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Abstract: The 3D modelling of indoor environments and the generation of process simulations play
an important role in factory and assembly planning. In brownfield planning cases, existing data
are often outdated and incomplete especially for older plants, which were mostly planned in 2D.
Thus, current environment models cannot be generated directly on the basis of existing data and
a holistic approach on how to build such a factory model in a highly automated fashion is mostly
non-existent. Major steps in generating an environment model of a production plant include data
collection, data pre-processing and object identification as well as pose estimation. In this work, we
elaborate on a methodical modelling approach, which starts with the digitalization of large-scale
indoor environments and ends with the generation of a static environment or simulation model.
The object identification step is realized using a Bayesian neural network capable of point cloud
segmentation. We elaborate on the impact of the uncertainty information estimated by a Bayesian
segmentation framework on the accuracy of the generated environment model. The steps of data
collection and point cloud segmentation as well as the resulting model accuracy are evaluated on a
real-world data set collected at the assembly line of a large-scale automotive production plant. The
Bayesian segmentation network clearly surpasses the performance of the frequentist baseline and
allows us to considerably increase the accuracy of the model placement in a simulation scene.

Keywords: factory planning; factory simulation; digital factory; Bayesian deep learning; uncertainty
estimation; point clouds; photogrammetry

1. Introduction

There is no common definition of factory planning. However, a widely used de-
scription comes from the Association of German Engineers (VDI), which defines factory
planning as “systematic, objective-oriented process for planning a factory, structured into a
sequence of phases, each of which is dependent on the preceding phase, and makes use of
particular methods and tools, and extending from the setting of objectives to the start of
production” [1]. Four major types of factory planning scenarios are distinguished, namely
development or greenfield planning, replanning or brownfield planning, dismantling
and revitalization.

1.1. Greenfield and Brownfield Planning

The most common planning scenario is brownfield planning followed by greenfield
planning. Greenfield and brownfield planning are distinct processes that have different
aims and requirements. Thus, different considerations are needed to achieve the respective
planning goals. Greenfield planning refers to planning a completely new plant with a
new building, production line and processes. The generation of three-dimensional (3D)
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simulations and the introduction of changes to the virtual production system are relatively
easy as new plans fulfil current requirements of factory planning including 3D building
plans, 3D layouts and computer aided design (CAD) models of the facility, machinery
and products. Further, new technologies and the need for digitalization are taken into
account during planning. For instance, cameras and targets are added to the plants for
later digitalization. Due to the availability of a digital model of the production system,
planners are able to detect planning mistakes mostly in the virtual world before the actual
implementation. Brownfield planning in contrast refers to the renovation or reorganization
of an existing plant. This task is much more difficult compared to greenfield planning
as existing layouts are often outdated and only available in two-dimensional (2D) form.
These plans hide substantial depth information, which is especially important when tasks
are related to the introduction of new machinery or process steps. Due to the enormous
area of assembly plants, which easily reaches up to several thousands of square metres,
various problems arise. The determination of the as-is state of these plants is difficult, as
layouts are often outdated and do not reflect all the renovations of the facility and the
production line. The spatial requirements for a new planning case can hardly be determined
by manual measurements due to the vast area of the plants. Further, certain technological
constraints have to be accepted or modified with great effort. For instance, in older plants
cabling, out-lets and interfaces for newer digitalization technologies are limited or even
non-existent, which makes them difficult to digitalize. As the share of virtual planning
is small compared to analogue planning many planning mistakes can only be detected
during implementation, which is costly. The major differences between greenfield and
brownfield planning are summarized in Table 1.

Table 1. Major differences between greenfield and brownfield planning.

Greenfield Planning Brownfield Planning

• Planning of a new plant
• 3D building plans
• 3D CAD models of machines and

tools
• Up-to-date data
• Decide for technologies to be used
• Regular digitalization taken into ac-

count
• Learn from mistakes in simulations

• Renovation of an existing plant
• Often only 2D building plans
• 2D construction drawings
• Often outdated data
• Live with the technologies given
• Difficult to digitalize
• Live with mistakes of direct imple-

mentation

In order to cope with the challenges arising in brownfield planning scenarios, virtual
planning undoubtedly provides great potential in terms of planning efficiency and accuracy.
It has many advantages over analogue planning, for example, virtual commissioning and
virtual correction of mistakes. The highest economic benefit is the detection and correction
of planning mistakes in early project phases—ideally before their actual implementation [2].
Further, factory planners may inspect overseas sites in a purely virtual environment to
discuss modifications or other planning related tasks. A virtual 3D copy of the real plant
can be transferred to virtual reality supported environments or simpler simulation engines,
which usually provide the possibility of multi-user meetings. In the long run this saves a
considerable amount of travel time and cost. Ideally, solely 3D models and corresponding
simulations of factory buildings, inventory assets, product information and process steps
are the basis for implementing assembly reorganizations including the introduction of new
or the modification of existing processes.
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1.2. Factory Planning and Digitalization

Until the early 20th century, the manufacturing industry was apt to mass production
mainly requiring robustness to interruptions. Since that time, production systems had
to change fundamentally due to shorter product lifecycles, decreasing lot sizes and pro-
gressive product customization [3]. The factory lifecycle accompanies the factory from its
beginnings, that is, the initial planning, to its end of life. It is mainly determined by the
shortening product and process lifecycles. The factory lifecycle can be split into five distinct
phases, namely, development, construction, start-up, operation and dismantling [4].

According to the factory lifecycle, the factory planning process is part of the develop-
ment, as well as the operation phase, of greenfield and brownfield planning, respectively.
The factory planning process itself can be divided into another seven distinct phases, which
are described in more detail in the VDI guideline 5200 [1]. The first two phases aim to
describe the objectives and the collection of preliminary planning data. During the third
and fourth phase the planning concepts for structural elements are specified until a real-
izable status is reached. The final phases prepare for the realization. They supervise and
support the factory start-up. All of these phases are accompanied by project management.
The seven phases of the factory planning process are part of any greenfield or brownfield
planning project. With this phase model the VDI established a quasi-standard for factory
planning, which is adopted by many manufacturing companies. Thus, the proposed tech-
niques prove to be well elaborate and reliable. Undoubtedly, the availability of current
3D factory data and simulation models facilitates the realization of any of these phases in
greenfield as well as brownfield planning. However, in this work we focus on brownfield
planning and the acquisition of current models mainly for the structural part, that is, the
third and fourth factory planning phase.

In order to arrive at a current digital model of a production site, there are several
hurdles to overcome. The first and at the same time one of the most challenging problems
is the collection of current data in the plants, each of which extends over a huge area. In
recent years laser scanning [5] and photogrammetry [6] have become popular measures
for indoor digitalization, generating 3D point clouds of the environment. As soon as the
necessary 3D data is available, it has to be pre-processed in order to be useful for factory
planning. The pre-processing includes the fusion of data collected by different sensors
and data cleaning. For the mere aim of a rough visualization of the environment, the
availability of 3D point clouds is sufficient. Promising results for surface reconstruction
on the basis of point clouds are presented in [7,8]. However, these approaches do not
aim at reconstructing an industrial environment but focus on the meshing process. In
order to achieve photorealistic reconstruction results, further manual efforts are needed.
The generation of an environment or simulation model consisting of individual objects
requires the identification and the localization of these objects within the point cloud,
which can be tackled by object detection networks that directly perform pose estimation or
a segmentation framework, where object poses are estimated on the basis of the segmented
point cloud. Both of these approaches are discussed and contrasted with respect to their
advantages and disadvantages in Section 2.1. The availability of CAD models of the objects
of interest is an advantage for model generation, as many simulation tasks cannot be carried
out solely on the basis of point clouds. Raw point clouds are subject to occlusions, which
cause holes within the point cloud. Therefore, tasks like collision checking are potentially
not reliable. Further, working with an unsegmented point cloud has the disadvantage
of not being able to distinguish between different objects automatically. They have to be
selected manually, which makes their displacement or removal in a scene inconvenient.
Yet, replacing CAD models by reference point clouds is possible although some of the
informative value of the resulting simulation can get lost.

1.3. Contributions of the Paper

In this work, we propose an approach to reconstruct an existing industrial production
plant including building, product and process related structures based on a 3D point cloud.
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We determine the impact of the uncertainty information gained by a Bayesian neural
network on the reconstruction results. Currently, this is still an open research question with
hardly any literature focusing on the requirements of industrial applications. We focus on
the brownfield planning case and propose a holistic and methodical modelling approach
based on [9] for the automated generation of an environment model in a simulation engine
starting from the collection of a raw point cloud of a manufacturing plant. Initially, a data
collection methodology based on 3D laser scanning and photogrammetry is proposed,
which enables us to collect a data set at a German automotive OEM in order to thoroughly
test our remaining workflow steps. The digitalization process yields a 3D point cloud of
the factory environment. Objects therein are identified using a segmentation approach. We
incorporate the information on the segmentation uncertainty and investigate its impact on
the resulting model. As Bayesian methods provide a mathematically sound framework
for uncertainty quantification, we apply the Bayesian neural network (BNN) proposed
in our previous work [10]. The BNN is capable of 3D semantic segmentation and thus
allows us to partition the point set into meaningful subsets that can be provided to the
respective departments for further processing. Aside from neural networks there are other
methods for point cloud segmentation, for example, octree [11], superpoint graphs [12]
or hierarchical clustering [13] based techniques. However, these methods are not capable
of expressing uncertainty in the predictions. Therefore, we decide to apply a deep neural
network trained in a Bayesian way. The segmented output point cloud is used to determine
the number of objects per scene as well as their pose relative to a predefined zero point.
These steps are carried out by the application of clustering and point cloud registration
algorithms. To this end, either CAD models or reference point clouds of the objects of
interest are required. The proposed modelling approach for the generation of a static
simulation model is depicted in Figure 1.

Laser Scanning &
Photogrammetry

Point Cloud
Registration

Data Cleaning &
Labelling

Segmentation Pose Estimation
Environment

Model

CAD Models or
Ref. Point Cloud

Data Collection Data Pre-Processing Data Processing

Figure 1. Process diagram of generating an environment model on the basis of a point cloud. The
process steps are displayed in rectangle shaped boxes. Input and output data are represented by
boxes with rounded corners. The segmentation step is highlighted as this step is explained in more
detail in [10].

The proposed framework is part of an industrial prototype that aims at the recon-
struction of automotive assembly plants on the basis of point cloud data. However, this
approach can well be applied to any indoor industrial or office areas. In summary, the
contributions of this paper are:

• Framework: We describe a comprehensive and methodical modelling approach start-
ing with the digitalization of large-scale industrial environments using laser scans
and photogrammetry and ending with the generation of a static environment model.

• Experiment: We evaluate the quality of factory digitalization in terms of the accuracy,
completeness and point density of the resulting point cloud. Further, the accuracy
of the final environmental model is evaluated. The segmentation model used in this
work is presented and evaluated in [10].

• Potential: We provide an estimation of the economic potential of automated factory
digitalization as well as simulation model generation for a number of exemplary
production plants.

The remainder of this paper is structured as follows—in Section 2, environment modelling
approaches based on point clouds are discussed as well as the notion of uncertainty in
predictive models. Further, the collection and pre-processing of our automotive factory
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data set is described. Section 3 focuses on the applied Bayesian segmentation network
and describes the methodologies for pose estimation and simulation model generation.
The evaluation of the proposed steps is presented in Section 4 including the description
of the data set used. The complete simulation model generation approach is evaluated by
processing our own automotive factory data set. Finally, Section 5 provides a discussion of
the proposed approach as well as its economic potential before concluding the paper.

2. Data Modelling

The proposed approach relies on the availability of point cloud data for 3D modelling.
In the sequel point cloud processing frameworks as well as solutions to environment
modelling based on point clouds are discussed. Further, Bayesian methods and the un-
certainty definitions applied within this paper are discussed as well as the collection and
pre-processing of our automotive factory data set.

2.1. Point Clouds and Environment Modelling

Learning frameworks on 3D point clouds have to cope with the unordered and irregu-
lar structure of the inputs. Some of these frameworks include [14–16]. Several strategies
exist to transform point clouds to a more regular representation, namely voxelization or the
projection to the 2D space. In the former case a volumetric grid is created that represents the
point cloud in a regular format. Different deep learning approaches, which use voxelized
point clouds as an input, are discussed in [17–19]. In the latter case, the input point cloud is
projected to the 2D space under varying viewports [20–22]. The transformation to a regular
data structure has many advantages like the possibility to apply either 2D or 3D convo-
lutions with their elaborate kernel optimizations. However, voxelization unnecessarily
expands the data volume as empty areas in the point cloud are still represented by voxels.
Further, dense areas of the point cloud are displayed in a lower resolution by the voxel
grid, which entails an information loss [23] and truncation errors [15]. The transformation
of 3D point clouds to 2D images can cause the loss of structural information embedded
in the higher dimensional space. Additionally, a high number of viewports need to be
considered in order to represent the information encoded within a point cloud in a number
of images [23]. Thus, we decide to work directly with the raw and unordered point cloud
as an input for the segmentation network.

Generally, two major methodologies on environment reconstruction exist, namely
data- and model-driven approaches [24]. The former directly estimate features from the
data, while the latter take into account prior knowledge to choose a suitable model from
a library and fit it to the data. As we do not have a complete catalogue or library of
existing models and only limited prior knowledge on the interior of far-away plants is
available, data-driven approaches are reviewed in more detail in the sequel. Point clouds
are often used as data source for environment modelling. Different objects in the point
cloud need to be identified, which can be solved using various statistical or machine
learning techniques. Data-driven techniques are heavily used for modelling archaeological
sites [25]. Further, they are used in architecture for building modelling, however, they
have rather simple applications like the extraction of windows and doors in façades [26,27]
or the creation of floor plans [28]. In [29] an approach that reconstructs and interprets
indoor areas is presented. Similarly to the previous methods, the reconstructed objects
are limited to the floor, the ceiling, walls and doors. Aside from indoor applications,
in [30] an outdoor point cloud is segmented by clustering the point cloud of an urban
area into a number of plane shaped groups. Based on these surfaces, building models are
reconstructed. Another outdoor building model is generated using oblique areal images as
well as edge and height information of façades [31]. However, none of these frameworks
has an industrial application requiring a detailed environment model including product,
process and building information.

Deep semantic segmentation is a way of assigning a distinct class label to each point
in the point cloud, thus, allowing the differentiation of objects in the point set. In our
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modelling approach, we identify product, process and building related objects and estimate
their 9DoF pose, that is, position, rotation and scale with respect to some predefined
coordinate origin, based on a segmented point cloud.

Aside from segmentation, object detection and pose estimation can be performed
directly on the point cloud. The Scan2CAD framework directly estimates the 6DoF CAD
model alignment, that is, position and rotation, of eight household objects on the basis of a
voxelized point cloud and the respective CAD models [32]. An extension of this framework,
which is capable of 9DoF pose estimation on the same data set, is discussed in [33]. Apart
from deep neural networks a CAD model alignment framework based on global descriptors
extracted by the Viewpoint Feature Histogram approach [34] is described in [35]. Direct
object detection and estimation of the CAD model alignment on the basis of point clouds
can of course be used for environment modelling and simulation model generation. It has
the advantage of only one classifier to be trained for generating an environment model.
However, it requires the availability of the CAD models of all objects of interest. The prior
segmentation of a point cloud with a subsequent pose estimation step allows us to model
objects where CAD models are not available on the fly. Further, meaningful partitions of
the point cloud can be generated, that is, building, assembly, logistics and product related
point sets. These subsets can be provided to the respective departments that only process
the necessary parts of the point cloud, thus, reducing the storage and computational efforts
considerably. Therefore, our approach of point cloud segmentation followed by a separate
pose estimation step addresses the factory planning use case in a holistic way, which is not
covered by previous works.

2.2. Bayesian Neural Networks and Uncertainty Definition

Bayesian neural networks in contrast to frequentist or classic neural networks take
on the Bayesian interpretation of probability. They place a prior distribution over all
the network parameters including weights and biases, instead of considering them as
point estimates. Thus, a prior distribution needs to be defined for all the network pa-
rameters. The posterior distribution can be calculated using Bayes’ theorem after each
batch of training data. However, the direct application of Bayes’ theorem is difficult as a
generally intractable integral needs to be solved. Several techniques to approximate the
posterior exist, for example, variational inference [36], Markov Chain Monte Carlo ap-
proaches [37–39], Hamiltonian Monte Carlo algorithms [40] and Integrated Nested Laplace
Approximations [41]. For training efficiency the generally fastest method of variational
inference is used in the following.

As already mentioned, BNNs allow the estimation of uncertainty in the network
outputs, which can be realized using a number of different approaches. Many works
distinguish between uncertainty inherent to the data and model related uncertainty. These
are called aleatoric and epistemic uncertainty, respectively [42]. The total uncertainty in a
network prediction, which is referred to as predictive uncertainty, can be interpreted as
the sum of aleatoric and epistemic uncertainty. Such a split of uncertainty into data and
model related uncertainty is useful as it allows us to grasp the amount of uncertainty that
can be reduced by further model optimization and the amount of uncertainty, which is
inherent to the data. One way of estimating uncertainty in a BNN is based on entropy [43].
Precisely, predictive uncertainty Upred can be modelled as the entropy H inherent to the
predictive network outputs, that is, Upred = H[y?|x?, w], where (x?, y?) is an unseen input
with its corresponding label and w corresponds to the network parameters. In practical
applications the marginalization over the weight samples drawn from an approximate
variational distribution yields Upred,

Upred ≈ − ∑
y?∈{1,...,m}

(
1
K

K

∑
k=1

p(y?|x?, wk)

)
· log

(
1
K

K

∑
k=1

p(y?|x?, wk)

)
. (1)
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In Equation (1), p(y?|x?, wk) represents the predictive network output and wk is the
k-th weight sample of the variational distribution qϕ, which is described in more detail in
Section 3.1.2. In total, K ∈ N weight samples are drawn from the variational distribution.
The average entropy over all weight samples wk corresponds to the aleatoric uncertainty,

Ualea = E[H[y?|x?, wk]] ≈ − 1
K

K

∑
k=1

∑
y?∈{1,...,m}

p(y?|x?, wk) · log(p(y?|x?, wk)). (2)

Epistemic uncertainty Uep is calculated as the difference of predictive and aleatoric
uncertainty, that is, Uep = Upred −Ualea.

Further ways of uncertainty quantification include the variance of the predictive
network outputs and the estimation of (95 %-)credible intervals [44]. In the former case the
predictive variance is estimated empirically using the unbiased estimator for the variance.
Any prediction for which the predictive variance exceeds a certain threshold, for example,
the mean variance plus two sigma, is considered uncertain. In the latter case, credible
intervals are calculated for each class. If the credible interval of the predicted class overlaps
with any other class’ credible interval the prediction is considered uncertain. In [10] all of
these methods for uncertainty quantification are contrasted.

2.3. Data Collection

In recent years, laser scanning became increasingly popular for the purpose of indoor
and outdoor digitalization [45]. The trend was fostered mostly by the recent advances in
the scanning technology, increasing storage capacity and decreasing equipment cost. As a
rule of thumb, stationary laser scanners produce a more accurate point cloud than mobile
ones as they stand still during digitalization. Further, stationary laser scanners usually
have a longer range than mobile ones, which is insignificant in the plane but becomes
important when measuring heights. However, stationary laser scanners produce point
clouds with a high point density close to the device, which is decreasing over distance,
while mobile laser scanners capture the environment with a lower but more homogeneous
point density. Further, stationary scanners take a longer time to be set up and capture
their surroundings with as few occlusions as possible [46]. A comparison of stationary and
mobile laser scanning is depicted in Table 2.

Table 2. Major differences between stationary and mobile laser scanning.

Stationary Laser Scanning Mobile Laser Scanning

• Fixed on a stationary tripod
• Higher point cloud accuracy
• Longer range, which is especially

important for height information
• Inhomogeneous point density and

many occlusions due to stationarity
• Duration of the scan is several min-

utes

• Fixed on a mobile platform
• Lower point cloud accuracy
• Shorter range, which is insignificant

in the plane
• More homogeneous point density

and fewer occlusions due to scanner
path

• Considerably lower scan duration

In industrial manufacturing plants, where high-quality data of the as-is state of
production plants are often missing, regular digitalization activities are needed. As already
mentioned, brownfield planning scenarios lack current factory data, sometimes not even
3D information is available. Further, not all renovation works are properly reflected in the
layouts. Thus, over the years a plant layout can be up-to-date in some places and outdated
in others, with 3D information being available only for some parts of the plant. Therefore,
it is very important to find a way of methodical and periodically recurrent data collection



Entropy 2021, 23, 301 8 of 27

to ensure the quality and timeliness of the plant layouts, CAD models and construction
drawings of production and logistics equipment.

Stationary laser scanning is a popular method of digitalizing production plants. In
order to reduce the number of stationary scans needed to generate a high-quality point
cloud of the factory environment, additional sources of data can be added. For instance,
mobile laser scanners or photogrammetry techniques or even both can be used to comple-
ment stationary laser scan point clouds. The application of several digitalization measures
reduces the number of holes in the resulting point cloud and the point density is increased.
Figure 2 displays the impact of occlusions on a point cloud. Figure 2a illustrates a complete
point cloud of the front of a car, which is facing the laser scanner. Figure 2b represents
the bottom view of the same car. Due to occlusions during the digitalization process, the
interior of the car is not captured and thus represented by empty space. The holes in the
roof of the car are caused by reflections of the laser beams. In order to generate a complete
point cloud, it is therefore important to choose the scan positions carefully. As not all use
cases of point clouds require the same resolution and accuracy, it is efficient to carry out
base digitalization using mobile scanners while conducting stationary scans only where
higher accuracy is really needed.

(a) (b)
Figure 2. Impact of occlusions on a point cloud. (a) The point cloud of the car looks complete at the
surface facing the laser scanner. (b) The bottom view of the car reveals the empty interior due to
occlusions. The roof of the car is incomplete due to the reflection of the impinging laser beams.

Before starting to digitalize any large-scale environment, it is advisable to place
so-called registration targets in the facility in order to facilitate the fusion of different
point clouds into one common coordinate system. After placing the targets, the actual
digitalization process starts. For the following experiments, we digitalize several tacts of
an automotive assembly plant by placing a stationary scanner in different positions on
the assembly line and next to it during the production free time. As discussed before, the
choice of the scanner positions is important to reduce object occlusions to a minimum,
which results in a point cloud with a minimum number of holes. Figure 3a illustrates the
scanner positions on a rough sketch of a factory layout for several tacts. In this layout four
and six laser scans are marked per assembly tact. The four laser scans, which we use to
digitalize the assembly area, are displayed in red and the additional two laser scans are
marked in green, which we use for the evaluation of data collection. Further scans are
generated outside of the assembly line in order to capture additional facility structures as
well as production equipment.

In addition to the laser scans, we roughly take 500 camera images of each tact as
well as several hundreds of the surrounding factory area. Prior to taking the images to
generate the photogrammetric point cloud, the camera with the respective lens needs to
be calibrated in order to correct distortions in the images taken. We use a chequerboard
calibration pattern and collect images from different views in order to determine the camera
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parameters and calibrate the camera with the respective lens. Figure 3b shows the height
at which the images are taken. The grey lines represent the height at which inward facing
images are taken, that is, images of the assembled vehicle. The green lines indicate the
height at which outward facing images are taken, that is, images of the lineside layout.

(a) (b)
Figure 3. Locations of data collection. (a) Laser scanner positions for collecting four (red) and six
(green) laser scans per tact. We collect laser scans of the assembly line and the surrounding building
to generate our data set. The six laser scan set-up is used for evaluation purposes. (b) Concept of
taking camera images.

2.4. Data Pre-Processing

The stationary laser scans produce point clouds that have a local coordinate system.
The process of generating a single global point cloud out of the local point clouds is
called registration. The registration is carried out using so-called registration targets,
which are 2D patterns of highly contrasting colors, whose shape is easily located from
varying viewpoints. Further distinctive points that are visible in several point clouds can
be added manually in the case that registration cannot be completed using the targets
alone. This provides a rough registration, which can be improved by the iterative closest
point (ICP) algorithm [47].

After the registration of the laser scan point clouds, the information contained in the
image data has to be added. In our approach the image data is sorted according to the
assembly tact and blurred images are removed, which is automated using a technique
based on convolutions [48]. However, the removal of some of the images leaves us with
a different number of images per tact, which can influence the resulting point cloud
density, see Section 4.2.1. The information included in the remaining images has to be
combined with the laser scan data. Due to the high number of reflecting objects within the
environment like painted car bodies or metallic machines, the laser scan point cloud and
the camera images are fused on image level. Synthetic images are created on the basis of
the laser scan point cloud using the approach in [49]. These synthetic images are fused
with the camera images using a structure from motion algorithm [50].

After the fused point cloud, which is made up of laser scans and camera images,
is generated, it can still be very noisy. A high degree of noise is neither favorable for
visualization nor for segmentation and object pose estimation. Thus, noise suppression and
outlier detection algorithms are applied, which remove a number of noise points. In order
to achieve a suitable degree of noise removal, the point cloud is further cleaned manually
by the authors. In the course of this manual cleaning step the data set is labelled as well.
For simulation model generation the point cloud needs to be segmented, which requires
supervised training with labelled training data. The labelling step is only needed for the
initial model training. It is not explicitly part of the workflow once the model is trained,
as the model is only evaluated in the subsequent factory planning projects. In this case,
the labelling step is not necessarily needed except for a random check of the accuracy. It is
important to identify objects that are relevant for factory planning before labelling the data.
Relevant classes are mainly those objects that are immovable, fixed to the ground or part of
the building as they need to be taken into account during the next renovation project.
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3. Methods

Our proposed modelling approach relies on various methods including point cloud
segmentation to identify the different objects in the scene. Further, object poses are esti-
mated using a clustering and point cloud registration based scheme. Finally, the simulation
model can be created in an arbitrary simulation tool. All of these steps are discussed in
more detail in the following.

3.1. Point Cloud Segmentation

As already discussed, the generated point cloud is segmented in order to identify the
different objects in the scene. Therefore, we use the Bayesian segmentation framework,
which we proposed in our previous work [10]. In the sequel the mathematical notations
and preliminary information on the segmentation step are detailed, followed by a brief
description of the applied network.

3.1.1. Notation and Preliminaries

In Section 2.2, we already mentioned that BNNs place a probability distribution over
all network parameters that is optimized during network training. In order to describe
such a BNN model, the following notations are used throughout the remaining work. The
network parameters include the weights and biases of all d ∈ N network layers, which
are denoted byW and B, respectively. The parameters of network layer i are represented
byWi and Bi, i ∈ {1, . . . , d}. The network inputs are given by X = {x1, . . . , xn} and the
corresponding labels are depicted by Y = {y1, . . . , yn}. The variables n ∈ N and m ∈ N
represent the number of network inputs and the number of classes, respectively. Let
further p(w) denote the prior distribution of the network parameters. The a posteriori
distribution of the network parameters after the evaluation of the training examples is
given by p(w|Y, X) and can be calculated using the Bayes’ theorem. The calculation
of the posterior distribution is usually intractable as a result of the high dimensional
sample space. Thus, in many cases it is not possible to find an analytical solution for the
posterior distribution, however, several approximation techniques exist. The different
posterior approximation methods mentioned in Section 2.2 are reviewed in our previous
work [10]. Due to efficiency reasons, we decide to use variational inference for posterior
approximation. The main idea of variational inference is to approximate the intractable
posterior distribution p(w|Y, X) with the so-called variational distribution qϕ(w), which is
tractable. The variational distribution is parametric and the components of ϕ are referred
to as the variational parameters. In order to approximate the posterior distribution, the
distance between the posterior and the variational distribution has to be minimized. As
an evaluation metric, we used the Kullback-Leibler (KL) divergence, which is a popular
measure to determine the similarity of two distributions even though it is not a distance
metric in the common sense. It neither satisfies the triangle inequality nor is it symmetric.
As the KL-divergence cannot be minimized directly, the equivalent optimization problem
of minimizing the negative log evidence lower bound is solved [51].

After the variational distribution qϕ(w) is optimized by processing the training sam-
ples (X, Y), the class label y? of an unseen data point x? can be predicted. The posterior
predictive distribution p(y?|x?, Y, X) expresses the confidence in a label y? after observing
the input x?. It is calculated using

p(y?|x?, Y, X) =
∫

p(y?|w, x?)p(w|Y, X) dw. (3)

In practice, the unknown posterior in Equation (3) is replaced by the variational
distribution and the integral is approximated by Monte Carlo integration, that is,

p(y?|x?, Y, X) ≈ 1
K

K

∑
k=1

f (x?, wk), with wk ∼
i.i.d.

qϕ(w), (4)
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where f denotes a forward pass through the network and K ∈ N corresponds to the number
of Monte Carlo weight samples wk drawn from the variational distribution. The predicted
class ŷ? is calculated using

ŷ? = arg max
y?∈{1,...,m}

p(y?|x?, Y, X). (5)

3.1.2. Bayesian Segmentation Network

The network we use for the subsequent evaluations is described in more detail in our
previous work [10]. The variational distribution is based on the one proposed in [44]. We
define the random weightsWi := (Wi1, . . . , Wiki

) and biases Bi := (Bi1, . . . , Bik′i
) of the i-th

network layer, where ki ∈ N denotes the number of weights and k′i ∈ N the number of
biases of layer i, i ∈ {1, . . . , d}. The network parameters are defined according to

τwi := log(1 + exp(δwi))

Wi := µ
wi
� (1ki

+ τwiεwi)

τbi := log(1 + exp(δbi))

Bi := µ
bi
� (1k′i

+ τbiεbi),

where 1k is the k-dimensional vector consisting of all ones and � is the Hadamard or
elementwise product. The variational parameters are represented by µ

wi
∈ Rki , µ

bi
∈ Rk′i ,

i ∈ {1, . . . , d} and δwi, δbi ∈ R. We choose εwi ∈ Rki and εbi ∈ Rk′i to be multivariate
standard normally distributed. Thus, the network weights and biases are also normally
distributed,

Wi ∼ N (µ
wi

, τ2
wi · diag(µ

wi
)) (6)

Bi ∼ N (µ
bi

, τ2
bi · diag(µ

bi
)). (7)

The diagonal covariance matrix of the Gaussian variational distributions assumes the
independence of all the network parameters and biases. The calculation of the respec-
tive gradients and an extension to a tridiagonal covariance matrix can be found in [44]
and [52]. We implement the Bayesian segmentation network using the open source Python
library PyTorch [53].

3.2. Pose Estimation

In order to generate a static simulation model of a complex environment, the pose of
each object within the segmented point cloud needs to be determined. Directly fitting ob-
jects to the point cloud using for example a “Random Sample Consensus” (RANSAC) [54]
approach produces poor results due to the segmentation inaccuracies and intra class varia-
tions of the objects. Therefore, pose estimation is carried out for each class j, j ∈ {1, . . . , m}
separately using a clustering approach, which identifies the number of objects within
each class and the points belonging to the individual objects. Technically, any clustering
algorithm can be applied, however, based on the data set characteristics it makes sense to
determine what algorithm suits our use case best. Thus, we compare the classical clustering
methods k-means [55] and fuzzy c-means [56], the density based approaches “Density-
Based Spatial Clustering of Applications with Noise” (DBSCAN) [57] and “Ordering Points
To Identify the Clustering Structure” (OPTICS) [58] as well as spectral clustering [59] in
Section 4.2.4.

After knowing the number of objects within each class their pose needs to be deter-
mined. A prerequisite to tackle this problem is the availability of 3D CAD models or at
least reference point clouds of the object classes of interest. A point cloud can be sampled
from these CAD models resulting in a “perfect” point cloud of an object within class j.
Iteratively an initial object pose is determined for every object within each class by coarsely
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registering the “perfect" or reference point cloud and one object of the segmented point
cloud using the global registration algorithm RANSAC, which does not require an initial
alignment. A tight alignment of the point clouds is achieved using the local registration
algorithm ICP that interprets the output of the RANSAC algorithm as an initial alignment.
Based on the resulting transformation matrix the respective (x,y,z)-coordinates and the
roll, pitch and yaw are calculated for each of the objects. These values are retained for
later placement within a simulation environment. Object details should be retained in a
way that allows a large number of people to use the data, that is, a holistic data storage
and format is needed. The Automation Markup Language (AML) format, which is an
open standard to exchange factory engineering data, is a form of meaningfully grouping
and ordering the data. Thus, it seamlessly fits into a holistic data model. A pseudo code
of the pose estimation step is provided in Algorithm 1. In the pseudo code we assume
that the clustering algorithm is capable of determining the number of cluster centres itself.
Otherwise, the number of clusters has to be passed to the algorithm as input parameter.
Further, we assume the availability of CAD models out of which reference point clouds are
generated.

Algorithm 1: Pose estimation(m, pc_seg, CAD_models
Input: m... number of classes, pc_seg... segmented point cloud,

CAD_models... CAD geometry belonging to each class of interest
Output: object_poses.aml... an aml-file containing each object pose

foreach class j ∈ {1, . . . , m} do
c ← number of cluster centres of class j given by the clustering algorithm
pc← distinct point clouds of c objects in class j derived by a clustering

routine of class j within pc_seg
pc_per f ← sampled reference point cloud from CAD model of class j

foreach object pc[l] of class j, l ∈ {1, . . . , c} do
trans f _init← transformation matrix of RANSAC registration of pc[l]

and pc_per f
trans f _ f inal← updated transformation matrix of ICP registration of

pc[l] and pc_per f initialized with the RANSAC
alignment trans f _init

object_pose← calculate object pose based on trans f _ f inal
object_poses.aml← append pc[l] including object_pose

end
end
return object_poses.aml
)

3.3. Simulation Model Generation

The extracted object poses can be used to generate a simulation model of the digitalized
environment in any simulation tool. Prerequisite for the simulation model generation is the
availability of the CAD models of every class of interest and a simulation project having
access to these CAD geometries. Of course, also point clouds of objects, which are not
available in CAD, can be included in the simulation model. However, as point clouds are
not complete, that is, they have holes due to occlusions during the digitalization process,
the informative value of the simulation can suffer. For instance, collision checking is not
reliable under the presence of potentially incomplete point clouds. Using the positional
and rotational data saved in the object_ poses.aml file the CAD object is placed in the scene.
The placement itself in a simulation tool is straight forward. As a result, a static simulation
model is created, which is ready for animation by the user. The logical connection between
the objects is supplied by the AML file. It includes the hierarchical order of the objects,
the kinematics specifications and the relative positions of related objects in the hierarchy,
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for example, the relative position of screws within an assembled product. All of this
information can be imported in the simulation environment. However, any later changes
in the object topology have to be adjusted manually.

In order to display the final environment model generated by our approach, we choose
the simulation framework Unreal Engine 4 (UE4) [60] as this simulation tool is widely
applied in different industries due to its Blueprints visual scripting system, which is easy
to use even for people without software engineering background. Nevertheless, it is also
possible to develop simulations using common programming and scripting languages like
C++ and Python.

4. Results and Analysis

In this section the proposed environment modelling approach is applied to an automo-
tive manufacturing plant. We collect an automotive data set according to the methodologies
described in Section 2 and analyse its properties. The automotive factory data set is used
for the evaluation of the data processing steps. In the sequel the results and recommended
actions for our proposed modelling approach are presented. The Bayesian neural network
itself is evaluated in our previous work [10]. Thus, we will briefly summarize the main
results for the automotive factory data set and evaluate the remaining process steps in
more detail.

4.1. Evaluation Data Set

The complete environment modelling approach is evaluated on the data set we collect
according to the presented methodology, which includes the evaluation of data collec-
tion, segmentation and pose estimation. In order to collect the data set, we use a static
Faro Focus3D X 130HDR [61] laser scanner, a Nikon D5500 [62] camera with an 8 mm
fish-eye lens as well as a Sony Alpha 7R II [63] with a 25 mm wide-angle lens to capture
the environment. On the basis of several static laser scans as well as thousands of camera
images we generate local laser scan point clouds as well as photogrammetric point clouds
for 13 tacts of car body assembly. These local point clouds are registered using circular
registration targets generated by the software tool RealityCapture [64]. Initially, the reg-
istered global point cloud comprises over one billion points before being cleaned using
noise reducing filters. The remaining noise points are removed during the labelling steps
using the open source software tool CloudCompare [65]. The final point cloud comprises
594,147,442 points, which corresponds to a removal of about 40% of the points compared
to the raw point cloud. The majority of the noise points are the result of motion blur that
occurs during scanning and reflections of shinily painted objects. In total the point cloud is
divided into 9 classes comprising 8 object categories relevant for factory planning as well
as the additional class of clutter, which serves as a placeholder for all the other objects in
the scene. The 8 object classes correspond to car, hanger, floor, band, lineside, wall, column
and ceiling. These are relevant for factory planning as they are difficult to move or even
immovable. One example tact of the collected data set is illustrated in Figure 4a. After
labelling all the data, the class distribution can be analysed. We see that the classes are
highly imbalanced, which is depicted in Figure 4b.

It is clear that a large ratio of points is assigned to the class ceiling, whereas the classes
of wall and column comprise relatively few points. The size of the class ceiling stems
from the layered architecture of this structure. In response to this, points on various levels
belong to this class. In contrast to that walls and columns are hung with clutter objects
like information signs, fire extinguishers or rubbish bins. Therefore, only few points truly
belong to these classes and their point clouds have many holes due to occlusions caused by
the clutter objects.

Out of the 13 digitalized assembly tacts two are set aside for evaluating different steps
of our approach. The remaining tacts are used for model training and validation. Figure 5
displays the two test tacts.
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(a) (b)
Figure 4. Summary of the generated point cloud. (a) One example tact of the collected data set.
(b) Highly imbalanced class distribution.

(a)

(b)
Figure 5. The two test tacts of the automotive factory data set. (a) First test tact displaying a blue
vehicle to be manufactured. (b) Second test tact illustrating a white vehicle later in the assembly
process.

4.2. Results

The analysis of the proposed approach starts with evaluating different digitalization
solutions in terms of point cloud accuracy, completeness and point density. As mentioned
before the evaluation of the Bayesian segmentation network is only summarized. Addi-
tionally, different clustering algorithms are analysed for their suitability to our use case.
This analysis takes into account the clustering accuracy and time. The accuracy of the pose
estimation step is evaluated with respect to the mean deviation of the generated simulation
scene to the reference point cloud.

4.2.1. Data Collection and Visualization

For the evaluation of our modelling approach, we first collect the automotive factory
data set and analyse the goodness of the resulting point cloud with respect to its accuracy,
completeness and point density. In order to calculate the global accuracy of the measured
point cloud we suppose that the distance of the measured points to the reference model is
normally distributed with mean zero. The variance is given by

σ2 =
1
n

n

∑
i=1

(di − 0)2 =
1
n

n

∑
i=1

d2
i , (8)
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where di corresponds to the measured distance of point i of the measured point cloud to
the reference model. The standard deviation σ is the square root of the variance and is
referred to as accuracy of the point cloud, that is, a lower standard deviation corresponds
to a higher accuracy. In order to calculate point cloud completeness, the minimum distance
of each point in the measured point cloud to the reference model is calculated. Then we
define completeness as the percentage of points with a maximum distance of 10 mm to the
reference point cloud. The point density is quantified by the mean number of points within
a 10 mm radius of each point in the measured point cloud.

We generate point clouds from varying sources, that is, four laser scans per tact,
six laser scans per tact, photogrammetry only using a fish-eye and a wide-angle lens,
a combination of four laser scans with photogrammetry as well as six laser scans with
photogrammetry. The evaluation results for the point clouds generated from these sources
are summarized in Table 3. The unit of point density is the mean number of points.

Table 3. Evaluation of the collected point cloud in terms of accuracy, completeness and point density.

Data Source Accuracy Completeness Point Density

4 Scans ±5.3 mm 41% 89.4
6 Scans ±4.8 mm 51% 146.7
Photogrammetry only wide-angle ±5.8 mm 61% 854
Photogrammetry only fish-eye ±7.8 mm 60% 154.2
4 Scans and Photogrammetry ±6.3 mm 61% 804.3
6 Scans and Photogrammetry ±6.2 mm 64% 789.9

We see that the laser scan only point clouds have a higher accuracy, which corresponds
to a lower standard deviation, than point clouds including photogrammetry information.
In contrast to that, completeness and point density increase considerably when the pho-
togrammetric information is added to the laser scans. Surprisingly, the point density is
highest for the photogrammetry only case using the wide-angle lens. Further, the point
density is higher in the case of four laser scans and photogrammetry compared to six laser
scans and photogrammetry. Both of the effects are dependent on the number of blurred
images that are removed and the quality of image registration. The more images are used
for generating the photogrammetric point cloud the higher the resulting point density.

For the generation of a simulation model the point density is neglectable as the
point clouds are down-sampled before segmentation for efficiency reasons. However, a
high accuracy is important in order to ensure correct model placement. Thus, there are
different recommended processes for data collection depending on the intended use of the
point cloud. Figure 6 shows all the point clouds generated from the given data sources.
In Figure 6a,b only the static laser scanner is used, taking four and six scans per tact,
respectively. The two purely photogrammetric point clouds are illustrated in Figure 6c,d,
which we generate using the wide-angle and the fish-eye lens. The point clouds generated
by four and six laser scans complemented with the information of the photogrammetric
point cloud are shown in Figure 6e,f. For the combined laser scan and photogrammetric
point clouds the wide-angle lens is used.

From a visual inspection, we can see that the point cloud using six laser scans is better
in terms of completeness, especially at the side of the car where reflections cause holes in
the point cloud generated from four scans. Similarly, the photogrammetric point clouds
suffer from reflections due to the shiny car paint. Further, the photogrammetric point cloud
generated with the fish-eye lens is distorted, which can also be seen in the higher standard
deviation. Generally, images that are taken using a fish-eye lens are easier to register due
to a higher number of features being captured on the image. However, cameras with a
fish-eye lens are more difficult to calibrate due to the high degree of distortion and the
resulting point cloud has a lower accuracy compared to the wide-angle lens. The combined
laser scan and photogrammetric point clouds look best in terms of completeness whereby
again the point cloud produced from six laser scans has a higher quality.
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(a) (b) (c)

(d) (e) (f)
Figure 6. Point clouds resulting from different data sources. (a) Four laser scans. (b) Six laser scans.
(c) Photogrammetry with wide-angle lens. (d) Photogrammetry with fish-eye lens. (e) Four laser
scans and photogrammetry. (f) Six laser scans and photogrammetry.

The software tool RealityCapture [64] can be used for quickly visualizing the generated
point cloud data as a triangle mesh. In order to improve the handling of the mesh, the
number of triangles is reduced in Blender [66]. The visualization of the optimized meshes
is depicted in Figure 7. The displayed meshes are blocks in which objects are not separated
from each other. Thus, they are not directly usable for factory or process simulation since
single objects can neither be handled nor animated. However, these visualizations serve
as a good starting point for factory planners that are not on-site to get an overview of the
current plant layout. Note that we do not aim at creating photo realistic meshes out of
point clouds in this work. This process involves high efforts in modelling and texturizing
the scene.

Figure 7. Visualization of the combined laser scan and photogrammetric point cloud as mesh.
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4.2.2. Bayesian Segmentation

After generating a global point cloud of the digitalized environment, the segmentation
step can be evaluated. To this end, our Bayesian formulation of PointNet is compared to the
original PointNet implementation of [15] based on TensorFlow [67] and our PyTorch [53]
implementation of frequentist PointNet. The input point clouds comprise assembly tacts,
which are cut into equally sized blocks. The number of points within these blocks is
sampled to 4096.

The models are trained using mini-batch stochastic gradient descent with a batch size
of 16. The momentum parameter is set to 0.9 and a decaying learning rate lr is used with an
initial learning rate of lr = 0.001 in the frequentist and lr = 0.01 in the Bayesian case. The
learning rate is decayed every 10 epochs by a factor of 0.7 during frequentist training and
0.9 during Bayesian training. The batch size and the learning rate are optimized by using
grid search and cross-validation. In terms of approximation of the posterior predictive
distribution, we draw K = 50 Monte Carlo samples.

All models converge and the training is stopped after 100 epochs. Table 4 displays the
evaluation results of the original PointNet, the frequentist PyTorch implementation and
Bayesian PointNet on the test tacts of the automotive factory data set. Bold table entries
represent best model performance.

Table 4. Segmentation results of the original, classical and Bayesian PointNet on the automotive
factory data set. For every model the training converges and is stopped after 100 epochs.

Model Training Acc. Test Acc. Test mIoU

Original PointNet [15] 96.56% 93.37% 80.03
Classical PointNet 97.66% 94.23% 78.08
Bayesian PointNet 98.65% 95.47% 82.63

It can be seen that Bayesian PointNet clearly outperforms the original implementation
as well as the classical version in terms of segmentation accuracy and the mean intersection
over union (IoU) for both data sets. For a more detailed review and interpretation of the
segmentation results see [10].

4.2.3. Uncertainty Estimation

The different methods used for uncertainty estimation are described in Section 2.2.
They include entropy based estimation methods, the predictive variance as well as the
estimation of credible intervals on the network outputs. Each of these quantities are
calculated on the basis of K = 50 forward passes through the network each using a
different weight sample drawn from the variational distribution. Predictive and aleatoric
uncertainty are estimated using the Equations (1) and (2). Epistemic uncertainty is the
difference of these two values. In order to determine the predictive variance, the unbiased
estimator of the variance is used. In the credible interval based method we determine
the 95%-credible intervals of the predictive network outputs after normalization with the
softmax function.

In order to determine the impact of uncertainty on the network performance, we com-
pare the accuracy of the Bayesian baseline to the accuracy achieved when only considering
certain points with respect to all the discussed uncertainty measures, that is, uncertain
points are dropped. The results for both test tacts of the automotive factory data set are
summarized in Table 5.
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Table 5. Evaluation of the discussed methods for uncertainty estimation and influence on model
accuracy.

Baseline Predictive Aleatoric Epistemic Variance Credible Int.

Assembly T. 1 94.21% 96.63% 96.64% 95.54% 95.60% 94.99%
Assembly T. 2 94.78% 97.41% 97.47% 96.22% 96.22% 95.63%

It is clear that considering any of the uncertainty estimation approaches considerably
increases the segmentation accuracy, with aleatoric and predictive uncertainty performing
best. For the entropy based measures as well as the predictive variance a threshold needs
to be set, in order to classify a prediction as either certain or uncertain. In this case we
consider predictions as certain when the respective uncertainty value is smaller or equal to
the mean uncertainty plus two sigma. For the credible interval based method, predictions
are considered certain if the 95%-credible interval of the predicted class does not overlap
with the 95%-credible interval of any other class. In Table 6 the ratio of points that are
considered uncertain by the respective methods are displayed.

Table 6. Percentage of predictions dropped when excluding uncertain predictions.

Baseline Predictive Aleatoric Epistemic Variance Credible

Assembly T. 1 - 6.55% 6.56% 4.09% 3.70% 1.47%
Assembly T. 2 - 7.08% 7.17% 4.52% 4.09% 1.84%

Due to the choice of the uncertainty threshold about 4% to 7% of the predictions are
dropped using predictive, aleatoric and epistemic uncertainty as well as the predictive
variance. In the case of the credible interval based method the ratio of discarded predictions
is considerably lower as there is no explicit uncertainty threshold to be set, which leads to
a lower segmentation accuracy. However, dropping too many predictions can cause the
loss of building or facility structures.

In order to increase the segmentation accuracy, the methods of predictive and aleatoric
uncertainty are most promising. Generally, epistemic uncertainty decreases after thorough
model training, thus, the predictive uncertainty value is mainly determined by aleatoric
uncertainty. In response to this, they lead to similar results. We will use the concept of
predictive uncertainty for our upcoming observations and analyses as the credible interval
based method does not allow us to control the ratio of dropped points. Further, predictive
uncertainty combines the information from aleatoric and epistemic uncertainty, which is
more favorable than working solely with aleatoric uncertainty. The remaining uncertainty
measures display a lower performance on our data set.

Figure 8 illustrates the importance of being able to control the ratio of dropped points.
It shows one test tact of the automotive factory data set. In Figure 8a the uncertainty
threshold is set to the mean predictive uncertainty plus three sigma. About 3.24% of the
points are classified as uncertain and therefore displayed in red. In Figure 8b the uncertainty
threshold is the mean predictive uncertainty plus one sigma. This time about 10.69% of the
points are classified as uncertain. It can be seen that important structures like columns and
walls are almost entirely classified as uncertain and thus dropped. This is in line with our
expectations of Section 4.1 as the classes of wall and column suffer from a high number of
holes since they are draped with clutter objects. However, this is disadvantageous when
building up a factory model as important structures are missing. Therefore, it is important
to find a trade-off between achieving a higher accuracy and dropping a small number of
uncertain points.
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(a)

(b)
Figure 8. One of the test tacts in the automotive factory data set, where certain points are illustrated
in black and uncertain points are illustrated in red. The uncertainty is measured using the predictive
uncertainty. (a) The uncertainty threshold is set to the mean plus three sigma. (b) The uncertainty
threshold is set to the mean plus one sigma.

4.2.4. Pose Estimation

After point cloud segmentation the pose estimation and simulation generation steps
are carried out. For pose estimation the number of objects within each class needs to be
determined as well as the points belonging to each of these objects. As we already explained
in Section 3.2 a clustering routine is applied to tackle these problems. Therefore, we compare
the performance of different clustering algorithms including k-means, fuzzy c-means and
spectral clustering. Further, we look into the density based clustering approaches DBSCAN
and OPTICS. Table 7 summarizes the evaluation of the clustering algorithms for the
classes of car and hanger. These are the two most difficult classes to place as they are
highly asymmetric. The building parts are much easier to identify and fit. The table
contains the number of points that are classified as the respective class after point cloud
segmentation and down-sampling. Further, it illustrates the percentage of points that are
assigned to the wrong cluster by each of the algorithms, the percentage of points for which
the algorithms are uncertain about the cluster assignment as well as the runtime of the
clustering routines. The runtime is determined on a standard office notebook without
any specific high-performance components. It can be seen that the clustering methods
of k-means and fuzzy c-means are faster compared to the density based methods and
spectral clustering. However, they achieve this performance only when providing them
with the exact number of clusters, which makes them impractical for an automated solution.
OPTICS and spectral clustering outperform DBSCAN in terms of clustering accuracy but
have a higher computational time compared to DBSCAN. Thus, it is dependent on the
specific use case, which of the algorithms should be applied. We decide for OPTICS as
it determines the number of clusters automatically, is more accurate than DBSCAN and
considerably faster than spectral clustering.

As already mentioned, factory layouts are often outdated especially in the case of
older plants, thus, we rather compare the object positions of our generated simulation
model to the labelled ground truth point cloud than to a plant layout. We place the cars
and hangers of the two tacts in the test set in a simulation model based on the ground truth
information and retain the gained object poses. We generate the object poses based on the
segmented point cloud automatically using the frequentist PointNet (F), Bayesian PointNet
(B) and Bayesian PointNet retaining only the predictions that are certain according to
predictive uncertainty using the mean uncertainty plus two sigma as a threshold (B+U). We
calculate the mean difference between the object poses gained from the ground truth and
the mentioned models in terms of the x-, y- and z-coordinate as well as the roll, pitch and
yaw between the two sets of object poses. As the placement for the frequentist model is very
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messy with this approach, we have to add additional information like a minimum height
of one metre for each of the objects in order to achieve realistic placement in the scene.
The Bayesian network does not need this additional information. Table 8 summarizes the
evaluation results of this placement.

Table 7. Evaluation of different clustering methods on points that belong to the classes of car and
hanger after segmentation using the Bayesian neural network.

Object # Points Method Mistakes Uncertain Time

Car 30 555 k-means 0.14% - 0.11 s
Car 30 555 c-means 0.14% 0.24 % 0.07 s
Car 30 555 DBSCAN 0% 1.51% 3.81 s
Car 30 555 OPTICS 0% 1.51% 45.64 s
Car 30 555 Spectral 0% - 299.23 s

Hanger 17 454 k-means 1.26% - 0.07 s
Hanger 17 454 c-means 1.27% 1.06% 0.04 s
Hanger 17 454 DBSCAN 5.17% 0.91% 1.74 s
Hanger 17 454 OPTICS 0.91% 5.18% 15.78 s
Hanger 17 454 Spectral 0.99% - 62.21 s

Table 8. Evaluation of the model placement for the classes of car and hanger. The frequentist (F),
the Bayesian (B) and the Bayesian model including uncertainty (B+U) are used for segmentation.
The evaluation metric is the mean deviation of the (x,y,z)-coordinates and the roll, pitch, yaw of the
models generated based on the segmented point cloud and the labelled ground truth.

Object Net x-coord y-coord z-coord Roll Pitch Yaw

Car 1 F 5.48 mm 1.13 mm 0.45 mm 0.19◦ 0.00◦ 0.06◦

Car 2 F 9.09 mm 16.55 mm 2.74 mm 0.49◦ 0.24◦ 0.31◦

Hanger 1 F 3.55 mm 0.82 mm 6.92 mm 0.02◦ 0.15◦ 0.07◦

Hanger 2 F 18.03 mm 1.41 mm 3.92 mm 0.26◦ 0.25◦ 0.01◦

Car 1 B 0.61 mm 0.34 mm 1.17 mm 0.13◦ 0.02◦ 0.03◦

Car 2 B 3.49 mm 7.69 mm 1.39 mm 0.17◦ 0.28◦ 0.22◦

Hanger 1 B 7.43 mm 6.51 mm 3.53 mm 0.17◦ 0.28◦ 0.03◦

Hanger 2 B 24.58 mm 13.17 mm 7.01 mm 0.40◦ 0.50◦ 0.16◦

Car 1 B+U 1.83 mm 6.22 mm 0.49 mm 0.21◦ 0.07◦ 0.13◦

Car 2 B+U 6.8 mm 58.89 mm 36.59 mm 0.06◦ 0.52◦ 0.69◦

Hanger 1 B+U 2.04 mm 0.97 mm 2.82 mm 0.04◦ 0.06◦ 0.04◦

Hanger 2 B+U 68.15 mm 15.92 mm 70.94 mm 0.42◦ 1.36◦ 0.38◦

It has to be noted that the frequentist model performs best in terms of placement
accuracy, however, it requires the input of further object information for proper model
placement. In contrast to the frequentist model, the Bayesian model and the Bayesian model
with additional uncertainty information achieve similar placement accuracy independent
of the additional information, which happens due to the structure of the wrongly classified
points in the frequentist and the Bayesian model. The frequentist model tends to misclassify
bursts of points. In response to this, the clustering algorithms potentially find more clusters
than what are present in real life. The condition of objects having a minimum height of one
metre discards these clusters. In contrast to that the Bayesian neural network misclassifies
fewer points, which rather tend to be isolated and distributed over the scene. Therefore,
the correct number of clusters is found by the clustering algorithms and an additional
constraint does not change this outcome. Unexpectedly, the placement accuracy achieved
by Bayesian PointNet is even better than in the case of Bayesian PointNet including
the uncertainty information. Clearly, the model incorporating uncertainty has a higher
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segmentation accuracy, however, it discards about 6 % of the points. Thus, it might happen
that prominent features that are vital for object placement get lost.

The final simulation model for one test tact is depicted by Figure 9a. In this simulation
model the ceiling is not displayed for clearness of illustration. Further, the class of clutter
is not represented as it is irrelevant for planning tasks. Figure 9b displays both test tacts
processed together to generate a single simulation model.

(a)

(b)
Figure 9. The simulation model generated by our modelling approach displayed in the UE4. (a) Simu-
lation model of one test tact. (b) Simulation model when both test tacts are processed simultaneously.

5. Discussion and Conclusion

Aside from the presented data collection approaches further digitalization techniques
are currently under investigation by the authors to make the process more efficient. In the
following, we discuss the challenges and possibilities of digitalization and the generation
of factory models. The economic potential of automating the digitalization process and the
process of model generation is highlighted for a number of exemplary plants. Finally, a
brief conclusion completes our work.

5.1. Discussion

In the presented modelling approach plant digitalization is carried out during pro-
duction free times, which has the advantage of the assembly line standing still and hardly
any people being in the plant except maintenance workers. Due to privacy protection
regulations, the faces of people that are captured by the laser scanner or the cameras have
to be disguised, which is easier during production free time, as fewer people are in the
building. However, personal data displayed on process boards and shift schedules still
needs to be handled. In this work we collect our data using stationary laser scanners, which
usually take some time to capture their surroundings. Thus, in practice it is advisable to
use a combination of mobile and static laser scanners, which can still be complemented by
photogrammetry if necessary. The plant is ideally digitalized using a mobile laser scanner
in order to save time. Only in places where higher accuracy is needed the mobile laser scan
can be complemented with a stationary one, for example, when accurate height information
plays an important role. In addition, drone technologies are investigated for digitalization
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purposes, however, the risk of a drone falling down and hurting employees or damaging
assembled customer products has to be addressed. Further, we look into technologies using
only cameras to generate a 3D model. Generally, these methods are useful for creating a
quick and rough overview of the plant. Yet, they are inadequate for most of the planning
tasks due to a comparatively low accuracy.

Another consideration is to place laser scanners on a fleet of vehicles that are routinely
used within production plants like forklifts, autonomous platforms or hangers on the
production line. An incremental model of hundreds or even thousands of laser scans could
be built. However, this approach causes scan activities to be carried out during the running
production. On the one hand, several challenges like the registration of a high number
of laser scans created by different mobile scanners, attached to different vehicle types at
different heights and moving with different speeds arise. On the other hand, changes to
the facility are detected quickly. Yet, not all the changes are relevant for planning projects.
For instance, changes to the building structure are important for planning tasks in terms
of spatial restrictions. In contrast to that the different parking positions of a forklift are
irrelevant for factory planning. After the detection of a relevant change, a partial update
of the factory point cloud is favorable, that is, only the area where a change is detected is
updated, in order to keep the computational and storage overhead as low as possible.

At the moment, static simulation scenes are built from laser scans, which correspond
to a snap-shot of the production plant at the time of data collection. In future, it is thinkable
to generate animated simulation scenes based on a stream of input data in certain parts
of the plant, that is, process simulations are generated automatically based on periodical
digitalization and data collection. For the time being, this will only be possible for smaller
parts of the plant, where special sensory equipment is installed. In order to generate process
simulations, the frequency of laser scans must be high. Thus, an efficient scanning strategy
is a prerequisite.

The transition from 2D to 3D planning introduces a lot of changes in the IT and process
landscape that are necessary for various planning tasks. Hence, dedicated measures of
employee training need to be provided in order to support a smooth transition. Generally,
the whole process from data collection over final storage to the management of access rights
needs to be detailed. Further, an optimized database for point cloud storage, updating and
versioning is needed. Software products that are apt for point cloud streaming could be
connected to this database as they allow for efficient visualization of the point clouds even
on resource constrained devices.

The potential that lies in automating the factory digitalization process and model
generation is huge. On the basis of quotes from three different service providers, we
conclude that laser scanning of an assembly plant costs about 1–4 e per square metre
depending on how much surface geometry is modelled into the scan, thus, we calculate
with a low degree of modelling resulting in 1.50 e/m2. Assuming an average area of
950,000 m2 per production plant we calculate the potential yearly savings of 10 plants.
Further, we assume that about 60% of the total plant area is relevant for assembly and
needs to be digitalized. We aim at digitalizing a plant once a year and target a degree of
automation of about 70%. A higher degree of automation would of course be favorable,
however, there are certain aspects that can hardly be automated. For instance, monitoring
the digitalization process, checking on the registration targets and the quality of registration
will still be handled manually. The above-mentioned assumptions result in a yearly saving
of about 6 million Euros. Table 9 summarizes the calculation. Note that the numbers in
the above example are hypothetical and do not reflect the real volume and number of the
automotive production plants under investigation in this text.
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Table 9. Potential of automating the digitalization process using laser scanners only.

Attribute Value Unit

Costs per m2 1.5 e
Average area of a plant 950,000 m2

Percentage of scanned area 60 %
Number of plants 10 #
Number of scans per year 1 #

Total cost per year 8,550,000 e/year
Degree of automation 70 %

Savings per year 5,985,000 e/year

Thus, the economic potential of automating the digitalization process is big. However,
these are only the obvious savings gained by the automation of data collection. The
availability of a comprehensive digital 3D model of big parts of the assembly area, which
reflects the current state of the plant, holds an even bigger potential, when it comes to
planning tasks. As already mentioned, planning mistakes can be found in the digital model
rather than during the implementation of the changes, which saves a tremendous amount
of money and potentially prevents production downtimes. Further, travelling efforts of
planners are reduced considerably, thus, they are relieved from this additional burden and
can focus on their core business.

5.2. Conclusions

In this paper, we describe a holistic and methodical approach to generate a static simu-
lation model in a partially automated fashion from a point cloud of a factory environment.
We start with the collection of point clouds in large-scale industrial production plants using
laser scanning and photogrammetry techniques. Further, the data pre-processing steps of
point cloud registration, cleaning and labelling are described. The data processing steps of
segmentation, pose estimation and the final simulation model generation are discussed
in detail. For point cloud segmentation the application of a Bayesian neural network is
evaluated as it allows the quantification of uncertainty in the network predictions. To this
end, three entropy based uncertainty measures as well as the predictive variance and a
credible interval based method of uncertainty estimation are discussed.

An automotive factory data set is collected in order to evaluate the digitalization
strategy. The different technologies and hardware equipment are evaluated with respect to
the resulting point cloud accuracy, completeness and point density. Based on this evaluation
we conclude that laser scan point clouds are more accurate than photogrammetric point
clouds but they have a lower completeness and point density. Further, the use of wide-
angle instead of fish-eye lenses for photogrammetry is highly recommended as the former
outperforms the latter with respect to all the evaluation metrics. Thus, in terms of data
collection we recommend to combine the point clouds generated by laser scanners and
photogrammetry techniques.

The subsequent steps of the proposed modelling approach are evaluated on the
collected data set as well. The Bayesian segmentation network clearly outperforms the
frequentist model even without considering the additional information provided by the
uncertainty in the network predictions. Taking into account the network’s uncertainty in
its predictions and evaluating the segmentation accuracy only on certain points increases
the network performance considerably using any of the described uncertainty measures.
In this case uncertain predictions are discarded. The notions of predictive and aleatoric
uncertainty lead to the best results. In the given use case, we decide to focus on the measure
of predictive uncertainty as it allows us to control the ratio of points dropped by setting
an uncertainty threshold, which is not the case for the credible interval based method. As
predictive uncertainty combines the information of both aleatoric and epistemic uncertainty,
we prefer this measure over aleatoric uncertainty alone. Based on the segmented point
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cloud we estimate the poses of relevant objects using, among other methods, clustering
techniques. Therefore, the common clustering algorithms k-means and fuzzy c-means, the
density based methods DBSCAN and OPTICS as well as spectral clustering are compared.
Even though k-means and fuzzy c-means clustering achieve superior performance when
knowing the number of clusters in advance we advise not to use these methods for an
automated solution. All the remaining methods automatically determine the number of
clusters. The OPTICS algorithm provides the best trade-off between runtime and clus-
tering accuracy. Thus, we apply this algorithm for the final evaluation of the placement
accuracy. The object placement is carried out on the basis of the segmented point cloud
using the frequentist and the Bayesian neural network. Additionally, the Bayesian neural
network including uncertainty information is used for object placement. The placement
in the frequentist case is by far the worst, not producing any reasonable simulation scene
without adding additional hand-crafted constraints for object placement. Astonishingly,
the placement accuracy is highest for the Bayesian neural network not considering net-
work uncertainty, even though the segmentation accuracy is considerably improved by
incorporating uncertainty information. Most probably, the reason is that by considering
network uncertainty relevant features of the point cloud are classified as uncertain and
thus dropped. Therefore, we conclude that the Bayesian neural network without removing
uncertain points is best suited for our use case.

In summary, the major advantage of the proposed modelling approach is the ability to
reconstruct a factory environment on object rather than on building level, which extends
state-of-the-art reconstruction techniques. Further, this approach does not necessarily
require the availability of CAD models of the objects in the scene like the majority of
frameworks do. However, the reconstruction results are more reliable under the presence
of CAD models. Additionally, the input point cloud is partitioned into meaningful subsets
of points early in the process, which allows us to process subsets of points aside from
simulation generation within the respective departments.

The proposed modelling approach is applied in a real-world industrial prototype that
aims at the reconstruction of automotive assembly plants on the basis of 3D point clouds.
On the process side, this paves the way for an automated target-actual comparison of
plant assets. For instance, layouts and construction measures can be verified automatically
on the basis of the generated factory model. Further, the differences in the environment
between two arbitrary digitalization dates can be determined, which is favorable to indicate
changes in the building or process structure. These points will be covered in future research.
Additionally, the generation of an asset library is supported by our approach, as objects
for which CAD models are unavailable can be extracted from the point cloud and their
surface can be reconstructed. Currently, this reconstruction is automated for geometrically
simple objects like walls or columns. In future work, we study the automatic reconstruction
of more complex process related structures. With respect to mathematical concepts, the
suitability of uncertainty information for removing noise in point clouds will be analysed.
Further, the parameters of the prior distribution in the applied network will no longer be
treated as hyper parameters during network optimization. They will rather be estimated in
a Bayesian way by the definition of a separate prior and calculation of their posterior.
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BNN Bayesian Neural Network
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ICP Iterative Closest Points
IoU Intersection over Union
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UE4 Unreal Engine 4
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