
entropy

Article

Multi-Scale Aggregation Graph Neural Networks Based on
Feature Similarity for Semi-Supervised Learning

Xun Zhang 1 , Lanyan Yang 1, Bin Zhang 1, Ying Liu 1,*, Dong Jiang 2,* , Xiaohai Qin 1 and Mengmeng Hao 2

����������
�������

Citation: Zhang, X.; Yang, L.; Zhang,

B.; Liu, Y.; Jiang, D.; Qin, X.; Hao, M.

Multi-Scale Aggregation Graph

Neural Networks Based on Feature

Similarity for Semi-Supervised

Learning. Entropy 2021, 23, 403.

https://doi.org/10.3390/e23040403

Academic Editor: Jaesung Lee

Received: 25 January 2021

Accepted: 24 March 2021

Published: 28 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Beijing Key Laboratory of Big Data Technology for Food Safety, School of Computer Science and Engineering,
Beijing Technology and Business University, Beijing 100048, China; zhangxun@btbu.edu.cn (X.Z.);
yly_951010@yeah.net (L.Y.); zb18041963006@163.com (B.Z.); qxh_4929@163.com (X.Q.)

2 Key Laboratory of Resources Utilization and Environmental Remediation, Institute of Geographic Sciences
and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
haomm.16b@igsnrr.ac.cn

* Correspondence: liu_ying@th.btbu.edu.cn (Y.L.); jiangd@igsnrr.ac.cn (D.J.)

Abstract: The problem of extracting meaningful data through graph analysis spans a range of
different fields, such as social networks, knowledge graphs, citation networks, the World Wide
Web, and so on. As increasingly structured data become available, the importance of being able to
effectively mine and learn from such data continues to grow. In this paper, we propose the multi-
scale aggregation graph neural network based on feature similarity (MAGN), a novel graph neural
network defined in the vertex domain. Our model provides a simple and general semi-supervised
learning method for graph-structured data, in which only a very small part of the data is labeled
as the training set. We first construct a similarity matrix by calculating the similarity of original
features between all adjacent node pairs, and then generate a set of feature extractors utilizing the
similarity matrix to perform multi-scale feature propagation on graphs. The output of multi-scale
feature propagation is finally aggregated by using the mean-pooling operation. Our method aims to
improve the model representation ability via multi-scale neighborhood aggregation based on feature
similarity. Extensive experimental evaluation on various open benchmarks shows the competitive
performance of our method compared to a variety of popular architectures.

Keywords: graph analysis; graph neural network; semi-supervised learning; neighborhood aggrega-
tion

1. Introduction

Convolutional neural networks (CNNs) [1] demonstrate state-of-the-art performance
in a variety of learning tasks for processing 1D, 2D, and 3D Euclidean data, such as videos,
acoustic signals, and images. However, the convolution operation is not applicable to deal
with non-Euclidean data such as graphs, since each node may have a different number of
adjacent nodes, and it is difficult to perform convolution operations using a convolution
kernel of the same size.

In recent years, an increasing number of applications have represented data in the
form of graphs. For example, in e-commerce, graph-based learning systems can leverage
the interaction between users and products to make highly accurate recommendations.
In chemistry, molecules are modeled as graphs that require the identification of their
biological activity for drug discovery. In citation networks, papers are linked through
citations, so they need to be grouped. Graph deep learning models have achieved great
success in modeling relational data, including link prediction [2–4] graph classification [5,6],
and semi-supervised node classification [7,8].

There are many approaches for leveraging deep learning algorithms on graphs. Node
embedding methods use random walks or matrix factorization to directly train an individ-
ual node embedding, often without using node features and usually in an unsupervised

Entropy 2021, 23, 403. https://doi.org/10.3390/e23040403 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-5502-2974
https://orcid.org/0000-0002-4154-5969
https://doi.org/10.3390/e23040403
https://doi.org/10.3390/e23040403
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23040403
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/23/4/403?type=check_update&version=3

Entropy 2021, 23, 403 2 of 17

manner, such as DeepWalk [9], LINE [10], and node2vec [11]. However, these are unsu-
pervised algorithms that ignore the feature attributes of nodes. Therefore, they cannot
perform node classification tasks in an end-to-end manner. Unlike previous methods based
on random walking, the use of neural networks in graphs has been extensively studied in
recent years. Examples for these include ChebNet [12], MoNet [13], GCN [8], and SSE [14],
SGC [15]. Among these categories, this class of message-passing algorithms has received
special attention because of its flexibility and good performance.

Recently, there has been increasing research interest in applying convolutional op-
erations on graphs. These graph convolutional networks (GCNs) [8,15] are based on the
neighborhood aggregation scheme that combines information from neighborhoods to gen-
erate node embedding. Compared with traditional methods, GCNs achieve promising
performance in various tasks (e.g., node classification [8,16] and graph classification [12]).
Nevertheless, GCN-based models are usually shallow, which limits the scale of the recep-
tive field. When GCN is set up as a two-layer network, there is usually a better classification
effect. However, the two-layer GCN model only aggregates information from 1-hop and
2-hop neighbors for each node; due to the limitation of the receptive field, it is difficult
for this model to obtain sufficient global information. However, simply adding more
layers to the GCN model will degrade the classification performance. According to the
explanation in [17], each GCN layer essentially acts as a form of Laplacian smoothing, and
as the number of layers increases, the hidden layer representations of all nodes will tend
to converge to the same value, which will lead to over-smoothing [17,18]. Although some
methods [19,20] attempt to obtain more global information through deeper models, they
are either unsupervised models or require many training examples. Consequently, they
still cannot solve the semi-supervised node classification task well.

Furthermore, for the semi-supervised learning, GCN-based models use a symmetric
normalized adjacency matrix as the aggregation matrix to aggregate local information.
However, the normalized adjacency matrix can only simply aggregate feature information
from neighboring nodes for the target node. The original feature distribution relationship
between the target node and its neighboring nodes is not considered in the process of
aggregating information, which will result in failure to distinguish the relative importance
of neighboring nodes for the target node. These neighboring nodes whose original feature
distribution is closer to the target node should have a larger aggregation weight when
aggregating information.

To solve the above-mentioned issues, in this paper, we propose a multi-scale aggre-
gation graph neural network based on feature similarity (MAGN). We first construct a
similarity matrix as the aggregation matrix by calculating the original feature similarity
between adjacent node pairs. The similarity matrix is used as the aggregation matrix, which
can distinguish the relative importance of neighboring nodes for the target node according
to the original feature distribution relationship. We then utilize the similarity matrix to
perform feature propagation (i.e., aggregation) of K steps. As the number of propagation
steps increases, the scope of feature propagation centered on each node gradually expands,
thereby capturing more global information for each node. Finally, an element-wise mean-
pooling operation is applied to aggregate the output of feature propagation of different
steps. This aggregation of multi-step (i.e., multi-scale) feature propagation can improve
the model representation capability. We conducted extensive experiments on a variety of
public datasets and show the competitive performance of our method compared to various
popular architectures.

The rest of this article is organized as follows. Section 2 reviews the related work.
In Section 3, we describe our proposed method, and then perform an experimental evalua-
tion in Section 4. Finally, in Section 5, we summarize our contributions and future work.

2. Related Work

Given a graph G = (V, E), where V and E are the set of n nodes and the set of edges
respectively. Let Xi nodes and the set of edges respectively. Let denote the feature vector

Entropy 2021, 23, 403 3 of 17

for node i and Yi denote the true label. All node features (labeled and unlabeled) are
represented by X= [X1, X2, . . . , Xn]

T ∈ Rn×c, with a c-dimensional feature vector for per
node. Let L denote the set of labeled nodes and Y ∈ R|L| × f denote the one-hot label matrix,
where f is the number of classes.

2.1. Graph-Based Semi-Supervised Learning

Generally, graph-based semi-supervised learning can be defined by the following loss
function:

L = Llabel + λLreg (1)

Llabel and Lreg are defined as,

Llabel = ∑
i∈L

l(f (Xi), Yi) and Lreg = ∑
(i,j)∈E

Aij‖ f (Xi)− f
(
Xj
)
‖2 (2)

where Llabel is the standard supervised loss for loss function l and Lreg is called as graph
Laplacian regularization. Lreg can ensure that connected nodes have a similar model
output, λ ∈ R is the regularization coefficient. f (Xi) denotes the label prediction of node
i, and f (Xi) is predicted by learning both labeled and unlabeled nodes simultaneously.
A represents an adjacency matrix or other graph construction and Aij denotes a certain
relationship between graph nodes i and j.

Graph-based semi-supervised learning has been a popular research field in the past
few years. By using the graph structure to aggregate the feature information from the
labeled and unlabeled nodes, learning can be done with very few labels. There are al-
ready many methods for graph-based semi-supervised learning. The label propagation
algorithm [21] uses labeled node label information to predict unlabeled node label infor-
mation and uses the relationship between samples to establish a complete graph model.
ManiReg [22] calculates the supervised loss on the labeled nodes and calculates the un-
supervised loss on all nodes using the graph Laplacian regularization. SemiEmb [23]
regularizes a deep neural network with an embedding-based regularizer. Planetoid [7]
is a method based on sampling, and the authors derived a sampling algorithm based on
random walks to obtain the positive and negative contexts for each data point.

2.2. Graph Neural Networks

Graph neural networks (GNNs) are an extension of neural networks to structured
data encoded as graphs, which update the features X(t−1)

i of node i ∈ V of node in layer
t− 1 by aggregating local information via

X(t)
i = f (t)Θ

(
X(t−1)

i ,
{

X(t−1)
w

}
w∈ N (i)

)
, i.e., X(t)

i = σ

Θ(t) ∑
w∈ N (i)∪{i}

C(t−1)
i, w X(t−1)

i

 (3)

where N (i) is the set of neighbors of node i in the graph and f (t)Θ is a differential function

parameterized by weights Θ(t). In some current implementations, C(t−1)
i,w is defined as

either static [24], structure- [8] or data-dependent [25].
GNNs were originally introduced as extensions of recurrent neural networks. They

learn a target node’s representation by propagating neighbor information in an iterative
manner until a stable fixed point is reached. However, as the weights are shared among
all nodes, GNNs can also be interpreted as extensions of convolutional neural networks
on a 2D grid to general graphs and aim at addressing graph-related tasks in an end-
to-end manner. GNNs have been successfully applied in various applications, such as
community detection [26,27], molecular activation prediction [28], matrix completion [29],
combinatorigal optimization [30], and detecting similar binary codes [31].

Entropy 2021, 23, 403 4 of 17

2.3. Semi-Supervised Learning with GCN

The GCN [14] model is a special case of GNNs, and it is a simple but powerful
architecture that stacks two layers of specific propagation and perceptron. Given the input
feature matrix X and adjacency matrix A, the output of the two-layer GCN model can be
defined as:

Z = so f tmax(ÂReLU(ÂXΘ(1))Θ(2)) (4)

Here, Â = D̃−1/2 ÃD̃−1/2 is a symmetric normalized adjacency matrix and Ã = A + I,
where I ∈ Rn×n is the identity matrix and D̃ is a diagonal degree matrix with D̃ii =

∑j Ãij. ReLU is a rectified linear activation function where ReLU(x) = max {0, x}, and
so f tmax(xi) =

1
m exp(xi) with m = ∑i exp(xi) is applied row-wise. The weight matrices

Θ(1) ∈ Rc×h and Θ(2) ∈ Rh× f are trained to minimize the cross-entropy loss over all
labeled examples L:

LGCN = −∑
i∈L

f

∑
l=1

Yil ln Zil (5)

The GCN model combines graph structure and node features in the convolution,
where the features of unlabeled nodes are mixed with those of nearby labeled nodes. As
the GCN model leverages the features of unlabeled nodes in training, it only requires fewer
labeled nodes to achieve better prediction results.

3. The Proposed Method

In this section, we introduce our method in two steps. First, we introduce the process
of calculating the similarity matrix. Then, we introduce the multi-scale aggregation graph
neural network method based on the similarity matrix.

Compared with the previous graph convolution models, our method has two inno-
vations: (i) We no longer use the adjacency matrix to participate in node feature update.
We construct a similarity matrix to take the place of the adjacency matrix, which can distin-
guish the relative importance of neighbor nodes for the target node in the feature update;
(ii) We use an average encoding with skip connections in the feature propagation of each
layer, which is an aggregation of multi-scale feature propagation. Compared to previous
single-scale feature propagation methods (e.g., GCN [8] and SGC [15]), this multi-scale
aggregation can not only retain adequate lower-order neighbors’ information, but also
obtain more global information.

The flow illustration of the proposed method is shown in Figure 1. This similarity
matrix needs to be obtained in advance. During training, the obtained similarity matrix
can be used directly. First, we need to calculate the similarity matrix and normalize the
similarity matrix. Since the adjacency matrix can be easily obtained, we can obtain the
similarity matrix according to the adjacency matrix and the original feature matrix. Then,
we need to build network architecture of the proposed method, mainly divided into three
steps: (i) we need to input the feature matrix into a fully connected network for linear
transformation to reduce the feature dimensions; (ii) nonlinear activation is performed
to obtain node hidden representations; (iii) multi-scale neighborhood aggregation is per-
formed to generate node embeddings. A multi-layer network architecture can be generated
by repeating these three steps.

Entropy 2021, 23, 403 5 of 17
Entropy 2021, 23, 403 5 of 17

Similarity
matrix

Graph

Feature
matrix

Adjacency
matrix

Linear
transformation

Nonlinear
activation

similarity matrix
Normalize

Multi-scale
neighborhood

aggregation

Generate node
embedding

Figure 1. Flow illustration of the proposed architecture.

3.1. Calculating Similarity Matrix

Following the notation in Section 2, 1 2=[, , ,]n
n cX X X X Τ ×∈  is the feature

matrix, composed of the features of all labeled and unlabeled nodes, where c
iX ∈  is

the c-dimensional feature vector of node i and n is the number of all nodes. The graph
structure is represented by the adjacency matrix n nA ×∈ . Generally, the feature similar-
ity between two nodes is compared by calculating their feature distance. The smaller the
feature distance is, the greater the similarity, and conversely, the smaller the similarity. In
our model, we use the Manhattan distance to calculate the feature similarity between two
nodes.

Nodes i and j are adjacent nodes in the graph, and the Manhattan distance be-
tween their features can be gained by the following formula:

1 1 2 2
1

| - |+ | - |+ + | - |= | - |i j i j i j ic jc

c

i jd X X X X X X X Xε ε
ε =

= ⋅ ⋅ ⋅  (6)

Calculating the similarity coefficient between nodes i and j via

)exp(
1

ij
ij d+

=
μ

α (7)

where μ is the smoothing parameter. By Equation (7), a smaller feature distance will
obtain a larger similarity coefficient.

The similarity matrix n nS ×∈  is defined by











=
+

∈

=

otherwise 0,

 ,
1

1

),(,

ji

 Eji

S

ij

ij μ

α

(8)

where Eji ∈),(means that nodes i and j are adjacent nodes in the graph, similar-
ity coefficient ijα of adjacent nodes i and j is calculated by Equations (6) and (7).

Algorithm 1 describes the process of calculating the similarity matrix S . Note that
the input feature matrix needs to be normalized before calculating the similarity matrix.
Otherwise, if the similarity gap of different neighboring nodes is too great, it will lead to
lower classification accuracy. Actually, S can be regarded as an adjacency matrix with
weights. S is used in feature propagation, which can distinguish the relative importance
of neighbors based on the similarity of original features between the target node and
neighbors. These neighbors with higher similarity tend to play a more important role in
feature propagation.

Algorithm 1. Calculate Similarity Matrix S
：1: Input feature matrix n cX ×∈  , adjacency matrix n nA ×∈
：2: output similarity matrix n nS ×∈

3: Perform normalization XDX 1ˆ −← with diagonal matrix  =
= c

iXDii 1
ˆ

ε ε
4: Initialize S with zeros

Figure 1. Flow illustration of the proposed architecture.

3.1. Calculating Similarity Matrix

Following the notation in Section 2, X= [X1, X2, . . . , Xn]
T ∈ Rn×c is the feature matrix,

composed of the features of all labeled and unlabeled nodes, where Xi ∈ Rc is the c-
dimensional feature vector of node i and n is the number of all nodes. The graph structure
is represented by the adjacency matrix A ∈ Rn×n. Generally, the feature similarity between
two nodes is compared by calculating their feature distance. The smaller the feature
distance is, the greater the similarity, and conversely, the smaller the similarity. In our
model, we use the Manhattan distance to calculate the feature similarity between two
nodes.

Nodes i and j are adjacent nodes in the graph, and the Manhattan distance between
their features can be gained by the following formula:

dij = |Xi1 − Xj1|+|Xi2 − Xj2|+ · · · +|Xic − Xjc|=
c

∑
ε=1

∣∣Xiε − Xjε
∣∣ (6)

Calculating the similarity coefficient between nodes i and j via

αij =
1

µ + exp(dij)
(7)

where µ is the smoothing parameter. By Equation (7), a smaller feature distance will obtain
a larger similarity coefficient.

The similarity matrix S ∈ Rn×n is defined by

Sij =


αij, (i, j) ∈ E
1

µ+1 , i = j
0, otherwise

(8)

where (i, j) ∈ E means that nodes i and j are adjacent nodes in the graph, similarity
coefficient αij of adjacent nodes i and j is calculated by Equations (6) and (7).

Algorithm 1 describes the process of calculating the similarity matrix S. Note that
the input feature matrix needs to be normalized before calculating the similarity matrix.
Otherwise, if the similarity gap of different neighboring nodes is too great, it will lead
to lower classification accuracy. Actually, S can be regarded as an adjacency matrix with
weights. S is used in feature propagation, which can distinguish the relative importance
of neighbors based on the similarity of original features between the target node and
neighbors. These neighbors with higher similarity tend to play a more important role in
feature propagation.

Entropy 2021, 23, 403 6 of 17

Algorithm 1. Calcul ate Similarity Matrix S

1: Input: feature matrix X ∈ Rn×c, adjacency matrix A ∈ Rn×n

2: output: similarity matrix S ∈ Rn×n

3: Perform normalization X ← D̂−1X with diagonal matrix D̂ii = ∑c
ε=1 Xiε

4: Initialize S with zeros
5: for i to n do
6: N (i)= Non-zero(Ai) // N (i) is the set of 1-hop neighbors of node i
7: for j in N (i) ∪ {i} do

8: dij = ∑c
ε=1

∣∣∣Xiε − Xjε

∣∣∣ // calculating the feature distance of nodes i and j

9: Sij = (µ + exp(dij))
−1 // calculating the feature similarity of nodes i and j

10: end for
11: end for
12: return S

We need to use the similarity matrix (calculated in Algorithm 1) for the proposed
architecture to perform multi-scale feature propagation, specific as shown in Figure 2,
where X represents the feature matrix and S represents the feature matrix and represents
the similarity matrix. First, we need to perform linear transformation and nonlinear
activation on the feature matrix X to obtain the hidden feature representation H ∈ Rn×r,
where n represents the number of nodes in the graph and r represents the hidden feature
dimensions. Next we use the normalized similarity matrix to perform multi-scale feature
propagation on hidden feature representation H. Then we use an aggregator to aggregate
the output of multi-scale feature propagation to generate an embedding matrix H̃ ∈ Rn×r.
In Figure 2, “+” means aggregator, here we use mean-pooling as aggregator. For the
proposed method, we will describe it in further detail in Section 3.2.

Entropy 2021, 23, 403 6 of 17

5: for 0=i to n do
6: ()i = Non-zero(iA) // ()i is the set of 1-hop neighbors of node i

7: for j in () { }i i∪ do

8: 1
= | - |ij

c
i jd X Xε εε = // calculating the feature distance of nodes i and j

9: 1))(exp(−+= ijij dS μ // calculating the feature similarity of nodes i and j
10: end for
11: end for
12: return S

We need to use the similarity matrix (calculated in Algorithm 1) for the proposed
architecture to perform multi-scale feature propagation, specific as shown in Figure 2,
where X represents the feature matrix and S represents the similarity matrix. First, we
need to perform linear transformation and nonlinear activation on the feature matrix X
to obtain the hidden feature representation n rH ×∈  , where n represents the number
of nodes in the graph and r represents the hidden feature dimensions. Next we use the
normalized similarity matrix to perform multi-scale feature propagation on hidden fea-
ture representation H . Then we use an aggregator to aggregate the output of multi-scale
feature propagation to generate an embedding matrix n rH ×∈  . In Figure 2, " + " means
aggregator, here we use mean-pooling as aggregator. For the proposed method, we will
describe it in further detail in Section 3.2.

[1,1,0,1,1,1]

[1,0,0,1,1,1][1,1,0,0,1,0]

[1,0,0,1,0,1]

[0,0,1,1,0,1]

[1,1,1,1,0,0]

0.5
0.5

0.5
0.5

0.5
0.5

0.4 0.31 0.31 0.23 0
0.4
0.31

0.31

0.23
0

0.27
0.27

0 0 0 0

0 0 0 0

0
0
0

0 0 0
0 0
0 0

1 01 1 1 1
1 00 1 1 1
1 01 0 1 0
1 00 1 0 1
0 10 1 0 1
1 11 1 0 0

X +n rH ×∈ n rH ×∈ 

Linear transformation

Multi-scale feature
propagation

Embedding
Matrix

Agg

S

Normalize S

Nonlinear
activation

Figure 2. Diagrammatic representation of the proposed architecture.

3.2. MAGN Model
In the GCN, hidden representations of each layer are aggregated among neighbors

that are one hop away. This implies that after K layers, a node extracts feature information
from all nodes that are K hops away in the graph. Each GCN layer has only a size-1 feature
extractor, so more layers are needed to obtain adequate global information. Different from
GCN, we explore a set of size-1 up to size-K feature extractors in each layer to extract
multi-scale neighborhood features for node representations. Considering that if only a
size-K feature extractor is used, the resulting model is linear; this linear approximation
leads to information loss and classification accuracy degradation. For example, the SGC
[15] model only uses a fixed size-K feature extractor. Although the training time of the
SGC model is reduced to a record low, its performance on some benchmark datasets is
degraded compared with GCN. In contrast, using a set of size-1 up to size-K feature ex-
tractors (e.g., in our MAGN) can avoid the linear approximation and increase the repre-
sentation ability. More importantly, our model needs fewer layers to obtain adequate
global information.

Figure 2. Diagrammatic representation of the proposed architecture.

3.2. MAGN Model

In the GCN, hidden representations of each layer are aggregated among neighbors
that are one hop away. This implies that after K layers, a node extracts feature information
from all nodes that are K hops away in the graph. Each GCN layer has only a size-1 feature
extractor, so more layers are needed to obtain adequate global information. Different from
GCN, we explore a set of size-1 up to size-K feature extractors in each layer to extract multi-
scale neighborhood features for node representations. Considering that if only a size-K
feature extractor is used, the resulting model is linear; this linear approximation leads
to information loss and classification accuracy degradation. For example, the SGC [15]
model only uses a fixed size-K feature extractor. Although the training time of the SGC
model is reduced to a record low, its performance on some benchmark datasets is degraded
compared with GCN. In contrast, using a set of size-1 up to size-K feature extractors (e.g., in

Entropy 2021, 23, 403 7 of 17

our MAGN) can avoid the linear approximation and increase the representation ability.
More importantly, our model needs fewer layers to obtain adequate global information.

We first normalize the similarity matrix S, and let S̃ denote the “normalized” similar-
ity matrix:

S̃ = D−1S (9)

where D is a diagonal matrix and D = diag(∑n
j=1 S1j, . . . ,∑n

j=1 Snj). For the overall model,
we consider a multi-layer MAGN with the following layer-wise propagation rule:

H̃(t) =
1

K + 1

K

∑
k=0

(S̃kσ(H̃(t−1)Θ(t))) (10)

where H̃(t−1) is the feature representation of the (t− 1)-th layer; H̃(0) equals to the input
feature matrix X. Θ(t) is a layer-specific trainable weight matrix, and σ denotes ReLU
activation function. Note that the input feature matrix X consists of all node features
(i.e. labeled and unlabeled), and we can utilize the similarity matrix to combine feature
information from labeled and unlabeled nodes to generate node embedding. S̃K represents
the k-th power of S̃ and we define S̃0 as the identity matrix; S̃1 to S̃K represent a set of
size-1 up to size-K feature extractors, which are used to extract multi-scale neighborhood
features. When k > 1, calculating the k-th power of S̃ can transfer the similarity from 1-hop
neighbors to k-hop neighbors, which is equivalent to adding an edge directly connected
to the k-hop neighbors for each node. Therefore, our model can directly obtain feature
information from k-hop neighbors for each node by learning the k-th power of S̃. With the
increase in k, the scope of feature extraction (i.e., feature propagation) gradually expands,
which can capture more global information.

In each MAGN layer, feature representations are updated in four stages: linear trans-
formation (i.e., feature learning), nonlinear activation, feature propagation, and multi-scale
aggregation. We adopt a strategy of learning first and then propagating, using a trainable
weight matrix to perform linear transformation to degrade the feature dimensions, and
then perform multi-scale feature propagation on low-dimensional features. Compared
with the strategy of propagating first and then learning, using this method can reduce
computational complexity and shorten the training time. We describe each step in detail.

Linear transformation and nonlinear activation. Each MAGN layer first performs
linear transformation by a trainable weight matrix Θ(t) to learn node features. Then, a
nonlinear activation function ReLU is applied pointwise before outputting hidden repre-
sentation H(t):

H(t) = ReLU(H̃(t−1)Θ(t)) (11)

In particular, H̃(0) = X and H(1) = ReLU(X Θ(1)) when t = 1.
Feature propagation and multi-scale aggregation. After the feature transformation,

we use the “normalized” similarity matrix S̃ to generate a set of size-1 up to size-K feature
extractors for multi-scale feature propagation. Then, a mean-pooling operation is applied
to aggregate hidden representation H(t) and the output of multi-scale feature propagation.
In summary, the final feature representation updating rule of the t-th layer is:

H̃(t) = meanpool (H(t) + S̃1H(t) + · · ·+ S̃K H(t)) =
1

K + 1

K

∑
k=0

(S̃k H(t)) (12)

where S̃1H(t) to S̃K H(t) denote feature propagation on different scales of the graph and
can directly obtain feature information across near or distant neighbors. S̃0H(t) = H(t) is
added to keep more of its own feature information for each node. (S̃k)ij represents the
probability of starting at node i to complete k steps of the random walk and finally reaching
node j. The k-th power of S̃ contains statistics from the k-th step of a random walk on the

Entropy 2021, 23, 403 8 of 17

graph. Therefore, S̃1 to S̃K can combine information from different step-sizes (i.e., graph
scales). The output row-vector of individual node i is:

H̃(t)
i =

1
K + 1

(
K

∑
k=0

∑
j∈ Nk(i)∪{i}

(S̃k)ijH
(t)
j) (13)

where Nk(i) is an empty set if k = 0; otherwise, it is the set of k-hops neighbors of node i.
For an individual node, its final feature representation in the t-th layer is the aggregation of
multi-hops neighbors’ features and its own features.

It is worth noting that the propagation scheme of this model does not require any
additional parameters (i.e., trainable weights) to train, in contrast to models such as GCN,
which usually require more parameters for each additional propagation function. Therefore,
each layer of this model can propagate farther with very few parameters.

Prediction function. The output layer is similar to GCN, and we use a softmax
function to predict the labels. The class prediction Ẑ of a t-layer MAGN can be written as:

Ẑ = so f tmax(H̃(t)) (14)

Loss function. The loss function is defined as the cross-entropy of prediction over the
labeled nodes:

LMAGN = −∑
i∈L

f

∑
l=1

Ŷil ln Ẑil (15)

where L is the set of labeled nodes used as the training set and f is the number of classes.
Ŷ ∈ R| L|× f represents the corresponding true label matrix for the training set, and Ŷil is 1
if the node i belongs to class l; otherwise, it is 0. Ẑil is the predicted probability that node i
is of class l.

Our model can learn based on the features of both labeled and unlabeled nodes
simultaneously, and only use the training set labels to calculate the loss (i.e., only the
training set labels are used for learning). Therefore, our model is a semi-supervised
learning method for graphs. The proposed MAGN model for semi-supervised learning is
schematically depicted in Figure 3, on the left is an input graph, in the middle is a t-layer
MAGN model, and on the right is an output graph, where S̃ is the normalized similarity
matrix, I is the identity matrix and equal S̃0. × is the matrix-matrix multiply operator, and
σ is the ReLU activation function. H̃(t−1) is the input feature representation, H̃(0) = X,
and H̃(t) is the output feature representation. Overall, Figure 3 shows that labeled and
unlabeled nodes are used to predict the labels of unlabeled nodes via the MAGN model.

Entropy 2021, 23, 403 9 of 17

Input Graph

x1
x3

x2

x4

x5 x6 x7

x8
x9

X=[x1, ...,xn]T

Predictions

Class-1: Class-2: Class-3: Features Vector:
－ 1 0 +1
Feature Value:

Feature Learning
⊗ σ



0-step Feature Propagation
⊗I

1-step Feature Propagation
⊗

K-step Feature Propagation
⊗

MAGN

1S~

KS~

Unlabeled:

1)(H −t~) (Θ t)(H t~
)(H t

)(H t

)(H t

)(H t

Mean
Pool

)~(softmaxˆ)(H t=Z

Figure 3. Schematic depiction of the MAGN network for semi-supervised learning.

4. Experiments
In this section, we test our proposed MAGN model on semi-supervised node classi-

fication tasks. We first introduce the four datasets used in the experiments. Then, we list
the compared methods and some implementation details. Finally, we test the classification
accuracy of our model on fixed data splits and random data splits and compare it with
some popular methods.

4.1. Datasets
For our experiments, we used three well-known citation network datasets: Cora and

CiteSeer from [32], and PubMed from [33]. In the three citation network datasets, nodes
represent documents and edges are citation links. We also introduce a co-author dataset
for the node classification task: Coauthor CS (from [34]), which is a co-authorship graph.
Here, nodes are authors, that are connected by an edge if they co-authored a paper, and
the class labels indicate the most active research field of each author. All datasets use a
bag-of-words representation of the papers’ abstracts as features. These four datasets can
be downloaded from https://github.com/shchur/gnn-benchmark/tree/master/data (ac-
cessed on 5 April 2020). The details of these four datasets are summarized in Table 1.

Table 1. The Statistics of Datasets.

Dataset Type Classes Features Nodes Edges

Cora Citation 7 1433 2708 5429
CiteSeer Citation 6 3703 3327 4732
PubMed Citation 3 500 19,717 44,338

Coauthor CS Co-author 15 6805 18,333 81,894

4.2. Compared Methods
We compare our methods with other methods, including feature-based multi-layer

perceptron (MLP), manifold regularization (ManiReg [22]), semi-supervised embedding
(SemiEmb [23]), label propagation (LP [21]), and Planetoid [7], adaptive receptive paths
(GeniePath [35]), mixture model networks (MoNet [13]), graph convolutional networks
(GCN [8]), simplifying graph convolutional networks (SGC [15]), deep graph infomax
(DGI [36]), graph attention networks (GAT [25]), and scalable inception graph neural net-
works (SIGN [37]). Among them, MLP is a kind of multi-layer fully connected network;
ManiReg, SemiEmb, LP, and Planetoid do not belong to graph neural network algorithms but
are traditional graph-based semi-supervised learning methods; GCN, GeniePath, MoNet, SGC,
DGI, GAT, and SIGN are popular graph neural network algorithms.

Figure 3. Schematic depiction of the MAGN network for semi-supervised learning.

Entropy 2021, 23, 403 9 of 17

4. Experiments

In this section, we test our proposed MAGN model on semi-supervised node classifi-
cation tasks. We first introduce the four datasets used in the experiments. Then, we list
the compared methods and some implementation details. Finally, we test the classification
accuracy of our model on fixed data splits and random data splits and compare it with
some popular methods.

4.1. Datasets

For our experiments, we used three well-known citation network datasets: Cora and
CiteSeer from [32], and PubMed from [33]. In the three citation network datasets, nodes
represent documents and edges are citation links. We also introduce a co-author dataset for
the node classification task: Coauthor CS (from [34]), which is a co-authorship graph. Here,
nodes are authors, that are connected by an edge if they co-authored a paper, and the class
labels indicate the most active research field of each author. All datasets use a bag-of-words
representation of the papers’ abstracts as features. These four datasets can be downloaded
from https://github.com/shchur/gnn-benchmark/tree/master/data (accessed on 5 April
2020). The details of these four datasets are summarized in Table 1.

Table 1. The Statistics of Datasets.

Dataset Type Classes Features Nodes Edges

Cora Citation 7 1433 2708 5429
CiteSeer Citation 6 3703 3327 4732
PubMed Citation 3 500 19,717 44,338

Coauthor CS Co-author 15 6805 18,333 81,894

4.2. Compared Methods

We compare our methods with other methods, including feature-based multi-layer
perceptron (MLP), manifold regularization (ManiReg [22]), semi-supervised embedding
(SemiEmb [23]), label propagation (LP [21]), and Planetoid [7], adaptive receptive paths
(GeniePath [35]), mixture model networks (MoNet [13]), graph convolutional networks
(GCN [8]), simplifying graph convolutional networks (SGC [15]), deep graph infomax
(DGI [36]), graph attention networks (GAT [25]), and scalable inception graph neural
networks (SIGN [37]). Among them, MLP is a kind of multi-layer fully connected network;
ManiReg, SemiEmb, LP, and Planetoid do not belong to graph neural network algorithms
but are traditional graph-based semi-supervised learning methods; GCN, GeniePath,
MoNet, SGC, DGI, GAT, and SIGN are popular graph neural network algorithms.

4.3. Implementation

In practice, we make use of Pytorch for implementation by using sparse–dense matrix
multiplications. In the concrete implementation, the similarity matrix is a sparse matrix,
and the input feature matrix and the learnable weight matrices are dense matrices. All the
experiments were conducted on a computer with an Nvidia GeForce RTX 2080 Ti GPU (11
GB GPU memory, Dell, Beijing and China). For the experimental parameter settings, as
shown in Tables 2 and 3, where dropout rate [38], L2 regularization, and early stopping
are added to avoid overfitting, all the experimental methods used Adam optimizer [39].
In addition, for the parameter settings for random data splits, we set different K values for
our method in different datasets. For Cora, K = 6. For CiteSeer and PubMed, K = 5. For
Coauthor CS, K = 4.

https://github.com/shchur/gnn-benchmark/tree/master/data

Entropy 2021, 23, 403 10 of 17

Table 2. Experimental settings for fixed data splits.

Dataset
Setting Hidden

Sizes
Learning

Rate
Dropout

Rate
L2 Reg Epochs Early

Stopping
Layers K

Cora 64 0.002 0.5 0.0005 250 10 2 5
PubMed 64 0.01 0.5 0.0005 100 10 2 6
CiteSeer 64 0.01 0.5 0.0005 150 10 2 4

Table 3. Experimental settings for random data splits.

Method
Setting Hidden

Sizes
Learning

Rate
Dropout

Rate
L2 Reg Epochs Early

Stopping
Layers

MLP 64 0.01 0.5 0.0005 200 10 2
Geniepath 64 0.005 0.4 0.0005 10,000 200 2

SGC – 0.2 0.5 0.000005 200 10 1
GCN 64 0.01 0.5 0.0005 200 10 2
SIGN 128 0.0005 0.5 – 200 10 5
DGI 512 0.001 – – 5000 20 2
GAT 64 0.01 0.6 0.0005 10,000 100 2

MAGN 64 0.005 0.5 0.0005 200 10 2

4.4. Result
4.4.1. Fixed Data Splits

In this first experiment, we use the fixed data splits from [7], as they are the open
standard data splits in the literature. Fixed split is the most commonly used data splitting
method. Many works use it as a standard split to test the classification performance of their
methods. The fixed split has only one split; according to [7], all experiments use 20 nodes
per class as the training set. The size of the training set is determined by the number
of classes, which can ensure that the labels of all types of nodes are used for training.
According to the number of classes in Table 1, we can obtain the size of training sets for
Cora, CiteSeer, and PubMed to be 140, 120, and 60, respectively. The number of training
nodes in these three datasets accounts for a very small proportion of the total number of
nodes, which are 5.2% (Cora), 3.6% (CiteSeer), and 0.3% (PubMed), respectively. There is
no standard fixed split for Coauthor CS, and we use it in random data splits. Furthermore,
the validation and test sets of these three datasets keep the same size, with 500 nodes for
the validation and 1000 nodes for the test. We ran 20 different random initializations for
our method and the parameter settings are provided in Table 2. The experimental results
with a fixed split are reported in Table 4 in percentages. The classification accuracy of all
the compared methods is collected from [8,13,15,25,35,36].

From Table 4, we can see that although our method performs lower than GAT on
CiteSeer, it surpasses all compared methods on Cora and PubMed. It is worth noting
that in Table 4, the classification accuracies of these graph neural network algorithms
are much higher than that of MLP and traditional graph-based semi-supervised learning
methods. MLP is a kind of multi-layer fully connected network and cannot use graph
structure information for learning. Therefore, the classification accuracy is relatively
low. These traditional graph-based semi-supervised learning methods only leverage
graph structure information and known label information to train the semi-supervised
classifier, but the feature information of nodes is ignored in training, which leads to a lower
classification accuracy.

Entropy 2021, 23, 403 11 of 17

Table 4. Classification accuracy with a fixed split of data. The highest accuracy in each column is
highlighted in bold.

Method
Dataset

Cora CiteSeer PubMed

MLP 55.1 46.5 71.4
ManiReg 59.5 60.1 70.7
SemiEmb 59.0 59.6 71.1

LP 68.0 45.3 63.0
Planetoid 75.7 64.7 77.2

GCN 81.5 70.3 79.0
GeniePath – – 78.5

MoNet 81.7 ± 0.5 – 78.8 ± 0.3
SGC 81.0 ± 0.0 71.9 ± 0.1 78.9 ± 0.0
DGI 82.3 ± 0.6 71.8 ± 0.7 76.8 ± 0.6
GAT 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3

MAGN 83.1 ± 0.3 72.0 ± 0.2 79.9 ± 0.1

For fixed data splits, we also report the classification accuracy of our method with
different K and different t (t represents the number of network layers). Except for K and
t, the other experimental settings are the same as in Table 4 and are provided in Table
2. Experimental results are shown in Figure 4 in percent. Here, we report the average
accuracy of running 20 different random initializations for our models. From the figure,
it can be found that the model performs better when t = 2 and K ∈ [2, 7]. Although the
model has only two layers, it can obtain adequate global information by adjusting the value
of K.

Entropy 2021, 23, 403 11 of 17

Table 4. Classification accuracy with a fixed split of data. The highest accuracy in each column is
highlighted in bold.

Dataset
Method

Cora CiteSeer PubMed

MLP 55.1 46.5 71.4
ManiReg 59.5 60.1 70.7
SemiEmb 59.0 59.6 71.1

LP 68.0 45.3 63.0
Planetoid 75.7 64.7 77.2

GCN 81.5 70.3 79.0
GeniePath -- -- 78.5

MoNet 81.7 ± 0.5 -- 78.8 ± 0.3
SGC 81.0 ± 0.0 71.9 ± 0.1 78.9 ± 0.0
DGI 82.3 ± 0.6 71.8 ± 0.7 76.8 ± 0.6
GAT 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3

MAGN 83.1 ± 0.3 72.0 ± 0.2 79.9 ± 0.1

From Table 4, we can see that although our method performs lower than GAT on
CiteSeer, it surpasses all compared methods on Cora and PubMed. It is worth noting that
in Table 4, the classification accuracies of these graph neural network algorithms are much
higher than that of MLP and traditional graph-based semi-supervised learning methods.
MLP is a kind of multi-layer fully connected network and cannot use graph structure in-
formation for learning. Therefore, the classification accuracy is relatively low. These tra-
ditional graph-based semi-supervised learning methods only leverage graph structure in-
formation and known label information to train the semi-supervised classifier, but the
feature information of nodes is ignored in training, which leads to a lower classification
accuracy.

For fixed data splits, we also report the classification accuracy of our method with
different K and different t (t represents the number of network layers). Except for K
and t , the other experimental settings are the same as in Table 4 and are provided in
Table 2. Experimental results are shown in Figure 4 in percent. Here, we report the aver-
age accuracy of running 20 different random initializations for our models. From the fig-
ure, it can be found that the model performs better when 2=t and] 7 ,2 [∈K . Although
the model has only two layers, it can obtain adequate global information by adjusting the
value of K .

1 2 3

7

6

5

4

3

2

1 64.9

83.1

82.8

71.5

74.9

77.0

78.2

78.2

78.4

77.2

80.9

82.1

82.8

82.5

77.1

79.9

80.5

80.8

80.5

80.4

80.3 82.5

80.0

77.5

75.0

72.5

70.0

67.5

65.0

K

t
1 2 3

7

6

5

4

3

2

1 62.9

71.5

71.4

66.1

69.7

68.9

69.4

69.7

70.0

69.3

71.3

71.7

72.0

71.2

68.7

69.0

68.3

67.2

67.0

66.6

66.3
72

70

68

66

64

K

t
1 2 3

7

6

5

4

3

2

1 74.0

79.7

79.9

75.3

76.0

76.3

76.4

76.1

75.5

77.1

79.2

79.3

79.4

79.6

77.2

77.9

78.1

78.0

78.3

78.6

78.1
79

78

77

76

75

74

K

t
(a) (b) (c)

Figure 4. Average accuracy on different datasets when varying K and t. (a) MAGN on Cora. (b) MAGN on CiteSeer. (c)
MAGN on PubMed.
Figure 4. Average accuracy on different datasets when varying K and t. (a) MAGN on Cora. (b) MAGN on CiteSeer. (c)
MAGN on PubMed.

In addition, the smoothing parameter µ also has a certain impact on model perfor-
mance. To this end, we further test the model performance with different µ on fixed data
splits. The experimental results are shown in Figure 5 as percentages; we can see that the
model performs best when µ is set to 1. A larger µ does not improve the accuracy, which
may be because a larger µ leads to the inability to better distinguish the relative importance
of neighbor nodes.

Entropy 2021, 23, 403 12 of 17

Entropy 2021, 23, 403 12 of 17

In addition, the smoothing parameter μ also has a certain impact on model perfor-
mance. To this end, we further test the model performance with different μ on fixed
data splits. The experimental results are shown in Figure 5 as percentages; we can see that
the model performs best when μ is set to 1. A larger μ does not improve the accuracy,
which may be because a larger μ leads to the inability to better distinguish the relative
importance of neighbor nodes.

0 1 2 3 4 5 6 7
μ

82.5

83.0

0 1 2 3 4 5 6 7

μ

71.0

72.0

0 1 2 3 4 5 6 7

μ

79.5

80.0

(a) (b) (c)

Figure 5. Average accuracy of MAGN for varying smoothing parameter μ . (a) MAGN on Cora. (b) MAGN on CiteSeer.
(c) MAGN on PubMed.

Figure 6 shows the t-SNE [40] visualization of the nodes from the Cora dataset; the
left one is t-SNE visualization of the nodes in the Cora dataset from the raw features and
the right one from the Cora dataset is trained with a two-layer MAGN model using 5.2%
of labels. Colors denote the node class; we can see that the features of different types of
nodes can be well-distinguished after training.

(a) (b)

Figure 6. t-SNE visualization of the nodes from the Cora dataset. (a) Raw Cora dataset. (b) Trained
Cora dataset.

4.4.2. Random Data Splits
Since the fixed split has only one split, in order to better prove that our method has

competitive performance, we use multiple random splits in this part. The training set al-
located for each random split is different. In order to ensure the fairness of the following
comparisons, we will set some same random seeds to ensure that our method and other
compared methods have the same training, validation, and test sets in each random split.

Next, following the settings of Buchnik and Cohen [41], for Cora, CiteSeer, and Pub-
Med, we conducted experiments keeping the same size in training, validation, and test
sets as in Table 4, but now selecting those nodes uniformly at random. For Coauthor CS,
similarly, we randomly selected 20 nodes for each class as the training set, and randomly
selected 500 nodes for validation and 1000 nodes for testing. We used 10 random seeds
for 10 splits on each dataset, and every model was run with five different random initial-
izations on each split, leading to a total of 50 runs per model. Note that all models have
the same 10 random seeds, which can guarantee that all models have the same training,
validation, and test sets for each split. Experimental results (i.e., average accuracy and
standard deviation) with random data splits are shown in Table 5 and all experiments are

Figure 5. Average accuracy of MAGN for varying smoothing parameter µ. (a) MAGN on Cora. (b) MAGN on CiteSeer. (c)
MAGN on PubMed.

Figure 6 shows the t-SNE [40] visualization of the nodes from the Cora dataset; the
left one is t-SNE visualization of the nodes in the Cora dataset from the raw features and
the right one from the Cora dataset is trained with a two-layer MAGN model using 5.2% of
labels. Colors denote the node class; we can see that the features of different types of nodes
can be well-distinguished after training.

Entropy 2021, 23, 403 12 of 17

In addition, the smoothing parameter μ also has a certain impact on model perfor-
mance. To this end, we further test the model performance with different μ on fixed
data splits. The experimental results are shown in Figure 5 as percentages; we can see that
the model performs best when μ is set to 1. A larger μ does not improve the accuracy,
which may be because a larger μ leads to the inability to better distinguish the relative
importance of neighbor nodes.

0 1 2 3 4 5 6 7
μ

82.5

83.0

0 1 2 3 4 5 6 7

μ

71.0

72.0

0 1 2 3 4 5 6 7

μ

79.5

80.0

(a) (b) (c)

Figure 5. Average accuracy of MAGN for varying smoothing parameter μ . (a) MAGN on Cora. (b) MAGN on CiteSeer.
(c) MAGN on PubMed.

Figure 6 shows the t-SNE [40] visualization of the nodes from the Cora dataset; the
left one is t-SNE visualization of the nodes in the Cora dataset from the raw features and
the right one from the Cora dataset is trained with a two-layer MAGN model using 5.2%
of labels. Colors denote the node class; we can see that the features of different types of
nodes can be well-distinguished after training.

(a) (b)

Figure 6. t-SNE visualization of the nodes from the Cora dataset. (a) Raw Cora dataset. (b) Trained
Cora dataset.

4.4.2. Random Data Splits
Since the fixed split has only one split, in order to better prove that our method has

competitive performance, we use multiple random splits in this part. The training set al-
located for each random split is different. In order to ensure the fairness of the following
comparisons, we will set some same random seeds to ensure that our method and other
compared methods have the same training, validation, and test sets in each random split.

Next, following the settings of Buchnik and Cohen [41], for Cora, CiteSeer, and Pub-
Med, we conducted experiments keeping the same size in training, validation, and test
sets as in Table 4, but now selecting those nodes uniformly at random. For Coauthor CS,
similarly, we randomly selected 20 nodes for each class as the training set, and randomly
selected 500 nodes for validation and 1000 nodes for testing. We used 10 random seeds
for 10 splits on each dataset, and every model was run with five different random initial-
izations on each split, leading to a total of 50 runs per model. Note that all models have
the same 10 random seeds, which can guarantee that all models have the same training,
validation, and test sets for each split. Experimental results (i.e., average accuracy and
standard deviation) with random data splits are shown in Table 5 and all experiments are

Figure 6. t-SNE visualization of the nodes from the Cora dataset. (a) Raw Cora dataset. (b) Trained
Cora dataset.

4.4.2. Random Data Splits

Since the fixed split has only one split, in order to better prove that our method has
competitive performance, we use multiple random splits in this part. The training set
allocated for each random split is different. In order to ensure the fairness of the following
comparisons, we will set some same random seeds to ensure that our method and other
compared methods have the same training, validation, and test sets in each random split.

Next, following the settings of Buchnik and Cohen [41], for Cora, CiteSeer, and
PubMed, we conducted experiments keeping the same size in training, validation, and test
sets as in Table 4, but now selecting those nodes uniformly at random. For Coauthor CS,
similarly, we randomly selected 20 nodes for each class as the training set, and randomly
selected 500 nodes for validation and 1000 nodes for testing. We used 10 random seeds for
10 splits on each dataset, and every model was run with five different random initializations
on each split, leading to a total of 50 runs per model. Note that all models have the same 10
random seeds, which can guarantee that all models have the same training, validation, and
test sets for each split. Experimental results (i.e., average accuracy and standard deviation)
with random data splits are shown in Table 5 and all experiments are completed by us.
For every model, we selected the experimental settings that achieved the best accuracy,
and these experimental settings are provided in Table 3.

Entropy 2021, 23, 403 13 of 17

Table 5. Classification accuracy with random split of the data. The highest accuracy in each column
is highlighted in bold.

Method
Dataset

Cora CiteSeer PubMed Coauthor CS

MLP 59.23 ± 1.09 57.87 ± 1.61 58.94 ± 1.12 88.11 ± 0.76
GCN 80.77 ± 1.14 70.89 ± 1.22 79.33 ± 1.34 91.68 ± 0.64

GeniePath 79.04 ± 1.46 70.34 ± 1.16 78.52 ± 1.61 91.01 ± 0.97
SGC 80.32 ± 1.17 70.48 ± 0.94 78.39 ± 1.35 90.93 ± 0.96
SIGN 80.85 ± 1.65 68.13 ± 1.52 79.57 ± 1.94 92.02 ± 0.86
DGI 81.84 ± 1.21 71.55 ± 0.62 78.25 ± 1.53 91.09 ± 0.85
GAT 81.19 ± 1.27 71.01 ± 0.72 79.42 ± 1.21 91.33 ± 0.74

MAGN 82.44 ± 1.05 71.89 ± 0.74 80.11 ± 1.03 92.53 ± 0.45

From Table 5, we can see that our method achieves the best accuracy on all datasets.
MLP has the lowest classification accuracy on all datasets. This is mainly because MLP does
not make use of graph structure information in learning. Therefore, it cannot aggregate
neighborhood information to generate node representations, which leads to poor perfor-
mance in processing graph node classification tasks. The other compared methods are
basically shallow single-scale aggregation methods, and the feature information obtained
does not exceed the 2-hop neighborhood. Therefore, these models have difficulty obtaining
adequate global information. Our model is based on multi-scale neighborhood aggregation,
and only a small number of layers is needed to obtain adequate global information, which
leads to improved classification accuracy. In Table 6, we further compare the number
of parameters (i.e., trainable weights) that need to be trained on each dataset for these
different methods.

Table 6. Number of parameters for different methods.

Method
Dataset

Cora CiteSeer PubMed Coauthor CS

MLP 92,160 237,376 32,192 436,480
GeniePath 149,632 294,784 89,664 493,952

SGC 8598 22,218 1500 102,075
GCN 92,160 237,376 32,192 436,480
SIGN 1,297,920 3,041,280 580,992 5,424,768
DGI 999,424 2,161,152 194,304 1,811,456
GAT 92,302 237,516 32,326 436,638

MAGN 92,160 237,376 32,192 436,480

In Table 6, we can see that, except for SGC, our method’s number of parameters are
on par or lower than other compared methods. The main reason is that the propagation
scheme of our method does not require any additional parameters to train, which results
in a relatively small total number of parameters. SGC is usually a single-layer graph
convolution method, and two or more layers will cause model performance degradation.
Therefore, SGC can be trained with few parameters.

We also tested the performance of MAGN and GCN models with different network
layers on random data splits; the experimental results are shown in Figure 7. From the
figure, we can see that both MAGN and GCN achieve the highest accuracy when the
number of network layers is 2. Deep neural networks do not improve the accuracy, which
may be due to the simple bag-of-words features and the small training set size. However, it
is worth noting that the accuracy of the proposed MAGN model significantly outperforms
GCN, especially when the number of network layers is 1.

Entropy 2021, 23, 403 14 of 17

Entropy 2021, 23, 403 14 of 17

worth noting that the accuracy of the proposed MAGN model significantly outperforms
GCN, especially when the number of network layers is 1.

70

75

80

Layers
1 2 3 4 5 6

MAGN
GCN

55

60

65

70

1 2 3 4 5 6
Layers

65

70

75

80

1 2 3 4 5 6
Layers

75

80

85

90

1 2 3 4 5 6
Layers

(a) (b) (c) (d)

Figure 7. Average accuracy of MAGN and GCN for varying numbers of network layers. (a) Cora.
(b) CiteSeer. (c) PubMed. (d) Coauthor CS.

4.4.3. Random Splits with Different Training Set Sizes
Semi-supervised learning aims to obtain better learning results with less training

data, which can greatly reduce the cost of manual labeling. In the above experiment eval-
uation, we selected 20 labeled nodes per class as the training set. In order to prove that
our method still has better classification accuracy on less training data, we used some
smaller training sets (that is, we selected fewer nodes per class as the training set).

Next, we randomly selected 5, 10, and 15 nodes per class, respectively, as the training
set and kept the same size in the validation and test sets as in Table 5. Compared with Tables
4 and 5, fewer labeled nodes were used for training. We used the same 10 random seeds as
in Table 5 for determining the splits, and each model was run with five different random
initializations on each split. The experimental settings of all models are the same as in Table
5 and are provided in Table 3. The experimental results are shown in Tables 7–10.

Table 7. Classification accuracy for different training set sizes on Cora. The highest accuracy in
each column is highlighted in bold.

Size
Method 5 Per Class 10 Per Class 15 Per Class

MLP 38.35 ± 3.88 55.04 ± 2.74 55.99 ± 1.07
Geniepath 64.20 ± 3.89 73.30 ± 2.44 77.43 ± 1.34

SGC 66.28 ± 3.66 75.45 ± 2.37 78.65 ± 1.38
GCN 66.87 ± 3.89 75.43 ± 2.23 78.73 ± 1.43
SIGN 64.53 ± 4.81 74.96 ± 2.65 78.18 ± 1.61
DGI 71.01 ± 2.82 77.65 ± 2.08 79.77 ± 1.38
GAT 68.12 ± 3.91 77.51 ± 2.16 79.68 ± 1.11

MAGN 71.64 ± 3.32 78.16 ± 1.80 80.38 ± 1.53

Table 8. Classification accuracy for different training set sizes on CiteSeer. The highest accuracy in
each column is highlighted in bold.

Size
Method 5 Per Class 10 Per Class 15 Per Class

MLP 41.79 ± 5.29 51.11 ± 2.78 54.29 ± 2.28
Geniepath 56.99 ± 4.13 64.47 ± 2.27 67.98 ± 1.32

SGC 56.01 ± 6.36 64.44 ± 2.43 67.49 ± 1.41
GCN 58.31 ± 5.41 65.97 ± 2.28 68.54 ± 1.47
SIGN 52.67 ± 5.05 61.19 ± 2.45 64.84 ± 1.69
DGI 59.68 ± 4.82 66.09 ± 2.11 69.13 ± 1.51
GAT 59.19 ± 5.67 65.81 ± 2.23 68.38 ± 1.31

MAGN 60.14 ± 5.15 66.48 ± 1.75 69.47 ± 1.27

Figure 7. Average accuracy of MAGN and GCN for varying numbers of network layers. (a) Cora. (b) CiteSeer. (c) PubMed.
(d) Coauthor CS.

4.4.3. Random Splits with Different Training Set Sizes

Semi-supervised learning aims to obtain better learning results with less training data,
which can greatly reduce the cost of manual labeling. In the above experiment evaluation,
we selected 20 labeled nodes per class as the training set. In order to prove that our method
still has better classification accuracy on less training data, we used some smaller training
sets (that is, we selected fewer nodes per class as the training set).

Next, we randomly selected 5, 10, and 15 nodes per class, respectively, as the training
set and kept the same size in the validation and test sets as in Table 5. Compared with
Tables 4 and 5, fewer labeled nodes were used for training. We used the same 10 random
seeds as in Table 5 for determining the splits, and each model was run with five different
random initializations on each split. The experimental settings of all models are the same as
in Table 5 and are provided in Table 3. The experimental results are shown in Tables 7–10.

Table 7. Classification accuracy for different training set sizes on Cora. The highest accuracy in each
column is highlighted in bold.

Method
Size

5 Per Class 10 Per Class 15 Per Class

MLP 38.35 ± 3.88 55.04 ± 2.74 55.99 ± 1.07
Geniepath 64.20 ± 3.89 73.30 ± 2.44 77.43 ± 1.34

SGC 66.28 ± 3.66 75.45 ± 2.37 78.65 ± 1.38
GCN 66.87 ± 3.89 75.43 ± 2.23 78.73 ± 1.43
SIGN 64.53 ± 4.81 74.96 ± 2.65 78.18 ± 1.61
DGI 71.01 ± 2.82 77.65 ± 2.08 79.77 ± 1.38
GAT 68.12 ± 3.91 77.51 ± 2.16 79.68 ± 1.11

MAGN 71.64 ± 3.32 78.16 ± 1.80 80.38 ± 1.53

Table 8. Classification accuracy for different training set sizes on CiteSeer. The highest accuracy in
each column is highlighted in bold.

Method
Size

5 Per Class 10 Per Class 15 Per Class

MLP 41.79 ± 5.29 51.11 ± 2.78 54.29 ± 2.28
Geniepath 56.99 ± 4.13 64.47 ± 2.27 67.98 ± 1.32

SGC 56.01 ± 6.36 64.44 ± 2.43 67.49 ± 1.41
GCN 58.31 ± 5.41 65.97 ± 2.28 68.54 ± 1.47
SIGN 52.67 ± 5.05 61.19 ± 2.45 64.84 ± 1.69
DGI 59.68 ± 4.82 66.09 ± 2.11 69.13 ± 1.51
GAT 59.19 ± 5.67 65.81 ± 2.23 68.38 ± 1.31

MAGN 60.14 ± 5.15 66.48 ± 1.75 69.47 ± 1.27

Entropy 2021, 23, 403 15 of 17

Table 9. Classification accuracy for different training set sizes on PubMed. The highest accuracy in
each column is highlighted in bold.

Method
Size

5 Per Class 10 Per Class 15 Per Class

MLP 37.78 ± 3.86 49.30 ± 3.26 54.36 ± 1.94
Geniepath 67.43 ± 5.52 73.84 ± 4.35 77.11 ± 2.43

SGC 67.95 ± 5.12 73.64 ± 4.12 76.89 ± 2.10
GCN 67.92 ± 5.19 74.44 ± 3.92 77.33 ± 2.72
SIGN 65.95 ± 5.77 74.35 ± 2.91 77.51 ± 1.69
DGI 66.35 ± 6.14 73.64 ± 4.01 76.72 ± 2.32
GAT 68.13 ± 5.32 74.52 ± 3.64 77.42 ± 2.14

MAGN 70.39 ± 5.05 74.97 ± 3.53 77.96 ± 2.23

Table 10. Classification accuracy for different training set sizes on Coauthor CS. The highest accuracy
in each column is highlighted in bold.

Method
Size

5 Per Class 10 Per Class 15 Per Class

MLP 72.93 ± 2.90 82.92 ± 1.63 86.40 ± 1.23
Geniepath 88.45 ± 1.43 89.85 ± 1.32 90.72 ± 1.01

SGC 88.27 ± 1.51 89.89 ± 1.11 90.60 ± 1.24
GCN 88.44 ± 1.22 90.10 ± 1.16 91.17 ± 0.87
SIGN 88.34 ± 1.57 90.37 ± 1.14 91.34 ± 0.69
DGI 88.54 ± 1.12 90.45 ± 0.76 90.91 ± 0.74
GAT 88.52 ± 1.38 90.23 ± 1.05 91.05 ± 0.82

MAGN 89.25 ± 1.10 91.03 ± 1.17 91.96 ± 0.71

It can be seen in Tables 7–10 that the average accuracy of the proposed MAGN model
outperforms the compared models on all datasets, and the model performance is relatively
stable. This demonstrates that our model still maintains a better classification accuracy
with fewer labeled nodes.

5. Conclusions

In this paper, we proposed a novel method for semi-supervised learning on graph-
structured data. We first constructed a similarity matrix based on the original feature
distribution of adjacent node pairs. Then, we used the similarity matrix to generate a set of
feature extractors to extract multi-scale neighborhood features. Compared with traditional
graph convolution methods, our method can distinguish more than the relative importance
of neighbor nodes in feature propagation, and more importantly, it only requires a small
number of layers to obtain sufficient global information. In addition, our method can
aggregate feature information from unlabeled nodes by encoding graph structure and
node features, which is conducive to semi-supervised learning. Extensive experiments
demonstrate that our method outperforms other state-of-the-art methods in the case that
labeled data is extremely scarce. For future work, we plan to extend our methods to address
other (larger) graph datasets.

Author Contributions: Conceptualization, X.Z.; methodology, X.Z.; software, L.Y.; validation, L.Y.
and B.Z.; formal analysis, X.Z. and Y.L.; investigation, D.J.; Writing—Original draft preparation,
L.Y.; Writing—Review and editing, X.Z.; visualization, B.Z. and X.Q.; supervision, M.H.; funding
acquisition, X.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program
of China (grant number 2020YFB1806500); the Support Project of High-level Teachers in Beijing
Municipal Universities in the Period of 13th Five–year Plan (grant number CIT&TCD201904037); the
R&D Program of Beijing Municipal Education Commission (grant number KM202010011012).

Institutional Review Board Statement: Not applicable.

Entropy 2021, 23, 403 16 of 17

Informed Consent Statement: Not applicable.

Data Availability Statement: All datasets of this study are publicly available at https://github.com/
shchur/gnn-benchmark/tree/master/data (accessed on 23 March 2021).

Acknowledgments: We would like to acknowledge the Beijing Key Laboratory of Big Data Technol-
ogy for Food Safety and Key Laboratory of Resources Utilization and Environmental Remediation for
providing a research grant to conduct this work. We express gratitude to the editors for the editing
assistance. Last, we would like to thank the reviewers for their valuable comments and suggestions
on our paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the

Advances in Neural Information Processing Systems 25, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1106–1114.
2. Kipf, T.N.; Welling, M. Variational Graph Auto-Encoders. In Proceedings of the Advances in Neural Information Processing

Systems, Centre Convencions Internacional Barcelona, Barcelona, Spain, 5–10 December 2016.
3. Zhang, M.; Chen, Y. Link prediction based on graph neural networks. In Proceedings of the Advances in Neural Information

Processing Systems, Montreal, QC, Canada, 3–8 December 2018; pp. 5165–5175.
4. Bojchevski, A.; Shchur, O.; Zugner, D.; Gunnemann, S. NetGAN: Generating graphs via random walks. In Proceedings of the

35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 609–618.
5. Duvenaud, D.K.; Maclaurin, D.; Iparraguirre, J.; Bombarell, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R.P. Convolutional networks

on graphs for learning molecular fingerprints. In Proceedings of the Advances in Neural Information Processing Systems,
Montreal, QC, Canada, 7–12 December 2015; pp. 2224–2232.

6. Niepert, M.; Ahmed, M.; Kutzkov, K. Learning convolutional neural networks for graphs. In Proceedings of the 33nd International
Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 2014–2023.

7. Yang, Z.; Cohen, W.; Salakhudinov, R. Revisiting semi-supervised learning with graph embeddings. In Proceedings of the 33nd
International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 40–48.

8. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. In Proceedings of the 5th International
Conference on Learning Representations, Toulon, France, 24–26 April 2017; pp. 1–14.

9. Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710.

10. Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. Line: Large-scale information network embedding. In Proceedings of the
24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 1067–1077.

11. Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864.

12. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. In
Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 3844–3852.

13. Monti, F.; Boscaini, D.; Masci, J.; Rodola, E.; Svoboda, J.; Bronstein, M.M. Geometric deep learning on graphs and manifolds using
mixture model cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
USA, 21–26 July 2017; pp. 5425–5434.

14. Dai, H.; Kozareva, Z.; Dai, B.; Smola, A.; Song, L. Learning steady-states of iterative algorithms over graphs. In Proceedings of
the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 1114–1122.

15. Wu, F.; Zhang, T.; Souza, A.H.D.; Fifty, C.; Yu, T.; Weinberger, K.Q. Simplifying graph convolutional networks. In Proceedings of
the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6861–6871.

16. Madhawa, K.; Murata, T. Active Learning for Node Classification: An Evaluation. Entropy 2020, 22, 1164. [CrossRef] [PubMed]
17. Li, Q.; Han, Z.; Wu, X. Deeper insights into graph convolutional networks for semi-supervised learning. In Proceedings of the

AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 3538–3545.
18. Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.I.; Jegelka, S. Representation learning on graphs with jumping knowledge

networks. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp.
5449–5458.

19. Chen, H.; Perozzi, B.; Hu, Y.; Skiena, S. Harp: Hierarchical representation learning for networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 2127–2134.

20. Ying, R.; You, J.; Morris, C.; Ren, X.; Hamilton, W.L.; Leskovec, J. Hierarchical graph representation learning with differentiable
pooling. In Proceedings of the Advances in Neural Information Processing Systems 31, Montral, QC, Canada, 3–8 December 2018;
pp. 4805–4815.

21. Zhu, X.; Ghahramani, Z.; Lafferty, J.D. Semi-supervised learning using gaussian fields and harmonic functions. In Proceedings of
the 20th International Conference on Machine Learning, Washington, DC, USA, 21–24 August 2003; pp. 912–919.

https://github.com/shchur/gnn-benchmark/tree/master/data
https://github.com/shchur/gnn-benchmark/tree/master/data
http://doi.org/10.3390/e22101164
http://www.ncbi.nlm.nih.gov/pubmed/33286933

Entropy 2021, 23, 403 17 of 17

22. Belkin, M.; Niyogi, P.; Sindhwani, V. Manifold regularization: A geometric framework for learning from labeled and unlabeled
examples. J. Mach. Learn. Res. 2006, 7, 2399–2434.

23. Weston, J.; Ratle, F.; Mobahi, H.; Collobert, R. Deep learning via semi-supervised embedding. In Proceedings of the 25th
International Conference on Machine Learning, Helsinki, Finland, 5–9 June 2008; pp. 1168–1175.

24. Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How powerful are graph neural networks? In Proceedings of the 7th International
Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

25. Velikovi, G.P.; Cucurull, A.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. In Proceedings of the 6th
International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

26. Chen, Z.; Li, X.; Bruna, J. Supervised community detection with line graph neural networks. In Proceedings of the 7th International
Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

27. Choong, J.; Liu, X.; Murata, T. Optimizing Variational Graph Autoencoder for Community Detection with Dual Optimization.
Entropy 2020, 22, 197. [CrossRef] [PubMed]

28. Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural message passing for quantum chemistry. In Proceedings of
the 34th International Conference on Machine Learning, Sydney, NSW, Australia, 6–11 August 2017; pp. 1263–1272.

29. Berg, R.V.D.; Kipf, T.N.; Welling, M. Graph convolutional matrix completion. arXiv 2017, arXiv:1706.02263.
30. Dai, H.; Khalil, E.; Zhang, Y.; Dilkina, B.; Song, L. Learning combinatorial optimization algorithms over graphs. In Proceedings of

the Advances in Neural Information Processing Systems 30, Long Beach, CA, USA, 4–9 December 2017; pp. 6348–6358.
31. Xu, X.; Liu, C.; Feng, Q.; Yin, H.; Song, D. Neural network-based graph embedding for cross-platform binary code similarity

detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA, 30
October–3 November 2017; pp. 363–376.

32. Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.; Eliassi-Rad, T. Collective classification in network data. AI Mag. 2008, 7,
93–106. [CrossRef]

33. Namata, G.; London, B.; Getoor, L.; Huang, B. Query-driven Active Surveying for Collective Classification. In Proceedings of the
10th International Workshop on Mining and Learning with Graphs, Edinburgh, UK, 1 June 2012; 2012.

34. Shchur, O.; Mumme, M.; Bojchevski, A.; Günnemann, S. Pitfalls of graph neural network evaluation. arXiv 2018, arXiv:1811.05868.
35. Liu, Z.; Chen, C.; Li, L.; Zhou, J.; Li, X.; Song, L.; Qi, Y. Geniepath: Graph neural networks with adaptive receptive paths. In

Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; pp. 4424–4431.
36. Velikovi, P.; Fedus, W.; Hamilton, W.L.; Li, P.; Bengio, Y.; Hjelm, R.D. Deep Graph InfoMax. In Proceedings of the 7th International

Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.
37. Frasca, F.; Rossi, E.; Chamberlain, B.; Eynard, D.; Bronstein, M.; Monti, F. SIGN: Scalable inception graph neural networks. arXiv

2020, arXiv:2004.11198.
38. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
39. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3th International Conference on Learning

Representations, San Diego, CA, USA, 7–9 May 2015.
40. Maaten, L.V.D.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
41. Buchnik, E.; Cohen, E. Bootstrapped graph diffusions: Exposing the power of nonlinearity. In Proceedings of the Abstracts of the

2018 ACM International Conference on Measurement and Modeling of Computer Systems, Irvine, CA, USA, 18–22 June 2018;
pp. 8–10.

http://doi.org/10.3390/e22020197
http://www.ncbi.nlm.nih.gov/pubmed/33285972
http://doi.org/10.1609/aimag.v29i3.2157

	Introduction
	Related Work
	Graph-Based Semi-Supervised Learning
	Graph Neural Networks
	Semi-Supervised Learning with GCN

	The Proposed Method
	Calculating Similarity Matrix
	MAGN Model

	Experiments
	Datasets
	Compared Methods
	Implementation
	Result
	Fixed Data Splits
	Random Data Splits
	Random Splits with Different Training Set Sizes

	Conclusions
	References

