?
given by Equation (19) att = 0 and t = t. The positive and negative energies only indicate
scattering states injected from the left (positive) and injected from the right (negative). The
blue line is the probability distribution of the energy eigenstates at the initial time c(E, 0),
while the red line is the same distribution but after scattering ¢(E, t;). In Figure 9a for
model A, we observe a natural shift in the central energy given by (E(t})) = (E(t;)) + E,,
as expected. A definite argument in favor of model A (and against model B) is that the
results in Figure 9a have an almost perfect agreement with the results in Figure 4b that were
computed without approximation: the same transition happens from the first to the second
energy eigenvalues of the quantum well. On the contrary, in Figure 9b for model B, a large
amount of Hamiltonian eigenstates with negative energies (i.e., injection from the left) are
populated after the scattering process. As explained, these additional energy components
are the reason why we observe an oscillatory behaviour inside the well in Figure 8d. Model
B is nonphysical because it does not satisfy the requirement of conservation of energy in the
electron and photon collision. Since we deal with a wave packet (with some uncertainty on
its energy), some deviation in the requirement of conservation of energy in each experiment
is reasonable, but the deviations plotted in Figure 9b on the order of 1eV are not reasonable
at all.
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Figure 9. (a) Probability distribution of the Hamiltonian eigenstates for model A (spatial evolution
shown in Figure 8b). (b) Probability distribution of the Hamiltonian eigenstates for model B (spatial
evolution shown in Figure 8d). Blue lines represent the probability distribution of the Hamiltonian
eigenstates before the scattering at t < t;, while the red lines show it at t > ¢;.

In conclusion, model B can only describe electron collisions when an approximation
of flat potential is reasonable to describe the dynamic of the unperturbed electron. We get
exactly the same conclusions when evaluating the emission process (not plotted) instead of
the absorption process.

6. Conclusions

Quantum transport formalisms require modeling the perturbation induced by non-
simulated degrees of freedom (like photons or phonons) on degrees of freedom of the
simulated active region (the electrons). Among a number of different algorithms that allow
us to include scattering events, here, we explore the possibility of implementing such
scattering events as transitions between single-particle time-dependent pure states. We
have shown that the Bohmian theory, through the use of BCWFs, allows for a rigorous
implementation of transitions between pre- and post-selected single-particle pure states
in the active device that is valid for both Markovian and non-Markovian conditions.
Furthermore, we have shown that the practical implementation of such transitions requires
one to model scattering events as a shift in central energies of BCWFs instead of a shift in
central momenta. This last result seems to indicate dramatic consequences for quantum
transport formalisms that introduce collisions through changes in momentum, e.g., the
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Wigner function approach, when dealing with non-flat potential profiles where energy and
momentum are non-commuting operators. This paper is part of a global and long-term
research project that aims to develop the so-called BITLLES simulator [18]. We argue that
the amount of information that this simulator framework can provide (from steady-state
DC to transient and AC including the fluctuations of the current) in the quantum regime
is comparable to the predicting capabilities of the traditional Monte Carlo solution of the
Boltzmann transport equation in the semi-classical regime.
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