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Abstract: Transfer learning seeks to improve the generalization performance of a target task by
exploiting the knowledge learned from a related source task. Central questions include deciding
what information one should transfer and when transfer can be beneficial. The latter question is
related to the so-called negative transfer phenomenon, where the transferred source information
actually reduces the generalization performance of the target task. This happens when the two
tasks are sufficiently dissimilar. In this paper, we present a theoretical analysis of transfer learning
by studying a pair of related perceptron learning tasks. Despite the simplicity of our model, it
reproduces several key phenomena observed in practice. Specifically, our asymptotic analysis reveals
a phase transition from negative transfer to positive transfer as the similarity of the two tasks moves
past a well-defined threshold.

Keywords: transfer learning; statistics; phase transitions

1. Introduction

Transfer learning [1–5] is a promising approach to improving the performance of machine
learning tasks. It does so by exploiting the knowledge gained from a previously learned
model, referred to as the source task, to improve the generalization performance of a related
learning problem, referred to as the target task. One particular challenge in transfer learning
is to avoid so-called negative transfer [6–9], where the transferred source information reduces
the generalization performance of the target task. Recent literature [6–9] shows that negative
transfer is closely related to the similarity between the source and target tasks. Transfer
learning may hurt the generalization performance if the tasks are sufficiently dissimilar.

In this paper, we present a theoretical analysis of transfer learning by studying a pair
of related perceptron learning tasks. Despite the simplicity of our model, it reproduces
several key phenomena observed in practice. Specifically, the model reveals a sharp phase
transition from negative transfer to positive transfer (i.e., when transfer becomes helpful)
as a function of the model similarity.

1.1. Models and Learning Formulations

We start by describing the models for our theoretical study. We assume that the
source task has a collection of training data {(as,i, ys,i)}ns

i=1, where as,i ∈ Rp is the source
feature vector and ys,i ∈ R denotes the label corresponding to as,i. Following the standard
teacher–student paradigm, we assume that the labels {ys,i}ns

i=1 are generated according to
the following model:

ys,i = ϕ(a>s,iξs), ∀ i ∈ {1, . . . , ns}, (1)

where ϕ(·) is a scalar deterministic or probabilistic function and ξs ∈ Rp is an unknown
source teacher vector.
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Similar to the source task, the target task has access to a different collection of training
data {(at,i, yt,i)}nt

i=1, generated according to

yt,i = ϕ(a>t,iξt), ∀ i ∈ {1, . . . , nt}, (2)

where ξt ∈ Rp is an unknown target teacher vector. We measure the similarity of the two
tasks using

ρ
def
=

ξ>t ξs
‖ξt‖‖ξs‖

, (3)

with ρ = 0 indicating two uncorrelated tasks whereas ρ = 1 means that the tasks are
perfectly aligned.

For the source task, we learn the optimal weight vector ŵs by solving a convex
optimization problem:

ŵs = argmin
w∈Rp

1
p

ns

∑
i=1

`
(

ys,i; a>s,iw
)
+

λ

2
‖w‖2, (4)

where λ ≥ 0 is a regularization parameter and `(.; .) denotes some general loss function
that can take one of the following two forms:{

`(y; x) = ̂̀(y− x), for regression task
`(y; x) = ̂̀(yx), for classification task,

(5)

where ̂̀(.) is a convex function.
In this paper, we consider a common strategy in transfer learning [4], which consists of

transferring the optimal source vector, i.e., ŵs, to the target task. One popular approach is to
fix a (random) subset of the target weights to values of the corresponding optimal weights
learned during the source training process [10]. In our learning model, this amounts to the
following target learning formulation:

ŵt = argmin
w∈Rp

1
p

nt

∑
i=1

`
(

yt,i; a>t,iw
)
+

λ

2
‖w‖2 (6)

s.t. Qw = Qŵs. (7)

The vector ŵs is the optimal solution of the source learning problem, and Q ∈ Rp×p is a
diagonal matrix with diagonal entries drawn independently from a Bernoulli distribution
with probability δ = m/p ≤ 1. Here, m denotes the number of transferred components.
Thus, on average, we retain δp number of entries from the source optimal vector ŵs. In
addition to a possible improvement in the generalization performance, this approach can
considerably lower the computational complexity of the target learning task by reducing
the number of free optimization variables. In what follows, we refer to δ as the transfer rate
and call (6) the hard transfer formulation.

Another popular approach in transfer learning is to search for target weight vectors
in the vicinity of the optimal source weight vector ŵs. This can be achieved by adding a
regularization term to the target formulation [11,12], which in our model becomes

ŵt = argmin
w∈Rp

1
p

nt

∑
i=1

`
(

yt,i; a>t,iw
)
+

λ

2
‖w‖2 +

1
2
‖Σ(w− ŵs)‖2, (8)

with Σ ∈ Rp×p denoting some weighting matrix. In what follows, we refer to (8) as the soft
transfer formulation, since it relaxes the strict equality in (6). In fact, the hard transfer in (6)
is just a special case of the soft transfer formulation, if we set Σ to be a diagonal matrix in
which the diagonal entries are either +∞ (with probability δ) or 0 (with probability 1− δ).
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To measure the performance of the transfer learning methods, we use the general-
ization error of the target task. Given a new data sample (at,new, yt,new) with yt,new =

ϕ(ξ>t at,new), we assume that the target task predicts the corresponding label as

ŷt,new = ϕ̂[ŵ>t at,new], (9)

where ϕ̂(·) is a predefined scalar function that might be different from ϕ(·). We then
calculate the generalization error of the target task as

Etest =
1
4υ

E
[(

yt,new − ϕ̂(ŵ>t at,new)
)2
]
, (10)

where the expectation is taken with respect to the new data (at,new, yt,new). The variable υ
allows us to write a more compact formula: υ is taken to be 0 for a regression problem and
υ = 1 for a binary classification problem. Finally, we use the training error

Etrain =
1
p

nt

∑
i=1

`
(

yt,i; a>t,iŵt

)
+

1
2
‖Σ(ŵt − ŵs)‖2,

to quantify the performance of the training process. Here, we measure the training error
on the training data without regularization.

1.2. Main Contributions

The main contributions of this paper are two-fold, as summarized below:

1.2.1. Precise Asymptotic Analysis

We present a precise asymptotic analysis of the transfer learning approaches intro-
duced in (6) and (8) for Gaussian feature vectors and under regularity conditions on the
eigenvalue distribution of the weighting matrix Σ. Specifically, we show that, as the dimen-
sions p, ns, nt grow to infinity with the ratios αs = ns/p, αt = nt/p fixed, the generalization
errors of the hard and soft formulations can be exactly characterized by the solutions of two
low-dimensional deterministic optimization problems. (See Theorem 1 and Corollary 1 for
details.) Our asymptotic predictions hold for any convex loss functions used in the training
process, including the squared loss for regression problems and logistic loss commonly
used for binary classification problems.

As illustrated in Figure 1, our theoretical predictions (drawn as solid lines in the
figures) reach excellent agreement with the actual performance (shown as circles) of the
transfer learning problem. Figure 1a considers a binary classification setting with logistic
loss, and we plot the generalization errors of different transfer approaches as a function of
the target data/dimension ratio αt = nt/p. We can see that the hard transfer formulation (6)
is only useful when αt is small. In fact, we encounter negative transfer (i.e., hard transfer
performing worse than no transfer) when αt becomes sufficiently large. Moreover, the soft
transfer formulation (8) seems to achieve more favorable generalization errors compared
to the hard formulation. In Figure 1b, we consider a regression setting with a squared
loss and explore the impact of different weighting schemes on the performance of the
soft formulation. We can see that the soft formulation indeed considerably improves the
generalization performance of the standard learning method (i.e., learning the target task
without any knowledge transfer).
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Figure 1. Theoretical predictions v.s. numerical simulations obtained by averaging over 100 indepen-
dent Monte Carlo trials with dimension p = 2500. (a) Binary classification with logistic loss. We take
αs = 10αt, λ = 0.3, Σ = Ip/

√
5, and ρ = 0.85, where αs = ns/p and αt = nt/p. The functions ϕ(·)

and ϕ̂(·) are both the sign function. For hard transfer, we set the transfer rate to be δ = 0.5. Full source
transfer corresponds to δ = 1.0, whereas no transfer corresponds to δ = 0. (b) Nonlinear regression
using quadratic loss, where ϕ(·) is the ReLu function and ϕ̂(·) is the identity function. Soft identity,
beta, and uniform matrices refer to different choices of the weighting matrix in (8). Soft Identity
Matrix: Σ is an identity matrix. Soft Uniform Matrix: Σ is a random matrix with diagonal elements
drawn from the uniform distribution. Soft Beta Matrix: Σ is a random matrix with diagonal elements
drawn from the beta distribution. We scale all diagonal elements of Σ to have the same mean. We
also take αs = 10αt, λ = 0.1, and ρ = 0.8.

1.2.2. Phase Transitions

Our asymptotic characterizations reveal a phase transition phenomenon in the hard
transfer formulation. Let

δ? = argmin
0≤δ≤1

Etest(δ),

be the optimal transfer rate that minimizes the generalization error of the target task. Clearly,
δ? = 0 corresponds to the negative transfer regime, where transferring the knowledge of the
source task will actually hurt the performance of the target task. In contract, δ? > 0 signifies
that we have entered the positive transfer regime, where transfer becomes helpful.

Figure 2a illustrates the phase transition from negative to positive transfer regimes
in a binary classification setting, as the similarity ρ between the two tasks moves past a
critical threshold. Similar phase transition phenomena also appear in nonlinear regression,
as shown in Figure 2b. Interestingly, for this setting, the optimal transfer rate jumps from
δ? = 0 to δ? = 1 at the transition threshold.

For general loss functions, the exact locations of the phase transitions can only be
found numerically by solving the deterministic optimization problems in our asymptotic
characterizations. For the special case of squared loss with no regularization, however, we
are able to obtain the following simple analytical characterization for the phase transition
threshold: We are in the positive transfer regime if and only if

ρ > ρc(αs, αt) = 1− E[ϕ2(z)]−E2[zϕ(z)]
2E2[zϕ(z)]

( 1
αt − 1

− 1
αs − 1

)
, (11)

where z is a standard Gaussian random variable. This result is shown in Proposition 1.
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Figure 2. Phase transitions of the hard transfer formulation. When the similarity ρ between the two
tasks is small, we are in the negative transfer regime, where we should not transfer the knowledge
from the source task. However, as ρ moves past a critical threshold, we enter the positive transfer
regime. (a) Binary classification with squared loss, with parameters αt = 2, αs = 2αt, and λ = 0. Both
ϕ(·) and ϕ̂(·) are the sign function. (b) Nonlinear regression with squared loss, with parameters
αt = 2, αs = 2αt, and λ = 0. ϕ(.) is the ReLu function and ϕ̂(.) is the identity function.

By the Cauchy–Schwarz inequality, E[ϕ2(z)] ≥ E2[zϕ(z)]. It follows that ρc(αs, αt) is an
increasing function of αt and a decreasing function of αs. This property is consistent with our
intuition: As we increase αt, the target task has more training data to work with, and thus, we
should set a higher bar in terms of when to transfer knowledge. As we increase αs, the quality
of the optimal source vector becomes better, in which case, we can start the transfer at a lower
similarity level. In particular, when αt > αs, we have ρc(αs, αt) > 1 and, thus, the inequality
in (11) is never satisfied (because |ρ| ≤ 1 by definition). This indicates that no transfer should
be done when the target task has more training data than the source task.

1.3. Related Work

The idea of transferring informaton between different domains or different tasks was
first proposed in [1] and further developed in [2]. It has been attracting significant interest
in recent literature [4–9,11,12]. While most work focuses on the practical aspects of transfer
learning, there have been several studies (e.g., [13,14]) that seek to provide analytical
understandings of transfer learning in simplified models. Our work is particularly related
to [14], which considers a transfer learning model similar to ours but for the special case of
linear regression. The analysis in this paper is more general as it considers arbitrary convex
loss functions. We would also like to mention an interesting recent work that studies a
different but related setting referred to as knowledge distillation [15].

In term of technical tools, our asymptotic predictions are derived using the convex
Gaussian min–max theorem (CGMT). The CGMT was first introduced in [16] and fur-
ther developed in [17]. It extends a Gaussian comparison inequality first introduced
in [18]. It particularly uses convexity properties to show the equivalence between two
Gaussian processes. The CGMT has been successfully used to analyze convex regression
formulations [17,19,20] and convex classification formulations [21–24].

1.4. Organization

The rest of this paper is organized as follows. Section 2 states the technical assumptions
under which our results are obtained. Section 3 provides an asymptotic characterization of
the soft transfer formulation. Precise analysis of the hard transfer formulation is presented
in Section 4. We provide remarks about our approach in Section 5. Our theoretical predic-
tions hold for general convex loss functions. We specialize these results to the settings of
nonlinear regression and binary classification in Section 6, where we also provide addi-
tional numerical results to validate our predictions. Section 7 provides detailed proof of
the technical statements introduced in Sections 3 and 4. Section 8 concludes the paper. The
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Appendix provides additional technical details.

2. Technical Assumptions

The theoretical analysis of this paper is carried out under the following assumptions.

Assumption 1 (Gaussian Feature Vectors). The feature vectors {as,i}ns
i=1 and {at,i}nt

i=1 are
drawn independently from a standard Gaussian distribution. The vector ξs ∈ Rp can be expressed
as ξs = ρξt +

√
1− ρ2ξr, where the vectors ξt ∈ Rp and ξr ∈ Rp are independent from the feature

vectors, and they are generated independently from a uniform distribution on the unit sphere.

Moreover, our results are valid in a high-dimensional asymptotic setting, where the
dimensions p, ns, nt, and m grow to infinity at fixed ratios.

Assumption 2 (High-dimensional Asymptotic). The number of samples and the number of
transferred components in hard transfer satisfy ns = ns(p), nt = nt(p), and m = m(p), with
αs,p = ns(p)/p→ αs > 0, αt,p = nt(p)/p→ αt > 0, and δp = m(p)/p→ δ > 0 as p→ ∞.

The CGMT framework makes specific assumptions about the loss function and the
feasibility sets. To guarantee these assumptions, this paper considers a family of loss
functions that satisfy the following conditions. Note that the assumption is stated for the
target task, but we assume that it is also valid for the source task.

Assumption 3 (Loss Function). If λ > 0, the loss function `(y; .) defined in (5) is a proper
convex function in R. If λ = 0, the loss function `(y; .) defined in (5) is a proper strongly convex
function in R, where the constant S > 0 is a strong convexity parameter. In this case, we only
consider the case when αt > 1. Define a random function L(x) = ∑nt

i=1 `(yi; xi), where yi∼ϕ(zi),
with {zi} being a collection of independent standard normal random variables and ∼ denoting
equality in distribution. Denote by ∂L the sub-differential set of L(x). Then, for any constant
C > 0, there exists a constant R > 0 such thatP

(
sup‖v‖≤C

√
nt

sups∈∂L(v)‖s‖ ≤ R
√

nt

) p→∞−−−→ 1.

P
(

sup‖v‖≤C
√

nt
|L(v)| ≤ Rnt

) p→∞−−−→ 1.
(12)

Furthermore, we consider the following assumption to guarantee that the generaliza-
tion error defined in (10) concentrates in the large system limit.

Assumption 4 (Regularity Conditions). The data-generating function ϕ(·) is independent from
the feature vectors. Moreover, the following conditions are satisfied.

• ϕ(·) and ϕ̂(·) are continuous almost everywhere in R. For every h > 0 and z ∼ N (0, h), we
have 0 < E[ϕ2(z)] < +∞ and 0 < E[ϕ̂2(z)] < +∞.

• For any compact interval [c, C], there exists a function g(·) such that

sup
h∈[c,C]

|ϕ̂(hx)|2 ≤ g(x) for all x ∈ R.

Additionally, the function g(·) satisfies E[g2(z)] < +∞, where z ∼ N (0, 1).

Finally, we introduce the following assumption to guarantee that the training and
generalization errors of the soft formulation can be asymptotically characterized by deter-
ministic optimization problems.

Assumption 5 (Weighting Matrix). Let Λ = Σ>Σ, where Σ is the weighting matrix in the soft
transfer formulation. Let σmin,1(Λ) and σmin,2(Λ) denote its two smallest eigenvalues. There exists
a constant µmin ≥ 0 such that{

σmin,1(Λ)
p−−→ µmin

|σmin,1(Λ)− σmin,2(Λ)| p−−→ 0.
(13)
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Moreover, we assume that empirical distribution of the eigenvalues of the matrix Λ converges weakly
to a probability distribution Pµ(·).

The above assumptions are essential to show that the soft formulation in (8) con-
centrates in the large system limit. We provide more details about these assumptions in
Appendix A.

3. Sharp Asymptotic Analysis of Soft Transfer Formulation

In this section, we study the asymptotic properties of soft transfer formulation. Specif-
ically, we provide a precise characterization of the training and generalization errors
corresponding to (8).

The asymptotic performance of the source formulation defined in (4) has been studied
in the literature [24]. In particular, it has been shown that the asymptotic limit of the source
formulation in (4) can be quantified by the following deterministic optimization problem:

min
qs ,rs≥0

sup
σs>0

αsE
[
M`(Ys ,.)

(
rsHs + qsSs;

rs

σs

)]
− rsσs

2
+

λ

2
(q2

s + r2
s ), (14)

where Ys = ϕ(Ss) and Hs and Ss are two independent standard Gaussian random variables.
Furthermore, the functionM`(Ys ,.) introduced in the scalar optimization problem (14) is
the Moreau envelope function defined as

M`(y,.)(a; b) = min
c∈R

`(y; c) +
1
2b

(c− a)2. (15)

The expectation in (14) is taken over the random variables Hs and Ss.
In our work, we focus on the target problem with soft transfer, as formulated in (8). It

turns out that the asymptotic performance of the target problem can also be characterized
by a deterministic optimization problem:

min
qt ,rt≥0

sup
σt>−µmin

−σtr2
t

2
+

1
2

(
(1− ρ2)(q?s )

2 + (r?s )
2
)

T2(σt)

+ αtE
[
M`(Yt ,.)

(
rt Ht + qtSt; T1(σt)

)]
+

λ

2
(q2

t + r2
t )

− 1
2
(qt − ρq?s )

2(σt − 1/T1(σt)), (16)

where Yt = ϕ(St), and Ht and St are independent standard Gaussian random variables.
Additionally, µmin represents the minimum value of the random variable with distribution
Pµ(.) as defined in Assumption 5. In the formulation (16), the constants q?s and r?s are
optimal solutions of the asymptotic formulation given in (14). Moreover, the functions
T1(.) and T2(.) are defined as follows:

T1(σt) = Eµ[1/(µ + σt)], T2(σt) = Eµ[µσt/(µ + σt)],

where the expectations are taken over the probability distribution Pµ(.) defined in
Assumption 5.

Theorem 1 (Precise Analysis of the Soft Transfer). Suppose that Assumptions 1–5 are satisfied.
Then, the training error corresponding to the soft transfer formulation in (8) converges in probability
as follows:

Etrain
p→∞−−−→ C?

t −
λ

2
(
(q?t )

2 + (r?t )
2), (17)
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where C?
t denotes the minimum value achieved by the scalar formulation introduced in (16), and q?t

and r?t are optimal solutions of the scalar formulation in (16). Moreover, the generalization error
introduced in (10) corresponding to soft transfer formulation converges in probability as follows:

Etest
p→∞−−−→ 1

4υ
E
[
(ϕ(ν1)− ϕ̂(ν2))

2
]
, (18)

where ν1 and ν2 are two jointly Gaussian random variables with zero mean and a covariance matrix
given by [

1 q?t
q?t (q?t )

2 + (r?t )
2

]
.

The proof of Theorem 1 is based on the CGMT framework [17] (Theorem 6.1). A
detailed proof is provided in Section 7.3. The statements in Theorem 1 are valid for a general
convex loss function and general learning models that can be expressed as in (1) and (2).
The analysis in Section 7.3 shows that the deterministic problems in (14) and (16) are the
asymptotic limits of the source and target formulations given in (4) and (8), respectively.
Moreover, it shows that the deterministic problems (14) and (16) are strictly convex in
the minimization variables. This implies the uniqueness of the optimal solutions of the
minimization problems.

Remark 1. The results of the theorem show that the training and generalization errors correspond-
ing to soft transfer formulation can be fully characterized using the optimal solutions of scalar
formulation in (16). Moreover, from its definition, (16) depends on the optimal solutions of the
scalar formulation in (14) of the source task. This shows that the precise asymptotic performance of
the soft transfer formulation can be characterized after solving two scalar deterministic problems.

4. Sharp Asymptotic Analysis of Hard Transfer Formulation

In this section, we study the asymptotic properties of hard transfer formulation. We
then use these predictions to rigorously prove the existence of phase transitions from
negative to positive transfer.

4.1. Asymptotic Predictions

As mentioned earlier, the hard transfer formulation can be recovered from (8) as
a special case where the eigenvalues of the matrix Λ are +∞ with probability δ and 0
otherwise. Thus, we obtain the following result as a simple consequence of Theorem 1.

Corollary 1. Suppose that Assumptions 1–4 are satisfied. Then, the asymptotic limit of the hard
formulation defined in (6) is given by the following deterministic formulation:

min
qt ,rt≥0

sup
σ>0

λ

2
(q2

t + r2
t ) +

σδ

2
[
(1− ρ2)(q?s )

2 + (r?s )
2]

+ αtE
[
M`(Yt ,.)

(
rtHt + qtSt;

1− δ

σ

)]
− σr2

t
2

+
σδ

2(1− δ)
(qt − ρq?s )

2. (19)

Additionally, the training and generalization errors associated with the hard formulation converge
in probability to the limits given in (17) and (18), respectively.

4.2. Phase Transitions

As illustrated in Figure 2, there is a phase transition phenomenon in the hard transfer
formulation, where the problem moves from negative transfer to positive transfer as the
similarity of the source and target tasks increases. For general loss functions, the exact
location of the phase transition boundary can only be determined by numerically solving
the scalar optimization problem in (19).
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For the special case of squared loss, however, we are able to obtain analytical expressions.
For the rest of this section, we restrict our discussions to the following special settings:

(a) The loss function `(·, ·) in (4) and (6) is the squared loss, i.e., `(y, x) = 1
2 (y− x)2.

(b) The regularization strength λ = 0 in the source and target formulations (4) and (6).
(c) The data/dimension ratios αs and αt satisfy αs > 1 and αt > 1.

We first consider a nonlinear regression task, where the function ϕ(·) in the generative
models (1) and (2) can be arbitrary and where the function ϕ̂(·) in (9) is the identity function.

Proposition 1 (Regression Phase Transition). In addition to conditions (a)–(c) introduced above,
assume that the predefined function ϕ̂(·) in (9) is the identity function. Let δ? be the optimal
transfer rate that leads to the lowest generalization error in the hard formulation (6). Then,

δ? =

{
0 if ρ < ρc(αs, αt)

1 if ρ > ρc(αs, αt),
(20)

where ρc(αs, αt) is defined in (11).

The result of Proposition 1, for which the proof can be found in Section 7.4, shows that
ρc(αs, αt) is the phase transition boundary separating the negative transfer regime from the
positive transfer regime. When the similarity metric is ρ < ρc(αs, αt), the optimal transfer
ratio is δ? = 0, indicating that we should not transfer any source knowledge. Transfer
becomes helpful only when ρ moves past the threshold. Note that, for this particular model,
there is also an interesting feature that the optimal δ? jumps to 1 in the positive transfer
phase, meaning that we should fully copy the source weight vector.

4.3. Sufficient Condition

Next, we consider a binary classification task, where the nonlinear functions ϕ(·) and
ϕ̂(·) are both the sign function. In this part, we provide a sufficient condition for when the
hard transfer is beneficial. Before stating our predictions, we need a few definitions related
to the Moreau envelope function defined in (15). For simplicity of notation, we refer to the
Moreau envelope function asM`(·, ·). Based on [25],M`(·, ·) is differentiable in R×R+.
We refer to its derivatives with respect to the first and second arguments asM′

`,1(·, ·) and
M′

`,2(·, ·), respectively. IfM`(·, ·) is twice differentiable, we refer to its second derivative
with respect to the first and second arguments asM′′

`,1(·, ·) andM′′
`,2(·, ·), respectively.

Additionally, we refer to its second derivative with respect to the first then the second
arguments asM′′

`,12(·, ·).
We define q0, r0, and σ0 as the optimal solutions of the standard learning formulation

(i.e., δ = 0 in (19)). Moreover, we define the constants β1 and β2 as follows:

β1 = (1− ρ2)(q?s )
2 + (r?s )

2, β2 = ρq?s , (21)

where q?s and r?s are optimal solutions of the deterministic source formulation given in (14).
Define the constants I11, I12, I13, and I14 as follows:I11 = αtE

(
SHM′′

`,1[r0H + q0S; 1
σ0
]
)

, I12 = αtE
(

S2M′′
`,1[r0H + q0S; 1

σ0
]
)
+ λ

I13 = − αt
σ2

0
E
(

SM′′
`,12[r0H + q0S; 1

σ0
]
)

; I14 = − αt
σ0
E
(

SM′′
`,12[r0H + q0S; 1

σ0
]
)
+ σ0(q0 − β2),

where Y = ϕ(S), and H and S are two independent standard Gaussian random variables.
Now, define the constants I21, I22, I23, and I24 as follows:I21 = αtE

(
H2M′′

`,1[r0H + q0S; 1
σ0
]
)
− σ0 + λ, I22 = αtE

(
HSM′′

`,1[r0H + q0S; 1
σ0
]
)

I23 = − αt
σ2

0
E
(

HM′′
`,12[r0H + q0S; 1

σ0
]
)
− r0, I24 = − αt

σ0
E
(

HM′′
`,12[r0H + q0S; 1

σ0
]
)

.
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Finally, define the constants I31, I32, I33, and I34 as follows:
I31 = − αt

σ2
0
E
(

HM′′
`,21[r0H + q0S; 1

σ0
]
)
− r0, I32 = − αt

σ2
0
E
(

SM′′
`,12[r0H + q0S; 1

σ0
]
)

I33 = 2αt
σ3

0
E
(
M′

`,2[r0H + q0S; 1
σ0
]
)
+ αt

σ4
0
E
(
M′′

`,2[r0H + q0S; 1
σ0
]
)

I34 = αt
σ2

0
E
(
M′

`,2[r0H + q0S; 1
σ0
]
)
+ αt

σ3
0
E
(
M′′

`,2[r0H + q0S; 1
σ0
]
)
+ 1

2 (q0 − β2)
2 + β1

2 .

Now, we are ready to state our sufficient condition.

Proposition 2 (Classification). Assume that the Moreau envelope function is twice continuously
differentiable almost everywhere in R×R+ and that the above expectations are all well-defined.
Moreover, assume that both ϕ(·) and ϕ̂(·) are the sign function. Then,

δ? > 0 if q′0r0 − q0r′0 > 0, (22)

where q′0 and r′0 are solutions to the following linear system of equations:
I11r′0 + I12q′0 + I13σ′0 + I14 = 0
I21r′0 + I22q′0 + I23σ′0 + I24 = 0
I31r′0 + I32q′0 + I33σ′0 + I34 = 0.

(23)

We prove this result at the end of Section 7. Note that Proposition 2 is valid for a
general family of loss functions and general regularization strength λ ≥ 0. For instance,
we can see that the results stated in Proposition 2 are valid for the squared loss and the
least absolute deviation (LAD) loss, i.e.,{

`(y; x) = 1
2 (1− yx)2

`(y; x) = |1− yx|.
(24)

Unlike (20), the result in (22) only provides a sufficient condition for when the hard transfer
is beneficial. Nevertheless, our numerical simulations show that the sufficient condition
in (22) provides a good prediction of the phase transition boundary for the majority of
parameter settings.

5. Remarks
5.1. Learning Formulations

Given that the target task predicts the new label with ϕ̂(·), it is more natural to consider
loss functions satisfying the following form:

`(yi; ϕ̂(a>i w)).

In this case, the convexity assumption is not necessarily satisfied since the loss function can be
viewed as the composition of a convex function with a nonlinear function. To guarantee the
convexity, we need additional assumptions on the function ϕ̂(·). Moreover, note that, once
the convexity is guaranteed, the function ϕ̂(·) can be absorbed by the loss function `(·; ·).

5.2. Transition from Negative to Positive Transfer

Our first simulation example in Figure 2 shows that the optimal transfer rate δ? can
be 1 while the similarity ρ is still less than 1. Here, we provide an intuitive explanation of
this behavior.

Given that the source and target feature vectors are generated from the same distribu-
tion, one can see that the source labels can be equivalently expressed as follows:

ys,i = ϕ(ρa>t,iξt + zi), ∀i ∈ {1, . . . , ns}, (25)
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where {zi}ns
i=1 is an additive noise caused by the mismatch between the source and target

hidden vectors. Moreover, note that the noise strength depends on the similarity measure ρ.
First, consider the case when the number of source samples is bigger than the number

of target samples (i.e., αs > αt). We can see that a large value of ρ means that the source and
target models are very closely related. Then, one can expect that the additional available
data in the source task will be capable of defeating the effects of noise in (25) for large
values of ρ. Specifically, it is expected in this regime that the source model will perform
better than the standard learning formulation for values of ρ close to 1. However, as we
decrease the similarity ρ, the source model will have a small information about the target
data. Then, the performance of the hard formulation is expected to be lower than the
standard formulation for small values of ρ. In this regime, the source information may hurt
the generalization performance of the target task. Then, we need to only transfer a portion
of the source information (see Figure 2a). In some settings, the transition is sharp, which
means that the source information is irrelevant for the target task when ρ is smaller than a
threshold (see Figure 2b).

Second, consider the case when the number of source samples is smaller than the
number of target samples (i.e., αs < αt). Given the observation in (25), the performance
of the standard method is expected to be better than the hard formulation for all possible
values of ρ in this regime (see Figure 7).

6. Additional Simulation Results

In this section, we provide additional simulation examples to confirm our asymptotic
analysis and illustrate the phase transition phenomenon. In our experiments, we focus on
the regression and classification models.

6.1. Model Assumptions

For the regression model, we assume that the source, target, and test data are generated
according to

yi = max(a>i ξ, 0), ∀i ∈ {1, . . . , n}. (26)

The data {(ai, yi)}n
i=1 can be the training data of the source or target tasks. In this regression

model, we assume that the function ϕ̂(.) is the identity function, i.e., ϕ̂(x) = x. Then, the
generalization error corresponding to the soft formulation converges in probability as follows:

Etest
p→∞−−−→ v− 2cq?t + ((q?t )

2 + (r?t )
2),

where c and v are defined as follows

c = E[z max(z, 0)], v = E[max(z, 0)2],

where z is a standard Gaussian random variable and q?t and r?t are defined in Theorem 1.
Additionally, the asymptotic limit of the generalization error corresponding to the hard
formulation can be expressed in a similar fashion.

For the binary classification model, we assume that the source, target, and test data
labels are binary and generated as follows:

yi = sign(a>i ξ), ∀i ∈ {1, . . . , n}, (27)

where the data {(ai, yi)}n
i=1 can be the training data of the source and target tasks. In

this classification model, the objective is to predict the correct sign of any unseen sample
ynew. Then, we fix the function ϕ̂(.) to be the sign function. Following Theorem 1, it can
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be easily shown that the generalization error corresponding to the soft formulation given
in (8) converges in probability as follows:

Etest
p→∞−−−→ 1

π
cos−1

( q?t√
(q?t )2 + (r?t )2

)
.

Here, q?t and r?t are optimal solutions of the target scalar formulation given in (16). The
generalization error corresponding to the hard formulation given in (6) can be expressed in
a similar fashion.

6.2. Phase Transitions in the Hard Formulation

In Section 4, we presented analytical formulas for the phase transition phenomenon but
only for the special case of squared loss with no regularization. The main purpose of this
experiment, shown in Figure 3, is to demonstrate that the phase transition phenomenon still
takes place in more general settings with different loss functions and regularization strengths.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(d)

Figure 3. Additional illustrations of the phase transition phenomenon. (a) Regression (squared loss,
αt = 0.5, and αs = 3αt) (b) Regression (squared loss, αt = 2, and αs = 2αt) (c) Binary classification
(squared loss, αt = 1.5, and αs = 3αt) (d) Binary classification (hinge loss, αt = 1.5, and αs = 3αt).
In all the experiments, we set the regularization strength to be λ = 0.1. The blue line represents
our theoretical predictions of the optimal transfer rate obtained by solving our asymptotic results in
Section 4 for multiple values of δ. The empirical results are averaged over 100 independent Monte
Carlo trials with p = 2500.

In all the cases shown in Figure 3, the transition from negative to positive transfer
is a discontinuous jump from standard learning (i.e., no transfer) to full source transfer.
Additionally, Figure 3c,d show that the loss function has a small effect on the phase
transition boundary.
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6.3. Sufficient Condition for the Hard Formulation

In Section 4, we presented a sufficient condition for positive transfer. This sufficient
condition is valid for a general family of loss functions and a general regularization strength.
The main purpose of this experiment, shown in Figure 4, is to illustrate the precision of the
sufficient condition for two particular loss functions, i.e., the squared loss and LAD loss.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

positive

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

positive

(b)

Figure 4. Illustrations of the sufficient condition in Proposition 2. (a) Classification (squared loss,
αt = 1.5, and αs = 8αt) (b) Classification (LAD loss, αt = 1.5, and αs = 8αt). In all the experiments,
we set the regularization strength to be λ = 0.1. The blue line represents our theoretical predictions of
the optimal transfer rate obtained by solving our asymptotic results in Section 4 for multiple values
of δ. The green line represents our sufficient condition for positive transfer stated in Proposition 2.

In all the cases shown in Figure 4, we can see that the transition from negative to
positive transfer is a discontinuous jump from standard learning to full source transfer.
Additionally, Figure 4a,b show that the sufficient condition summarized in Proposition 2
provides a good prediction of the phase transition boundary for the considered setting.

6.4. Soft Transfer: Impact of the Weighting Matrix and Regularization Strength

In this experiment, we empirically explore the impact of the weighting matrix Σ on
the generalization error corresponding to the soft formulation. We focus on the binary
classification problem with logistic loss. The weighting matrix in (8) takes the following form:

Σ =
√

βtV , (28)

where V is a diagonal matrix generated in three different ways. (1) Soft Identity: V is an
identity matrix; (2) Soft Uniform: the diagonal entries of V are drawn independently from
the uniform distribution and then scaled to have their mean equal to 1; and (3): Soft Beta:
similar to (2), but with the diagonal entries drawn from the beta distribution, followed by
rescaling to the unit mean.

Figure 5a shows that the considered weighting matrix choices have similar generaliza-
tion performances, with the identity matrix being slightly better than the other alternatives.
Moreover, Figure 5b illustrates the effects of the parameter βt in (28) on the generalization
performance. It points to the interesting possibility of “designing” the optimal weight
matrix to minimize the generalization error.
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Figure 5. Continuous line: theoretical predictions. Circles: numerical simulations. (a) αs = 6αt,
λ = 0.1, βt = 1/10, and ρ = 0.9. (b) αt = 1, αs = 5αt, λ = 0.3, and ρ = 0.75. In all the experiments,
we consider the binary classification problem with the logistic loss function. The empirical results are
averaged over 50 independent Monte Carlo trials, and we set p = 1000.

6.5. Soft and Hard Transfer Comparison

In this simulation example, we consider the regression model and compare the perfor-
mances of the hard and soft transfer formulations as functions of αt and ρ.

Figure 6a shows that the soft formulation provides the best generalization performance
for all values of αt. Moreover, we can see that the hard transfer formulation is only useful
for small values αt. Figure 6b shows that the performance of the soft and hard transfer
formulations depend on the similarity between the source and target tasks. Specifically, the
generalization performances of different transfer approaches all improve as we increase the
similarity measure ρ. We can also see that the full source transfer approach provides the
lowest generalization error when the similarity measure is close to 1, while the soft transfer
method leads to the best generalization performance at moderate values of the similarity
measure. At very small values of ρ, which means that the two tasks share little resemblance,
the standard learning method (i.e., no transfer) is the best scheme one should use.

1 2 3 4 5

0.3
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0.45

0.5

0.55

0.6

(a)

0 0.2 0.4 0.6 0.8 1
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0.3

0.4

0.5

0.6

0.7

0.8

(b)

Figure 6. Continuous line: theoretical predictions. Circles: numerical simulations. (a) αs = 12αt,
λ = 0.2, and ρ = 0.75. (b) αt = 1.5, αs = 8αt, and λ = 0.4. In all the experiments, we consider
the regression setting with a squared loss. The hard transfer formulation uses δ = 0.5, and the soft
transfer formulation uses an identity weighting matrix. The empirical results are averaged over 50
independent Monte Carlo trials and we set p = 1000.

6.6. Effects of the Source Parameters

In the last simulation example, we consider the regression and classification models.
We study the performance of the hard and soft transfer formulations when αs < αt.
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Figure 7a considers the regression model. It first shows that the soft transfer formu-
lation provides a slightly better generalization performance compared to the standard
method. This behavior can be explained by the fact that the soft formulation requires
the target weight vector to be close and not necessarily equal to the source weight vector.
Additionally, the source model carries some information about the target task.
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0.45

0.5
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0.6

(a)

1 2 3 4 5

0.1
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0.25

0.3

0.35

0.4

0.45

(b)

Figure 7. Continuous line: theoretical predictions. Circles: numerical simulations. (a) αs = 0.5αt,
λ = 0.6, and ρ = 0.7. We consider the regression setting with a squared loss. (b) αs = 0.5αt, λ = 0.3,
and ρ = 0.8. We consider the classification setting with a logistic loss. The hard transfer formulation
uses δ = 0.5, and the soft transfer formulation uses an identity weighting matrix. The empirical
results are averaged over 60 independent Monte Carlo trials, and we set p = 1000.

We can also see that the hard transfer approach is not beneficial when the number of
source samples is smaller than the number of target samples. This result can be explained
by the fact that the hard formulation restricts some entries in the target weight vector to
be exactly equal to the corresponding entries in the source weight vector. Moreover, the
source model is not perfectly aligned with the target model and has smaller data than the
target model (see Section 5.2).

The same behavior can be observed in Figure 7b, which considers the classification
model.

7. Technical Details

In this section, we provide a detailed proof of Theorem 1, and Proportions 1 and 2.
Specifically, we focus on analyzing the generalized formulation in (8) using the CGMT
framework introduced in the following part.

7.1. Technical Tool: Convex Gaussian Min–Max Theorem

The CGMT provides an asymptotic equivalent formulation of primary optimization
(PO) problems of the following form:

Φp(G) = min
w∈Sw

max
u∈Su

u>Gw + ψ(w, u). (29)

Specifically, the CGMT shows that the PO given in (29) is asymptotically equivalent to the
following formulation:

φp(g, h) = min
w∈Sw

max
u∈Su
‖u‖g>w + ‖w‖h>u + ψ(w, u), (30)

referred to as the auxiliary optimization (AO) problem. Before showing the equivalence
between PO and AO, the CGMT assumes that G ∈ Rn×p, g ∈ Rp, and h ∈ Rn; that all have
independent and identically distributed standard normal entries; that the feasibility sets
Sw ⊂ Rp and Su ⊂ Rn are convex and compact; and that the function ψ(., .) : Rp×Rn → R
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is continuous convex-concave on Sw × Su. Moreover, the function ψ(., .) is independent of
the matrix G. Under these assumptions, the CGMT [17] (Theorem 6.1) shows that, for any
χ ∈ R and ζ > 0, the following holds:

P
(
|Φp(G)− χ| > ζ

)
≤ 2P

(
|φp(g, h)− χ| > ζ

)
. (31)

Additionally, the CGMT [17] (Theorem 6.1) provides the following conditions under which
the optimal solutions of the PO and AO concentrates around the same set.

Theorem 2 (CGMT Framework). Consider an open set Sp. Moreover, define the set S c
p =

Sw \ Sp. Let φp and φc
p be the optimal cost values of AO formulation in (30) with feasibility sets

Sw and S c
p, respectively. Assume that the following properties are all satisfied:

(1) There exists a constant φ such that the optimal cost φp converges in probability to φ as p goes
to +∞.

(2) There exists a positive constant ζ > 0 such that φc
p ≥ φ + ζ with probability going to 1 as

p→ +∞.

Then, the following convergence in probability holds:

|Φp − φp|
p→+∞−→ 0, and P(ŵp ∈ Sp)

p→+∞−→ 1, ,

where Φp and ŵp are the optimal cost and the optimal solution of the PO formulation in (29).

Theorem 2 allows us to analyze the generally easy AO problem to infer the asymptotic
properties of the generally hard PO problem. Next, we use the CGMT to rigorously prove
the technical results presented in Theorem 1.

7.2. Precise Analysis of the Source Formulation

The source formulation defined in (4) is well-studied in recent literature [26]. Specifi-
cally, it has been rigorously proven that the performance of the source formulation can be
fully characterized after solving the following scalar formulation:

min
qs ,rs≥0

sup
σs>0

αsE
[
M`(Ys ,.)

(
rsHs + qsSs;

rs

σs

)]
− rsσs

2
+

λ

2
(q2

s + r2
s ), (32)

where Ys = ϕ(Ss), and Hs and Ss are two independent standard Gaussian random variables.
The expectation in (32) is taken over the random variables Hs and Ss. Furthermore, the
functionM`(Ys ,.) introduced in the scalar optimization problem (32) is the Moreau envelope
function defined in (15).

7.3. Precise Analysis of the Soft Transfer Approach

In this part, we provide a precise asymptotic analysis of the generalized transfer
formulation given in (8). Specifically, we focus on analyzing the following formulation:

min
w∈Rp

1
p

nt

∑
i=1

`
(

yi; a>i w
)
+

λ

2
‖w‖2 +

1
2
‖Σ(w− ŵs)‖2, (33)

where ŵs is the optimal solution of the source formulation given in (4). Note that the
vector ŵs is independent of the training data of the target task. For simplicity of notation,
we denote by {(ai, yi)}nt

i=1 the training data of the target task. Here, we use the CGMT
framework introduced in Section 7.1 to precisely analyze the above formulation.
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7.3.1. Formulating the Auxiliary Optimization Problem

Our first objective is to rewrite the generalized formulation in the form of the PO prob-
lem given in (29). To this end, we introduce additional optimization variables. Specifically,
the generalized formulation can be equivalently formulated as follows:

min
w∈Rp

max
u∈Rnt

1
p

u>Aw− 1
p

nt

∑
i=1

`?(yi; ui) +
λ

2
‖w‖2

+
1
2
‖Σ(w− ŵs)‖2, (34)

where the optimization vector u ∈ Rnt is formed as u = [u1, . . . , unt ]
> and the data matrix

A ∈ Rnt×p is given by A = [a1, . . . , ant ]
>. Additionally, the function `?(y; .) denotes

the convex conjugate function of the loss function `(y; .). First, observe that the CGMT
framework assumes that the feasibility sets of the minimization and maximization problems
are compact. Then, our next step is to show that the formulation given in (34) satisfies
this assumption.

Lemma 1 (Primal-Dual Compactness). Assume that ŵ and û are optimal solutions of the
optimization problem in (34). Then, there exist two constants Cw > 0 and Cu > 0 such that the
following convergence in probability holds:

P(‖ŵ‖ ≤ Cw)
p→+∞−−−−−→ 1, P(‖û‖/

√
nt ≤ Cu)

p→+∞−−−−−→ 1. (35)

A detailed proof of Lemma 1 is provided in Appendix B. The proof of the above result
follows using Assumption 3 to prove the compactness of the optimal solution ŵ. Moreover,
it uses the asymptotic results in [27] (Theorem 2.1), which provides the concentration
properties of the minimum and maximum eigenvalues of random matrices. To show the
compactness of the optimal dual vector û, we use Assumption 3 and the result in [25]
(Proposition 11.3), which provides the inversion rules for subgradient relations.

The theoretical result in Lemma 1 shows that the optimization problem in (34) can
be equivalently formulated with compact feasibility sets on events with probability going
to one. Then, it suffices to study the constrained version of (34). Note that the data labels
{yi}nt

i=1 depend on the data matrix A. Then, one can decompose the matrix A as follows:

A = APξt
+ AP⊥ξ = Aξtξ

>
t + AP⊥ξ ,

where the matrix Pξt
∈ Rp×p denotes the projection matrix onto the space spanned by the

vector ξt and the matrix P⊥ξ = Ip − ξtξ
>
t denotes the projection matrix onto the orthogonal

complement of the space spanned by the vector ξt. Note that we can express A as follows
without changing its statistics:

A = stξ
>
t + GP⊥ξ , (36)

where st ∼ N (0, Int) and the components of the matrix G ∈ Rnt×p are drawn indepen-
dently from a standard Gaussian distribution and where st and G are independent. Here,
(36) represents an equality in distribution. This means that the formulation in (34) can be
expressed as follows:

min
‖w‖≤Cw

max
u∈Ct

1
p

u>GP⊥ξ w +
1
p

u>stξ
>
t w +

λ

2
‖w‖2

− 1
p

nt

∑
i=1

`?(yi; ui) +
1
2
‖Σ(w− ŵs)‖2, (37)
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where the set Ct is defined as Ct = {u : ‖u‖/√nt ≤ Cu}. Note that the formulation in (37)
is in the form of the primary formulation given in (29). Here, the function ψ(., .) is defined
as follows:

ψ(w, u) =
1
p

u>stξ
>
t w +

λ

2
‖w‖2 − 1

p

nt

∑
i=1

`?(yi; ui)

+
1
2
‖Σ(w− ŵs)‖2. (38)

One can easily see that the optimization problem in (37) has compact convex feasibility
sets. Moreover, the function ψ(., .) is continuous, convex–concave, and independent of
the Gaussian matrix G. This shows that the assumptions of the CGMT are all satisfied
by the primary formulation in (37). Then, following the CGMT framework, the auxiliary
formulation corresponding to our primary problem in (37) can be expressed as follows:

min
‖w‖≤Cw

max
u∈Ct

‖u‖
p

g>P⊥ξ w +
1
p

u>stξ
>
t w +

h>u
p
‖P⊥ξ w‖

+
λ

2
‖w‖2 − 1

p

nt

∑
i=1

`?(yi; ui) +
1
2
‖Σ(w− ŵs)‖2, (39)

where g ∈ Rp and h ∈ Rnt are two independent standard Gaussian vectors. The rest of the
proof focuses on simplifying the obtained AO formulation and on studying its asymptotic
properties.

7.3.2. Simplifying the AO Problem of the Target Task

Here, we focus on simplifying the auxiliary formulation corresponding to the target task.
We start our analysis by decomposing the target optimization vector w ∈ Rp as follows:

w = (ξ>t w)ξt + B⊥ξt
rt, (40)

where rt ∈ Rp−1 is a free vector and B⊥ξt
∈ Rp×(p−1) is formed by an orthonormal basis

orthogonal to the vector ξt. Now, define the variable qt as follows: qt = ξ>t w. Based on
the result in Lemma 1 and the decomposition in (40), there exist Cqt > 0, Cr > 0, and
Cu > 0 such that our auxiliary formulation can be asymptotically expressed in terms of the
variables qt and rt as follows:

min
(qt ,rt)∈T1

max
u∈Ct

‖u‖
p

g>B⊥ξt
rt +

‖rt‖
p

h>u +
qt

p
u>st +

λ

2
q2

t

+
λ

2
‖rt‖2 − 1

p

nt

∑
i=1

`?(yi; ui) +
1
2

q2
t Vp,t − qtVp,ts

+
1
2

r>t (B⊥ξt
)>ΛB⊥ξt

rt + qtξ
>
t ΛB⊥ξt

rt − r>t (B⊥ξt
)>Λŵs.

Here, we drop terms independent of the optimization variables and the matrix Λ ∈ Rp×p

is defined as Λ = Σ>Σ. Additionally, the feasibility set T1 is defined as follows:

T1 =
{
(qt, rt) : |qt| ≤ Cqt , ‖rt‖ ≤ Cr

}
. (41)

Here, the sequence of random variables Vp,t and Vp,ts are defined as follows:

Vp,t = ξ>t Λξt, Vp,ts = ξ>t Λŵs. (42)

Next, we focus on simplifying the obtained auxiliary formulation. Our strategy is to solve
over the direction of the optimization vector r ∈ Rp−1. This step requires an interchange
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between non-convex minimization and non-concave maximization. We can justify the
interchange using the theoretical result in [17] (Lemma A.3). The main argument in [17]
(Lemma A.3) is that the strong convexity of the primary formulation in (37) allows us to
perform such an interchange in the corresponding auxiliary formulation. The optimization
problem over the vector rt with fixed norm, i.e., ‖rt‖ = rt, can be formulated as follows:

C?
p = min

rt∈Rp−1
b>p rt +

1
2

r>t Λ⊥rt, s.t. ‖rt‖ = rt. (43)

Here, we ignore constant terms independent of rt, and the matrix Λ⊥ ∈ R(p−1)×(p−1) and
the vector bp ∈ Rp−1 can be expressed as follows:

Λ⊥ = (B⊥ξt
)>ΛB⊥ξt

, bp =
‖u‖

p
(B⊥ξt

)>g + qt(B⊥ξt
)>Λξ>t

− (B⊥ξt
)>Λŵs.

The optimization problem in (43) is non-convex given the norm equality constraint. It is
well-studied in the literature [28] and is known as the trust region subproblem. Using the
same analysis as in [20], the optimal cost value of the optimization problem (43) can be
expressed in terms of a one-dimensional optimization problem as follows:

C?
p = sup

σt>−µp

{
−1

2
b>p [Λ

⊥ + σt Ip−1]
−1bp −

σtr2
t

2

}
, (44)

where µp is the minimum eigenvalue of the matrix Λ⊥, denoted by σmin(Λ
⊥). This result

can be seen by equivalently formulating the non-convex problem in (43) as follows:

C?
p = min

rt∈Rp−1
max
σt∈R

b>p rt +
1
2

r>t Λ⊥rt +
σt

2

(
‖rt‖2 − r2

t

)
.

Then, we show that the optimal σt satisfies a constraint that preserves the convexity over rt.
This allows us to interchange the maximization and minimization and to solve over the
vector rt. The above analysis shows that the AO formulation corresponding to our primary
problem can be expressed as follows:

min
(qt ,rt)∈T2

max
u∈Ct

sup
σt>−µp

rt

p
h>u +

qt

p
u>st +

λ

2
q2

t +
λ

2
r2

t

− 1
p

nt

∑
i=1

`?(yi; ui) +
1
2

q2
t Vp,t − qtVp,ts −

‖u‖2

2p
Tp,g(σt)

− σtr2
t

2
− 1

2
q2

t Tp,t(σt)−
1
2

Tp,s(σt) + qtTp,ts(σt), (45)

where the set T2 has the same definition as the set T1 except that we replace ‖rt‖ with rt.
Here, the sequence of random functions Tp,g(.), Tp,t(.), Tp,s(.), and Tp,ts(.) can be expressed
as follows: 

Tp,g(σt) =
1
p g>B⊥ξt

[Λ⊥ + σt Ip−1]
−1(B⊥ξt

)>g

Tp,t(σt) = ξ>t ΛB⊥ξt
[Λ⊥ + σt Ip−1]

−1(B⊥ξt
)>Λξt

Tp,s(σt) = ŵ>s ΛB⊥ξt
[Λ⊥ + σt Ip−1]

−1(B⊥ξt
)>Λŵs

Tp,ts(σt) = ξ>t ΛB⊥ξt
[Λ⊥ + σt Ip−1]

−1(B⊥ξt
)>Λŵs.

Note that the formulation in (45) is obtained after dropping terms that converge in prob-
ability to zero. This simplification can be justified using a similar analysis to that in [20]
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(Lemma 3). The main idea in [20] (Lemma 3) is to show that both loss functions converge
uniformly to the same limit.

Next, the objective is to simplify the obtained AO formulation over the optimization
vector u ∈ Rnt . Based on the property stated in [20] (Lemma 4), the optimization over the
vector u can be expressed as follows:

I?p = max
u∈Ct

rth>u + qtu>st −
nt

∑
i=1

`?(yi; ui)−
‖u‖2

2
Tp,g(σt)

=
nt

∑
i=1
M`(yi ,.)

(
rthi + qtst,i; Tp,g(σt)

)
.

This result is valid on events with probability going to one as p goes to +∞. Here, the func-
tionM`(yi ,.) is the Moreau envelope function defined in (15). The proof of this property is
omitted since it follows the same ideas as [20] (Lemma 4). The main idea in [20] (Lemma 4)
is to use Assumption 3 to show that the optimal solution of the unconstrained version
of the maximization problem is bounded asymptotically and then to use the property
introduced in [25] (Example 11.26) to complete the proof. Now, our auxiliary formulation
can be asymptotically simplified to a scalar optimization problem as follows:

min
(qt ,rt)∈T2

sup
σt>−µp

λ

2
(q2

t + r2
t )−

σtr2
t

2
− 1

2
q2

t Zp,t(σt)−
1
2

Zp,s(σt)

+
1
p

nt

∑
i=1
M`(yi ,.)

(
rthi + qtst,i; Tp,g(σt)

)
+ qtZp,ts(σt), (46)

where the functions Zp,t(·), Zp,ts(·), and Zp,s(·) are defined as follows:

Zp,t(σt) = Tp,t(σt)−Vp,t, Zp,ts(σt) = Tp,ts(σt)−Vp,ts (47)

Zp,s(σt) = Tp,s(σt)−Vp,s, where Vp,s = ŵ>s Λŵs. (48)

Note that the auxiliary formulation in (46) now has scalar optimization variables. Then, it
remains to study its asymptotic properties. We refer to this problem as the target scalar
formulation.

7.3.3. Asymptotic Analysis of the Target Scalar Formulation

In this part, we study the asymptotic properties of the target scalar formulation expressed
in (46). We start our analysis by studying the asymptotic properties of the sequence of random
functions Tp,g(.), Zp,t(.), Zp,s(.), and Zp,ts(.) as given in the following lemma.

Lemma 2 (Asymptotic Properties). First, the random variable µp converges in probability to
µmin, where µmin is defined in Assumption 5. For any fixed σ > 0, the following convergence in
probability holds true:

Zp,t(σ− µp)
p→+∞→ Zt(σ− µmin)

Zp,ts(σ− µp)
p→+∞→ Zts(σ− µmin)

Zp,s(σ− µp)
p→+∞→ Zs(σ− µmin)

Tp,g(σ− µp)
p→+∞→ Tg(σ− µmin) = T1(σ− µmin).

Here, the deterministic functions Zt(.), Zts(.), Zs(.), T1(.), and T3(.) are defined as follows:
Zt(σ) = σ− 1/T1(σ), Zts(σ) = ρq?s Zt(σ)

Zs(σ) = ((1− ρ2)(q?s )2 + (r?s )2)T3(σ) + (ρq?s )2Zt(σ)

T1(σ) = Eµ[1/(µ + σ)], T3(σ) = −Eµ[µσ/(µ + σ)].
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Moreover, the constants q?s and r?s are optimal solutions of the source asymptotic formulation defined
in (32).

A detailed proof of Lemma 2 is provided in Appendix C. Now that we obtained
the asymptotic properties of the sequence of random variables, it remains to study the
asymptotic properties of the optimal cost and optimal solution set of the scalar formu-
lation in (46). To state our first asymptotic result, we define the following deterministic
optimization problem:

min
(qt ,rt)∈T2

sup
σt>−µmin

λ

2
(q2

t + r2
t )−

σtr2
t

2
− 1

2
Zs(σt)−

1
2

q2
t Zt(σt)

+ αtE
[
M`(Yt ,.)

(
rtHt + qtSt; Tg(σt)

)]
+ qtZts(σt), (49)

where Ht and St are two independent standard Gaussian random variables and Yt = ϕ(St).
Here, the functionM`(Yt ,.) denotes the Moreau envelope function defined in (15) and the
expectation is taken over the random variables Ht and St, and the possibly random function
ϕ(.). Now, we are ready to state our asymptotic property of the cost function of (46).

Lemma 3 (Cost Function of the Traget AO Formulation). Define Op,t(.) as the loss function of
the target scalar optimization problem given in (46). Additionally, define Ot(.) as the cost function
of the deterministic formulation in (49). Then, the following convergence in probability holds true:

Op,t(qt, rt, σt − µp)
p→+∞→ Ot(qt, rt, σt − µmin), (50)

for any fixed feasible qt, rt, and σt > 0.

The proof of the asymptotic property stated in Lemma 3 uses the asymptotic results
stated in Lemma 2. Moreover, it uses the weak law of large numbers to show that the
empirical mean of the Moreau envelope concentrates around its expected value. Based on
Assumption 3, one can see that the following pointwise convergence is valid:

1
nt

nt

∑
i=1
M`(yi ,.)

(
rthi + qtst,i; x

) p→+∞→ E
[
M`(Y,.)

(
rtH + qtS; x

)]
,

where H and S are independent standard Gaussian random variables and Y = ϕ(S). The
above property is valid for any x > 0, rt ≥ 0, and qt. Based on [25] (Theorem 2.26), the
Moreau envelope function is convex and continuously differentiable with respect to x > 0.
Combining this with [29] (Theorem 7.46), the above asymptotic function is continuous in
x > 0. Then, using Lemma 2, the uniform convergence, and the continuity property, we
conclude that the empirical average of the Moreau envelope converges in probability to
the following function:

E
[
M`(Y,.)

(
rt H + qtS; Tg(σt − µmin)

)]
, (51)

for any fixed feasible qt, rt, and σt > 0. This completes the proof of Lemma 3.
Before continuing our analysis, we provide the convexity properties of the cost func-

tion of the deterministic problem in (49) in the following lemma.

Lemma 4 (Strong Conexity). Define Ot(·, ·, ·) as the cost function of the optimization problem
in (49). Then, Ot(·, ·, ·) is concave in the maximization variable σt for any fixed feasible (qt, rt).
Moreover, define the function Ot(·, ·) as follows:

Ot(qt, rt) = sup
σt>−µmin

f (qt, rt, σt). (52)

Then, the function Ot(·, ·) is strongly convex in the minimization variables (qt, rt).
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The proof of Lemma 4 is provided in Appendix D. Now, we use these properties to
show that the optimal solution set of the formulation in (46) converges in probability to the
optimal solution set of the formulation in (49).

Lemma 5 (Consistency of the Target AO Formulation). Define Pp,t and Pt as the optimal
set of (qt, rt) of the optimization problems formulated in (46) and (49). Moreover, define O?

p,t and
O?

t as the optimal cost values of the optimization problems formulated in (46) and (49). Then, the
following converges in probability holds true:

O?
p,t

p→+∞→ O?
t , D(Pp,t,Pt)

p→+∞→ 0, (53)

where D(A,B) denotes the deviation between the sets A and B and is defined as D(A,B) =
supc1∈A infc2∈B‖c1 − c2‖.

The stated result can be proven by first observing that the loss function Ot(.) corre-
sponding to the deterministic formulation in (49) satisfies the following:

lim
σt→+∞

Ot(qt, rt, σt − µmin) = −∞ (54)

for any rt > 0 and any fixed qt. Combining this with the convergence result in Lemma 3,
ref. [17] (Lemma B.1), and [17] (Lemma B.2), we obtain the following asymptotic result:

sup
σt>0
Op,t(qt, rt, σt − µp)

p→+∞→ sup
σt>0
Ot(qt, rt, σt − µmin).

Here, the results in [17] (Lemma B.1) and [17] (Lemma B.2) provide convergence proper-
ties of minimization problems over open sets. Note that, if rt = 0, the supremum in the
above convergence result occurs at σt → +∞. However, it can be checked that the above
convergence result still holds. Based on Lemma 4, the cost function of the minimization
problem in (49) is strongly convex in (qt, rt). Moreover, the feasibility set of the minimiza-
tion problem is convex and compact. Additionally, the cost function of the minimization
problem in (49) is continuous in the feasibility set. Then, using the results in [30] (Theorem
II.1) and [31] (Theorem 2.1), we obtain the convergence properties stated in Lemma 5. Here,
the results in [30] (Theorem II.1) and [31] (Theorem 2.1) provide uniform convergence and
consistency properties of convex optimization problems.

Now that we obtained the asymptotic problem, it remains to study the asymptotic
properties of the training and generalization errors corresponding to the target formulation
in (8).

7.3.4. Specialization to Hard Formulation

Before starting the analysis of the generalization error, we specialize our general
analysis to the hard transfer formulation. First, note that δ = 1 implies that the hard
transfer formulation is equivalent to the source formulation. Next, we assume that δ < 1.
To obtain the asymptotic limit of the hard formulation, we specialize the general results
in (49) to the following probability distribution:

Pp(µ) =

{
0 with probability (1− δ)

+∞ with probability δ.
(55)

Note that the probability distribution in (55) satisfies Assumption 5. Then, the asymptotic
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limit of the soft formulation corresponding to the probability distribution Pµ(.), defined
in (55), can be expressed as follows:

min
(qt ,rt)∈T2

sup
σt>0

λ

2
(q2

t + r2
t ) +

σtδ

2

(
(1− ρ2)(q?s )

2 + (r?s )
2
)

+ αtE
[
M`(Yt ,.)

(
rt Ht + qtSt;

1− δ

σt

)]
− σtr2

t
2

+
σtδ

2(1− δ)
(qt − ρq?s )

2. (56)

This shows that the asymptotic limit of the hard formulation is the deterministic problem (56).

7.3.5. Asymptotic Analysis of the Training and Generalization Errors

First, the generalization error corresponding to the target task is given by

Etest =
1
4υ

E
[(

ϕ(a>t,newξt)− ϕ̂(ŵ>t at,new)
)2
]

, (57)

where at,new is an unseen target feature vector. Now, consider the following two
random variables

ν1 = a>t,newξt, and ν2 = ŵ>t at,new.

Given ŵt and ξt, the random variables ν1 and ν2 have a bivaraite Gaussian distribution
with zero mean vector and covariance matrix given as follows:

Cp =

[
‖ξt‖2 ξ>t ŵt

ξ>t ŵt ‖ŵt‖2

]
. (58)

To precisely analyze the asymptotic behavior of the generalization error, it suffices to
analyze the properties of the covariance matrix Cp. Define the random variables q̂?p,t and
r̂?p,t for the target task as follows:

q̂?p,t = ξ>t ŵt, and r̂?p,t = ‖(B⊥ξt
)>ŵt‖, (59)

where B⊥ξt
is defined in Section 7.3.2. Then, the covariance matrix Cp given in (58) can be

expressed as follows: [
1 q̂?p,t

q̂?p,t (q̂?p,t)
2 + (r̂?p,t)

2

]
.

Hence, to study the asymptotic properties of the generalization error, it suffices to study
the asymptotic properties of the random quantities q̂?p,t and r̂?p,t.

Lemma 6 (Consistency of the Target Formulation). The random quantities q̂?p,t and r̂?p,t satisfy
the following asymptotic properties:

q̂?p,t
p→+∞−−−−→ q?t , and r̂?p,t

p→+∞−−−−→ r?t ,

where q?t and r?t are the optimal solutions of the deterministic formulation stated in (49).

To prove the above asymptotic result, we define q̃?p,t and r̃?p,t as follows:

q̃?p,t = ξ>t w̃t, and r̃?p,t = ‖(B⊥ξt
)>w̃t‖, (60)
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where w̃t is the optimal solution of the auxiliary formulation in (39). Given the result in
Lemma 5 and the analysis in Sections 7.3.2 and 7.3.3, the convergence result in Lemma 5 is
also satisfied by our auxiliary formulation in (39), i.e.,

q̃?p,t
p→+∞−−−−→ q?t , and r̃?p,t

p→+∞−−−−→ r?t .

The rest of the proof of the convergence result stated in Lemma 6 is based on the CGMT
framework, i.e., Theorem 2. Specifically, it follows after showing that the assumptions in
Theorem 2 are all satisfied. First, we define the set Sp in Theorem 2 as follows:

Sp = {w ∈ Rp : |ξ>t w− q?t | < ε} ∪ {w ∈ Rp : |‖(B⊥ξt
)>w‖ − r?t | < ε}, (61)

where q?t and r?t are the optimal solutions of the deterministic formulation stated in (49).
Note that the cost function of the problem (49) is strongly convex in the minimization
variables. Based on the analysis in the previous sections, note that the feasibility sets of
the problems defined in Theorem 2 are compact asymptotically. Moreover, the analysis
in the previous sections shows that there exists a constant φ such that the optimal cost φp
defined in Theorem 2 converges in probability to φ as p goes to +∞. Additionally, the
same analysis in the previous sections shows that there exists a constant φc such that the
optimal cost φc

p defined in Theorem 2 converges in probability to φc as p goes to +∞. The
strong convexity property of the cost function of the optimization problem in (49) can then
be used to show that there exists ζ > 0 such that φc > φ + ζ. This implies that the second
assumption in Theorem 2 is satisfied for the considered set Sp and any fixed ε > 0. This
then shows that the convergence results in Lemma 6 are all satisfied.

Note that the CGMT framework applied to prove Lemma 6 also shows that the optimal
cost value of the soft target formulation in (8) converges in probability to the optimal cost
value of the deterministic formulation given in (49). Combining this with the result in
Lemma 6 shows the convergence property of the training error stated in (17). Now, it
remains to show the convergence of the generalization error. It suffices to show that the
generalization error defined in (57) is continuous in the quantities q̂?p,t and r̂?p,t. This follows
based on Assumption 4 and the continuity under integral sign property [32]. This shows
the convergence result in (18), which completes the proof of Theorem 1. Note that the
above analysis of the soft target formulation in (8) is valid for any choice of Cqt and Cr that
satisfy the result in Lemma 1. One can ignore these bounds given the convexity properties
of the deterministic formulation in (49). This leads to the scalar formulations introduced
in (16) and (19).

7.4. Phase Transitions in Hard Formulation

In this part, we provide a rigorous proof of Proposition 1. Here, we consider the
squared loss function. In this case, the deterministic source formulation given in (14) can
be simplified as follows:

min
qs ,rs≥0

1
2

max
{
− rs +

√
αs(q2

s + r2
s + vs − 2qscs)

1
2 , 0
}2

+
λ

2
(q2

s + r2
s ), (62)
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where the constants vs and cs are defined as vs = E[Y2
s ] and cs = E[SsYs], Ys = ϕ(Ss), and

Ss is a standard Gaussian random variable. Additionally, the target scalar formulation
given in (16) can be simplified as follows:

min
qt ,rt≥0

sup
σt>0

λ

2
(q2

t + r2
t ) +

σtδ

2

(
(1− ρ2)(q?s )

2 + (r?s )
2
)

+
αtσt

2(1− δ) + 2σt
(r2

t + q2
t + vt − 2qtct)−

σtr2
t

2

+
σtδ

2(1− δ)
(qt − ρq?s )

2, (63)

where the constants vt and ct are defined as vt = E[Y2
t ] and ct = E[YtSt], Yt = ϕ(St), and

St is a standard Gaussian random variable. Under the conditions stated in Proposition 1,
the source deterministic formulation given in (62) can be simplified as follows:

min
qs ,rs≥0

− rs +
√

αs(q2
s + r2

s + vs − 2qscs)
1
2 . (64)

Note that one can easily solve the variables qs and rs. Specifically, the optimal solutions
of (64) can be expressed as follows:

q?s = cs, and r?s =
√

vs − c2
s /
√

αs − 1. (65)

Moreover, the target deterministic formulation given in (63) can be expressed as follows:

min
qt ,rt≥0

sup
σt>0

σtδ

2
β2 +

αtσt

2(1− δ) + 2σt
(r2

t + q2
t + vt − 2qtct)−

σtr2
t

2

+
σtδ

2(1− δ)
(qt − β1)

2, (66)

where β1 and β2 are given by

β1 = ρq?s , β2 =
(
(1− ρ2)(q?s )

2 + (r?s )
2
)

. (67)

Before solving the optimization problem in (66), we consider the following change in variable:

x2
t + r2

t − δβ2 −
δ

1− δ
(qt − β1)

2. (68)

Note that the above change in variable is valid since the formulation in (66) requires the
left-hand side of (68) to be positive. Therefore, the formulation in (66) can be expressed in
terms of xt instead of rt as follows:

min
qt ,xt≥0

sup
σt>0

αtσt

2(1− δ) + 2σt

(
x2

t + δβ2 +
δ

1− δ
(qt − β1)

2 + q2
t + vt − 2qtct

)
− σtx2

t
2

. (69)

Now, it can be easily checked that the above optimization problem can be solved over the
variable σt to give the following formulation:

min
qt ,xt≥0

1
2

max

{
−xt
√

1− δ +
√

αt

(
x2

t + δβ2 +
δ

1− δ
(qt − β1)

2 + q2
t + vt − 2qtct

) 1
2
, 0

}2

.
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It is now clear that one can solve the problem in (69) in closed form. Moreover, it can be
easily checked that the optimal solutions of the optimization problem (66) can be expressed
as follows:{

q?t = (1− δ)ct + δβ1

(r?t )
2 = 1−δ

αt+δ−1
(
(δ− 1)c2

t + δβ2
1 + δβ2 + vt − 2δβ1ct

)
+ δβ2 + δ(1− δ)(ct − β1)

2.

Then, the asymptotic limit of the generalization error corresponding to the hard formulation
can be determined in closed-form. Given that the source and target models given in (1)
and (2) use the same data-generating function, the constants vt, ct, vs, and cs are all equal.
We express them as v and c in the rest of the proof.

Next, we assume that the function ϕ̂(.) is the identity function. Based on the asymp-
totic result stated in Corollary 1, the asymptotic limit of the generalization error corre-
sponding to the hard formulation can be expressed as follows:

Etest = v− 2cq?t + (q?t )
2 + (r?t )

2.

It can be easily checked that the generalization error can be express as follows:

Etest =
αt

αt + δ− 1

(
δ{(c− β1)

2 + β2}+ (v− c2)
)

. (70)

Note that the generalization error obtained above depends explicitly on δ. Now, it suffices
to study the derivative of Etest to find the properties of the optimal transfer rate δ that
minimizes the generalization error. Note that the derivative can be expressed as follows:

E ′test(δ) =
(αt − 1){(c− β1)

2 + β2} − (v− c2)

(αt + δ− 1)2 . (71)

This shows that the derivative of the generalization error has the same sign as the numerator.
This means that the optimal transfer rate satisfies the following:

δ? =


1 if Zt < 0
0 if Zt > 0
[0 1] otherwise,

(72)

where Zt is given by

Zt = (αt − 1){(c− β1)
2 + β2} − (v− c2). (73)

It can be easily shown that the condition in (72) can be expressed as the one given in (20).
This completes the proof of Proposition 1.

7.5. Sufficient Condition for the Hard Formulation

In this part, we provide a rigorous proof to Proposition 2. Suppose that the assump-
tions in Proposition 2 are all satisfied. Additionally, we assume that the function ϕ̂(.) is the
sign function. Based on the asymptotic result stated in Corollary 1, the asymptotic limit of
the generalization error corresponding to the hard formulation can be expressed as follows:

Etest(δ) =
1
π

acos
( qt(δ)√

(qt(δ))2 + (rt(δ))2

)
, (74)

where qt(δ) and rt(δ) are optimal solutions to the deterministic problem in (19) for fixed δ.
A simple sufficient condition for positive transfer is when Etest(δ) is decreasing at δ = 0.
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This means that there exists some δ > 0 such that the transfer learning method introduced
in (6) is better than the standard method when the following function increases at δ = 0:

g(δ) =
qt(δ)√

(qt(δ))2 + (rt(δ))2
. (75)

After computing the derivative of the function g(·) at zero, one can see that the transfer
learning method introduced in (6) is better than the standard method when the following
condition is true:

q′t(0)rt(0)− qt(0)r′t(0) > 0, (76)

where qt(0) and rt(0) denote the optimal solutions of the standard learning formulation
(i.e., δ = 0 in (19)). Additionally, q′t(0) and r′t(0) denote the derivative of the functions qt(δ)
and rt(δ) at δ = 0. The above analysis shows that it suffices to find the values of q′t(0) and
r′t(0) to fully characterize the sufficient condition in (76). Before stating our analysis, we
define β1 and β2 as follows:

β1 =
(
(1− ρ2)(q?s )

2 + (r?s )
2
)

, β2 = ρq?s , (77)

where q?s and r?s are the optimal solutions of the deterministic source formulation given
in (14).

Note that the optimal solution of the deterministic formulation in (19) satisfy the
following system of equations:

αtE
(

SM′
`,1[rt(δ)H + qt(δ)S; 1−δ

σt(δ)
]
)
+ δσt(δ)

1−δ (qt(δ)− β2) + λqt(δ) = 0

αtE
(

HM′
`,1[rt(δ)H + qt(δ)S; 1−δ

σt(δ)
]
)
− σt(δ)rt(δ) + λrt(δ) = 0

δ
2 β1 − αt(1−δ)

σt(δ)2 E
(
M′

`,2[rt(δ)H + qt(δ)S; 1−δ
σt(δ)

]
)
− rt(δ)

2

2 + δ
2(1−δ)

(qt(δ)− β2)
2 = 0.

The derivative of the first equation at δ = 0 can be expressed as follows:

αtE
(
(SHr′(0) + S2q′(0))M′′

`,1[rt(0)H + qt(0)S;
1

σt(0)
]
)
+ σt(0)(qt(0)− β2)

− αt

σt(0)2 (σt(0) + σ′t(0))E
(

SM′′
`,12[rt(0)H + qt(0)S;

1
σt(0)

]
)
+ λq′t(0) = 0, (78)

where qt(0), rt(0), and σt(0) denote optimal solutions of the standard learning formulation
(i.e., δ = 0 in (19)). This means that they are known. Moreover, q′t(0), r′t(0) and σ′t(0) are
unknown and denote the derivative of the functions qt(δ), rt(δ), and σt(δ) at δ = 0. Now,
define the constants I11, I12, I13, and I14 as follows:

I11 = αtE
(

SHM′′
`,1[rt(0)H + qt(0)S; 1

σt(0)
]
)

I12 = αtE
(

S2M′′
`,1[rt(0)H + qt(0)S; 1

σt(0)
]
)
+ λ

I13 = − αt
σt(0)2 E

(
SM′′

`,12[rt(0)H + qt(0)S; 1
σt(0)

]
)

I14 = − αt
σt(0)

E
(

SM′′
`,12[rt(0)H + qt(0)S; 1

σt(0)
]
)
+ σt(0)(qt(0)− β2).

(79)

This means that the equation in (78) can be expressed as follows:

I11r′t(0) + I12q′t(0) + I13σ′t(0) + I14 = 0. (80)
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Similarly, the derivative of the second equation at δ = 0 can be expressed as follows:

αtE
(
(H2r′(0) + HSq′(0))M′′

`,1[rt(0)H + qt(0)S;
1

σt(0)
]
)
− σ′t(0)rt(0)− σt(0)r′t(0)

− αt

σt(0)2 (σt(0) + σ′t(0))E
(

HM′′
`,12[rt(0)H + qt(0)S;

1
σt(0)

]
)
+ λr′t(0) = 0. (81)

Now, define the constants I21, I22, I23, and I24 as follows:

I21 = αtE
(

H2M′′
`,1[rt(0)H + qt(0)S; 1

σt(0)
]
)
− σt(0) + λ

I22 = αtE
(

HSM′′
`,1[rt(0)H + qt(0)S; 1

σt(0)
]
)

I23 = − αt
σt(0)2 E

(
HM′′

`,12[rt(0)H + qt(0)S; 1
σt(0)

]
)
− rt(0)

I24 = − αt
σt(0)

E
(

HM′′
`,12[rt(0)H + qt(0)S; 1

σt(0)
]
)

.

(82)

This means that the equation in (81) can be expressed as follows:

I21r′t(0) + I22q′t(0) + I23σ′t(0) + I24 = 0. (83)

Moreover, the derivative of the third equation at δ = 0 can be expressed as follows:

β1

2
+

αt

σt(0)3 (σt(0) + 2σ′t(0))E
(
M′

`,2[rt(0)H + qt(0)S;
1

σt(0)
]
)
− r′t(0)rt(0)

− αt

σt(0)2E
(
(Hr′(0) + Sq′(0))M′′

`,21[rt(0)H + qt(0)S;
1

σt(0)
]
)
+

1
2
(qt(0)− β2)

2

+
αt

σt(0)4 (σt(0) + σ′t(0))E
(
M′′

`,2[rt(0)H + qt(0)S;
1

σt(0)
]
)
= 0. (84)

We define the constants I31, I32, I33, and I34 as follows:

I31 = − αt
σt(0)2 E

(
HM′′

`,21[rt(0)H + qt(0)S; 1
σt(0)

]
)
− rt(0)

I32 = − αt
σt(0)2 E

(
SM′′

`,12[rt(0)H + qt(0)S; 1
σt(0)

]
)

I33 = 2αt
σt(0)3 E

(
M′

`,2[rt(0)H + qt(0)S; 1
σt(0)

]
)
+ αt

σt(0)4 E
(
M′′

`,2[rt(0)H + qt(0)S; 1
σt(0)

]
)

I34 = αt
σt(0)2 E

(
M′

`,2[rt(0)H + qt(0)S; 1
σt(0)

]
)
+ αt

σt(0)3 E
(
M′′

`,2[rt(0)H + qt(0)S; 1
σt(0)

]
)

+ 1
2 (qt(0)− β2)

2 + β1
2 .

Therefore, the equation in (84) can be expressed as follows:

I31r′t(0) + I32q′t(0) + I33σ′t(0) + I34 = 0. (85)

The above analysis shows that the values of q′t(0) and r′t(0) can be determined after solving
the following system of linear equations:

I11r′t(0) + I12q′t(0) + I13σ′t(0) + I14 = 0
I21r′t(0) + I22q′t(0) + I23σ′t(0) + I24 = 0
I31r′t(0) + I32q′t(0) + I33σ′t(0) + I34 = 0,

(86)

over the three unknowns q′t(0), r′t(0), and σ′t(0). This completes the proof of Proposition 2.

8. Conclusions

In this paper, we presented a precise characterization of the asymptotic properties of
two simple transfer learning formulations. Specifically, our results show that the training
and generalization errors corresponding to the considered transfer formulations converge
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to deterministic functions. These functions can be explicitly found by combining the
solutions of two deterministic scalar optimization problems. Our simulation results validate
our theoretical predictions and reveal the existence of a phase transition phenomenon in
the hard transfer formulation. Specifically, it shows that the hard transfer formulation
moves from negative transfer to positive transfer when the similarity of the source and
target tasks move past a well-defined critical threshold.
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Appendix A. Technical Assumptions

Note that Assumption 1 is essential to show that the soft formulation in (4) concen-
trates in the large system limit. It also guarantees that the vectors ξt ∈ Rp and ξs ∈ Rp

have correlations equal to ρ, asymptotically. This is aligned with the definition in (3).
Assumption 4 is also introduced to guarantee that the generalization error concentrates in
the large system limit. It is satisfied by popular regression and classification models. For in-
stance, observe that the conditions in Assumption 4 are all satisfied by the regression model
considering ϕ : x → max(x, 0). Moreover, they are satisfied by the binary classification
model considering ϕ : x → sign(x).

The analysis presented in this paper mostly focuses on regularized transfer learning
formulations (i.e., λ > 0). The convexity properties in Assumption 3 are essential to
apply the CGMT framework. Moreover, the properties in (12) are used to guarantee the
compactness assumptions in the CGMT framework (see Theorem 2). In this appendix,
we check the validity of Assumption 3 using popular loss functions, i.e., squared loss for
regression tasks and logistic and hinge losses for binary classification tasks. To this end,
assume that C is an arbitrary fixed positive constant.

1. Squared loss: It is easy to see that the squared loss is a proper strongly convex function
in R, where 1 is a strong convexity parameter. Moreover, L(·) and its sub-differential
set ∂L(·) can be expressed as follows:

L(v) = 1
2
‖v− y‖2, ∂L(v) = {v− y}, (A1)

where the vector y is formed by the concatenation of {yi}nt
i=1. Then, there exists R > 0

such that

sup
‖v‖≤C

√
nt

|L(v)| ≤ Rnt, sup
‖v‖≤C

√
nt

sup
s∈∂L(v)

‖s‖ = sup
‖v‖≤C

√
nt

‖v− y‖ ≤ R
√

nt, (A2)

with probability going to 1 as p grow to +∞. The inequality follows using the
regularity condition in Assumption 4 and the weak law of large numbers. Then, the
squared loss satisfies Assumption 3 for any λ ≥ 0.
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2. Logistic loss: Now, we consider the logistic loss applied to a binary classification
model (i.e., yi ∈ {−1, 1}). Note that the logistic loss is a proper convex function in R.
Moreover, L(·) and its sub-differential set ∂L(·) are given by

L(v) = ∑nt
i=1 log(1 + e−yivi ), ∂L(v) = {x}, where xi =

−yie−yivi

1 + e−yivi
, ∀i ∈ {1 . . . nt}. (A3)

First, observe that the loss L(·) satisfies the following inequality:

|L(v)| ≤ nt + ‖v‖1. (A4)

This means that there exists R1 > 0 such that the following inequality is valid:

sup
‖v‖≤C

√
nt

|L(v)| ≤ R1nt. (A5)

Additionally, the following results hold true:

sup
‖v‖≤C

√
nt

sup
s∈∂L(v)

‖s‖ = sup
‖v‖≤C

√
nt

‖x‖ ≤
( nt

∑
i=1

y2
i
) 1

2 . (A6)

This means that there exists R2 > 0 such that the following inequality is valid:

sup
‖v‖≤C

√
nt

sup
s∈∂L(v)

‖s‖ ≤ R2
√

nt. (A7)

Then, there exists a universal constant R > 0 such that Assumption 3 is satisfied for
the logistic loss for any λ > 0.

3. Hinge loss: Finally, we consider the hinge loss applied to a binary classification
model (i.e., yi ∈ {−1, 1}). It is clear that the hinge loss is a proper convex function
in R. Moreover, L(·) is given by L(·) = ∑nt

i=1 max(1− yivi, 0). Following [33], the
sub-differential set ∂L(·) can be expressed as follows:

∂L(v) =
{1

2
D(1 + g) : ‖g‖∞ ≤ 1, g>(Dv + 1) = ‖Dv + 1‖1

}
, (A8)

where D ∈ Rnt×nt is a diagonal matrix with diagonal entries {yi}nt
i=1. Note that the

loss function L(·) satisfies the following inequality:

|L(v)| ≤ nt + ‖v‖1. (A9)

This means that there exists R1 > 0 such that the following inequality is valid:

sup
‖v‖≤C

√
nt

|L(v)| ≤ R1nt. (A10)

Moreover, the result in (A8) shows that any element s in the sub-differential set ∂L(v)
satisfies the following :

‖s‖ ≤ 1
2
√

nt +
1
2
‖g‖ ≤ 1

2
√

nt +
1
2
√

nt‖g‖∞ ≤
√

nt. (A11)

This means that there exists R2 > 0 such that the following inequality is valid:

sup
‖v‖≤C

√
nt

sup
s∈∂L(v)

‖s‖ ≤ R2
√

nt. (A12)

Then, there exists a universal constant R > 0 such that Assumption 3 is satisfied for
the hinge loss for any λ > 0.
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Appendix B. Proof of Lemma 1

Appendix B.1. Primal Compactness

We start our analysis by assuming that λ > 0. We first consider the compactness of the
source problem given in (4). Note that the formulation in (4) has a unique optimal solution.
Assume that ŵs,p ∈ Rp is the unique optimal solution of the optimization problem given
in (4). The analysis in [20] (Lemma 1) can be used to prove that there exists C1 > 0 such
that the following inequality is valid:

‖ŵs,p‖2 ≤ C1, (A13)

with probability going to one as p → ∞. Moreover, observe that the formulation in (33)
has a unique optimal solution. Assume that ŵt,p ∈ Rp is the unique optimal solution of
the optimization problem given in (33). Assumption 3 supposes that the loss function is
proper. Then, we can conclude that there exists C2 > 0 such that

`(y, z) ≥ −C2, ∀z ∈ R. (A14)

Now, we define O?
t,p as the optimal objective value of the formulation in (33). Then, we can

see that there exists C3 > 0 such that

λ

2
‖ŵt,p‖2 ≤ O?

t,p + C3. (A15)

Given that ŵs,p is a feasible solution in the formulation given in (33), we obtain the
following inequality:

λ

2
‖ŵt,p‖2 ≤ 1

p

p

∑
i=1

`(yi; a>i ŵs,p) +
λ

2
‖ŵs,p‖2 + C3. (A16)

Based on [27] (Theorem 2.1), the following convergence in probability holds:

‖A‖√
nt

p→+∞−−−−→
√

αt + 1√
αt

, (A17)

where the matrix A ∈ Rnt×p is formed by the concatenation of vectors {ai}nt
i=1. Then, there

exists C4 > 0 such that the following inequality is valid:

‖Aŵs,p‖ ≤ ‖A‖‖ŵs,p‖ ≤ C4
√

nt, (A18)

with probability going to one as p→ ∞. Combining this with the assumption in (12), we
see that there exists C5 > 0 such that the following inequality is valid:

1
nt
|

p

∑
i=1

`(yi; a>i ŵs,p)| ≤ C5. (A19)

Given that λ > 0 and the result in (A13), we conclude that there exists C6 > 0 such that the
following holds:

‖ŵt,p‖2 ≤ C6, (A20)

with probability going to one as p→ ∞.
Now, we consider the case when λ = 0. Define gs,p(·), O?

s,p, and ŵs,p as the cost func-
tion, the optimal cost value, and the optimal solution of the formulation in (4). Moreover,
define gt,p(·), O?

t,p, and ŵt,p as the cost function, the optimal cost value, and the optimal
solution of the formulation in (33). Note that the loss function `(y, ·) is strongly convex
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with a strong convexity parameter S > 0. Then, for any x1, x2 ∈ R, the following property
is valid:

`
(

y,
x1 + x2

2

)
≤ 1

2
`(y, x1) +

1
2
`(y, x2)−

S
8
|x1 − x2|2. (A21)

This means that, for any i ∈ {1, . . . , n}, the following property is valid:

`
(

yi,
a>i w1 + a>i w2

2

)
≤ 1

2
`(yi, a>i w1) +

1
2
`(yi, a>i w2)−

S
8
|a>i w1 − a>i w2|2, (A22)

where n can be the number of samples of the source task or target task and {yi}n
i=1 are the

labels of the source task or target task. Given the convexity of the norm, we obtain the
following inequality:

gp

(w1 + w2

2

)
≤ 1

2
gp(w1) +

1
2

gp(w2)−
S

8p
‖A(w1 −w2)‖2, (A23)

where gp(·) can be the cost value of the source task or target task formulations. Now, we
focus on the source formulation. Take w1 = ŵs,p and w2 = 0. Moreover, see that the loss
function is proper. Then, there exists C7 > 0 such that

S
8p
‖Aŵs,p‖2 ≤ C7 +

1
2

gs,p(0). (A24)

Given the assumption in (12), S > 0, αs > 1, and the analysis in [27] (Theorem 2.1), there
exists C8 > 0 such that

‖ŵs,p‖2 ≤ C8. (A25)

Now, we focus on the target task. Take w1 = ŵt,p and w2 = ŵs,p. Moreover, see that the
loss function is proper. Then, there exists C9 > 0 such that

S
8p
‖A(ŵt,p − ŵs,p)‖2 ≤ C9 +

1
2

gt,p(ŵs,p). (A26)

Given the assumption in (12), the result in (A25), S > 0, αt > 1, and the analysis in [27]
(Theorem 2.1), there exists C10 > 0 such that

‖ŵt,p‖2 ≤ C10. (A27)

This completes the first part of the proof of Lemma 1.

Appendix B.2. Dual Compactness

The analysis in Appendix B.1 shows that the formulation in (34) can be equivalently
formulated, where the primal feasibility set is given by

‖w‖2 ≤ C, (A28)

where C > 0 is a sufficiently large constant that satisfies the analysis in Appendix B.1.
Now, define ûp as the optimal solution of the formulation in (34). Additionally, define the
function L?(·) as L?(u) = ∑nt

i=1 `
?(yi; ui). We can see that the optimal vector ûp solves the

following maximization problem:

ûp = argmax
u∈Rnt

u>Aw−L?(u),
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where the data matrix A = [a1, . . . , ant ]
> ∈ Rnt×p. Now, we denote by ∂L?(u) the sub-

differential set of the function L?(·) evaluated at u. Therefore, the solution of the above
maximization problem satisfies the following condition:

Aw ∈ ∂L?(ûp). (A29)

Now, we use the result in [25] (Proposition 11.3) to show that the condition in (A29) can be
equivalently expressed as follows:

ûp ∈ ∂L(Aw), (A30)

where the loss function L(w) = ∑nt
i=1 `(yi; wi) based on [25] (Proposition 11.22). Note that

the introduced constraint in (A28) is satisfied. Moreover, the analysis presented in (A17)
shows that there exists C1 > 0 such that the following inequality holds:

‖Aw‖2 ≤ C1nt, (A31)

with probability going to one as p goes to +∞. Now, we use the assumption in (12) to
conclude that there exists C2 > 0 such that the following inequality holds:

‖ûp‖2 ≤ C2nt, (A32)

with probability going to one as p goes to +∞. This completes the proof of Lemma 1.

Appendix C. Proof of Lemma 2

To prove the convergence properties stated in Lemma 2, we show first that they are
valid for the auxiliary formulation corresponding to the source problem.

Appendix C.1. Auxiliary Convergence

Note that the analysis present in Section 7 is also valid for the source problem. This is
because the formulation in (8) is equivalent to the source problem in (4) if Σ is the all zero
matrix and we use the source training data. Then, we can see that the optimal solution
of the auxiliary formulation corresponding to the source problem, denoted by w̃s, can be
expressed as follows:

w̃s = q?p,sξs −
r?p,s

‖g̃s‖
B⊥ξs

g̃s, (A33)

where g̃s = (B⊥ξs
)>gs and gs has independent standard Gaussian components. Here,

B⊥ξs
∈ Rp×(p−1) is formed by an orthonormal basis orthogonal to the vector ξs. Additionally,

our analysis in Section 7 shows that the following convergence in probability holds:

qp,s
p→+∞−−−−→ q?s and r?p,s

p→+∞−−−−→ r?s . (A34)

Here, q?s and r?s are the optimal solutions of the asymptotic limit of the source formulation
defined in (14).

Note that µp can be expressed as follows:

µp = σmin((B⊥ξt
)>ΛB⊥ξt

). (A35)

Using the eigenvalue interlacing theorem, one can see that

σmin,1(Λ) ≤ µp ≤ σmin,2(Λ). (A36)

Then, using the assumption in (13), we can see that the random variable µp converges in
probability to µmin, where µmin is defined in Assumption 5. Now, we study the properties
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of the remaining functions using the optimal solution of the auxiliary formulation defined
in (A33), i.e., w̃s, instead of ŵs. For instance, we first study the random sequence Ṽp,ts =

ξ>t Λw̃s to infer the asymptotic properties of Vp,ts.
First, fix σ > −µmin. Then, based on the convergence of µp and [34] (Proposition 3),

the sequence of random functions Tp,g(.) converges in probability as follows:

Tp,g(σ)
p→+∞→ Tg(σ) = Eµ[1/(µ + σ)]. (A37)

Now, we express σ as σ = σ′ − x, where σ′ > 0. This means that the following convergence
in probability holds true:

Tp,g(σ
′ − x)

p→+∞→ Tg(σ
′ − x), (A38)

for any x < σ′ + µmin. Note that the functions Tp,g(.) and Tg(.) are both convex and
continuous in the variable x in the set [0, σ′ + µmin[. Then, based on [30] (Theorem II.1),
the convergence in (A38) is uniform in the variable x in the compact set [0, σ′/2 + µmin].
Now, note that µp converges in probability to µmin. Therefore, we obtain the following
convergence in probability:

Tp,g(σ
′ − µp)

p→+∞→ Tg(σ
′ − µmin), (A39)

valid for any fixed σ′ > 0. Using the block matrix inversion lemma, the function Tp,t(.) can
be expressed as follows:

Tp,t(σ) = ξ>t ΛB⊥ξt
[(B⊥ξt

)>ΛB⊥ξt
+ σIp−1]

−1(B⊥ξt
)>Λξt

= ξ>t Λξt + σ− 1

ξ>t [Λ + σIp]−1ξt
. (A40)

Therefore, we obtain the following expression:

Zp,t(σ) = σ− 1

ξ>t [Λ + σIp]−1ξt
. (A41)

Then, using the theoretical results stated in [34] (Proposition 3), the functions Zp,t(.) con-
verges in probability as follows:

Zp,t(σ)
p→+∞→ Zt(σ) = σ− 1

Eµ[1/(µ + σ)]
. (A42)

Combine this with the above analysis to obtain the following convergence in probability:

Zp,t(σ
′ − µp)

p→+∞→ Zt(σ
′ − µmin), (A43)

valid for any σ′ > 0. Based on the result in (A33), the sequence of random functions Z̃p,ts(.)
converges in probability to the following function:

Zts(σ) = q?s ρZt(σ). (A44)

Combine this with the above analysis to obtain the following convergence in probability:

Z̃p,ts(σ
′ − µp)

p→+∞→ Zts(σ
′ − µmin), (A45)
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valid for any σ′ > 0. Using the same analysis and based on (A33) and (A34), one
can see that the sequence of random functions Z̃p,s(.) converges in probability to the
following function:

Z̃p,s(σ)
p→+∞→ Zs(σ) = (ρq?s )

2Zt(σ)

−
(
(1− ρ2)(q?s )

2 + (r?s )
2
)
Eµ[µσ/(µ + σ)]. (A46)

Combine this with the above analysis to obtain the following convergence in probability:

Z̃p,s(σ
′ − µp)

p→+∞→ Zs(σ
′ − µmin), (A47)

valid for any σ′ > 0. The above analysis shows that the asymptotic properties stated in
Lemma 2 are valid for the AO formulation corresponding to the source problem. Now, it
remains to show that these properties also hold for the primary formulation.

Appendix C.2. Primary Convergence

Here, we assume that λ > 0. The case when λ = 0 can be conducted similarly. Now,
we show that the convergence properties proved above are also valid for the primary
problem. To this end, we show that all the assumptions in Theorem 2 are satisfied. We start
our proof by defining the following open set:

Tε = {w ∈ Rp : |ξ>t [Λ + σIp]
−1w− ρq?s K| < ε},

where K is defined as follows:

K = Eµ[1/(µ + σ)]. (A48)

Now, we consider the feasibility set Dε = T1/Sε, where T1 is defined in (41). Based on
the analysis of the generalized target formulation in Section 7.3.2, one can see that the AO
formulation corresponding to the source formulation with the set Dε can be asymptotically
expressed as follows:

Vp : min
(qs ,rs)∈T2

min
rs∈D̃ε

max
u∈Cs

‖u‖
p

g>s B⊥ξs
rs +

qs

p
u>ss

+
λ

2
(q2

s + ‖rs‖2) +
1
p
‖rs‖h>s u− 1

p

ns

∑
i=1

`?(ys,i; ui).

Here, the feasibility set T2 is defined in Section 7.3.2 and the feasibility set D̃ε is given by{
rs : |qsρKp,t + qs

√
1− ρ2Kp,r + ξ>t [Λ + σIp]

−1B⊥ξs
rs − ρq?s K| ≥ ε

, ‖rs‖ = rs

}
.

This follows based on the decomposition in (40) and where Kp,t = ξ>t [Λ + σIp]−1ξt and
Kp,r = ξ>t [Λ + σIp]−1ξr. Note that the optimization problem given in Vp can be equiva-
lently formulated as follows:

Vp : min
(qs ,rs)∈Ŝε

min
rs∈D̃ε

max
u∈Cs

‖u‖
p

g>s B⊥ξ rs +
qs

p
u>ss

+
λ

2
(q2

s + ‖rs‖2) +
1
p
‖rs‖h>s u− 1

p

ns

∑
i=1

`?(ys,i; ui).
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Here, we replace the feasibility set T2 by the feasibility set Ŝε defined as follows:{
|qsρKp,t + qs

√
1− ρ2Kp,r − rsξ>t [Λ + σIp]

−1B⊥ξs

g̃s
‖g̃s‖

− ρq?s K|

≥ ε
}
∩ T2,

where g̃s = (B⊥ξs
)>gs. This follows since the first set in Ŝε satisfies the condition in the set

D̃ε. Now, assume that φ̂?
p is the optimal cost value of the optimization problem Vp and

define the function ĥp(.) as follows:

ĥp(qs, rs) = min
rs∈D̃ε

max
u∈Cs

‖u‖
p

g>s B⊥ξs
rs +

qsu>ss

p

+
λ

2
(q2

s + r2
s ) +

rs

p
h>s u− 1

p

ns

∑
i=1

`?(ys,i; ui),

in the set Ŝε. Based on the max–min inequality [35], the function ĥp(.) can be lower
bounded by the following function:

h̃p(qs, rs) = max
u∈Cs

min
rs∈D̃ε

‖u‖
p

g>s B⊥ξs
rs +

qsu>ss

p

+
λ

2
(q2

s + r2
s ) +

rs

p
h>s u− 1

p

ns

∑
i=1

`?(ys,i; ui).

This is valid for any (qs, rs) ∈ Ŝε. Moreover, note that the following inequality holds true:

min
rs∈D̃ε

‖u‖
p

g>s B⊥ξs
rs ≥ −

‖u‖
p
‖(B⊥ξs

)>gs‖rs, (A49)

for any (qs, rs) ∈ Ŝε. Following the generalized analysis in Section 7.3.2, one can see that
the auxiliary problem corresponding to the source formulation can be expressed as follows:

min
(qs ,rs)∈T2

sup
σs>0

1
ns

ns

∑
i=1
M`(ys,i ,.)

(
rshs,i + qsss,i;

rs‖g̃s‖√
nsσs

)
− rsσs

2
‖g̃s‖√

ns
+

λ

2
(q2

s + r2
s ). (A50)

This means that the function h̃p(.) can be lower bounded by the cost function of the
minimization problem formulated in (A50) denoted by ĝp(.), i.e.,

ĝp(qs, rs) ≤ h̃p(qs, rs). (A51)

Here, both functions are defined in the feasibility set Ŝε. Now, define φ?
p as the optimal

cost value of the auxiliary optimization problem corresponding to the source formulation
defined in Section 7.3.1. Note that the loss function ĝp(.) is strongly convex in the variables
(qs, rs) with strong convexity parameter λ > 0. This means that, for any β ∈ [0, 1],
(qs,1, rs,1) ∈ T2 and (qs,2, rs,2) ∈ T2, we have the following inequality:

ĝp(βv1 + (1− β)v2) ≤ βĝp(v1)

+ (1− β)ĝp(v2)−
λ

2
β(1− β)‖v1 − v2‖2, (A52)
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where v1 = [qs,1, rs,1] and v2 = [qs,2, rs,2]. Take v1 as v?
p, which represents the optimal

solution of the optimization problem (A50). Then, the inequality in (A52) implies the
following inequality:

φ?
p ≤ ĝp(v2)−

λ

2
β‖v?

p − v2‖2. (A53)

This is valid for any v2 in the set T2. Now, taking β = 1/2 and the minimum over v2 in the
set Ŝε in both sides, we obtain the following inequality:

φ?
p +

λ

4
min
v∈Ŝε

‖v?
p − v‖2 ≤ min

v∈Ŝε

ĝp(v).

Based on the above analysis, note that the following inequality also holds true:

min
v∈Ŝε

ĝp(v) ≤ φ̂?
p. (A54)

Then, to verify the assumption of [17] (Theorem 6.1), it remains to show that there exists
ε′ > 0 such that, the following inequality holds:

λ

4
min
v∈Ŝε

‖v?
p − v‖2 ≥ ε′, (A55)

with probability going to 1 as p → ∞. Note that any element in the set Ŝε satisfies the
following inequality:

ε ≤ |qsρKp,t + qs

√
1− ρ2Kp,r − rsξ>t [Λ + σIp]

−1B⊥ξ
g̃s
‖g̃s‖

− ρq?s K| ≤

|qsρKp,t − ρq?s K|+ |qs

√
1− ρ2||Kp,r|+ |rs||ξ>t [Λ + σIp]

−1B⊥ξ
g̃s
‖g̃s‖

|.

Based on the analysis in Appendix C.1, we have the following convergence in probability:

|qsρKp,t − ρq?s K| p→+∞→ |qs − q?s |ρK

|qs|
√

1− ρ2|Kp,r|
p→+∞→ 0, |rs||ξ>t [Λ + σIp]

−1B⊥ξ
g̃s
‖g̃s‖

| p→+∞→ 0. (A56)

This means that there exists ε′′ > 0 such that any elements in the set Ŝε satisfies the
following inequality:

|qs − q?s |ρK ≥ ε′′, (A57)

with probability going to 1 as p → ∞. Combining this with Assumption 5 and the
consistency result stated in (A34) shows that there exists ε′ > 0 such that the following
inequality holds:

λ

4
min
v∈D̂ε

‖v?
p − v‖2 ≥ ε′, (A58)

with probability going to 1 as p→ ∞. This also proves that there exists ε′ > 0 such that the
following inequality holds:

φ̂?
p ≥ φ?

p + ε′, (A59)

with probability going to 1 as p→ ∞. This completes the verification of the assumptions in
Theorem 2. This means that the optimal solution of the primary problem belongs to the set
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Sε on events with probability going to 1 as p → ∞. Since the choice of ε is arbitrary, we
obtain the following asymptotic result:

ξ>t [Λ + σIp]
−1ŵs

p→+∞→ q?s ρK, (A60)

where ŵs is the optimal solution of the source problem (4). Following the same analysis,
one can also show the convergence properties stated in Lemma 2.

Appendix D. Proof of Lemma 4

Here, we assume that λ > 0. The case when λ = 0 can be conducted similarly. The
cost function of the optimization problem (49) can be expressed as follows:

Ot(qt, rt, σt) =
λ

2
(q2

t + r2
t )−

σtr2
t

2
− 1

2
Zs(σt)−

1
2

q2
t Zt(σt)

+ αtE
[
M`(Yt ,.)

(
rtHt + qtSt; Tg(σt)

)]
+ qtZts(σt). (A61)

Note that the function Ot(·, ·, ·) can be expressed as follows:

Ot(qt, rt, σt) = −
σtr2

t
2

+
1
2

(
(1− ρ2)(q?s )

2 + (r?s )
2
)

T2(σt)

+ αtE
[
M`(Yt ,.)

(
rtHt + qtSt; T1(σt)

)]
+

λ

2
(q2

t + r2
t )

− 1
2
(qt − ρq?s )

2(σt − 1/T1(σt)). (A62)

Here, the functions T1(.) and T2(.) are defined as follows:

T1(σt) = Eµ[1/(µ + σt)], T2(σt) = Eµ[µσt/(µ + σt)].

Based on Assumption 5, the functions T1(·) and T2(·) are twice continuously differentiable
in the feasibility set. We start our analysis by showing that the function Ot(·, ·, ·) is concave
in the variable σt for fixed feasible (qt, rt). First, note that the function T2(·) is concave in
the feasibility set. Now, define the function g(·) as follows:

g(σt) =
1

T1(σt)
. (A63)

Then, we can see that the second derivative of the function g(·) can be expressed as follows:

g′′(σt) = −
T′′1 (σt)T1(σt)− 2T′1(σt)2

T1(σt)3 . (A64)

Here, the first and second derivatives of the function T1(·) can be expressed as follows:

T′1(σt) = −Eµ[1/(µ + σt)
2], T′′1 (σt) = 2Eµ[1/(µ + σt)

3]. (A65)

Then, using the Cauchy–Schwarz inequality, one can see that the second derivative of the
function g(·) is negative. This implies the concavity of the function g(·). Therefore, using
the properties in [35] (Section 3.2), the function Ot(·, ·, ·) is concave in the variable σt.

Now, we focus on proving the strong convexity properties. Define the functionOt(·, ·)
as follows:

Ot(qt, rt) = sup
σt>−µmin

Ot(qt, rt, σt). (A66)
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Note that the term λ
2 (q

2
t + r2

t ) is strongly convex in the variables (qt, rt). Then, to prove our
property it suffices to show that the following function is jointly convex in the variables
(qt, rt) in the feasibility set:

h(qt, rt) = sup
σt>−µmin

−σtr2
t

2
+

1
2

(
(1− ρ2)(q?s )

2 + (r?s )
2
)

T2(σt)−
1
2
(qt − ρq?s )

2(σt − 1/T1(σt))

+ αtE
[
M`(Yt ,.)

(
rtHt + qtSt; T1(σt)

)]
, (A67)

Note that the function h(·, ·) can also be expressed as follows:

h(qt, rt) = sup
σt>−µmin

min
0≤τ≤Cτ

σtτ
2

2
− τrtσt +

1
2

(
(1− ρ2)(q?s )

2 + (r?s )
2
)

T2(σt)

+ αtE
[
M`(Yt ,.)

(
rtHt + qtSt; T1(σt)

)]
− 1

2
(qt − ρq?s )

2(σt − 1/T1(σt)). (A68)

Here, the feasibility set of the variable τ is bounded given that the optimal τ satisfies
τ? = rt. It can be easily seen that the cost function of the optimization problem in (A68) is
convex in τ and concave in σt. Then, using the result in [36], the function h(·, ·) can also be
expressed as follows:

h(qt, rt) = inf
0<τ≤Cτ

sup
σt>−µmin

σtτ

2
− rtσt +

1
2

(
(1− ρ2)(q?s )

2 + (r?s )
2
)

T2(σt/τ)

+ αtE
[
M`(Yt ,.)

(
rtHt + qtSt; T1(σt/τ)

)]
− 1

2
(qt − ρq?s )

2(σt/τ − 1/T1(σt/τ)). (A69)

Then, to prove our property, it suffices to show that the cost function of the above problem
is jointly convex in the variables (qt, rt, τ). Using the positivity of the second derivative,
it is easy to see that the function τ → T2(σt/τ) is convex. Now, using the analysis below
equation (161) in [20] (Appendix H), we can see that the remaining functions are jointly
convex in the variables (qt, rt, τ). We omit these steps since they are similar to the approach
employed in [20] (Appendix H). This shows that the function Ot(·, ·) is strongly convex in
the variables (qt, rt).
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