
entropy

Article

An Efficient DenseNet-Based Deep Learning Model for
Malware Detection

Jeyaprakash Hemalatha 1, S. Abijah Roseline 2, Subbiah Geetha 2, Seifedine Kadry 3

and Robertas Damaševičius 4,*

����������
�������

Citation: Hemalatha, J.; Roseline,

S.A.; Geetha, S.; Kadry, S.;

Damaševičius, R. An Efficient

DenseNet-Based Deep Learning

Model for Malware Detection.

Entropy 2021, 23, 344. https://

doi.org/10.3390/e23030344

Academic Editor: Héctor

D. Menéndez

Received: 13 February 2021

Accepted: 12 March 2021

Published: 15 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science and Engineering, AAA College of Engineering and Technology,
Sivakasi 626123, Tamil Nadu, India; jhemalathakumar@gmail.com

2 School of Computer Science and Engineering, Vellore Institute of Technology—Chennai Campus,
Vandalur—Kelambakkam Road, Chennai 600127, Tamil Nadu, India;
abijahroseline.s2017@vitstudent.ac.in (S.A.R.); geetha.s@vit.ac.in (S.G.)

3 Faculty of Applied Computing and Technology (FACT), Noroff University College,
4608 Kristiansand, Norway; skadry@gmail.com

4 Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland
* Correspondence: robertas.damasevicius@polsl.pl

Abstract: Recently, there has been a huge rise in malware growth, which creates a significant security
threat to organizations and individuals. Despite the incessant efforts of cybersecurity research to
defend against malware threats, malware developers discover new ways to evade these defense
techniques. Traditional static and dynamic analysis methods are ineffective in identifying new
malware and pose high overhead in terms of memory and time. Typical machine learning approaches
that train a classifier based on handcrafted features are also not sufficiently potent against these
evasive techniques and require more efforts due to feature-engineering. Recent malware detectors
indicate performance degradation due to class imbalance in malware datasets. To resolve these
challenges, this work adopts a visualization-based method, where malware binaries are depicted as
two-dimensional images and classified by a deep learning model. We propose an efficient malware
detection system based on deep learning. The system uses a reweighted class-balanced loss function
in the final classification layer of the DenseNet model to achieve significant performance improve-
ments in classifying malware by handling imbalanced data issues. Comprehensive experiments
performed on four benchmark malware datasets show that the proposed approach can detect new
malware samples with higher accuracy (98.23% for the Malimg dataset, 98.46% for the BIG 2015
dataset, 98.21% for the MaleVis dataset, and 89.48% for the unseen Malicia dataset) and reduced false-
positive rates when compared with conventional malware mitigation techniques while maintaining
low computational time. The proposed malware detection solution is also reliable and effective
against obfuscation attacks.

Keywords: malware detection; malware visualization; cybersecurity; densely connected convolu-
tional network; deep learning

1. Introduction

The increasing number and complexity of malware have become one of the most
serious cybersecurity threats [1,2]. Although the cybersecurity industry is constantly
working to monitor and thrive in several ways with malware, cyber attackers show no
indications of stopping or slowing down their attacks. Malicious hacker groups develop
sophisticated evasive malware techniques such as polymorphism [3], metamorphism [4],
code obfuscations [5], etc., that outperform many traditional malware mitigation systems.
The most widely used malware by attackers targeting businesses are backdoors, miners,
spyware, and information stealers. Emotet [6] and TrickBot [7] are information stealers that
commonly use malicious spam (malspam) to infect systems. Malspam contains infected

Entropy 2021, 23, 344. https://doi.org/10.3390/e23030344 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-1939-4842
https://orcid.org/0000-0001-9990-1084
https://doi.org/10.3390/e23030344
https://doi.org/10.3390/e23030344
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23030344
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23030344?type=check_update&version=2

Entropy 2021, 23, 344 2 of 23

attachments or URLs. These malware variants can gather sensitive information from
organizations. Other examples of recent malware include WannaCry, Kovter, ZeuS, Dridex,
IcedID, Gh0st, Mirai, etc. The design of efficient malware detection systems is still in an
arms race between the attackers and the security analysts.

Malware cases are analyzed using static and dynamic methods [8]. The code logic is
analyzed or disassembled without its execution in a static analysis method. They extract
features such as opcodes, Application Programming Interface (API) sequences, system
calls, etc. In dynamic analysis, the behavior of malware is analyzed by executing malignant
code in a safe and controlled environment. This analysis extracts network activity, system
calls, file operations, registry modifications, etc., as features. Static detection methods are
ineffective in identifying new malware as the signatures are not generalized. Dynamic
behavior-based methods improve detection accuracy, but they pose high overhead. Data
mining methods require many training samples and training time. Traditional dynamic
malware analysis methods are ineffective in the sense that they allow the malware to be
executed in a controlled environment such as a virtual box or vmware. The malware is
executed, and the various methods of its persistence mechanism, the way it is propagated,
the damage it causes to a system, and the network are investigated in detail. This requires
good expertise in the domain and a controlled environment for execution. As far as static
analysis methods are concerned, portable executable (PE) files are completely disassembled
and their hex codes are investigated to understand the flow and impact of the malware.
This requires a great deal of expertise in assembly codes and a very thorough understanding
of the malware and its operations. Additionally, it also requires memory as well as time.
Though these methods are employed, combating new malware efficiently is becoming
more difficult [9].

Visualization of malware has been recently used as a new and efficient technique for
malware research. Figure 1 shows the malware images of various classes of Malimg [10],
Microsoft BIG 2015 [11], and MaleVis [12] datasets. The preexisting binary patterns are
being substantially reused to achieve variations, generating new patterns. This means that
malware samples can be grouped into several families and that each variant possesses its
respective family characteristics. Hence, it is critical to detect malware efficiently and to
identify its variations.

Entropy 2021, 23, x FOR PEER REVIEW 2 of 23

tains infected attachments or URLs. These malware variants can gather sensitive infor-
mation from organizations. Other examples of recent malware include WannaCry,
Kovter, ZeuS, Dridex, IcedID, Gh0st, Mirai, etc. The design of efficient malware detection
systems is still in an arms race between the attackers and the security analysts.

Malware cases are analyzed using static and dynamic methods [8]. The code logic is
analyzed or disassembled without its execution in a static analysis method. They extract
features such as opcodes, Application Programming Interface (API) sequences, system
calls, etc. In dynamic analysis, the behavior of malware is analyzed by executing malig-
nant code in a safe and controlled environment. This analysis extracts network activity,
system calls, file operations, registry modifications, etc., as features. Static detection
methods are ineffective in identifying new malware as the signatures are not generalized.
Dynamic behavior-based methods improve detection accuracy, but they pose high
overhead. Data mining methods require many training samples and training time. Tra-
ditional dynamic malware analysis methods are ineffective in the sense that they allow
the malware to be executed in a controlled environment such as a virtual box or vmware.
The malware is executed, and the various methods of its persistence mechanism, the way
it is propagated, the damage it causes to a system, and the network are investigated in
detail. This requires good expertise in the domain and a controlled environment for ex-
ecution. As far as static analysis methods are concerned, portable executable (PE) files are
completely disassembled and their hex codes are investigated to understand the flow and
impact of the malware. This requires a great deal of expertise in assembly codes and a
very thorough understanding of the malware and its operations. Additionally, it also
requires memory as well as time. Though these methods are employed, combating new
malware efficiently is becoming more difficult [9].

Visualization of malware has been recently used as a new and efficient technique for
malware research. Figure 1 shows the malware images of various classes of Malimg [10],
Microsoft BIG 2015 [11], and MaleVis [12] datasets. The preexisting binary patterns are
being substantially reused to achieve variations, generating new patterns. This means
that malware samples can be grouped into several families and that each variant pos-
sesses its respective family characteristics. Hence, it is critical to detect malware effi-
ciently and to identify its variations.

Figure 1. A sample of malware images belonging to various classes of the malware datasets (a) Adialer.C, (b) Autorun.K,
(c) Obfuscator.ACY, (d) Ramnit, (e) Dinwold, and (f) Regrun.

Motivated by the work of Nataraj et al. [10], we view a malware detection problem
as a multi-class image classification problem by visualizing a binary code into a
two-dimensional (2D) grayscale image. The structure of the PE binary file (cleanware or
malware) is studied by converting it into an image to provide more information about it.
The binary images corresponding to the same class appear quite similar in structure and

Figure 1. A sample of malware images belonging to various classes of the malware datasets (a) Adialer.C, (b) Autorun.K,
(c) Obfuscator.ACY, (d) Ramnit, (e) Dinwold, and (f) Regrun.

Motivated by the work of Nataraj et al. [10], we view a malware detection problem
as a multi-class image classification problem by visualizing a binary code into a two-
dimensional (2D) grayscale image. The structure of the PE binary file (cleanware or
malware) is studied by converting it into an image to provide more information about it.
The binary images corresponding to the same class appear quite similar in structure and
texture, where they are distinct between different classes. The various subsections of a PE
binary are visualized with different textures. The small modifications made to the binary

Entropy 2021, 23, 344 3 of 23

by malware writers are recognizable in new variants, but the overall structure of the image
remains unaffected. Since it is crucial in detecting malware and to avoid information loss,
no other approach for visualization is effective.

Deep learning is a subfield of machine learning, which learns the input at multiple
levels to gain better knowledge representations. Advances in computer vision with deep
learning were developed, mainly through Convolutional Neural Networks (CNN). Deep
learning models learn complex features and train a complex model with many convolu-
tional layers requiring millions of parameters. This eventually leads to overfitting in only a
few epochs, and the model does not generalize well, resulting in poor model performance.
The knowledge of CNNs thoroughly trained on a massive, well-elucidated dataset such as
ImageNet [13] can also be transferred to make the detection and classification of malware
images more effective. The key idea of transfer learning is that the knowledge gained
in learning a model can help to enhance a different task in learning. CNNs are built on
increasingly deeper and input passes through many layers. The input information may
vanish before it reaches the final layer of the network. ResNet and other CNNs address this
problem, but they generate shorter paths from preceding layers to the subsequent layers.

In this paper, a novel method is presented to classify malware variants based on the
deep learning DenseNet model [14] enhanced with a class-balanced loss for reweighting
the categorical cross-entropy loss. The proposed modification of the DenseNet model
ensures information flow by directly connecting all the layers with their feature maps in
the network. The feedforward approach is maintained by acquiring additional inputs from
the previous layers and passes on feature maps of the current layer to all succeeding layers.
The proposed model was practically assessed using the TensorFlow Python library [15]
and obtained promising results for analysis of the Malimg [10], Microsoft BIG 2015 [11],
MaleVis [12], and Malicia [16] datasets.

The contribution of this work is as follows:

• An effective and expeditious deep learning-based malware detection and classification
system using raw binary images while requiring no binary execution (behavioral
analysis), reverse engineering, or code disassembly language skills is provided.

• The proposed methodology employs pretrained Densely Connected Convolutional
Networks (DenseNet) to achieve faster preprocessing and training of binary samples.
The DenseNet model allows for concatenation of features and utilizes fewer parame-
ters compared to other CNN models. The implicit deep supervision mechanism of the
DenseNet model contributes to effective malware detection. Additionally, the dense
connections with its regularizing power help reduce overfitting with smaller malware
training datasets.

• The data imbalance problem in classifying malware is tackled using reweighting of
the class-balanced categorical cross-entropy loss function in the softmax layer.

• We conduct an extensive evaluation on four different malware datasets, of which three
datasets are used for training and one dataset is used for testing the proposed model.
The results show that the proposed system is very efficient and effective. It is also
resilient against sophisticated malware evolution over time and against anti-malware
evasion tactics.

• Without the need for complex feature engineering tasks, the proposed deep learning-
based malware detection model achieves higher accuracy rates of 98.23%, 98.46%, and
98.21% for the three datasets and of 89.48% for the unseen (Malicia) dataset. The model
has high computational performance, achieving an efficient malware detection system.

The paper is organized as follows. Section 2 presents a literature survey on malware
recognition and classification. Section 3 details the proposed DenseNet-based malware
detection system. Section 4 describes the malware datasets used to assess the performance
of the proposed system. The experimental results of the proposed model and performance
analysis with other known malware detection systems are also discussed. The conclusion
of the paper is presented in Section 5.

Entropy 2021, 23, 344 4 of 23

2. Literature Survey

Significant malware analysis and detection research surveys have been conducted
based on static, dynamic, and machine learning methods [17,18]. This section provides a
survey of the different methods used to classify malware. Static features such as byte, string,
and opcode sequences [19]; function length distribution [20]; functional call-graph [21]; and
PE file features [22] are extracted using static analysis methods. Schultz et al. [23] obtained
various static features from binary files and analyzed their performance by training with
different machine learning techniques. Roseline and Geetha [24] used static features to
classify malware using an oblique random forest approach. Common signature-based
malware detection approaches include malicious code analysis, signature generation, and
signature database storage. These approaches are inefficient since malware attackers
execute malicious activities and constantly create zero-day malware. Static analysis is not
resilient to code obfuscation and does not enable automated processing.

Behavioral features such as network activities, instruction sequences, and system
calls [25] are extracted using dynamic analysis methods. Imran et al. [26] proposed a
malware classification approach based on similarity. The API call sequences were obtained
using Hidden Markov Models (HMMs), and similarity scores were computed for malware
classification. Their approach works well with fewer data and requires high computation
overhead. Dynamic analysis is inefficient as malware may modify its behavior in virtual
environments during execution. Hybrid methods use features derived from static, dy-
namic, or machine learning methods [27] to classify malware. Rieck et al. [28] extracted
the dynamic API call features and used Support Vector Machine (SVM) for detecting
malware. Islam et al. [8] showed that the hybrid approach is more efficient than static or
dynamic approaches.

Recently, significant research efforts in malware analysis made use of the vision-based
approach [29–33]. Features such as opcode sequences and system calls were visualized
as images [34,35]. Han et al. proposed an effective system for identifying packed and
encrypted malware. Malware binaries were converted into images [36] for classifying their
variants. Conti et al. [37] first reported that visual methods help researchers efficiently
classify binary files, analyze new file structures, and obtain perspectives that impart knowl-
edge and enhance the existing set of commonly used methods. The byteview visualization
enabled the researchers to easily identify the presence of significant sections in the file.
Nataraj et al. [10] extracted GIST texture features from visualized grayscale images and
classified malware using K-Nearest Neighbors (KNN) with Euclidean distance. Their
system required less computational cost than the n-gram method for malware classification.
Han et al. [35] proposed an automatic analysis method for generating entropy graphs
from grayscale images. Their method did not identify packed malware since the entropy
measure was high and patterns were not visualized. Kancherla et al. [38] extracted Ga-
bor, intensity, and wavelet features from binary images. Their approach was robust to
code obfuscations. Liu et al. [39] presented an approach based on grayscale images, and
the image size was reduced using the local mean method to achieve better ensembling.
Fu et al. [40] visualized malware as RGB (Red, Green, Blue) color images and extracted
global texture and color features from them. The code and data segments were also ex-
tracted as local features. Their method was a combination of taking global as well as local
features, achieving effective malware classification. Nisa et al. [41] converted malware to
images and applied segmentation-based fractal texture analysis (SFTA) to obtain features,
which were fused with features obtained from pretrained AlexNet and Inception-v3 deep
neural networks. Finally, machine learning classifiers were used for malware detection.
Azab et al. [42] proposed a malware spectrogram image classification framework that uses
spectrogram images classified by CNN for malware detection. Ding et al. [43] extracted
bytecode from the Android package (APK) file and transformed it into a 2D bytecode
matrix. Then, a CNN model was trained and used for malware recognition. Mahdavifar
and Ghorbani [44] proposed a deep learning expert system that extracts refined rules from
a trained deep neural network (DNN) model for malware detection. Naeem et al. [45]

Entropy 2021, 23, 344 5 of 23

converted APK files to color images and used a convolutional DNN to extract dynamic
image features. Then, the DNN was trained to detect malware attacks. Singh et al. [46]
proposed a methodology to convert malware features into fingerprint images. Then, a
CNN model was used to extract features from visualized malware for malware recognition.
Sun and Qian [47] generated malware feature images by aggregating static analysis of
malware using recurrent neural network (RNN) and CNN models. Feature images were
obtained by fusing original codes with predictive codes obtained from RNN. Finally, a
CNN was trained to recognize malware.

Previous works based on traditional methods are time-consuming and inefficient
with the growing amount of malware. The visualization method is effective in terms of
time and processing efficiency. Conventional machine learning methods are not able to
handle raw pixel information from images and do not enable incremental learning. The
transformation of raw data into feature vectors needs extensive engineering and technical
knowledge. The classification model trains the transformed form of input images. Deep
learning techniques achieve this representational learning ability to use raw input data and
allow for automated learning.

Deep learning techniques [48] are focused on multiple layers of abstraction, with
higher layers representing more abstract data information. Neural networks replace typical
machine learning techniques as an alternative in detecting malware. The advantages of
neural network models include incremental learning ability, training layers as required, etc.
Deep learning contributes to the development of automated and generalized models for the
detection and classification of known and unknown malware [49]. CNNs are feed-forward
neural networks specifically used for image classification problems. Considering the ability
of robust feature learning, state-of-the-art malware detection systems use CNN models [50]
for learning binary patterns in malware images. Ensemble models [51–53] can combine
multiple machine learning and deep learning models using stacking, boosting, or bagging
architecture. Cui et al. [54] proposed a CNN model for malware detection. Their system
worked for input images of fixed sizes. Agarap et al. [55] trained the hybrid combination of
deep learning models and SVM on the Malimg dataset. Their approach provided insights
into designing an intelligent malware detection system. The proposed model analyzes
malware based on the vision-based technique. The advantages of the CNN model are
considered to train the malware images and to effectively classify them using the proposed
modification of the DenseNet model.

3. Proposed Methodology

The overall design of the proposed malware detection approach is illustrated in
Figure 2. The flow of the proposed modification of DenseNet model is shown in Figure 3.
The input binary images are fed into the DenseNet model for feature extraction and
classification. The model is trained by providing the input image directly into the initial
convolution (Conv) layer. CNNs have a great potential to extract distinctive features that
comprehensively articulate the image and learn task-specific features. They automatically
learn features at various levels of abstraction, allowing them to learn complex functions by
modeling raw input data into the desired output. The proposed model uses DenseNet to
extract all features from malware datasets and trains the DenseNet on top of the extracted
features. Every dense layer can extract fine details from binary images.

Entropy 2021, 23, 344 6 of 23Entropy 2021, 23, x FOR PEER REVIEW 6 of 23

Figure 2. Structural diagram of the proposed model.

The proposed model was built with an initial convolutional layer, max-pooling lay-
er, four dense convolution (Dense Conv) blocks, and four transition layers (1 × 1 Conv
and 2 × 2 average pooling). Dense Conv blocks consist of a collection of 1 × 1 Conv and 3 × 3 Conv blocks. After each alternative transition layer, these convolutions (1 × 1 and 3 × 3) are repeated 6, 12, 48, and 32 times within each Dense Conv block. The output
feature maps obtained after passing through these layers are given as an input for the
Global Average Pooling (GAP) block. Next, a fully connected (FC) layer follows GAP.
The FC layer classifies the malware samples into their corresponding classes.

Figure 3. Flow of the DenseNet Model.

3.1. Preprocessing of Input Binaries
The PE binary files are read as bytes in the range 0 to 255 and stored as a

one-dimensional (1D) vector of 8-bit unsigned integers. Each byte represents the pixel
intensity levels (0 denotes black, 255 denotes white, and intermediate values denote
various gray shades). These byte values are organized into a two-dimensional array
(pixels), which are visualized as grayscale images. The sizes of the binary files are of

Figure 2. Structural diagram of the proposed model.

Entropy 2021, 23, x FOR PEER REVIEW 6 of 23

Figure 2. Structural diagram of the proposed model.

The proposed model was built with an initial convolutional layer, max-pooling lay-
er, four dense convolution (Dense Conv) blocks, and four transition layers (1 × 1 Conv
and 2 × 2 average pooling). Dense Conv blocks consist of a collection of 1 × 1 Conv and 3 × 3 Conv blocks. After each alternative transition layer, these convolutions (1 × 1 and 3 × 3) are repeated 6, 12, 48, and 32 times within each Dense Conv block. The output
feature maps obtained after passing through these layers are given as an input for the
Global Average Pooling (GAP) block. Next, a fully connected (FC) layer follows GAP.
The FC layer classifies the malware samples into their corresponding classes.

Figure 3. Flow of the DenseNet Model.

3.1. Preprocessing of Input Binaries
The PE binary files are read as bytes in the range 0 to 255 and stored as a

one-dimensional (1D) vector of 8-bit unsigned integers. Each byte represents the pixel
intensity levels (0 denotes black, 255 denotes white, and intermediate values denote
various gray shades). These byte values are organized into a two-dimensional array
(pixels), which are visualized as grayscale images. The sizes of the binary files are of

Figure 3. Flow of the DenseNet Model.

The proposed model was built with an initial convolutional layer, max-pooling layer,
four dense convolution (Dense Conv) blocks, and four transition layers (1× 1 Conv and
2 × 2 average pooling). Dense Conv blocks consist of a collection of 1 × 1 Conv and
3× 3 Conv blocks. After each alternative transition layer, these convolutions (1× 1 and
3× 3) are repeated 6, 12, 48, and 32 times within each Dense Conv block. The output
feature maps obtained after passing through these layers are given as an input for the
Global Average Pooling (GAP) block. Next, a fully connected (FC) layer follows GAP. The
FC layer classifies the malware samples into their corresponding classes.

3.1. Preprocessing of Input Binaries

The PE binary files are read as bytes in the range 0 to 255 and stored as a one-
dimensional (1D) vector of 8-bit unsigned integers. Each byte represents the pixel intensity
levels (0 denotes black, 255 denotes white, and intermediate values denote various gray
shades). These byte values are organized into a two-dimensional array (pixels), which
are visualized as grayscale images. The sizes of the binary files are of variable sizes
originally. The CNNs do not accept images of different resolutions, since it is composed

Entropy 2021, 23, 344 7 of 23

of the FC layers with a fixed number of trained weights. Therefore, the input images of
various dimensions are resized into a square image of 64 × 64 dimensions. The images
are resampled using the nearest interpolation method since it does not alter the actual
image data. It chooses the value of the pixel that is close to the neighboring coordinates of
the desired interpolation point. This method locates the closest pixel in the original input
image for each pixel in the resulting image. The nearest interpolation approach is beneficial
over other interpolation methods, such as bilinear and bicubic interpolation, in terms of its
simplicity, its capability to retain original values in the unalterable setting, as well as its
computational time. This approach is used in our work since malware images should not
be changed and critical information should not be lost to provide accurate resampling.

3.2. DenseNet

DenseNet [14] is a deep learning architecture in which all layers are directly connected,
thereby achieving effective information flow between them. Each layer acquires additional
inputs from all previous layers and transfers its feature maps to all subsequent layers. The
output feature maps obtained from the current layer are combined with the previous layer
using concatenation. Every layer is linked with all the succeeding layers of the network,
and they are referred to as DenseNets. This model requires fewer parameters compared to
traditional CNNs. It also reduces the overfitting problem that occurs with smaller malware
training sets.

Consider an input image x0, which is passed through the proposed convolutional
network. The network contains N layers, and each layer executes a nonlinear transforma-
tion Fn(.). Suppose that layer n consists of the feature maps of all preceding convolutional
layers. The input feature maps of layers 0 to n− 1 are concatenated and represented as
x0, . . . , xn−1. Hence, this model has N(N + 1)/2 connections on an N-layer network. The
output of the nth layer is given by

xn = Fn([x0, . . . , xn−1]), (1)

where xn is the current nth layer, [x0, . . . , xn−1] is a concatenation of feature maps obtained
from 0 to n − 1 layers, and Fn(.) is the composite function of Batch Normalization (BN)-
Rectified Linear Units (ReLU).

The consecutive operations in the transition layer include Batch Normalization (BN),
Rectified Linear Units (ReLU), and 3 × 3 convolution (Conv). The concatenation operation
is not feasible if the sizes of feature maps are changed. Therefore, the layers that have
different feature map sizes are downsampled. The transition layers consisting of 1× 1 Conv
and 2× 2 average pooling operations are given between two adjacent Dense Conv blocks.
The initial Conv layer consists of 7× 7 Conv blocks with stride 2. After the final Dense
Conv block, the classification layer consisting of global average pooling and the softmax
classifier are connected. The correct prediction is done using all feature maps in the neural
network. The output layer with K neurons gives the correct match of K malware families.

Convolution operation learns the image features and maintains the connection among
the pixels. Mathematically, a convolution function operates on an image matrix and filter.
Each convolution layer corresponds to the BN-ReLU-Conv sequence. After the convolution
is performed on the image, ReLU is applied to the output feature maps. This function
introduces nonlinearity in CNNs. The ReLU function is given by

f (x0) = max(0, x0). (2)

Pooling is performed to reduce the dimensionality of output feature maps. This
pooling is performed either using max pooling or average pooling. Max pooling involves
taking the largest component from the improved feature map. Average pooling divides the
input into the pooling area and computes the average values of each area. GAP computes
the average of each feature map, and the resulting vector is taken to the softmax layer.

The operations of the proposed network are summarized in Algorithm 1.

Entropy 2021, 23, 344 8 of 23

Algorithm 1. DenseNet algorithm.

Input: PE binary files
Output: Correct matching class ci
1. Transform binaries to two—dimensional array grayscale images I, where I ∈ {x0, x1, . . . , xn},
x0, x1, . . . , xn—set of all input images.
2. Train the model.
a. Extract raw features from the input image.
b. Perform initial convolution and generate feature maps.
c. Link each layer by concatenating the feature maps of all preceding layers.
d. Perform 1 × 1 and 3 × 3 convolutions for 6 times in the first Dense Conv block.
e. Perform 1 × 1 convolution with 2 × 2 average pooling in the first transition layer.
f. Perform 1 × 1 and 3 × 3 convolutions 12 times in the second Dense Conv block.
g. Perform 1 × 1 convolution with 2 × 2 average pooling in the second transition layer.
h. Perform 1 × 1 and 3 × 3 convolutions for 48 times in the third Dense Conv block.
i. Perform 1 × 1 convolution with 2 × 2 average pooling in the third transition layer.
j. Perform 1 × 1 and 3 × 3 convolutions for 32 times in the fourth Dense Conv block.
k. Perform 1 × 1 convolution with 2 × 2 average pooling in the fourth transition layer.
l. Perform global average pooling at the end of step 2(k).
3. Classify the input images into their respective classes using a softmax classifier.

3.3. Classification

The classification layer is composed of a fully connected softmax layer. In FC, the
number of neurons is set according to the number of malware classes available in the
dataset. The softmax function is used for categorizing multi-class classification problems.
This function calculates the probability distributions of each class i over all possible classes.
The softmax activation function is given by

S(yi) =
eyi

∑j eyj
, (3)

where yi is the input value and yj is all input values of I. The formula calculates the ratio of
the exponential of the input element and the sum of the exponential values of all input data.

The class imbalance problem is a classification challenge in which the distribution
of classes in the training dataset is uneven. The degree of class imbalance varies, but a
significant imbalance is more difficult to model and demands advanced techniques to tackle
the issue. The Malimg dataset and the Microsoft BIG 2015 dataset are imbalanced and long-
tailed malware datasets that contain more samples for few classes and very few samples in
some classes. Models trained on these varied sample sizes are biased toward dominant
classes. To resolve the issue of data imbalance, data augmentation techniques such as
oversampling of minority classes or downsampling of majority classes are not appropriate
for malware detection problems. It is not possible to generate images corresponding to
realistic malware binaries by oversampling. Many representative malware variants might
be possibly overlooked by downsampling.

Reweighting losses by inverse class frequency typically results in low performance on
real-world data with a high-class imbalance. The proposed malware detection model uses
class-balanced loss [56] and uses a weighting factor Wi, which has an inverse ratio to the
number of samples for class i. It is given by

Wi ∝ 1/Sni , (4)

where Sni is the effective number of samples for class i. It is given by

Sni =
(
1− Bni

i)/(1− Bi
)
, (5)

Entropy 2021, 23, 344 9 of 23

where B = (I − 1)/I and I is the set of all possible instances in a class, defined as

I = lim
n→∞

n

∑
i=1

Bi−1 = 1/(1− B). (6)

3.4. Training

The Adaptive Learning Rate Optimization Algorithm, called Adam [57], is used to
update weights based on the malware training data. It determines the individual learning
rates for distinct parameters. Adam uses evaluations of the 1st and 2nd moments of the
gradient to adjust the learning rate for individual weights of the neural network. Therefore,
it is known as adaptive moment estimation. This optimizer evaluates the moments using
increased moving averages. These moving averages are based on the calculated gradient
on the current mini-batch. The moving average estimates of the first and second moments
of the gradient are given by

at = β1at−1 + (1− β1) gt, (7)

bt = β2bt−1 + (1− β2) g2
t , (8)

where a is the moving average, β1 and β2 are decay rates, and g is the gradient on the
current mini-batch.

Cross-entropy (CE) loss or log loss assesses the efficiency of a classification method
with a probability score between 0 and 1. When the predicted probability deviates from the
real class label, the CE loss increases. The cross-entropy loss is given by

CE = −
C

∑
i

ti log(si), (9)

where C is the set of all classes in each dataset, ti is the ground truth, and si is the CNN
score for each class i in C.

Categorical CE loss is a combination of softmax activation function and CE loss, also
known as Softmax Loss, used for multiclass classification. It outputs a probability value for
each input binary image over C.

The Categorical Cross-Entropy (CCE) loss for a sample s corresponding to class label
y is given by

CE(f , y) = − log

(
exp

(
fy
)

∑C
i=1 exp(fi)

)
. (10)

The Class Balanced Cross-Entropy (CBCE) loss for class y with ny training samples is
given by

CBCE(f , y) = − 1− B
1− Bny

log

(
exp

(
fy
)

∑C
i=1 exp(fi)

)
. (11)

4. Experimental Results
4.1. Datasets

The proposed model was evaluated with four malware datasets: Malimg [10], Mi-
crosoft’s BIG 2015 [11], MaleVis [12], and Malicia [16]. The first three datasets were used
for training, and the fourth (Malicia) dataset was used for testing. The experiments were
carried out with 1043 cleanware samples. These samples were collected from executable
files (.exe) of the Windows operating system and checked using the VirusTotal portal. The
various families of the malware datasets used for evaluation of the proposed malware
detection method are given in Table 1. The samples of different classes of malware vary
in number across different datasets. There were 9339 malicious samples presented as
grayscale images in the Malimg dataset. Each of the malware samples in the dataset
corresponds to one of the 25 malware classes.

Entropy 2021, 23, 344 10 of 23

Table 1. Various families in the malware datasets.

Datasets Family Name

Malimg [10]

Yuner.A, Wintrim.BX, VB.AT, Swizzor.gen!E, Skintrim.N, Rbot!gen,
Obfuscator.AD, Malex.gen!J, Lolyda.AT, Lolyda.AA3, Lolyda.AA2,

Lolyda.AA1, Instantaccess, Fakerean, Dontovo.A, Dialplatform.B, C2LOP.P,
C2LOP.gen!g, Autorun.K, Alueron.gen!J, Allaple.L, Allaple.A,

Agent.FYI, Adialer.C

BIG 2015 [11] Vundo, Tracur, Simda, Ramnit, Obfuscator.ACY, Lollipop, Kelihos_ver3,
Kelihos_ver1, Gatak

MaleVis [12]

Vilsel, VBKrypt, VBA/Hilium.A, Stantinko, Snarasite.D!tr, Sality,
Regrun.A, Neshta, Neoreklami, MultiPlug, InstallCore.C, Injector, Hlux!IK,

HackKMS.A, Fasong, Expiro-H, Elex, Dinwod!rfn, BrowseFox,
AutoRun-PU, Androm, Amonetize, Allaple.A, Agent-fyi, Adposhel

Malicia [16] Zeroaccess, Zbot, Winwebsec, Smarthdd, Securityshield Harebot,
Cridex, Cleaman

The BIG 2015 dataset contains 21,741 malware samples, among which the training
set includes 10,868 samples and the remaining 10,873 samples are test samples. In our
experiments, the training set samples are used for evaluation. Each malware file has an
identifier and class. The identifier is a hash value that particularly identifies the file, while
the class labels one of nine distinct malware families. Each malware has two files, namely,
.bytes and .asm. We use .bytes files, which have raw hexadecimal code of the file, to
generate malware images.

The MaleVis dataset consists of 14,226 RGB byte images assigned to one of 26 families
(25 malware + 1 cleanware). The Malicia dataset includes 8 classes consisting of 9670 mal-
ware samples. The dataset is untrained by the proposed DenseNet model to evaluate how
well it performs under different samples. The three trained datasets contain completely
different classes from the Malicia dataset classes. Figure 4 illustrates the distribution of
samples over classes for all four datasets.

Entropy 2021, 23, x FOR PEER REVIEW 11 of 23

Figure 4. Distribution of malware over classes in the (a) Malimg, (b) BIG 2015, (c) MaleVis, and (d) Malicia datasets.

The experiments were implemented on a Linux system with Intel® Xeon(R) CPU
E3-1226 v3 at 3.30 GHz × 4, 32 GB RAM, and NVIDIA GM107GL Quadro
K2200/PCIe/SSE2. The performance evaluations were carried out with the following hy-
perparameter settings: 100 epochs, learning rate 0.0001, and batch size 32. The proposed
deep neural network model was implemented on the Python framework and Keras
v0.1.1 deep learning library. The experiments were performed for various input binary
image sizes such as 32 × 32 dimensions and 64 × 64 dimensions. It is observed that the
information is retained and showed better predictive accuracy for images reshaped to 64
× 64.

There are four types of metrics calculated to assess classification predictions.
True Positive (TP): the prediction that an observation belongs to a class and it actu-

ally does belong to that class, i.e., a binary image that is classified as malware and is ac-
tually malware.

True Negative (TN): the prediction that an observation does not belong to a class
and it actually does not belong to that class, i.e., a binary image that is classified as not
malware (negative) and is actually not malware (negative).

False Positive (FP): the prediction that an observation belongs to a class and it actu-
ally does not belong to that class, i.e., a binary image that is classified as malware and is
actually not malware (negative).

False Negative (FN): the prediction that an observation does not belong to a class
and it actually does belong to that class, i.e., a binary image that is classified as not mal-
ware (negative) and is actually malware.

Figure 4. Distribution of malware over classes in the (a) Malimg, (b) BIG 2015, (c) MaleVis, and (d) Malicia datasets.

Entropy 2021, 23, 344 11 of 23

4.2. Results and Discussion

The dataset was randomly divided into 70% training and 30% validation sets. The
results were taken with 1043 cleanware samples and each of the three malware datasets.
Train and test files were divided such that 30% of the overall samples were considered for
testing purposes. The proposed malware detection system was trained on 7268 samples
and tested on 3115 samples for the Malimg dataset with cleanware samples (9339 + 1043).
Then, the model was trained on 8338 samples and tested on 3573 samples from the BIG 2015
dataset along with cleanware samples (10,868 + 1043). On the MaleVis dataset, 9958 samples
were training samples and 4268 were testing samples.

The experiments were implemented on a Linux system with Intel® Xeon(R) CPU E3-
1226 v3 at 3.30 GHz × 4, 32 GB RAM, and NVIDIA GM107GL Quadro K2200/PCIe/SSE2.
The performance evaluations were carried out with the following hyperparameter settings:
100 epochs, learning rate 0.0001, and batch size 32. The proposed deep neural network
model was implemented on the Python framework and Keras v0.1.1 deep learning li-
brary. The experiments were performed for various input binary image sizes such as
32 × 32 dimensions and 64 × 64 dimensions. It is observed that the information is retained
and showed better predictive accuracy for images reshaped to 64 × 64.

There are four types of metrics calculated to assess classification predictions.
True Positive (TP): the prediction that an observation belongs to a class and it ac-

tually does belong to that class, i.e., a binary image that is classified as malware and is
actually malware.

True Negative (TN): the prediction that an observation does not belong to a class and
it actually does not belong to that class, i.e., a binary image that is classified as not malware
(negative) and is actually not malware (negative).

False Positive (FP): the prediction that an observation belongs to a class and it actually
does not belong to that class, i.e., a binary image that is classified as malware and is actually
not malware (negative).

False Negative (FN): the prediction that an observation does not belong to a class and
it actually does belong to that class, i.e., a binary image that is classified as not malware
(negative) and is actually malware.

These four outcomes are presented on a confusion matrix to better describe the results
of the proposed model. If there are N classes, the confusion matrix will be the N×N matrix,
with the true class on the left axis and the class assigned to an element with that true class
on the top axis. Each member a, b of the matrix is the number of elements with actual class
a that is classified as belonging to class b.

The elements of confusion matrix for each class are defined by

TPa = Caa

FPa =
n

∑
i=1

Cia − TPa

FNa =
n

∑
i=1

Cai − TPa

TNa =
n

∑
i=1

n

∑
j=1

Cij − TPa − FPa − FNa

Accuracy (Acc), Precision (Pr), Recall (Re), and F1 score are the four main classification
metrics. The number of correct predictions divided by the total number of predictions is
known as accuracy. It is defined as

Acc =
TP + TN

TP + TN + FP + FN

Entropy 2021, 23, 344 12 of 23

Precision is the number of correct positive outcomes divided by the number of positive
outcomes predicted by the classifier.

Pr =
TP

TP + FP

Recall gives the fraction of correctly identified instances as the positive out of all positives.

Re =
TP

TP + FN

F1 score is the harmonic mean of precision and recall. It determines the classifier’s
precision (the number of instances it correctly classifies) as well as its robustness (it does
not miss a substantial number of instances). It is given by

F1 score = 2× Precision× Recall
Precision + Recall

.

The comparison results of Machine Learning (ML) and Deep Learning (DL) methods
for malware detection are presented in Tables 2 and 3, respectively. The performance
analysis of the proposed model is compared with various ML techniques such as K-Nearest
Neighbor (KNN), Logistic Regression (LR), Naïve Bayes (NB), SVM, Decision Tree (DT),
Random Forest (RF), and Adaboost. The malware detectors based on pretrained DL
models such as CNN and its variants are used for analyzing the efficiency of the proposed
DenseNet-based malware detection method. The performance results obtained for the
proposed model are better than the ML and DL-based malware detection models for the
three datasets. The proposed model obtained an accuracy of 98.23% for Malimg, of 98.46%
for BIG 2015, and of 98.21% for MaleVis dataset.

Table 2. Comparison of machine learning-based methods with the proposed method for the three training datasets. The
best values are emphasized in bold.

Models

Malimg Dataset BIG2015 Dataset MaleVis Dataset

Acc
(%) Pr Re F-

Score
Acc
(%) Pr Re F-

Score
Acc
(%) Pr Re F-

Score

KNN 82.4 0.8146 0.8233 0.8189 85.28 0.8614 0.8464 0.8538 84.36 0.8531 0.8357 0.8443
LR 69.2 0.6955 0.668 0.6815 62.59 0.6421 0.6235 0.6327 66.47 0.6686 0.6575 0.6630

SVM 75.1 0.7459 0.7534 0.7496 89.25 0.9042 0.8846 0.8943 88.38 0.8779 0.8748 0.8763
NB 56.25 0.5678 0.5547 0.5612 52.14 0.5158 0.5223 0.5190 55.62 0.5622 0.5474 0.5547
DT 88.47 0.8798 0.8721 0.8759 86.41 0.8632 0.8575 0.8603 87.35 0.8787 0.8663 0.8725
RF 90.75 0.9127 0.8963 0.9044 91.22 0.9179 0.9064 0.9121 90.28 0.8985 0.9055 0.9020

Adaboost 74.36 0.7463 0.7286 0.7373 83.68 0.8512 0.8244 0.8376 76.44 0.7564 0.7652 0.7608
Proposed 98.23 0.9778 0.9792 0.9785 98.46 0.9858 0.9784 0.9821 98.21 0.9856 0.9774 0.9815

Table 3. Comparison of deep learning-based methods with the proposed method for the three training datasets. The best
values are emphasized in bold.

Models

Malimg Dataset BIG 2015 Dataset MaleVis Dataset

Acc
(%) Pr Re F-

Score
Acc
(%) Pr Re F-

Score
Acc
(%) Pr Re F-

Score

CNN 97.59 0.9761 0.9748 0.9754 95.67 0.9573 0.9570 0.9571 94.38 0.9441 0.9438 0.9439
VGG16 97.44 0.9754 0.9742 0.9748 88.61 0.8872 0.8861 0.8866 96.18 0.9644 0.9576 0.9610
VGG19 97.51 0.9765 0.9753 0.9759 88.82 0.8886 0.8879 0.8882 96.27 0.9637 0.9627 0.9632

Inception-v3 97.65 0.9870 0.9864 0.9867 93.29 0.9336 0.9328 0.9332 95.32 0.9568 0.9499 0.9533
Resnet-50 97.68 0.9761 0.9768 0.9764 88.52 0.8868 0.8852 0.8860 90.36 0.9063 0.8994 0.9028
Xception 98.03 0.9796 0.9803 0.9799 96.78 0.9680 0.9673 0.9676 97.49 0.9757 0.9738 0.9747

DenseNet-121 98.15 0.9808 0.9814 0.9811 96.77 0.9672 0.9675 0.9673 95.27 0.9532 0.9515 0.9523
Proposed 98.23 0.9778 0.9792 0.9785 98.46 0.9858 0.9784 0.9821 98.21 0.9856 0.9774 0.9815

Entropy 2021, 23, 344 13 of 23

The generalization ability of the proposed method is assessed using unseen dataset.
The dataset is untrained by the proposed DenseNet model to evaluate how well it performs
under different samples. The three trained malware datasets contain completely different
classes from the Malicia dataset classes. The comparison of the proposed methods with the
ML and DL methods over the unseen Malicia dataset is given in Table 4. The results on the
unseen Malicia dataset show an accuracy of 89.48%, which is less than the performances of
the ML and DL methods over the trained datasets.

Table 4. Comparison of the proposed model with the Machine Learning (ML) and Deep Learning
(DL) models for the Malicia (unseen) dataset. The best values are emphasized in bold.

Methods Acc (%) Pr Re F-Score

ML Methods

KNN 76.75 0.7753 0.7618 0.7685
LR 56.33 0.5779 0.5612 0.5694

SVM 80.33 0.8138 0.7961 0.8049
Naïve Bayes 46.93 0.4642 0.4701 0.4671
Decision Tree 77.77 0.7769 0.7718 0.7743

Random Forest 82.10 0.8261 0.8158 0.8209
Adaboost 75.31 0.7661 0.742 0.7538

DL Methods

CNN 71.42 0.722 0.7061 0.7139
VGG16 77.66 0.7817 0.7765 0.7791
VGG19 82.92 0.8288 0.827 0.8279

Inception-v3 83.7 0.8358 0.825 0.8304
Resnet-50 82.52 0.8312 0.8062 0.8185

Densenet-121 83.02 0.8261 0.8186 0.8224
Xception 83.02 0.8261 0.8186 0.8224

Proposed Method 89.48 0.8936 0.8922 0.8929

Table 5 provides details about the time taken for the proposed model to train and test
the binary samples. The comparison of the proposed model and the malware detectors
based on various DL methods are studied in terms of computational efficiency. The results
indicate that the proposed DenseNet-based malware detection model takes less time to
train and test the samples when compared to other deep learning-based malware detection
systems.

Table 5. Comparison of deep learning-based malware detection models based on computational
time. The best values are emphasized in bold.

Models
Training Time (in sec) Testing Time (in sec)

Malimg BIG 2015 MaleVis Malimg BIG 2015 MaleVis

CNN 6140 4406 10946 7.82 8.14 8.58
VGG16 5174 3652 12721 6.67 6.84 7.04
VGG19 5363 3870 15144 6.35 6.61 6.74

Inception-v3 5604 4146 11379 5.89 6.08 6.36
Resnet-50 6097 4712 8861 7.36 8.12 8.58

Densenet-121 6574 5259 8328 8.48 8.70 8.96
Xception 5674 4226 10448 5.08 5.53 6.36
Proposed 1941 2237 2351 4.36 4.49 5.09

Table 6 compares the results of the proposed malware detection model with previous
works on the four malware datasets (3 training dataset + 1 (unseen) test dataset). The
proposed model outperforms other detection methods in the literature. The accuracy of the
proposed model (98.23%) is slightly higher than the accuracy of the method by Roseline
et al. (98.65%) on the Malimg dataset. The results of the proposed model outperform the
existing methods on the BIG 2015, MaleVis, and Malicia datasets.

Entropy 2021, 23, 344 14 of 23

Table 6. Comparison of existing works with the proposed method for the four malware datasets. The best values are
emphasized in bold.

Methods Malimg Dataset BIG 2015 Dataset MaleVis Dataset Malicia Dataset
Acc
(%) Pr Re F-

Score
Acc
(%) Pr Re F-

Score
Acc
(%) Pr Re F-

Score
Acc
(%) Pr Re F-

Score
Nataraj et al. [10] 97.18 0.9657 0.9685 0.9671 96.48 0.9646 0.9544 0.9595 91.69 0.9236 0.8958 0.9095 85.26 0.8493 0.8520 0.8506

Roseline et al.
[58] 98.65 0.9886 0.9863 0.9874 97.2 0.9761 0.9679 0.9720 97.43 0.9753 0.9732 0.9742 86.45 0.8615 0.8636 0.8625

Cui et al. [54] 94.5 0.9464 0.9431 0.9447 93.4 0.9328 0.9354 0.9341 92.13 0.9209 0.9189 0.9199 80.17 0.7894 0.8008 0.7951
Agarap et al. [55] 84.92 0.8547 0.8464 0.8505 80.51 0.8135 0.7986 0.8060 79.36 0.8022 0.7845 0.7933 72.05 0.7195 0.7200 0.7197

Vinayakumar
et al. [59] 96.3 0.963 0.9582 0.9606 91.27 0.9221 0.9132 0.9176 86.29 0.8685 0.8628 0.8656 84.63 0.8433 0.8426 0.8429

Luo et al. [60] 93.72 0.9413 0.9254 0.9333 93.57 0.9447 0.9268 0.9357 92.24 0.9179 0.9096 0.9137 82.54 0.8227 0.8235 0.8231
Singh [31] 96.08 0.9576 0.9616 0.9596 94.24 0.9423 0.9289 0.9356 93 0.9287 0.9167 0.9227 84.28 0.8384 0.8469 0.8426
Proposed 98.23 0.9778 0.9792 0.9785 98.46 0.9858 0.9784 0.9821 98.21 0.9856 0.9774 0.9815 89.48 0.8936 0.8922 0.8929

Figures 5–7 present the plots for train accuracy, test accuracy, and loss over the number
of epochs for the proposed model with the Malimg, BIG 2015, and MaleVis datasets. From
the figures, the accuracy is observed as rising for increasing epochs and the loss decreases
as epochs increase.

Entropy 2021, 23, x FOR PEER REVIEW 15 of 23

Singh
[31]

96.0
8

0.95
76

0.96
16

0.959
6

94.2
4

0.94
23

0.92
89

0.935
6 93

0.92
87

0.916
7

0.922
7 84.28 0.8384 0.8469 0.8426

Proposed 98.2
3

0.97
78

0.97
92

0.978
5

98.4
6

0.98
58

0.97
84

0.982
1

98.21 0.98
56

0.977
4

0.981
5

89.48 0.8936 0.8922 0.8929

Figure 5. Training and test accuracy and loss for the Malimg dataset.

Figure 6. Training and test accuracy and loss for the BIG2015 dataset.

Figure 5. Training and test accuracy and loss for the Malimg dataset.

Entropy 2021, 23, x FOR PEER REVIEW 15 of 23

Singh
[31]

96.0
8

0.95
76

0.96
16

0.959
6

94.2
4

0.94
23

0.92
89

0.935
6 93

0.92
87

0.916
7

0.922
7 84.28 0.8384 0.8469 0.8426

Proposed 98.2
3

0.97
78

0.97
92

0.978
5

98.4
6

0.98
58

0.97
84

0.982
1

98.21 0.98
56

0.977
4

0.981
5

89.48 0.8936 0.8922 0.8929

Figure 5. Training and test accuracy and loss for the Malimg dataset.

Figure 6. Training and test accuracy and loss for the BIG2015 dataset.

Figure 6. Training and test accuracy and loss for the BIG2015 dataset.

Entropy 2021, 23, 344 15 of 23

Entropy 2021, 23, x FOR PEER REVIEW 15 of 23

Singh
[31]

96.0
8

0.95
76

0.96
16

0.959
6

94.2
4

0.94
23

0.92
89

0.935
6 93

0.92
87

0.916
7

0.922
7 84.28 0.8384 0.8469 0.8426

Proposed 98.2
3

0.97
78

0.97
92

0.978
5

98.4
6

0.98
58

0.97
84

0.982
1

98.21 0.98
56

0.977
4

0.981
5

89.48 0.8936 0.8922 0.8929

Figure 5. Training and test accuracy and loss for the Malimg dataset.

Figure 6. Training and test accuracy and loss for the BIG2015 dataset.

Figure 7. Training and test accuracy and loss for the MaleVis dataset.

The confusion matrices for the models trained on three malware datasets along with
the cleanware class are given in Figures 8–10. For the Malimg dataset with 26 classes, the
confusion matrix is a 26× 26 matrix with the columns representing the actual class and the
rows indicating the predicted class. The diagonal elements show the number of correctly
classified samples, where the predicted class matches the actual class. The off-diagonal
elements represent misclassified samples. The diagonal elements for all three datasets
show higher values compared to the off-diagonal elements. Although the samples in the
Simda class are fewer, most of the samples in that class were correctly classified by the
proposed model.

A Receiver Operating Characteristic (ROC) curve is a plot of the True Positive Rate
(TPR) vs. False Positive Rate (FPR) at different classification thresholds to examine the
performance of the proposed malware detection model. Figures 11–13 show the ROC
curves for the proposed model obtained for the three training malware datasets. The N
number of ROC curves corresponding to the N number of classes are seen in Figures 11–13.
For instance, the Malimg dataset includes 26 classes. The graph shows 26 ROC curves,
with the first curve representing the first class that is classified against the other 25 classes,
the next ROC curve representing the second class that is classified against the rest of
the classes, and so on. TPR is approximately one and FPR is close to zero on the curves
for each class against every other class. The area under the curve is higher for all the
classes on the Malimg and BIG2015 malware datasets compared to the area under the
curve for the MaleVis dataset. This indicates the outperforming efficiency of the proposed
DenseNet-based malware detection model.

Entropy 2021, 23, 344 16 of 23

Entropy 2021, 23, x FOR PEER REVIEW 16 of 23

Figure 7. Training and test accuracy and loss for the MaleVis dataset.

A Receiver Operating Characteristic (ROC) curve is a plot of the True Positive Rate
(TPR) vs. False Positive Rate (FPR) at different classification thresholds to examine the
performance of the proposed malware detection model. Figures 11–13 show the ROC
curves for the proposed model obtained for the three training malware datasets. The N
number of ROC curves corresponding to the N number of classes are seen in Figures 11–
13. For instance, the Malimg dataset includes 26 classes. The graph shows 26 ROC curves,
with the first curve representing the first class that is classified against the other 25 clas-
ses, the next ROC curve representing the second class that is classified against the rest of
the classes, and so on. TPR is approximately one and FPR is close to zero on the curves for
each class against every other class. The area under the curve is higher for all the classes
on the Malimg and BIG2015 malware datasets compared to the area under the curve for
the MaleVis dataset. This indicates the outperforming efficiency of the proposed
DenseNet-based malware detection model.

Figure 8. Confusion matrix for the Malimg dataset.

Figure 8. Confusion matrix for the Malimg dataset.

Entropy 2021, 23, 344 17 of 23
Entropy 2021, 23, x FOR PEER REVIEW 17 of 23

Figure 9. Confusion matrix for the BIG 2015 dataset.

Figure 9. Confusion matrix for the BIG 2015 dataset.

Entropy 2021, 23, 344 18 of 23

Entropy 2021, 23, x FOR PEER REVIEW 18 of 23

Figure 10. Confusion matrix for the MaleVis dataset.

The proposed malware detection system would be effective and can produce ad-
vanced results, as shown in Table 7. Any new malware that resembles these families of
malware will also be detected with the same accuracy because of the generalization
property of the proposed model. If the new malware is completely unseen, i.e., a ze-
ro-day malware attack, the proposed system may fail to detect it. Therefore, if such ze-
ro-day attacks accumulate, then the performance of the proposed model could fall, but a
false alarm may indicate that the model needs to be retrained. Therefore, the model will
be retuned with new samples and the performance will be tuned such that the model will
detect malware that has already been trained as well as newly seen malware, almost
similar to a top-up of the training set. As a result, the proposed model would be able to
keep up with malware evolution over time and to understand anti-malware evasion
techniques.

Table 7. Performance of the proposed method for three malware binary classification datasets.

Performance Metrics Malimg Dataset BIG2015 Dataset MaleVis Dataset
Acc (%) 97.55 97.72 96.81

Pr 0.9743 0.9756 0.9650
Re 0.9750 0.9748 0.9681

Figure 10. Confusion matrix for the MaleVis dataset.

Entropy 2021, 23, 344 19 of 23

Entropy 2021, 23, x FOR PEER REVIEW 19 of 23

F-score 0.9746 0.9752 0.9665

Figure 11. Receiver Operating Characteristic (ROC) curve for the Malimg dataset.

The experiments were conducted for binary classification (malware or cleanware)
with the Malimg, BIG2015, and MaleVis datasets. For each of the three datasets, 1000
samples were picked and included in the malware class, while the other class contained
1043 cleanware samples. The results were taken to assess the performance of the pro-
posed DenseNet-based malware detection system for the three binary datasets. The ac-
curacy for the BIG2015 binary dataset shows a higher detection accuracy of 97.72%
compared to the other datasets. The accuracy for the Malimg binary dataset is 97.55%,
and the accuracy for the MaleVis binary dataset is 96.81%. The other metrics such as
precision, recall, and f1score are similarly higher for BIG2015 than for the other two bi-
nary datasets.

Figure 11. Receiver Operating Characteristic (ROC) curve for the Malimg dataset.

Entropy 2021, 23, x FOR PEER REVIEW 20 of 23

Figure 12. ROC curve for the BIG 2015 dataset.

Figure 13. ROC curve for the MaleVis dataset.

Figure 12. ROC curve for the BIG 2015 dataset.

Entropy 2021, 23, 344 20 of 23

Entropy 2021, 23, x FOR PEER REVIEW 20 of 23

Figure 12. ROC curve for the BIG 2015 dataset.

Figure 13. ROC curve for the MaleVis dataset.

Figure 13. ROC curve for the MaleVis dataset.

The proposed malware detection system would be effective and can produce advanced
results, as shown in Table 7. Any new malware that resembles these families of malware
will also be detected with the same accuracy because of the generalization property of the
proposed model. If the new malware is completely unseen, i.e., a zero-day malware attack,
the proposed system may fail to detect it. Therefore, if such zero-day attacks accumulate,
then the performance of the proposed model could fall, but a false alarm may indicate that
the model needs to be retrained. Therefore, the model will be retuned with new samples
and the performance will be tuned such that the model will detect malware that has already
been trained as well as newly seen malware, almost similar to a top-up of the training set.
As a result, the proposed model would be able to keep up with malware evolution over
time and to understand anti-malware evasion techniques.

Table 7. Performance of the proposed method for three malware binary classification datasets.

Performance Metrics Malimg Dataset BIG2015 Dataset MaleVis Dataset

Acc (%) 97.55 97.72 96.81

Pr 0.9743 0.9756 0.9650

Re 0.9750 0.9748 0.9681

F-score 0.9746 0.9752 0.9665

The experiments were conducted for binary classification (malware or cleanware)
with the Malimg, BIG2015, and MaleVis datasets. For each of the three datasets, 1000 sam-
ples were picked and included in the malware class, while the other class contained
1043 cleanware samples. The results were taken to assess the performance of the proposed
DenseNet-based malware detection system for the three binary datasets. The accuracy for
the BIG2015 binary dataset shows a higher detection accuracy of 97.72% compared to the
other datasets. The accuracy for the Malimg binary dataset is 97.55%, and the accuracy

Entropy 2021, 23, 344 21 of 23

for the MaleVis binary dataset is 96.81%. The other metrics such as precision, recall, and
f1score are similarly higher for BIG2015 than for the other two binary datasets.

5. Conclusions

We proposed an efficient malware detection and classification technique that combines
malware visualization and a pretrained DenseNet model with a reweighted categorical
cross-entropy loss criterion. The performance of the proposed DenseNet-based malware
detection approach was evaluated on four malware datasets, and its superiority over other
models was analyzed.

The proposed model achieved a better classification accuracy of 98.23% for the Malimg
dataset, of 98.46% for the BIG 2015 dataset, and of 98.21% for the MaleVis dataset, which is
higher than the other methods explored. The accuracy of the unseen dataset that has not
been trained by the proposed model achieves an accuracy of 89.48%.

The proposed model correctly identified most of the obfuscated malware samples,
proving its resiliency towards malware mitigation methods. The proposed solution does
not require execution or unpacking of the packed executables. The experiment results
demonstrate that, even though the training set is imbalanced, our technique can effectively
and efficiently classify malware samples to their corresponding families. The proposed
detection system shows high accuracy and time performance that is comparable with
conventional solutions based on machine learning while eliminating the manual feature
engineering stage.

In the future, we will concentrate on the reduction of false negatives to achieve an
optimal solution.

Author Contributions: J.H., S.A.R., S.G., S.K. and R.D. contributed equally to this study. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is available from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jang-Jaccard, J.; Nepal, S. A survey of emerging threats in cybersecurity. J. Comput. Syst. Sci. 2014, 80, 973–993. [CrossRef]
2. Amoroso, E. Recent progress in software security. IEEE Softw. 2018, 35, 11–13. [CrossRef]
3. Drew, J.; Moore, T.; Hahsler, M. Polymorphic malware detection using sequence classification methods. In Proceedings of the

2016 IEEE Security and Privacy Workshops (SPW), San Jose, CA, USA, 22–26 May 2016; pp. 81–87.
4. Canfora, G.; Mercaldo, F.; Visaggio, C.A.; Di Notte, P. Metamorphic Malware Detection Using Code Metrics. Inf. Secur. J. A Glob.

Perspect. 2014, 23, 57–67. [CrossRef]
5. OKane, P.; Sezer, S.; McLaughlin, K. Obfuscation The hidden malware. IEEE Secur. Priv. 2011, 9, 41–47. [CrossRef]
6. Kuraku, S.; Kalla, D. Emotet Malware—A Banking Credentials Stealer. Iosr J. Comput. Eng. 2020, 22, 31–41.
7. Celik, R.; Gezer, A. Behavioral Analysis of Trickbot Banking Trojan with its New Tricks. Int. J. Technol. Eng. Stud. 2019, 5, 95–105.

[CrossRef]
8. Islam, R.; Tian, R.; Batten, L.M.; Versteeg, S. Classification of malware based on integrated static and dynamic features. J. Netw.

Comput. Appl. 2013, 36, 646–656. [CrossRef]
9. Subairu, S.O.; Alhassan, J.; Misra, S.; Abayomi-Alli, O.; Ahuja, R.; Damasevicius, R.; Maskeliunas, R. An experimental approach

to unravel effects of malware on system network interface. In Lecture Notes in Electrical Engineering; Springer: Singapore, 2020; pp.
225–235. [CrossRef]

10. Nataraj, L.; Karthikeyan, S.; Jacob, G.; Manjunath, B.S. Malware images. In Proceedings of the 8th International Symposium on
Visualization for Cyber Security—VizSec 11, Pittsburgh, PA, USA, 20 July 2011. [CrossRef]

11. Ronen, R.; Radu, M.; Feuerstein, C.; Yom-Tov, E.; Ahmadi, M. Microsoft Malware Classification Challenge. arXiv 2018,
arXiv:1802.10135.

http://doi.org/10.1016/j.jcss.2014.02.005
http://doi.org/10.1109/MS.2018.1661316
http://doi.org/10.1080/19393555.2014.931487
http://doi.org/10.1109/MSP.2011.98
http://doi.org/10.20469/ijtes.5.10004-3
http://doi.org/10.1016/j.jnca.2012.10.004
http://doi.org/10.1007/978-981-15-0372-6_17
http://doi.org/10.1145/2016904.2016908

Entropy 2021, 23, 344 22 of 23

12. Bozkir, A.S.; Cankaya, A.O.; Aydos, M. Utilization and Comparison of Convolutional Neural Networks in Malware Recognition.
In Proceedings of the 27th Signal Processing and Communications Applications Conference (SIU), Sivas, Turkey, 24–26 April
2019; pp. 1–4.

13. Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; Li, F. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami, FL, USA, 20–25 June 2009;
pp. 248–255.

14. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [CrossRef]

15. Tensorflow. Available online: www.tensorflow.org (accessed on 10 February 2020).
16. Nappa, A.; Rafique, M.Z.; Caballero, J. The MALICIA dataset identification and analysis of drive-by download operations. Int. J.

Inf. Secur. 2015, 14, 15–33. [CrossRef]
17. Souri, A.; Hosseini, R. A state-of-the-art survey of malware detection approaches using data mining techniques. Hum. Cent.

Comput. Inf. Sci. 2018, 8. [CrossRef]
18. Odusami, M.; Abayomi-Alli, O.; Misra, S.; Shobayo, O.; Damasevicius, R.; Maskeliunas, R. Android malware detection: A

survey. In Applied Informatics. ICAI 2018. Communications in Computer and Information Science; Springer: Cham, Switzerland, 2018;
Volume 942, pp. 255–266. [CrossRef]

19. Santos, I.; Brezo, F.; Ugarte-Pedrero, X.; Bringas, P.G. Opcode sequences as representation of executables for data-mining-based
unknown malware detection. Inf. Sci. 2013, 231, 64–82. [CrossRef]

20. Tian, R.; Batten, L.M.; Versteeg, S.C. Function length as a tool for malware classification. In Proceedings of the 3rd International
Conference on Malicious and Unwanted Software (MALWARE), Fairfax, VI, USA, 7–8 October 2008; pp. 69–76.

21. Kong, D.; Yan, G. Discriminant malware distance learning on structural information for automated malware classification. In
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA,
11–14 August 2013; pp. 1357–1365.

22. Wadkar, M.; Di Troia, F.; Stamp, M. Detecting malware evolution using support vector machines. Expert Syst. Appl. 2020,
143, 113022. [CrossRef]

23. Schultz, M.G.; Eskin, E.; Zadok, F.; Stolfo, S.J. Data mining methods for detection of new malicious executables. In Proceedings of
the 2001 IEEE Symposium on Security and Privacy (SP 2001), Oakland, CA, USA, 14–16 May 2001; pp. 38–49.

24. Roseline, S.A.; Geetha, S. Intelligent Malware Detection using Oblique Random Forest Paradigm. In Proceedings of the
International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India, 19–22
September 2018; pp. 330–336.

25. Kim, H.; Kim, J.; Kim, Y.; Kim, I.; Kim, K.J.; Kim, H. Improvement of malware detection and classification using API call sequence
alignment and visualization. Clust. Comput. 2019, 22, 921–929. [CrossRef]

26. Imran, M.; Afzal, M.T.; Qadir, M.A. Similarity-based malware classification using hidden Markov model. In Proceedings of the
Fourth International Conference on Cyber Security, Cyber Warfare, and Digital Forensic (CyberSec), Jakarta, Indonesia, 29–31
October 2015; pp. 129–134.

27. Kolter, J.Z.; Maloof, M.A. Learning to detect and classify malicious executables in the wild. J. Mach. Learn. Res. 2006, 7, 2721–2744.
28. Rieck, K.; Trinius, P.; Willems, C.; Holz, T. Automatic analysis of malware behavior using machine learning. J. Comput. Secur.

2011, 19, 639–668. [CrossRef]
29. Roseline, S.A.; Hari, G.; Geetha, S.; Krishnamurthy, R. Vision-Based Malware Detection and Classification Using Lightweight

Deep Learning Paradigm. In Proceedings of the International Conference on Computer Vision and Image Processing, Jaipur,
India, 27–29 September 2019; pp. 62–73.

30. Roseline, S.A.; Sasisri, A.D.; Geetha, S.; Balasubramanian, C. Towards Efficient Malware Detection and Classification using
Multilayered Random Forest Ensemble Technique. In Proceedings of the 2019 International Carnahan Conference on Security
Technology (ICCST), Chennai, India, 1–3 October 2019; pp. 1–6.

31. Singh, A.; Handa, A.; Kumar, N.; Shukla, S.K. Malware classification using image representation. In Proceedings of the
International Symposium on Cyber Security Cryptography and Machine Learning, Beer Sheva, Israel, 27–28 June 2019; pp. 75–92.

32. Shiva Darshan, S.L.; Jaidhar, C.D. Windows malware detector using convolutional neural network based on visualization images.
IEEE Trans. Emerg. Top. Comput. 2019. [CrossRef]

33. Vasan, D.; Alazab, M.; Wassan, S.; Safaei, B.; Zheng, Q. Image-based malware classification using ensemble of CNN architectures
(IMCEC). Comput. Secur. 2020, 92. [CrossRef]

34. Zhang, J.; Qin, Z.; Yin, H.; Ou, L.; Xiao, S.; Hu, Y. Malware variant detection using opcode image recognition with small training
sets. In Proceedings of the 25th International Conference on Computer Communication and Networks (ICCCN), Waikoloa, HI,
USA, 1–4 August 2016; pp. 1–9.

35. Han, K.; Kang, B.; Im, E.G. Malware analysis using visualized image matrices. Sci. World J. 2014. [CrossRef]
36. Yan, H.; Zhou, H.; Zhang, H. Automatic malware classification via PRICoLBP. Chin. J. Electron. 2018, 27, 852–859. [CrossRef]
37. Conti, G.; Dean, E.; Sinda, M.; Sangster, B. Visual reverse engineering of binary and data files. In Proceedings of the International

Workshop on Visualization for Computer Security, Cambridge, MA, USA, 15 September 2008; Springer: Berlin/Heidelberg,
Germany, 2008; pp. 1–17.

http://doi.org/10.1109/cvpr.2017.243
www.tensorflow.org
http://doi.org/10.1007/s10207-014-0248-7
http://doi.org/10.1186/s13673-018-0125-x
http://doi.org/10.1007/978-3-030-01535-0_19
http://doi.org/10.1016/j.ins.2011.08.020
http://doi.org/10.1016/j.eswa.2019.113022
http://doi.org/10.1007/s10586-017-1110-2
http://doi.org/10.3233/JCS-2010-0410
http://doi.org/10.1109/TETC.2019.2910086
http://doi.org/10.1016/j.cose.2020.101748
http://doi.org/10.1155/2014/132713
http://doi.org/10.1049/cje.2018.05.001

Entropy 2021, 23, 344 23 of 23

38. Kancherla, K.; Mukkamala, S. Image visualization based malware detection. In Proceedings of the 2013 IEEE Symposium on
Computational Intelligence in Cyber Security (CICS), Singapore, 16–19 April 2013; pp. 40–44.

39. Liu, L.; Wang, B. Malware classification using gray-scale images and ensemble learning. In Proceedings of the 3rd International
Conference on Systems and Informatics (ICSAI), Shangai, China, 19–21 November 2016; pp. 1018–1022.

40. Fu, J.; Xue, J.; Wang, Y.; Liu, Z.; Shan, C. Malware visualization for fine-grained classification. IEEE Access 2018, 6, 14510–14523.
[CrossRef]

41. Nisa, M.; Shah, J.H.; Kanwal, S.; Raza, M.; Khan, M.A.; Damaševičius, R.; Blažauskas, T. Hybrid malware classification method
using segmentation-based fractal texture analysis and deep convolution neural network features. Appl. Sci. 2020, 10, 4966.
[CrossRef]

42. Azab, A.; Khasawneh, M. MSIC Malware spectrogram image classification. IEEE Access 2020, 8, 102007–102021. [CrossRef]
43. Ding, Y.; Zhang, X.; Hu, J.; Xu, W. Android malware detection method based on bytecode image. J. Ambient Intell. Humaniz.

Comput. 2020. [CrossRef]
44. Mahdavifar, S.; Ghorbani, A.A. DeNNeS Deep embedded neural network expert system for detecting cyber attacks. Neural

Comput. Appl. 2020, 32, 14753–14780. [CrossRef]
45. Naeem, H.; Ullah, F.; Naeem, M.R.; Khalid, S.; Vasan, D.; Jabbar, S.; Saeed, S. Malware detection in industrial internet of things

based on hybrid image visualization and deep learning model. Ad Hoc Netw. 2020, 105. [CrossRef]
46. Singh, J.; Thakur, D.; Ali, F.; Gera, T.; Kwak, K.S. Deep feature extraction and classification of android malware images. Sensors

2020, 20, 7013. [CrossRef]
47. Sun, G.; Qian, Q. Deep learning and visualization for identifying malware families. IEEE Trans. Dependable Secur. Comput. 2021,

18, 283–295. [CrossRef]
48. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
49. Zhong, W.; Gu, F. A multi-level deep learning system for malware detection. Expert Syst. Appl. 2019, 133, 151–162. [CrossRef]
50. Ni, S.; Qian, Q.; Zhang, R. Malware identification using visualization images and deep learning. Comput. Secur. 2018, 77, 871–885.

[CrossRef]
51. Yong, B.; Wei, W.; Li, K.; Shen, J.; Zhou, Q.; Wozniak, M.; Połap, D.; Damaševičius, R. Ensemble machine learning approaches for

webshell detection in internet of things environments. Trans. Emerg. Telecommun. Technol. 2020. [CrossRef]
52. Azeez, N.A.; Odufuwa, O.E.; Misra, S.; Oluranti, J.; Damaševičius, R. Windows PE Malware Detection Using Ensemble Learning.

Informatics 2021, 8, 10. [CrossRef]
53. Damaševičius, R.; Venčkauskas, A.; Toldinas, J.; Grigaliūnas, Š. Ensemble-Based Classification Using Neural Networks and

Machine Learning Models for Windows PE Malware Detection. Electronics 2021, 10, 485. [CrossRef]
54. Cui, Z.; Xue, F.; Cai, X.; Cao, Y.; Wang, G.G.; Chen, J. Detection of malicious code variants based on deep learning. IEEE Trans. Ind.

Inform. 2018, 14, 3187–3196. [CrossRef]
55. Agarap, A.F.; Pepito, F.J.H. Towards building an intelligent anti-malware system a deep learning approach using support vector

machine (SVM) for malware classification. arXiv 2017, arXiv:1801.00318.
56. Cui, Y.; Jia, M.; Lin, T.Y.; Song, Y.; Belongie, S. Class-balanced loss based on effective number of samples. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 9268–9277.
57. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
58. Roseline, S.A.; Geetha, S.; Kadry, S.; Nam, Y. Intelligent Vision-based Malware Detection and Classification using Deep Random

Forest Paradigm. IEEE Access 2020, 8, 206303–206324. [CrossRef]
59. Vinayakumar, R.; Alazab, M.; Soman, K.P.; Poornachandran, P.; Venkatraman, S. Robust intelligent malware detection using deep

learning. IEEE Access 2019, 7, 46717–46738. [CrossRef]
60. Luo, J.S.; Lo, D.C.T. Binary malware image classification using machine learning with local binary pattern. In Proceedings of the

IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; pp. 4664–4667.

http://doi.org/10.1109/ACCESS.2018.2805301
http://doi.org/10.3390/app10144966
http://doi.org/10.1109/ACCESS.2020.2999320
http://doi.org/10.1007/s12652-020-02196-4
http://doi.org/10.1007/s00521-020-04830-w
http://doi.org/10.1016/j.adhoc.2020.102154
http://doi.org/10.3390/s20247013
http://doi.org/10.1109/TDSC.2018.2884928
http://doi.org/10.1038/nature14539
http://doi.org/10.1016/j.eswa.2019.04.064
http://doi.org/10.1016/j.cose.2018.04.005
http://doi.org/10.1002/ett.4085
http://doi.org/10.3390/informatics8010010
http://doi.org/10.3390/electronics10040485
http://doi.org/10.1109/TII.2018.2822680
http://doi.org/10.1109/ACCESS.2020.3036491
http://doi.org/10.1109/ACCESS.2019.2906934

	Introduction
	Literature Survey
	Proposed Methodology
	Preprocessing of Input Binaries
	DenseNet
	Classification
	Training

	Experimental Results
	Datasets
	Results and Discussion

	Conclusions
	References

