
entropy

Article

The Principle of Covariance and the Hamiltonian Formulation
of General Relativity

Massimo Tessarotto 1,2 and Claudio Cremaschini 2,*

����������
�������

Citation: Tessarotto, M.;

Cremaschini, C. The Principle of

Covariance and the Hamiltonian

Formulation of General Relativity.

Entropy 2021, 23, 215. https://

doi.org/10.3390/e23020215

Academic Editor: Alberto Porzio

Received: 24 December 2020

Accepted: 7 February 2021

Published: 10 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics and Geosciences, University of Trieste, Via Valerio 12, 34127 Trieste, Italy;
maxtextss@gmail.com

2 Research Center for Theoretical Physics and Astrophysics, Institute of Physics, Silesian University in Opava,
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Abstract: The implications of the general covariance principle for the establishment of a Hamiltonian
variational formulation of classical General Relativity are addressed. The analysis is performed
in the framework of the Einstein-Hilbert variational theory. Preliminarily, customary Lagrangian
variational principles are reviewed, pointing out the existence of a novel variational formulation in
which the class of variations remains unconstrained. As a second step, the conditions of validity
of the non-manifestly covariant ADM variational theory are questioned. The main result concerns
the proof of its intrinsic non-Hamiltonian character and the failure of this approach in providing
a symplectic structure of space-time. In contrast, it is demonstrated that a solution reconciling the
physical requirements of covariance and manifest covariance of variational theory with the existence
of a classical Hamiltonian structure for the gravitational field can be reached in the framework of
synchronous variational principles. Both path-integral and volume-integral realizations of the Hamil-
ton variational principle are explicitly determined and the corresponding physical interpretations are
pointed out.

Keywords: Einstein-Hilbert variational principle; Hamiltonian theory of GR; ADM Hamiltonian
theory; manifest covariance
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1. Introduction

Despite being criticized in general terms by some of his contemporaries for its explicitly
non-manifestly covariant approach both in classical and quantum gravity (Hawking [1],
Isham [2]), nevertheless the so-called ADM Hamiltonian theory (Arnowitt, Deser and
Misner [3,4]) has never been seriously challenged—possibly because of its complexity—
in its mathematical and physical setup. In the following we present an attempt to do
so in an exhaustive way. For this purpose, however, we shall preliminarily address the
corresponding Lagrangian theory for the Einstein field equations (EFE) [5–7]. The review of
corresponding literature approaches is useful to display the existence of a novel variational
formulation whose validity is actually instrumental for the construction of a full, that is,
Hamiltonian, variational theory of General Relativity (GR). Contrary to the customary
Einstein-Hilbert (EH) setting, the key feature of such variational approach is that of being
constraint-free, that is, subject to a so called “extremal constraint” and to be based on the
identification of the variation operator, as customary in mathematical physics, in terms of
the Frechet derivative. Indeed, its validity does not prevent the existence of independent
(and thus unconstrained) variations of the (relevant) Lagrangian field variables. As far as
ADM theory is concerned, in particular, the goal is to point out some of its most relevant
critical aspects and inadequacies, which include in particular its obvious intrinsic non-
manifestly covariant character. We anticipate, however, that the really crucial conclusion
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which is reached here is that, ADM theory does not provide, in a proper mathematical
sense, a truly Hamiltonian theory of GR. Unfortunately this does not appear just a minor
nuisance or an unfortunate minor accident.

The main goal of the paper thus remains that of seeking a possible way-out, that is, to
determine a Hamiltonian theory of GR in a proper sense, namely in which the corresponding
dynamical (i.e., Euler-Lagrange) equations are identified with ordinary differential equations
and which, besides being manifestly-covariant, is also constraint-free and gauge-dependent.
As we intend to show, such a theory is rooted on the classical manifestly-covariant Hamil-
tonian theory of GR recently developed in a series of papers [8–10]. For this purpose, here
we intend to formulate in detail the appropriate variational principles, displaying ex-
plicitly their connection with EFE, their mutual relationship as well as their role for the
Hamiltonian formulation of GR.

Motivations and Outlook

The property of general covariance of physical laws and its explicit functional real-
ization, namely the corresponding Principle of Manifest Covariance (PMC), represent a
fundamental aspect of theoretical physics and mathematical physics, which lays at the
basis of the conceptual framework of General Relativity and provides a prerequisite of
consistency for the establishment of relativistic field theories (RFT). According to PMC, in
particular, it should always be possible to cast the physical laws of RFT in 4-tensor form
with respect to the group of local point transformations which preserve the structure of
space-time [11]. The validity of such a principle represents undoubtedly a severe constraint
on the admissible physical theories, requiring in many cases the need of an overhaul, or
even a complete reformulation, of existing theories. In fact it provides strict guidelines
and recipes on the formal representation of mathematical relationships holding among
the same laws, but also encodes a deeper meaning related to the admissible realization
(and possible universal character) of the relevant equations, physical parameters, classical
or quantum phase-functions and observables. In this sense, general covariance affects
both the classical and quantum description of continuum fields in RFT, for the search
respectively of appropriate variational (i.e., Lagrangian and Hamiltonian) formulations
for classical field theories and of canonical quantization methods for the corresponding
quantum field theories.

The general covariance principle must therefore be interpreted as a paramount guid-
ing principle for the consistent variational formulation of classical equations of General
Relativity and the establishment of a quantization approach yielding a consistent covariant
quantum gravity theory, possibly including the combined effect due to classical or quantum
source fields, like the electromagnetic or scalar fields to be described on the same ground.

The subject of this paper is the investigation of the validity of the principle of covari-
ance for the variational formulation of classical General Relativity and its implications for
the establishment of a Hamiltonian theory for the Einstein field equations (EFE). The focus
here is on the conceptual and mathematical meaning of the principle of general and mani-
fest covariance in classical General Relativity, with particular attention to the identification
of the Hamiltonian structure underlying the Einstein field equations and the validity of
corresponding Hamiltonian variational principles. This target requires necessarily a critical
analysis of the conditions of validity of the Hamiltonian formulation of GR available in
existing literature, which is realized by the well-known 3 + 1 ADM theory, in relation to the
variational Lagrangian formulation of GR, as well as the establishment of the problematic
limitations of such approach in connection with the principles of covariance and manifest
covariance. More precisely, three main issues arise in this procedure, which pertain:

(1) A critical analysis of the Einstein-Hilbert Lagrangian variational principle that
determines EFE in manifestly-covariant form as extremal Euler-Lagrange equations, when
the corresponding Lagrangian function is identified with the Ricci curvature 4-scalar
in which the variational field variable is represented by the space-time metric tensor
gµν. In fact, the notorious difficulty which characterizes this approach to the Lagrangian
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formulation of GR arises due to the non-canonical structure of the E-H Lagrangian function
that carries second-order partial derivatives of the variational metric tensor contained in
the Ricci tensor. As such, distinctive realizations can be envisaged for the same variational
principle, differing for the functional dependence of the Ricci curvature tensor on the
variational fields and the way in which its variation is treated. The goal of the investigation
is to show that the approaches available in the literature can be classified as asynchronous
boundary-constrained variational principles for the EH theory. In this framework, the
contributions generated by variations of the metric tensor carried by the Ricci tensor cannot
contribute to the extremal equations if the latter are to be identified with EFE. Therefore,
this necessarily requires to set up appropriate boundary constraints that warrant the drop
of such undesirable variational terms. In contrast, a novel formulation is pointed out, which
realizes an unconstrained form free of previous boundary constraints and that exhibits
also the remarkable features of restoring the canonical form for the Lagrangian function
(which depends on field variable and at most on its first-order derivative), of satisfying the
principle of covariance and of yielding EFE as extremal equations.

(2) The investigation of the ADM variational formulation (briefly ADM theory) ob-
tained by implementing a 3 + 1 splitting of space-time in terms of so-called ADM field
variables and its relationship with the Einstein-Hilbert variational approach in connection
with the Hamiltonian formulation of GR. A crucial aspect of ADM theory lies, in fact, in
the violation of the principle of manifest covariance due to the peculiar choice of reference
system in which time and space coordinates are no longer treated on equal footing, and
in particular where a suitable coordinate-time is singled out to play the role of dynamical
(i.e., evolution) parameter for the theory. In the literature this peculiar aspect is regarded
as an intrinsic property of Hamiltonian theories for continuum fields, in contrast to the
manifestly-covariant form of corresponding Lagrangian formulations. For this reason,
in the scientific community the implementation of ADM theory in the E-H variational
principle is recognized as the viable route that leads to the definition of a 3-dimensional
constrained Hamiltonian representation of EFE. However, based on the results pointed
out in (1), a deeper insightful critical analysis of the Hamiltonian character of the Einstein
equations is required in order to question the foundation of the subject. The strategy
that is followed consists in expressing both the boundary-constrained and unconstrained
Lagrangian principles in terms of the corresponding non-manifestly covariant ADM frame-
works and then to require the simultaneous validity of the resulting ADM variational
equations and their equivalence with EFE. This yields the main result of the work, which
concerns the proof of the non-Hamiltonian character of ADM theory and the failure of
this approach in providing a symplectic structure of space-time. Contrary to the common
belief, it is not sufficient to implement a suitable coordinate system where a time variable
is distinguished from space variables in order to obtain a Hamiltonian field theory. In-
deed, the ADM Hamiltonian theory does not represent an intrinsic Hamiltonian structure
of space-time, but only an apparent one. The reason is that also the ADM formulation
remains rooted on the non-canonical structure of the E-H Lagrangian, and it still carries
second-order derivatives of the generalized coordinate field, an aspect which is sufficient
to prevent the definition of canonical Hamiltonian theory.

(3) The search and construction of a new Hamiltonian representation of EFE which can
overcome the conceptual limitations of the ADM setting and be simultaneously globally
valid, unconstrained and manifestly covariant. In particular, it is proved that a solution
reconciling the physical requirements of covariance and manifest covariance of variational
theory with the existence of a classical Hamiltonian structure for the gravitational field
corresponding to a true symplectic structure of space-time can be effectively reached in the
framework of synchronous variational principles, based on the outcomes earlier provided
by Refs. [8–10]. In order to afford a straightforward comparison with the ADM setting, the
parametrization in terms of an invariant proper-time parameter is first introduced. This
allows in turn to construct synchronous Hamiltonian variational principles expressed either
by path-integral or volume-integral realizations. Remarkably, both representations yield
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manifestly-covariant Hamilton equations in canonical form, namely expressed as evolution
equations in terms of the proper-time dynamical parameter, which under prescription of
suitable initial conditions for the canonical state recover identically EFE. The novelty of the
theory lies also in the corresponding physical interpretation that is inferred about the role
of the Ricci 4-scalar in the EH Lagrangian function, which motivates and supports in turn
this kind of approach. In fact, consistent with the principle of manifest covariance, within
the framework of the synchronous Hamiltonian variational principle the latter should be
understood as a potential term expressing the coupling between the variational metric
tensor and the Ricci tensor carrying information about the geometry of the background
space-time.

The subject of the present investigation summarized in points (1)–(3) listed above
can establish a reference framework for the theoretical foundations of GR Lagrangian
and Hamiltonian variational formulations. Conceptual implications of the theory involve
both classical GR as well as quantum gravity, namely perspective covariant canonical
quantization approaches for the gravitational field based on the same Hamiltonian theory.

2. Asynchronous Variational Approaches

The subject of the investigation is therefore centered on the crucial relationship be-
tween the covariance principle and the Hamiltonian theory of GR.

To start with we stress that a key issue concerns couching the theory on the appropriate
mathematical framework, that is, based on a suitable prescription of the related functional
setting and the notion of functional variation. For this purpose a preliminary brief survey
is appropriate regarding some of the popular variational principles for GR equations that
are customarily adopted in the literature. The reason, as anticipated above, is to point
out a realization of the Lagrangian variational principle (for EFE) which, besides being
manifestly covariant, is also unconstrained. Such a feature, which departs from previous
constrained formulations found in the literature, is of crucial importance. In fact, it turns
out to be an essential ingredient for the establishment of a corresponding constraint-free
Hamiltonian variational formulation (see Section 4).

The review presented here pertains in particular to the Einstein-Hilbert (EH) Lagrangian
variational approach (referred to for brevity as EH theory), originally developed by Einstein
himself to determine the actual form of EFE. For this purpose, we consider first the so-
called asynchronous variational principle. This case occurs when the functional setting is
prescribed so that the 4-scalar volume element associated with the variational functional
depends functionally on suitable real and symmetric fields g(r) ≡

{
gµν

}
≡ {gµν}. The

latter are then considered variational, that is, still undetermined 4-tensors. The relevant
variational functional which occurs in EH theory is the so-called EH action functional [5]. In
the general case of source fields, that is, non-vacuum conditions, this is identified with the
4-scalar functional

SEH(g(r)) =
∫

Q4
d4r
√
−|g|(LEH(g) + LF(g)), (1)

where the argument g = g(r) denotes the functional dependence in terms of the variational
field, while

dΩ ≡ d4r
√
−|g| (2)

is the invariant 4-scalar volume element of the Riemann spacetime
{

Q4, g(r)
}

and |g| under
the square root denotes the determinant of g(r). Furthermore, LEH and LF, both assumed
as 4-scalars, identify the Einstein-Hilbert Lagrangian function of the gravitational field and
the Lagrangian of possible additional fields, to be properly specified. By definition, here
the function LEH represents the vacuum contribution

LEH = gµνRµν − 2Λ, (3)
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where in standard notation Λ denotes the cosmological constant, while Rµν is the vari-
ational Ricci tensor which is considered function of the same variational tensor gµν by
means of the Christoffel symbols. As such it carries the second partial derivatives of gµν

with respect to the 4-position rµ. Notice that in this framework the variational tensor field
g(r) ≡

{
gµν

}
is also a metric tensor associated with the spacetime

{
Q4, g

}
(Q4 ≡ R4), so

that it raises and lowers tensor indices and hence must satisfy suitable orthogonality condi-
tions. This means that its functional setting, including the same conditions, is constrained
in the sense that it is necessarily of the form

{g}C ≡
{

g(r) ≡ gextr(r) + δg(r) ∈ C2(Q4)
∣∣∣gµνgµk = δk

ν

}
, (4)

with Q4 ≡ R4 and {g}C denoting the functional class of “normalized” varied functions g(r).
Furthermore, here the 10 covariant and counter-variant components of symmetric tensor
field g, namely respectively gµν and gµν, are considered linearly independent, despite being
required to fulfill the orthogonality constraints

gµνgµk = δk
ν, (5)

which imply in turn the “normalization” condition gµνgµν = 4. In addition, each varied
function g(r) is assumed of the form

g(r) ≡ gextr(r) + δg(r), (6)

gextr ≡
{

gextr ,µν(r)
}
≡
{

gµν
extr (r)

}
representing a suitably defined extremal real and symmet-

ric tensor field (see below) and δg(r) ≡ {δgµν} ≡
{

δgµν

}
a real and symmetric variation

tensor field. We stress here that in the framework of EH theory each g(r) ≡
{

gµν(r)
}
≡

{gµν(r)} is regarded as a metric tensor field which raises and lowers tensor indices and for
each g(r) ≡

{
gµν(r)

}
≡ {gµν(r)} its countervariant components {gµν} are by construction

prescribed so that the orthogonality conditions (5) are identically satisfied. In addition,
the variations δgµν are regarded as linearly independent and possibly subject to suitable
boundary conditions (to be applied on appropriate boundaries). Finally, in the same setting
the three quantities

√
−|g|, gµν and Rµν are all considered as variational in Equation (1),

although
√
−|g| is not by itself a 4-tensor.

2.1. The Einstein-Hilbert Lagrangian Variational Principle

Given these premises, we first address in particular the Einstein-Hilbert (EH) variational
principle. In this case the extremal field gextr(r), which enters Equation (6), is identified with
the solution of the Einstein field equations and therefore for better clarity is denoted here
with the symbol

gextr(r) ≡ ĝ(r) =
{

ĝµν(r)
}

. (7)

The tensor field ĝ(r) will be henceforth referred to as “background” metric tensor field.
Then, the EH variational principle (or EH action principle) is obtained by prescribing that
for arbitrary variations δg(r) it occurs that:

δSEH(g)|g=ĝ(r) = 0, (8)

with the symbol δ denoting, as usual, the variation operator. Notice that here the precise
mathematical definitions matter. In fact, a (possible) departure from previous literature
lies in the definition of the variation operator δ adopted here and the prescription of its
functional setting, which in case (8) is identified with {g}C (see, e.g., Equation (4)). Thus,
according to the standard definition available in the mathematical literature [12], for any
real smooth function or functional F(g(r)) its functional variation is identified with its
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Frechet derivative. The definition is based on the representation of a generic varied function
g(r) which, thanks to Equation (7), is given now in terms of

g(r) = ĝ(r) + δg(r). (9)

Furthermore, for definiteness, we denote by g(r, α) the related parametrized varied function

g(r, α) = ĝ(r) + αδg(r), (10)

with α ∈ [−1, 1] being a real 4-scalar parameter to be assumed independent of r. Then, the
Frechet derivative of the function (or functional) F(g(r)) is given by

δF(g(r)) ≡ d
dα

F(ĝ(r) + αδg(r))
∣∣∣∣
α=0

. (11)

The obvious implication is therefore that the variation of the Ricci tensor Rµν when it is
considered as a function (or functional) of the variational tensor field g(r), is therefore
generally non-zero (for non-vanishing variation δg(r)) because the dependence of the
Christoffel symbols Γm

il in terms of the variational field g(r) implies that

δΓm
il (g(r)) ≡ d

dα
Γm

il (ĝ(r) + αδg(r))
∣∣∣∣
α=0

, (12)

which is therefore different from zero. We stress, on the other hand, that by construction
δĝ(r) = 0, so that if one assumes Γm

il = Γm
il (ĝ(r)), then identically

δΓm
il (ĝ(r)) ≡ 0. (13)

Notice, however, that this prescription differs from the so-called Palatini approach [13] in
which the Christoffel symbols Γm

il are considered independent variables and as such can
therefore in principle be required to satisfy the constraint requirement

δΓm
il = 0 (14)

if the variation δ is performed only with respect to δg(r).
We stress that in Equation (8) the tensor field ĝ(r) is prescribed in such a way that

the same equation is satisfied identically for arbitrary variations δg(r). The variation of
all relevant functional or functions can similarly be defined. Thus, while the variation
of ĝ(r) vanishes identically, being independent of α, so that δĝ(r) = d

dα ĝ(r)
∣∣∣
α=0

= 0, by

definition δg = d
dα g(r, α)

∣∣∣
α=0

. Hence, the operator δ defined in this way does not preserve
the 4-scalar volume element dΩ, since

δdΩ ≡ d4rδ
√
−|g| 6= 0, (15)

and for this reason is referred to as asynchronous variational operator. Because of the con-
sequent explicit variational contribution which arises due to the non-constant volume
element, and in analogy with the terminology adopted in classical mechanics, the EH
variational principle (8) is thus denoted as asynchronous variational principle.

Its implications are in principle straightforward. In fact, by identifying the variational
Lagrangian density Lvar ≡ Lvar(g) with

Lvar(g) =
√
−|g|(LEH(g) + LF(g)), (16)
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the variational principle (8) yields the corresponding Euler-Lagrange equations, which in
symbolic form (i.e., expressed in terms of the functional derivative with respect to gµν, or
equivalently gµν) take the form

δSEH
δgµν

∣∣∣∣
g=ĝ(r)

≡ ∂Lvar(g)
∂gµν

∣∣∣∣
g=ĝ(r)

= 0. (17)

Notice that here the solution (ĝ(r)) of the Euler-Lagrange Equation (17) necessarily coin-
cides with the extremal value of the variational tensor field g, that is, such that Equation (8)
is satisfied for arbitrary variations δg(r) belonging to the functional class {g}C. Never-
theless, the precise evaluation of the Frechet derivative (11) and its related functional
derivative, that is, Equation (17), are not straightforward, the reason being that the Ricci
tensor appearing in LEH(g) contains second-order partial derivatives of g(r).

2.2. Boundary-Constrained Variational Principle of EH Theory

In order to tackle such a problem it is convenient to distinguish in the EH variational
principle (8) two variational contributions, by letting

δSEH(g) = (δSEH(g))expl + (δSEH(g))impl, (18)

with (δSEH(g))expl and (δSEH(g))impl denoting respectively the explicit and implicit vari-
ations of the action functional SEH(g). The first one is obtained by varying SEH(g) while
keeping the Ricci tensor constant, while the second one contains the variation of the
Ricci tensor only (see Equations (3) and (6) below). Thus, in the vacuum case with non-
vanishing cosmological constant the first contribution contains the explicit contributions
coming respectively: (a) from the variation of the determinant entering the 4-scalar volume
element (2), that is, yielding its explicit asynchronous variation δdΩ = d4xδ

√
−|g|, where

the identity

δ
√
−|g| = −1

2
gµνδgµν (19)

holds; (b) from the explicit contribution carried by gµν in LEH and LF (with LF being
assumed independent of Rµν). As a consequence:

(δSEH(g))expl =
∫

Q4
d4r
[(

δ
√
−|g|

)[
gµνRµν − 2Λ

]
+
√
−|g|(δgµν)Rµν

]
+δ

∫
Q4

d4r
√
−|g|LF(g). (20)

Direct evaluation of the various terms on the rhs of Equation (3) yields

(δSEH(g))expl =
∫

Q4
d4r
√
−|g|

[
Rµν −

(
1
2

R−Λ
)

gµν

]
δgµν

−
∫

Q4
d4r
√
−|g|δgµνκTµν, (21)

which implies

Rµν −
(

1
2

R−Λ
)

gµν = κTµν, (22)

namely, the general form of the non-vacuum Einstein field equations (EFE) for the unknown
tensor field gµν(r). Here the notation is standard. Thus, Rµν and R = gµνRµν are respec-
tively the Ricci 4-tensor and Ricci 4-scalar, Λ is the 4-scalar cosmological constant, while
Tµν is the stress-energy tensor associated with the external source fields described by the
external-field Lagrangian density LF(g). Finally, κ is the universal constant κ = 8πG/c4,
while G is the Newtonian constant of gravitation with c being the speed of light in vacuum.
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The 4-tensor Equation (5) represents a second-order, intrinsically non-Hamiltonian PDE,
whose solution will be denoted here with the symbol ĝ(r) =

{
ĝµν(r)

}
.

Given the result expressed by Equation (5) one therefore expects that the remain-
ing contributions should vanish identically. These are carried by the implicit variation
(δSEH(g))impl, obtained by varying SEH(g) with respect to the Ricci tensor only, namely:

(δSEH(g))impl =
∫

Q4
d4r
√
−|g|gµνδRµν. (23)

The obvious implication is therefore that the variational functional constraint condition

(δSEH(g))impl = 0 (24)

must necessarily hold in order to recover exactly EFE. As a consequence, the EH variational
principle in Equation (8) must be considered as a constrained one, the constraint (24)
realizing effectively a boundary-constrained EH variational principle. The peculiar difficulty
that arises when trying to satisfy the variational constraint condition (24), however, is due
to the fact that, as anticipated, the Ricci tensor contains second-order partial derivatives
of the metric tensor, so that on the whole the variational Lagrangian is not written in
standard form and one obtains that the implicit term still carries first-order derivatives of
the generalized coordinate field gµν. In fact, let us recall the definition of the Ricci scalar
and tensor (R and Rµν)

R = gµνRµν = G + gµν

[
∂Γl

µν

∂rl −
∂Γl

µl

∂rν

]
, (25)

where G is a function of gµν of the form

G = Hµν(Γ)gµν, (26)

Hµν(Γ) ≡ Γm
il Γl

km − Γl
ikΓm

lm,

and Γm
il are the Christoffel symbols prescribed with respect to gµν. Since by construction

∇αgµν ≡ 0, explicit calculation gives∫
Q4

d4r
√
−|g|R =

∫
Q4

d4r
√
−|g|G +

∫
Q4

d4r
√
−|g|∇α

[
gβkΓα

βk − gβαΓk
βk

]
. (27)

As a consequence, it follows that in order to satisfy the constraint (24) it should be identically:

(δSEH(g))impl =
∫

Q4
d4r
√
−|g|gµνδHµν(Γ) +

∫
Q4

d4r
√
−|g|∇αwα = 0, (28)

with wα denoting the 4-vector

wα = gβkδΓα
βk − gβαδΓk

βk. (29)

Thus, in particular, the last integral thanks to the divergence theorem reduces to∫
Q4

d4r
√
−|g|∇αwα =

∫
∂Q4

dσnαwα, (30)

with nα denoting the inward unit tensor locally orthogonal to the surface ∂Q4 of the
boundary Q4. In the literature various possible tentative solutions have been proposed to
satisfy the constraint Equation (28).

Choice A—The first approach is the one proposed by Einstein himself [11] (see also
Landau-Lifschitz [5]). The claim is that it should be sufficient to impose that on the
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boundary ∂Q4 of integration domain the variations δΓl
ik and δΓk

lk are prescribed in such a
way that the 4-vector wα is set identically zero, namely

wα|∂Q4 = 0. (31)

In fact, according to the same claim, the contribution of the volume integral in the
first term on the rhs of Equation (28) should be regarded as null being evaluated in the
local frame in which the spacetime is locally flat, so that the tensor function Hµν(Γ) should
remain constant with respect to arbitrary variations, so that in a locally flat system∫

Q4
d4r
√
−|g|gµνδHµν(Γ) = 0. (32)

A criticism arises on this approach. We first notice that the boundary condition (31)
is perfectly admissible. It can be viewed, in fact, as a gauge condition to the variational
Lagrangian density Lvar(g) (16). Indeed it is always possible to add to Lvar(g) a suit-
able boundary term contribution which cancels exactly a possible non-vanishing surface
boundary term wα|∂Q4 6= 0 which might be carried by Lagrangian density.

The argument leading to the proof of Equation (32) is instead of dubious validity. The
objection is as follows. Validity of Equation (32) for arbitrary variations δg(r) belonging
to {g(r)}C requires, in turn, that the Christoffel symbols should be almost everywhere
such that

δHµν(Γ) = 0. (33)

However, for a prescribed metric tensor g(r) = ĝ(r) + δg(r) and a bounded set Q4, the
approximate local constraint condition

δHµν(Γ) = 0 + O(εγ) (34)

can be fulfilled at most on a countable set of covering ε-neighborhoods Vε(ri) of ri ∈ Q4,
with radius ε (being ε a suitable infinitesimal and γ a suitable constant > 1). Nevertheless,
such a choice of the coordinate system does not warrant that the same requirement (34) is
satisfied for arbitrary variations δg(r) belonging to {g(r)}C. This implies that Equation (34)
cannot be realized by a local point transformation which preserves the differential manifold{

Q4, g(r)
}

.
As a note added in proof we notice that it is possible to show [14] that a diffeomor-

phism which maps in each other almost everywhere a curved spacetime
{

Q4, g(r)
}

on
the flat Minkowski spacetime

{
Q4, η(r)

}
can only be realized by a so-called non-local

point transformation (NLPT). Such a transformation, which incidentally is analogous to
the one which realizes the so-called Einstein’s teleparallel approach to GR, is however a
non-local transformation which is not applicable in the present context. As a consequence,
Equation (16) effectively requires validity of the further variational constraint

δHµν(Γ) = 0, (35)

which in turn requires Equation (14) to hold identically in the whole spacetime Q4, in-
cluding (thanks to continuity) the boundary ∂Q4. However, since in the original approach
by Einstein the variations δgµν and δΓl

ik are not considered as independent, as typically
assumed instead in Palatini-type approaches, the issue arises of the actual validity of the
constraint condition (14) in the framework of the functional setting {g}C.

We notice that a similar possibility to the one proposed by Landau-Lifschitz is that
advanced by Wald in Ref. [7], which concerns Equation (31) only and is based on the claim
that the variation of the Ricci tensor should give rise to a divergence term acting on the
variation δgµν which should therefore vanish by requiring that the same variation vanishes
on the boundary. According to Ref. [7], “this term does not vanish for general variations
where gµν is held fixed on the boundary, although it does vanish for variations where the
first derivatives of gµν also are held fixed”.
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Choice B—A further possibility concerned Equation (31) also advanced by Wald in
Ref. [7], is based on the addition of an “ad hoc” extra surface-term contribution to the
action functional (1), which is a function of wα and is constructed in such a way to exactly
balance the implicit contributions originating from the integration by parts performed in
Equation (28). This approach however cannot be implemented to treat the constraint (32).

Choice C—Finally, another possible route, already anticipated above, arises in the
context of the Palatini approach [13] provided the functional setting in the EH action
functional (1) is properly prescribed. In such a case in fact, in contrast to the
prescription (12) given above, the variations δgµν and δΓl

ik are considered independent
by construction (see for example [4] and the original derivation by Schroedinger [15]).
Therefore in such a context the constraint condition (14) can in principle be legitimately set.

Regarding the possible choices indicated above there are however two crucial aspects
to take into account. The first one is that, in all cases, the action principle based on the
Einstein-Hilbert action may not be well posed [16,17]. In fact, since the Lagrangian is
represented in terms of the variational Ricci scalar R(g(r)), derivation of the Einstein
equations requires fixing both the metric tensor and its first derivative on the boundary,
which is inconsistent with the same Einstein equations. The second one concerns Choice
B. It refers to the fact that the prescription of boundary terms involves either assigning
a suitable GR-frame (i.e., a coordinate setting, such as a foliatiation with respect to the
coordinate time) for their representation in terms of variational variables, or to adopt a
general representation in terms of connections Γa

bc that have a non-tensorial character. Both
possibilities necessarily violate manifest covariance. We stress that the same inconvenience
is expected to arise in the case of alternative theories of GR (for example including torsion
or f(R) effects) in which boundary terms are taken into account [18].

Based on the these consideration, apart possibly only the Palatini approach (which,
however, adopting Frechet derivatives requires a suitable reformulation not reported here
for brevity), the remaining tentative solutions A and B appear therefore questionable. The
fundamental question which arises is therefore whether, in the context of the EH action
principle (8) and subject to the boundary constraints (24), there is a possible way-out
solution which effectively realizes an asynchronous variational principle for EFE and
permits a consistent treatment of the whole constraint (28).

2.3. An Unconstrained Lagrangian Variational Principle

As we intend to prove here, the solution of the difficulties indicated above is repre-
sented by an unconstrained Lagrangian variational principle for EH theory. Inspired to a
concept originally pointed out in Ref. [8], the new approach is represented by a different
kind of variational approach which is based on the adoption of so-called “extremal” con-
straints. As explained below, such a kind of constraints are peculiar because they actually
do not limit either the functional class of the variations δg(r) or that of the varied functions
g(r), thus leaving both δg(r) and g(r) independent. As a consequence, the resulting varia-
tional principle remains, in a proper sense, unconstrained. As a further notable feature,
contrary to the original EH setting, the issue of the well-posedness for the related variation
principle does not arise here. In fact it is avoided alltogether thanks to the fact that, as
explained in detailed below, in such a context the Ricci tensor is considered prescribed (i.e.,
it is not treated as variational).

Nevertheless, to reach the goal an extended functional setting, different from {g}C,
is required in which the variational symmetric tensor functions g(r) cannot generally be
treated any more as metric tensors. As far as the functional setting is concerned, this implies
that the covariant and countervariant components gµν and gµν are not required to satisfy
the orthogonality condition (5), while a background metric-tensor representation is adopted.
In other words, there must exist by construction a background tensor field, to be identified
with a particular solution of EFE ĝ(r) ≡

{
ĝµν(r)

}
≡ {ĝµν(r)} (see Equation (5)), which

generates the geometric properties of the spacetime, in particular raising and lowering
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tensor indexes and prescribing the Christoffel symbols (and therefore the Ricci tensor). The
functional setting is now identified with the unconstraint setting {g}U defined as

{g}U ≡
{

g(r) ≡ ĝ(r) + δg(r) ∈ C2(Q4)
∣∣∣gµν = ĝµα ĝνβgαβ(r), ĝµν ĝµk = δk

ν

}
, (36)

where, in further difference with respect to {g}C, all tensor indices are now raised and
lowered by ĝ(r).

The introduction of the setting (36) is required in order to satisfy the variational constraint
condition. In fact, a necessary condition for the validity of the variational functional constraint
condition (24) is to require that identically, that is, for arbitrary variations δg(r), the following
two variational equations, that is, respectively

δRµν ≡
d

dα
Rµν(ĝ(r) + αδg(r))

∣∣∣∣
α=0

= 0, (37)

and

δRµν ≡ d
dα

Rµν(ĝ(r) + αδg(r))
∣∣∣∣
α=0

= 0, (38)

hold. In view of the definition of the Frechet derivative and ruling out possible constraint
conditions on the variations δg(r), this means that the Ricci tensor, both in its covariant and
countervariant components Rµν and Rµν, must necessarily be functions of ĝ(r) only. Therefore,
in the unconstrained variational principle Rµν should behave as an extremal 4-tensor in
both its covariant and countervariant representations, that is,

Rµν = Rµν(ĝ(r)) ≡ R̂µν, (39)

Rµν = Rµν(ĝ(r)) ≡ R̂µν, (40)

with the background tensor field ĝ(r) being identified with a particular solution of EFE
(5), that is, the extremal solution ĝ(r). Such a peculiar kind of constraints will be therefore
referred to as extremal constraint conditions. However, one further notices that this requires
also that

R̂µν = ĝµα(r)ĝνβ(r)Rαβ(ĝ(r)), (41)

which means that the background tensor ĝ(r) must be the metric tensor, that is, the tensor
which raises and lowers tensor indices of all tensor fields. In fact, in order to preserve the
4-scalar property of the Lagrangian density (see Equation (3)), also the varied functions
g(r) must behave accordingly (i.e., its indexes must be raised and lowered by ĝ(r)). This
implies also that the orthogonality conditions (5) cannot generally be fulfilled because the
simultaneous validity of Equations (39) and (40) is generally not permitted when the varied
functions g(r) belong to (4). A fact which forces one to adopt the more general functional
setting (36).

As a result, one concludes therefore that within the functional class {g}U necessarily
Equations (37) and (38) are identically satisfied, without implying any constraint condition
for the varied function g(r), nor on their variations δg(r). Then, in the same functional
class, and based on the setting (39) and (40), the EH action integral (1) becomes

S(U)
EH (g, ĝ) ≡

∫
Q4

d4rLvar(g, ĝ),

Lvar(g, ĝ) =
√
−|g|[LEH(g, ĝ) + LF(g, ĝ)] , (42)

where following Equation (3) and including explicitly the dependence in terms of the
extremal tensor field ĝ(r), the integral S(U)

EH (g, ĝ) and

LEH(g, ĝ) = gµνR̂µν − 2Λ (43)
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identify respectively the unconstrained EH variational functional and the unconstrained
variational Lagrangian density. The EH variational principle (8) thus reduces to the uncon-
strained variational principle

δS(U)
EH (g, ĝ) =

d
dα

S(U)
EH (ĝ(r) + αδg(r), ĝ(r))

∣∣∣∣
α=0

= 0, (44)

where the corresponding Euler-Lagrange equations become now

δS(U)
EH (g, ĝ)
δgµν ≡ ∂Lvar(g, ĝ)

∂gµν = 0, (45)

the partial derivative with respect to gµν being performed at constant ĝ ≡
{

ĝµν

}
. Straight-

forward algebra then delivers the expected result, showing that the unconstrained Euler-
Lagrange equations determined in this way indeed coincide identically with EFE (i.e.,
Equation (5)).

The result is striking because it shows that the constrained EH variational princi-
ple reduces in this case to an unconstrained one. This occurs because both the varied
tensor functions g(r) and their variations δg(r) remain completely unaffected by the
constraints (39) and (40), that is, provided g(r) belongs to a suitably chosen functional
class {g}U . The peculiarity arises because the same constraints are identically satisfied by
themselves and do not affect the variational principle itself. It should be stressed that such
a result has formal analogies with the Palatini variational principle because in both cases
the Ricci tensor is regarded as independent of the variational tensor gµν. The resemblance,
however, stops here because, unlike the Palatini approach, here the connections are not
considered variational.

2.4. An Equivalence Theorem

The equivalence of the two variational principles given above can readily be shown,
provided they are both couched in the same functional setting, that is, {g}U and of course
provided the boundary constraint condition (24) is also set (this is certainly not a restrictive
condition considering that variational functions g(r) belonging to {g}U also obviously
belong to {g}C). In this regard an important preliminary remark must be made. This
concerns the fact that the explicit variational contribution (δSEH)expl when evaluated with
respect to the functional class {g(r)}U takes the same representation given by Equation (4)
(the reason being that the identity (19) still holds). This makes possible to evaluate in the
same functional class {g}U the difference functional

∆SEH(g, ĝ) ≡ SEH(g)− S(U)
EH (g, ĝ) =

∫
Q4

d4r∆Lvar(g, ĝ), (46)

∆Lvar(g, ĝ) ≡ Lvar(g)− Lvar(g, ĝ). (47)

Thus, in view of Equations (4) and (44) it follows that the variational principle
δ∆SEH(g, ĝ) = 0 yields identically:∫

Q4
d4rδ∆Lvar(g, ĝ) = 0. (48)

This means therefore that when setting g(r) = ĝ(r) the previous equation must be satisfied
identically. As a consequence, ∆Lvar(g, ĝ) represents effectively a gauge contribution to the
variational Lagrangian density.

The implication is therefore that the boundary-constrained EH variational principle
Equation (8) and the unconstrained one (44) are completely equivalent, both yielding the
same form of EFE. This means also that the constraint conditions (37) and (38) should be
interpreted as natural constraint conditions, in the sense that they are necessarily satisfied in
the framework of EH theory. In other words, it is always possible to get rid altogether of
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the variations δRµν which enter the Euler-Lagrange equations. This provides effectively a
new perspective in EH theory, since the property holds for arbitrary coordinates systems
and is therefore frame-independent.

2.5. Covariance and the Issue of Missing Gauge Invariance

To complete the analysis, the property of covariance and the issue of (missing) gauge
invariance of the EH theory is briefly addressed here. First, the manifest covariance and
covariance properties of the EH variational principle, Lagrangian density and of the corre-
sponding EFE, are readily established. These properties follow from two basic ingredients:

(1) The 4-tensor nature of the EH action functional, either in its constrained or uncon-
strained forms, that is, respectively given by Equations (8) and (44).

(2) The fact that variations are performed with respect to a tensor field, that is, gµν.
Thanks to the 4-scalar nature of the (invariant) volume element dΩ (see Equation (2))

and similarly thanks to the assumption that the Langrangian densities are by construc-
tion 4-scalars, either if represented in terms of their constrained or unconstrained forms,
namely LEH(g) + LF(g) and LEH(g, ĝ) + LF(g, ĝ) respectively, implies that necessarily the
EH variational principle (i.e., the action integral) and EFE are consistent with the principle
of manifest covariance. As an implication, the covariant nature of the theory is estab-
lished at once. In fact, given an arbitrary local point transformation, that is, an arbitrary
diffeomorphism

r → r′ = r′(r) (49)

which maps the spacetime
{

Q4, ĝ(r)
}

in itself, both the EH variational principle and the
corresponding EFE (both written equivalently either in unconstrained or constrained forms)
are covariant.

A different consideration however holds for the Lagrangian density, which represents
the effective quantity that generates the EL equations after taking variations and which, for
this reason, should encode the physical properties of the field. In the case of EH variational
principle the variational Lagrangian density Lvar(g) defined by Equation (16) is not a
4-scalar, since the contribution of the determinant

√
−|g| is not either. This feature is

unusual in field theory, because it means that the resulting EL equations, namely EFE, are
determined partly by a contribution carried by the Lagrangian function LEH(g) and partly
by a non-tensor contribution which defines the differential volume element of the action
integral and which is independent of the actual realization of the same Lagrangian function.
This is not a marginal aspect, but rather implies serious consequences on the theoretical
framework of variational theory for GR. In particular:

(1) Either the constrained or unconstrained symbolic Euler-Lagrange equations,
namely (17) and (45), are not set in manifest-covariant form. This feature notwithstanding,
however, upon evaluating explicitly the functional derivatives in the two cases one imme-
diately realizes that the corresponding (and equivalent) EFE represented by Equation (5)
are manifestly covariant too, that is, are set in 4-tensor form.

(2) The EH asynchronous variational formulation lacks a basic gauge invariance
property which should however characterize standard variational theories of continuum
classical fields. We refer here to the gauge-invariance property provided by the trivial
gauge transformation acting on the variational field Lagrangian L in terms of an arbitrary
constant 4-scalar C = const. by means of the transformation

L→ L + C. (50)

In the standard theory of variational principles the addition of a constant in the Lagrangian
must leave invariant the extremal equations. In contrast, in the context of asynchronous
EH principle it follows that, when Equation (50) applies, any Lagrangian density L of the
type L =

√
−|g|L transforms necessarily as

L → L+
√
−|g|C. (51)
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Therefore, the introduction of the additive constant C, instead of leaving invariant the Euler-
Lagrange equations, changes the functional form of EFE, thus generating a non-vanishing
contribution in the same extremal equations which is equal to − 1

2 Cgµν. However, the
ensuing lack of such gauge-invariance property - which incidentally affects both the EH
and ADM theories—is not simply a mere unfortunate inconvenience. In fact it violates
a fundamental requirement usually regarded as a cornerstone of continuum classical
and quantum field theory. We stress once more that this feature is ultimately related to
the adoption of a non-tensorial variational Lagrangian density, which depends on

√
−|g|

associated with the 4-volume differential element, and gives rise to a continuum field theory
which is intrinsically non-gauge invariant. However, the property of gauge invariance
should be regarded as a mandatory feature of variational field theories in general, to be
fulfilled both by variational and extremal continuum fields. As a consequence, also the
variational functional and the corresponding variational Lagrangian, together with the
corresponding extremal quantities, should be necessarily determined up to a suitable gauge
contribution. The violation of this property in the asynchronous EH variational theory
is therefore a conceptual and theoretical obstacle to the realization of a truly manifestly-
covariant variational formulation of EFE.

3. The ADM Variational Approach

Let us now briefly recall the well-known ADM theory, which in mainstream literature
is commonly credited for realizing a viable Hamiltonian formulation for GR. Formulated in
1959 [3,4] and heavily inspired by previous work by Dirac [19,20], it partly relies on some
of his mathematical formalism, especially Dirac’s customary identification of canonical
momenta in terms of coordinate-time partial derivatives and Dirac’s theory of constrained
dynamics [21].

For the purposes of the present investigation (and the economy of presentation) it is
sufficient to consider here only the so-called “Hamiltonian realization” of ADM theory. The
variational approach, whose starting point is based on a particular coordinate representation
of the EH Lagrangian variational principle, is based on the following steps:

• The prescription of the variational functional, which is identified with the EH action
functional (1).

• The prescription of the functional class {g(r)}C in which the varied functions take
the generic form g(r) ≡ gextr(r) + δg(r), where gextr(r) is identified with a suitable
extremal tensor field.

• The prescription of ADM variables in terms of the varied tensor function g(r) (and
hence of the extremal tensor field gextr(r) too).

• The representation of the EH Lagrangian density in ADM variables.

In detail, once having prescribed the variational functional, the second step is based
on the replacement of the variational tensor gµν(r), required to belong to {g(r)}C, with a
suitable set of non-4-tensor variational variables, identified with the set (hab(r), N(r), Na(r))
to be denoted as ADM Lagrangian variables, where hab is the 3× 3 variational matrix (the
Latin indices a, b run from 1 to 3, while the greek ones range as usual from 0 to 3), while
N and Na are respectively the lapse function and the shift 3-vector. More precisely, the
ADM variables are defined by suitably prescribing the set of coordinates (GR-frame)
r ≡ {rµ = (ct, r)} and the components of the variational tensor gµν(r) as follows:

g00(r) =
1
c2 (−N2 + NaNa),

g0a(r) = ga0 =
1
c

Na, (52)

gab(r) = hab.
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Notice that a priori all components of g, as well of (hab(r), N(r), Na(r)) are considered
functions of the 4-position r = {rµ}, that is, generally dependent on both time and spatial
coordinates. Then, direct calculation shows that in whole generality the identity√

−|g| −→ N(r)
√
|h(r)| (53)

must hold.
The fundamental aspect to highlight here is that, in view of the outcomes of Section 2,

there can exist actually two different admissible representations of the Lagrangian density
in ADM variables, which are related to the two possible choices of the EH Lagrangian
densities Lvar(gµν) and Lvar(gµν, ĝµν) (see Equations (16) and (42) respectively) correspond-
ing to the boundary-constrained and unconstrained Lagrangian EH variational principles
stated above. In the following, in order to question the nature of the ADM Hamiltonian
theory for EFE, we shall therefore consider separately the two settings.

3.1. The Constrained ADM Variational Formulation

Let us consider first the relationship in terms of Lvar(gµν) originally established by
Arnowitt, Deser and Misner (ADM theory [4]). Such an approach will be hereon referred
to as constrained ADM variational formulation. The task involves suitably representing in
terms of ADM variables both SEH(g) and the corresponding variational Lagrangian density
Lvar (see Equation (16) above), assuming the functional setting {g(r)}C. To this end the
4-dimensional integral is split as a time integral (by setting also c = 1) and a surface integral
on the (constant-time) 3-surface section Σt, where t is the coordinate-time, by representing
d4r as d4r = dtdΣ, with dΣ being the surface element on Σt. For simplicity, we consider
here the vacuum case with non-vanishing cosmological constant (Λ 6= 0).

Starting point is the prescription of the ADM variational functional, namely

SADM(G) =
∫

dt
∫

Σt
dΣLADM(G), (54)

and the related ADM variational Lagrangian density LADM(G), which are identified ac-
cording to {

SADM(G) ≡ SEH(g),
LADM(G) = Lvar(g).

(55)

Here, G(r) denotes the set of ADM canonical variables G(r) ≡
{

hab, pab, N, Na

}
, with

{hab, N, Na} being the Lagrangian variables determined by inversion of Equation (52). Then,
if it is assumed that g(r) belongs to the functional setting {g}C (defined by Equation (4)), this
means that the corresponding functional setting {G(r)} should be prescribed accordingly.

Notice that here the ADM variational Lagrangian density LADM(G) must be identified
with the EH Lagrangian density Lvar(gµν) (see Equation (16)). This can be shown to require

LADM(G) ≡ pab
·
hab − NH⊥(G)− NaHa(G), (56)

where the notations are standard. Thus, in particular, pab are suitably-defined “canonical

momenta” conjugate to hab,
·
hab is the Lie derivative with respect to time of hab, which

according to the choice of ADM variables in such a reference frame coincides with the

partial time derivative
·
hab ≡ ∂

∂t hab, while H⊥ and Ha are the so-called “Hamiltonians”

H⊥ =
√
|h|
[
−(3)R− 2Λ + |h|−1 pab pab −

1
2
|h|−1 p2

]
, (57)

Ha = −2
√
|h|Db

(
|h|−1/2 pab

)
, (58)
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where p = pa
a and Dc identifies the covariant derivative prescribed on the section Σt, which

when acting on pa
b is defined as Dc pa

b = ha
dhe

bh f
c∇ f pd

e . Furthermore, it is important to notice
that (3)R represents the spatial curvature scalar and is defined as (3)R = hlm(3)Rlm, where
(3)Rlm is the 3-dimensional Ricci tensor, which is defined in terms of the corresponding
3-dimensional Riemann tensor as (3)Rlm =(3) Rk

lkm. As such, (3)Rlm still depends on first
and second-order partial spatial derivatives of the Lagrangian ADM fields, namely it is
generally of the form

(3)Rlm =(3) Rlm(hab, ∂ihab, ∂i∂jhab). (59)

More precisely, it is defined as

(3)Rlm =(3) Rk
lkm = ∂kγk

lm − ∂mγk
kl + γk

knγn
lm − γk

mnγn
kl , (60)

with γi
jk denoting the 3-dimensional Christoffel symbols

γi
jk =

1
2

hil
(

∂jhkl + ∂khjl − ∂lhjk

)
. (61)

Finally, let us introduce the parametrized varied functions

(G)extr + αδG ≡
(

hab(r, α), pab(r, α), N(r, α), Na(r, α)
)

, (62)

where α is a real parameter α ∈ [−1, 1] and
hab(r, α) = (hab)extr + αδhab,
pab(r, α) =

(
pab
)

extr
+ αδpab,

N(r, α) = (N)extr + αδN,
Na(r, α) = (Na)extr + αδNa,

(63)

where δhab ≡ δgab, while (G)extr ≡
(
(hab)extr,

(
pab
)

extr
, (N)extr, (Na)extr

)
denotes the

extremal solution (see below) which extremizes the variational functional. Thus, the ADM
variational principle in terms of the Frechet derivative becomes:

δSADM(G) ≡ d
dα

SADM((G)extr + αδG)

∣∣∣∣
α=0

= 0, (64)

which must hold for arbitrary (linearly) independent variations δhab, δpab, δN and δNa
defined according to the functional setting. About the notations, we stress that the extremal
tensor fields (hab)extr,

(
pab
)

extr
, (N)extr and (Na)extr are considered solutions of the cor-

responding Euler-Lagrange equations (see below Equation (65)). The same fields, based
on Equation (52) determine also the corresponding extremal tensor field gextr(r) which in
principle needs not to coincide with ĝ(r).

The formal derivation of the Euler-Lagrange equations determined by (64) is reported
in detail by several authors (see for example Wald [7]). According to these references this
yields for the extremal ADM fields G = (G)extr the set of ADM initial-value equations which
is realized respectively by

·
hab − N ∂

∂pab H⊥ − Nc
∂

∂pab Hc = 0,

− ·p
ab
− N ∂

∂hab
H⊥ − Nc

∂
∂hab

Hc = 0,
H⊥ = 0,
Ha = 0,

(65)

and by the initial conditions
(hab(to), pab(to)), (66)
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with to denoting a prescribed (but arbitrary) initial coordinate time. Thus, in particular,
the first two equations in (65) represent two Hamilton-like evolution equations for the
conjugate variables (hab, pab), formality representing Lagrangian generalized coordinates
and conjugate momenta. The remaining two equations are instead respectively a 3-scalar
and a 3-vector constraint equations expressed in terms of so-called “Hamiltonian” functions
H⊥ and Ha, which are required to vanish identically for the extremal values of the ADM
variables (hab, pab, N, Na). The basic implication which follows is therefore that, from
the ADM variational principle (64), the extremal ADM variables (G)extr, in particular

((hab)extr,
(

pab
)

extr
), are not independent being subject to the previous constraint equations

(last two equations in Equation (65)).
We notice that in the literature (see [4,7]) it is claimed that in the case of vacuum the

same ADM initial value equations “are equivalent to the vacuum Einstein equation”. How-
ever, it is important to recognize that the initial conditions (66) are in principle free. On the
other hand, one can show that the Lagrange multipliers N, Na are uniquely determined by
requiring that initially (at to) they satisfy the said constraint equations [4]. As a consequence,
as shown below, the solution of the ADM Euler-Lagrange Equations (65) and (66) is nec-
essarily non unique. The obvious but nevertheless still nontrivial consequence is that
the same system of equation does not necessarily coincide identically with EFE, unless
a particular choice of initial conditions (66), to be therefore appropriately determined, is
actually selected.

The other important remark concerns the customary literature identification of the
ADM initial-value problem (65) and (66) with a Hamiltonian system in the proper sense, to
which therefore the customary formalism of Hamilton and Hamilton-Jacobi theories should
apply. For such an identification to be possible, however, the same ADM initial-value
problem should identify a set of first order, evolution ODEs with respect to the ADM variables
G ≡

{
hab, pab, N, Na

}
.

However, such a statement is manifestly incorrect. The reason is as follows. According
to the standard notion of Hamiltonian system, the Hamilton equations should depend only
on the generalized coordinates and the conjugate momenta, and not contain additional
(partial) derivatives of the coordinates. Nevertheless, the ADM Euler-Lagrange equations,
just as the original EFE (recalled above by Equation (5)), still contain second-order partial
derivatives acting on the Lagrangian ADM variables hab. The crucial term which carries
such a kind of contributions is the spatial curvature (3)Rab (in EFE it is the Ricci tensor),
which in fact as shown by Equation (59) (see also definition given by Equation (60)) depends
on first and second order partial spatial derivatives of hab.

Thus, first one notices that in the ADM Euler-Lagrange Equation (65) (3)Rij depends
on hab too, so that

∂

∂hij

(3)
R 6=(3) Rij, (67)

contrary to what assumed in the standard ADM approach. Furthermore, there are two
equations, namely respectively the second and the third ones, which identify PDEs in-
stead of ordinary differential equations as required for their identification in terms of a
Hamiltonian system.

Incidentally, however, there is a further problematic (and dubious) aspect of the ADM
approach to be mentioned.

This concerns the issue of the variational treatment of the same 3-tensor represented
either in covariant or countervariant representations, that is, (3)Rlm and (3)Rlm. In fact, as
indicated above in Equation (59), both representations of the same 3-tensor contains explicit
dependencies in terms of first and second-order partial derivatives of hab with respect to
the spatial coordinates. In fact, for consistency with the functional setting established above,
the variation under the integral (54) should be again performed in terms of the Frechet
derivative. This includes the variation of the 3-tensor (3)Rlm (or (3)Rlm). Notice in fact that
the same 3-tensor cannot be regarded as constant when it is considered under the integral



Entropy 2021, 23, 215 18 of 33

(see also related discussion in case of Choice A in Section 2.2 above). Furthermore, in view
of the previous definition (see Equation (60)), the functional variation of δ(3)Rlm (similarly
for(3)Rlm) necessarily takes the form:

δ(3)Rlm = (3)Rlm(δgab, ∂i(hab)extr, ∂i∂j(hab)extr)

+(3)Rlm((hab)extr, ∂iδgab, ∂i∂j(hab)extr)

+(3)Rlm((hab)extr, ∂i(hab)extr, ∂i∂jδgab), (68)

which therefore depends, besides δgab, also on the first and second-order (spatial) partial
derivatives ∂iδgab and ∂i∂jδgab. On the other hand, for the validity of the variational
principle (64) the dependences in terms of the first and second partial derivatives should
not appear. Instead, for the validity of the Euler-Lagrange equations themselves reported
above (i.e., Equation (65)) all contributions should actually be considered ignorable, namely
requiring instead

δ(3)Rab = 0, (69)

δ(3)Rab = 0. (70)

In both cases this implies that they should satisfy extremal constraint conditions of the type

(3)Rab = (3)Rab((hab)extr, ∂i(hab)extr, ∂i∂j(hab)extr), (71)
(3)Rab = (3)Rab((hab)extr, ∂i(hab)extr, ∂i∂j(hab)extr), (72)

with (hab)extr denoting the extremal tensor field hab(r). Nevertheless, since Rab and Rab
are related by assumption via the 3-tensor hab(r) (hab(r)) which lowers (raises) their tensor
indices, it is obvious that a requirement cannot be consistent with the functional setting of
the ADM approach indicated above (4) (see also the analogous discussion in Section 2.3).
The alternative, that is, which occurs when these dependencies are retained, has the so-
to-say “unpleasant” side-effect of simply destroying the validity of the ADM variational
principle (64). Indeed, δ(3)Rab gives rise in such a case (through the Frechet derivative
δ(3)Rab) to the appearance of first and second-order partial derivatives of the variations δhab.

In conclusion, the suggested implication is that the ADM initial value equations are
formally correct only provided the variational contribution of δ(3)Rab and δ(3)Rab are both
set to zero (which amounts to introduce a hidden constraint), while—in addition—the
contribution of the extremal term (3)Rab((hab)extr) gives anyway rise (as in the case of
EFE) to the appearance of second-order partial derivatives of (hab)extr, thus yielding an
intrinsically non-Hamiltonian PDE.

We stress that such features cannot be corrected by adopting a perturbation theory, that
is, in which the spatial curvature is treated to leading order as constant. In fact perturbative
schemes of this type do not converge everywhere (for example near singularities) and
therefore do not appear reliable for the establishment of a quantum theory of gravitation
based on the ADM formulation of GR.

3.2. An Unconstrained Lagrangian Variational Formulation for the ADM Representation

As anticipated, we now consider the relationship in terms of the unconstrained La-
grangian EH variational principle which is characterized by the corresponding Lagrangian
density Lvar(gµν) (see Equation (42)). As we intend to show this provides an alternate route
for the prescription of the ADM variables and at the same time a new possible realization
of ADM theory.

This is based on the unconstrained formulation of EH theory pointed out above
(see Section 2.2) and on the construction of the variational functional SEH(g, ĝ) (see
Equation (42)). The new approach consists now in representing SEH(g, ĝ) and the cor-
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responding variational Lagrangian density Lvar(g, ĝ) in terms of ADM variables, thus
prescribing the new ADM functional and Lagrangian density according to{

SADM(G, ĝ) ≡ SEH(g, ĝ),
LADM(G, ĝ) ≡ Lvar(g, ĝ).

(73)

Here the action functional and variational Lagrangian density (respectively SEH(g, ĝ) and
Lvar(g, ĝ)) are now both defined with respect to the functional class {g(r)}U . This feature
permits us to fulfill the variational constraint (24), according to which the Ricci tensor is
considered extremal, that is, it is set equal to R̂µν ≡ Rµν(ĝ(r)). Thus, upon invoking the
unconstrained EH variational principle (44), this implies identically

δSADM(G, ĝ) = 0. (74)

For clarity and to distinguish it from the standard ADM variational principle indicated
above (i.e., Equation (64)), this will be referred to here as the unconstrained ADM La-
grangian variational principle. If one considers the case of vacuum endowed with a
non-vanishing cosmological constant, then it follows in particular

LADM(G, ĝ) = N
√
|h|LEH(g, ĝ), (75)

where by construction gµνR̂µν = gµνR̂µν, so that LEH(g, ĝ) is given by Equation (43). Hence,
in terms of the ADM representation (52) it follows:

gµνR̂µν =
1
c2 (−N2 + NaNa)R̂00 +

2
c

NiR̂0i + habR̂ab. (76)

To determine the corresponding Euler-Lagrange equations we stress that, unlike the varia-
tional principle (64), the calculations must now be performed with respect to the functional
class {g(r)}U so that they exactly coincide with EFE (i.e., Equation (5) upon setting Tµν = 0),
thus yielding

Rµν −
(

1
2

R−Λ
)

gµν = 0, (77)

where by construction Rµν = R̂µν, R = R̂ and gµν = ĝµν. The required Euler-Lagrange
equations for the extremal ADM fields are then simply:

R̂00 −
(

1
2

R̂−Λ
)

1
c2 (−N2 + NaNa) = 0,

R̂0a −
(

1
2

R−Λ
)

1
c

Na = 0,

R̂ab −
(

1
2

R̂−Λ
)

hab = 0, (78)

which therefore depend only on the Lagrangian ADM fields D ≡ (hab, N, Na). Here it is
understood that the representation of the extremal Ricci tensor must be expressed as well in
terms of ADM variables through the customary definition of Christoffel symbols in terms
of the metric tensor. We notice here that:

• The Euler-Lagrange Equation (78) coincide with EFE (see Equation (5)) when ex-
pressed in terms of the Lagrangian ADM fields D ≡ (hab, N, Na).

• The extremal solution Dextr ≡ (hab, N, Na)extr coincides necessarily with Dextr ≡
(ĥab, N̂, N̂a), where ĥab, N̂ and N̂a denote the ADM fields expressed in terms of ĝ(r),
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that is, the background metric tensor and the solution of EFE. Therefore, by inversion
of Equation (52), their representation in terms of ĝ(r) is necessarily provided by

N̂(r) = c
√

ĝ0a(r)ĝ0a(r)− ĝ00(r),

N̂a(r) = cĝ0a(r) = cĝa0(r),

ĥab(r) = ĝab(r). (79)

• Since the extremal Ricci tensor R̂µν depends on second-order partial derivatives of
ĝ(r), Equation (78) must be intended again, in analogy to EFE, as implicit PDEs for
the extremal Lagrangian ADM fields Dextr ≡ (ĥab, N̂, N̂a).

Let us now address the issue of the relationship between EFE and the same ADM
Euler-Lagrange equations. This is done by requiring the simultaneous validity of the two
ADM variational approaches indicated above and realized respectively according to the
constrained and unconstrained Lagrangian variational principles. First, we notice that
Equation (79) necessarily provides a particular solution of Equations (65) and (66) in which,
however, pab remains apparently undetermined. However, one can show that the second
equation in (65) yields a differential equation for pab subject to a suitable initial condition
for pab(to). In particular, in the case ĝ(r) is stationary, by setting pab(to) = 0 it follows that
pab remains everywhere identically zero and therefore is uniquely determined too.

On the contrary, if different initial conditions (66) are selected then it is obvious that
generally the solution of the ADM initial value Equations (65) and (66) may not coincide
with ĝ(r). The proof is immediate. In fact this manifestly occurs if, in contrast with the
third equation in (78), the initial condition for hab(t, x), namely hab(to, x), is chosen to be

hab(to, x) 6= ĝab(to, x). (80)

As a consequence it is concluded that the same ADM initial value equations and EFE
(see Equation (5)) do not generally coincide. This conclusion is important for two main
reasons. The first one is that it rules out a possible misunderstanding (see also Wald’s
citation in the previous section) according to which vacuum EFE and the ADM initial value
equations should coincide always, that is, independent of the initial conditions. The second
one is because it permits us to address the problem of the role of the variational constraints
(i.e., Equations (6), (39) and (40)) in ADM theory. In fact, the previous conclusion shows that
the same ADM initial value equations do not generally satisfy the variational constraints.
However, this happens if proper initial conditions are chosen for the ADM fields.

Finally, despite being covariant with respect to the group of local point transformations
(LPT), it should be added that ADM theory is not manifestly-covariant with respect to the
same group. As a consequence, it is not objective, so that the relevant equations, and in
particular the coordinate time, are generally not preserved when introducing a generic LPT.
In other words, the ADM variational variables, either Hamiltonian or Lagrangian ones,
do not have a tensorial character. This is similar to what occurs in the case of the Palatini
variational approach to GR, where variational variables include the connections, which are
not 4-tensors. Nevertheless, in difference with the Palatini approach where the variations
of the connections are by themselves 4-tensors together with the resulting Euler-Lagrange
equations, the variations of ADM variables and the corresponding Euler-Lagrange equations
(i.e., respectively either (65) or (78)) do not have a tensorial character either.

4. Synchronous and Manifestly-Covariant Hamiltonian Theory of GR

Given validity of the outcomes pointed out in previous sections, here an alternative to
the non-manifestly covariant, non-gauge invariant and non-Hamiltonian ADM theory is
provided. In this regard, it is appropriate to recall what is actually its starting point. This is
given by the common belief that is epitomized for example by the original sentence due to
Wald [7] according to which: “... a Hamiltonian formulation of a field theory requires a breakup
of spacetime into space and time. Indeed the first step...consists of choosing a time function t and a
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vector field tα (the “flow of time”) on a spacetime such that the (space) surfaces Σt of constant t are
spacelike Cauchy surfaces (and) such that tα∇α1 = 1.” The underlying philosophy of the whole
ADM approach and the same sentence are, however, fundamentally incorrect. First, because
in field theory the notion of manifest covariance, and more precisely that of manifestly-
covariant Hamiltonian approach, are already well known, being due to deDonder and
Weyl [22–28]. Second because, already in the context of classical and quantum mechanics,
the adoption of proper time in place of the coordinate time t is an obvious matter-of-fact
method which affords the realization of manifesly-covariant representations of relativistic
Hamiltonian systems.

However, manifest covariance requires the prescription of a background spacetime
viewpoint by means of a suitable functional setting on the class of varied functions g(r). In
fact, in order to establish the very notion of manifest covariance it is obviously necessary
to specify in advance the spacetime with respect to which the same property holds. Thus,
identifying such a spacetime in terms of a differential manifold

{
Q4, ĝ(r)

}
, the task involves

to suitably prescribe the corresponding background metric tensor ĝ(r) with respect to some
prescribed GR-frame r ≡ {rµ}. For definiteness, here the spacetime will be intended as a 4-
dimensional time-oriented Riemannian differential manifold. Accordingly, ĝ(r) determines
the geometric properties of spacetime so that, besides raising and lowering tensor indices,
it must prescribe also the covariant derivatives and the Christoffel symbols. Such a setting
nevertheless does not come as a surprise since it emerges naturally already in the context
of the Lagrangian EH theory (see previous discussion in Sections 2.3 and 3.2).

4.1. The Proper-Time Parametrization of Space-Time

We start defining the notion of proper time in the context of GR and its physical
interpretations. Its geometric definition follows by introducing a mapping between a
subset of the real axis I ⊆ R and the same background spacetime

{
Q4, ĝ(r)

}
of the form

r = r(s), (81)

being r an arbitrary 4-position (“point”) of
{

Q4, ĝ(r)
}

and s ∈ I ⊆ R a suitable 4-scalar,
to be denote here as “proper time”. Therefore, the geometric meaning of s depends on its
precise prescription. This is obtained by means of two definitions:

(A) Proper time s
First, identifying s with the arc length ds2 = ĝµνdrµdrν measured along an appropriate

finite-length geodetic defined with respect to the background space-time
{

Q4, ĝ(r)
}

, that is,

C(ro ,r1)
=
{

r|r = r(s′), ro = r(so), r1 = r(s1), s′ ∈ [so, s1] ,ro ∈ Σ3
0, r1 ∈ Σ3

1

}
, (82)

Σ3
0 and Σ3

1 being two suitable subsets of Q4 (see below). Denoting drµ

ds = tµ(r) the tangent
to the curve at r and ∇µ the covariant derivative evaluated with respect to the background
spacetime

{
Q4, ĝ(r)

}
, then by construction along the same curve if follows identically that

∇µtµ(r) = 0.

(B) Family of geodetics
{

C(ro ,r1)

}
The family

{
C(ro ,r1)

}
is defined in such a way that:

(1) For fixed proper times so and s1 (with so < s1), each curve C(ro ,r1)
∈
{

C(ro ,r1)

}
has

the extrema ro = r(so), r1 = r(s1) crossed by the same curve respectively at proper times
so and s1. In addition, by assumption: (a) all curves C(ro ,r1)

belong to the same connected
subset Q4

1 of spacetime
{

Q4, ĝ(r)
}

which has everywhere the same signature; (b) the lower
and upper extrema ro = r(so) and r1 = r(s1) belong to two smooth hypersurfaces Σ3

0
(“lower” boundary) and Σ3

1 (“upper” boundary) of the subset of Q4
1. Hence, Q4

1 is the
subset of Q4 having lower and upper boundaries Σ3

0 and Σ3
1 where the extrema of all curves

C(ro ,r1)
lie.
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(2) For each point r of the said subset of Q4
1 there is a unique curve C(ro ,r1)

∈
{

C(ro ,r1)

}
which belongs to it.

(3) Two geodetics of the family never cross each other.
(4) All geodetic curves C(ro ,r1)

are prescribed in such away to be mono-energetic, that
is, so that, in the frame in which ro = r(so) the spacetime is locally flat, the corresponding
tangent 4-vectors

tµ(ro) ≡
drµ

ds

∣∣∣∣
ro

(83)

have all the same zero component of the 4-velocity.
The proper-time parametrization (s-parametrization) of spacetime is then realized

by parametrizing the background metric tensor ĝ(r) =
{

ĝµν(r)
}

and the canonical tensor
fields of the Hamiltonian formulation (see below) xR =

{
gµν, πµν

}
, and in particular the

variational tensor field g =
{

gµν

}
, in terms of the proper time s. Thus, at the classical level,

the s-parametrization of ĝ(r) is obtained by means of the representation

ĝ(r)→ ĝ(r(s)) ≡
{

ĝµν(r(s))
}

. (84)

Instead, the corresponding parametrization of the variational tensor field g =
{

gµν

}
and

its conjugate canonical momentum π = {πµν} is obtained letting

g → g(s) ≡ g(r(s), s), (85)

π → π(s) ≡ π(r(s), s). (86)

Finally, regarding the physical interpretation, this amounts to assume that the Hamil-
tonian structure of GR (to be suitably identified) corresponds to disturbances (or signals) of
the background metric tensor which propagate in the space-time and occur with finite, that
is, subluminal, speed of propagation measured by the proper-time s. Such an interpretation
will become, nevertheless, obvious in the quantum formulation where such “signals” are
interpreted in terms of massive gravitons (see Ref. [29]).

4.2. The Manifestly-Covariant Hamiltonian Structure of GR

In this section the manifestly-covariant Hamiltonian structure of GR, that is, associated
to EFE and developed in Refs. [8–10], is recalled. It realizes in the case of the gravitational
field the so-called deDonder-Weyl manifestly-covariant canonical representation for contin-
uum fields [22–28]. To begin with, we recall some of its peculiar characteristics. The first one
is the adoption of independent and symmetric Lagrangian variables g ≡

{
gµν

}
≡
{

gνµ

}
associated with the physical properties of the gravitational field. Notice that the tensor
g is to be distinguished from the background metric tensor ĝ ≡

{
ĝµν

}
which determines

instead the geometric properties of the space-time and raises/lowers tensor indices [10].
Hereon, for definiteness ĝ identifies an in principle arbitrary particular solution of the Ein-
stein field equations, with g being an in principle arbitrary and independent real symmetric
tensor. As such g is assumed to belong by assumption to the functional class {g}U defined
above (see Equation (36)) and is therefore not required to satisfy orthogonality conditions
of the type (5).

Then, according to Ref. [10] the classical Hamiltonian structure of GR is represented
by the set {xR, HR}, formed by the s-parametrized canonical state xR(s) ≡ (g(s), π(s)) and
a suitable classical Hamiltonian density HR. We remark that here the tensor properties of
the canonical fields g(s) =

{
gµν(s)

}
, π(s) = {πµν(s)} and the Hamiltonian density are

prescribed in terms of the background metric tensor ĝ(r(s)), the first ones being identified
with real second order tensor fields and the second one as a real 4-scalar. Then, introducing
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the Poisson bracket [A, B] = ∂A
∂gµν

∂B
∂πµν − ∂A

∂πµν
∂B

∂gµν
, by construction the canonical state xR(s)

fulfills a corresponding set of continuum Hamilton equations{ dgµν

ds =
[
gµν, HR

]
= ∂HR

∂πµν ,
dπµν

ds = [πµν, HR] = − ∂HR
∂gµν

,
(87)

which satisfies the initial-value condition

xR(so) ≡ (gµν(so), πµν(so)), (88)

where gµν(so) and πµν(so) denote two initial conjugate tensor fields and so is the initial
proper-time. Hereon a solution of the initial value problem (87) and (88) will be identified
with the symbol xR(s) and referred to as “extremant” of the Hamiltonian structure {xR, HR}.
As a consequence, the same equations can be viewed as canonical evolution equations for
xR(s). As such, provided the Hamiltonian density HR is sufficiently regular (see below),
the same equations determine uniquely the proper-time evolved canonical state xR(s) in
terms of an (in principle arbitrary) initial condition of the type (88).

Here the notations are standard according to Ref. [30] (see also Refs. [10,29]). Thus,
while s is—as stated above—the proper-time along an arbitrary field geodetics C(ro ,r1)

which belongs to r = r(s) at proper-time s, the differential operator

d
ds

=
d
ds

∣∣∣∣
s
+

d
ds

∣∣∣∣
r

(89)

identifies the covariant s-derivative operator. In particular, d
ds

∣∣∣
s
≡ tα∇̂α is the directional

covariant derivative, with tα = drα(s)
ds being the local tangent to the field geodetics, ∇̂α the

covariant derivative defined with respect to the background metric tensor ĝ(s) and d
ds

∣∣∣
r

denoting the corresponding covariant s-partial derivative prescribed according to the same
reference. Furthermore, the Hamiltonian density HR is identified with the function

HR ≡ TR(π, ĝ) + V, (90)

V(g, ĝ, r(s), s) ≡ Vo + VF, (91)

where TR(π, ĝ) and V(g, ĝ, r(s), s) denote the effective kinetic and the normalized effective
potential densities, with Vo and VF being respectively the vacuum and non-vacuum (or
external) contributions. Thus, in detail, the first one is by construction a function of the
canonical momenta only and takes the form

TR(π, ĝ) ≡ 1
2αL

πµνπµν, (92)

with α and L being suitably-prescribed dimensional constant 4-scalars identified according
to the treatment given in Ref. [29]. The prescription of the vacuum potential Vo follows
from analogous one obtained in the case of the asynchronous unconstrained Lagrangian
variational principle (44). This implies for the Ricci tensor to be considered extremal, that
is, of the form (39) and (40) respectively for its covariant and counter-variant components.
The corresponding representation for Vo is therefore given by

Vo(g, ĝ, s) ≡ hαL
(

gµνR̂µν − 2Λ
)

. (93)

Here, Λ identifies the cosmological constant and h(g, ĝ) is a suitable 4-scalar variational
weight-factor defined as

h = 2− 1
4

gαβgµν ĝαµ ĝβν
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and finally all hatted quantities, and in particular the Ricci tensor R̂µν, are intended as
evaluated in terms of the background field tensor ĝ. Thus, explicit evaluation on the rhs of
Equation (87) yields { dgµν

ds =
πµν

αL ,
dπµν

ds = − ∂V
∂gµν

,
(94)

where the first equation prescribes the canonical momentum πµν in terms of the “general-

ized velocity” dgµν

ds , while the second one provides a dynamical equation for the canonical
momentum. The connection with EFE follows in straightforward way by setting the initial
condition

xR(so) =
(

gµν(so) ≡ ĝµν(so), πµν(so) ≡ π̂µν(so) = 0
)
, (95)

with ĝµν(so) denoting the background metric tensor evaluated at so. In fact, the initial
condition xR(so) ≡ xR(so) must necessarily be such that

∂V(g, r(s), s)
∂gµν

∣∣∣∣
g=ĝ,s=so

= 0, (96)

with π̂µν(so) = 0 being the corresponding initial null canonical momentum. Then, for all
s > so, xR(s) =

(
gµν(s) ≡ ĝµν(s), πµν(s) ≡ π̂µν(s) ≡ 0

)
, with ĝµν(s) being for all (r(s), s)

solution of the stationary equation:

∂V(g, r(s), s)
∂gµν

∣∣∣∣
g=ĝ

= 0. (97)

Indeed, the initial conditions (95) together with Equation (96) imply that dπµν

ds

∣∣∣
s=so

= 0.

The proof is straightforward. First, we notice that Equation (96) necessarily follows by
setting the initial condition (95). In fact, the same initial condition g(so) ≡ ĝ(so) requires
that g(so) must be a solution of EFE (see, e.g., Equation (5)), while on the other hand
elementary algebra shows that Equation (96) necessarily coincides with

R̂µν(so)−
1
2

R̂(so)ĝµν(so) + Λĝµν(so) =
8πG

c4 T̂µν(so), (98)

namely EFE evaluated at r(so) = ro along the geodesic trajectory C(ro ,r1)
. As a consequence,

it follows by construction also that dπµν

ds

∣∣∣
so
= 0. Hence, this means that πµν(s) is stationary

and null also for s > so, while gµν(s) remains stationary too, being therefore determined
by Equation (97) which manifestly coincides with

R̂µν(s)−
1
2

R̂(s)ĝµν(s) + Λĝµν(s) =
8πG

c4 T̂µν(s), (99)

that is, nothing else than EFE evaluated at the proper time s, and again along the same
geodesic trajectory C(ro ,r1)

.
As a consequence, it is concluded that the canonical Equation (87) indeed recover EFE

upon setting the appropriate initial conditions (95). More precisely, comparison with the
ADM approach to the Hamiltonian theory of GR permits to establish the following features:

• The evolution Equations (87) and (88) are uniquely associated to EFE. In fact, the same
equations reduce to EFE by prescribing appropriate initial conditions in which the
initial canonical momentum vanishes. For the initial condition (95) such a solution is
unique. In addition the same equations are truly Hamiltonian in character. In fact the
evolution Equations (87) and (88) define a true Hamiltonian system because, unlike
the ADM approach, no unwanted hidden non-local dependences (which actually
would destroy the same Hamiltonian structure) appear in the Hamiltonian density.
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Basic consequence is therefore that the set {xR, HR} can be identified as a possible
candidate for the Hamiltonian structure of GR.

• The Hamiltonian system {xR, HR} is constraint-free because, in contrast to the ADM
approach, the tensor components of the Hamiltonian state xR(s) ≡ (g(s), π(s)) are
independent. In fact, the requirement which permits to recover EFE is merely the
natural dynamical constraint which arises due to the initial conditions. In addition,
no boundary constraint conditions are set in such a framework. The same Hamilton
structure, unlike in the ADM approach, is preserved also in validity of the initial
condition (95) which actually permits to recover EFE.

• Finally, the most important feature which emerges in a perspicuous way by inspection
of Equations (87) and (88) is that the Hamiltonian system {xR, HR} is manifestly
covariant, that is, it is set in 4-tensor form, since both xR and HR have a 4-tensor
and therefore frame-independent character with respect to the background spacetime{

Q4, ĝ(r)
}

.

4.3. Synchronous Path-Integral Hamiltonian Variational Principle

Let us now address the issue of casting the continuous Hamilton Equation (94) in
variational form, that is, in terms of a suitable realization of the corresponding variational
principle. For its close similarity with the standard theory of Hamiltonian dynamical
systems, an obvious answer to this question is provided by what can be referred to as
a Hamiltonian variational principle. Let us introduce for this purpose the path-integral
Hamiltonian functional (see also Ref. [31])

J(xR(s)) =
∫ s1

so
dsLR

(
g(s),

dg(s)
ds

, s
)

, (100)

where

LR

(
g(s),

dg(s)
ds

, s
)
= πµν(s)

dgµν(s)
ds

− HR(xR(s), s), (101)

and d
ds is the covariant derivative (89) acting on a tensor function of the form fµν(r(s), s),

which is parametrized as d
ds = tα(s)∇̂α + ∂

∂s . Furthermore, here LR

(
g(s), dg(s)

ds , s
)

and
HR(xR(s), s) are respectively the Lagrangian and the Legendre-conjugate Hamiltonian
densities, whereas the canonical state xR, represented in terms of its s-parametrization
xR(s) =

(
gµν(s), πµν(s)

)
, belongs by assumption to the synchronous functional class

{xR(s)}S =
{

xR|xR(s) = xR(s) + δxR(s), xR(si) = xRi, xRi ∈ Σ3
i , i = 0, 1

}
. (102)

Here xR(s) denotes the general solution of the initial value problem (87) and (88), that
is, a so-called extremant of the Hamiltonian structure {xR, HR}, while the boundary con-
ditions xR(s1) is not considered independent of xR(so). Finally, here δxR(s) denotes the
synchronous variation, that is, an arbitrary real tensor function δxR(s) ≡

(
δgµν(s), δπµν(s)

)
such that

δxR(si) = 0 (103)

for s = so and s1, while
δs = 0 (104)

for all s ∈ [so, s1]. The connection with the canonical Equation (87) can then be established
at once, as it follows from the Hamiltonian variational principle

δJ(xR(s)) = 0, (105)
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where the variation operator δ denotes again the Frechet derivative and the variations
δxR(s) are considered arbitrary and independent, namely

δJ(xR) ≡
d

dα
J(xR(s) + αδxR(s))

∣∣∣∣
α=0

. (106)

For the precise evaluation of (105) one notices that by construction the general solution
xR(s) is independent of the parameter α. Hence, its synchronous variation necessarily
vanishes identically, so that δxR(s) ≡ d

dα xR(s)
∣∣∣
α=0
≡ 0. As a consequence, also for the

particular solution represented by the background metric tensor ĝ(s) the corresponding
synchronous variation is vanishing identically, that is, δĝ(s) ≡ 0. The establishment of the
corresponding Euler-Lagrange equations follows in terms of the functional derivatives of
J(xR(s)): 

δJ(xR(s))
δπµν(s) = 0,

δJ(xR(s))
δgµν(s)

= 0.
(107)

For this purpose one notices that the following differential identity applies

πµν(s)
dgµν(s)

ds
=

d
ds
[
πµν(s)gµν(s)

]
− gµν(s)

dπµν(s)
ds

, (108)

which implies that ∫ s1

so
ds

d
ds
[
πµν(s)gµν(s)

]
= πµν(s)gµν(s)

∣∣s1
s1

(109)

is a gauge contribution (to the variational functional J(xR)) which, by construction (i.e.,
thanks to the prescription of the synchronous functional class {xR(s)}S), does not con-
tribute. As a result, the corresponding Euler-Lagrange equations follow at once, being
identical to the Hamilton equations indicated above (see Equation (87)) and with solutions
subject to the boundary conditions xR(si) = xRi (for i = 0, 1). The latter ones can then
be shown to be necessarily equivalent to (88). However, from direct inspection of the
path-integral Hamiltonian variational principle (105), a number of consequences follow
which are unprecedented, especially in connection with the ADM theory. More precisely
these are represented by the following additional notable features:

• The path-integral Hamiltonian variational principle is set in a manifestly-covariant form.
• The path integral in the functional J(xR) is performed along a generic finite-length

field geodetics C(ro ,r1)
so that xR(s) is parametrized in terms of it, namely letting

xR(s) ≡ xR(r(s), s) while the Hamiltonian density is of the general form HR ≡
HR(xR(s), r(s), s).

• The tensor components of the variation δxR are considered independent. For this
reason the variational principle (105) can be referred to as constraint-free.

• The variation operator δ in the path-integral variational principle defined above (106)
is synchronous, that is, it is such that it leaves invariant both the proper time s and the
field geodetics C(ro ,r1)

so that identically{
δ(ds) ≡ 0
δr(s) = 0

, (110)

and furthermore, by construction, it leaves invariant also the corresponding boundary
conditions, so that

δxR(so) = δxR(s1) = 0. (111)
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• Both the Hamiltonian and Lagrangian densities HR(xR(s), s) and LR

(
g(s), dg(s)

ds , s
)

are intrinsically non-unique, being necessarily determined up to an additive gauge
function of the form

d
ds

F(g(s), r(s), s), (112)

with F(g(s), s) denoting a real arbitrary 4-scalar field of class C(2). In fact, the term

∆J(xR(s)) =
∫ s1

so
ds

d
ds

F(g(s), r(s), s) ≡ F(g(s), r(s), s)|s1
so

(113)

has by construction null variation since

δ
{

F(g(s), r(s), s)|s1
so

}
≡ 0. (114)

As a consequence, the path-integral Hamiltonian variational principle (105) is gauge
invariant.

4.4. A Hypersurface-Integral Hamiltonian Variational Principle

The variational principle reported above, that is, Equation (105), applies to a single
(albeit arbitrary) geodesic trajectory C(ro ,r1)

. However, the extension to include the whole set

of trajectories
{

C(ro ,r1)

}
is actually obvious. In fact, the family of geodesic curves

{
C(ro ,r1)

}
of
{

Q4, ĝ(r)
}

generates by assumption for all s ∈ [so, s1] and all ro ∈ Σ3
0 ⊂ Q4

1 ⊆ Q4 a flow,
that is, a map

ro = r(so)→ r = r(s) ≡ χ(ro, so, s), (115)

which is in turn generated by a classical dynamical system (i.e., a bijection). Thus, the path
integral functional (63) can be integrated on the set Σ3

0 (a 3D subset of Q4
1 ⊆ Q4, that is, the

hypersurface on which s = so) yielding

S(xR) =
∫ s1

so
ds
∫

Q4
dΩoδΣ3(ro)

{
πµν(s)

dgµν(s)
ds

− HR(xR(s), s)
}

, (116)

which is now defined with respect to the functional class

{xR(s)}Σ3 =
{

xR|xR(s) = xR(s) + δxR(s), xR(si) = xRi, xRi ∈ Σ3
i , i = 0, 1

}
, (117)

where xR(s) ≡
{

gµν(s), πµν(s)
}

denotes the general solution of the Hamiltonian Equa-
tion (107) (see equivalently Equation (120) below), which includes as a particular solution
also ĝ(s) ≡

{
ĝµν(s)

}
. Furthermore, the tensor variation δxR(s) is assumed once again

smooth and everywhere bounded for all s ∈ [so, s1] so that again Equations (110) and (111)
hold. Here furthermore

dΩo = d4ro

√
−|ĝ(ro)| (118)

denotes the invariant volume element of the spacetime
{

Q4, ĝ(r)
}

, and therefore evaluated
with respect to the background metric tensor at the position ro. As a consequence, by
construction manifestly δdΩo = 0. Moreover, δΣ3(ro) is the characteristic function on
the ensemble Σ3, that is, defined so that δΣ3

0
(ro) = 1 if ro ∈ Σ3

0 and 0 otherwise. We

stress that in the integrand the canonical state xR(s) ≡
{

gµν(s), πµν(s)
}

is considered a
composite function of ro through r(s) = χ(ro, so, s). Thus, xR(s), ĝ(s), gµν(s) (and similarly
πµν(s)) are treated as functions of ro since ĝµν(s) ≡ ĝµν(r(s) = χ(ro, so, s)) and respectively
gµν(s) ≡ gµν(r(s) = χ(ro, so, s), s).
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Once again the connection with the canonical Equation (87) can be formally established
just as in the path-integral approach. This follows of course from the (volume-integral)
synchronous Hamiltonian variational principle

δS(xR) ≡
d

dα
S(xR(s) + αδxR(s))

∣∣∣∣
α=0

= 0, (119)

the components of the tensor variations δxR(s) being arbitrary and independent also in
this case. Furthermore, again the same considerations indicated above (see Section 4.3)
apply here regarding the synchronous variations of xR(s) and ĝ(s). The corresponding
symbolic Euler-Lagrange equations given by the variational derivatives then coincide with
the canonical Equation (87)

δS(xR(s))
δπµν(s) =

dgµν

ds −
∂TR
∂πµν = 0,

δS(xR(s))
δgµν(s)

= − dπµν

ds −
∂V

∂gµν
= 0,

(120)

which are subject (again) only to the initial conditions (88).
The variational principle (119) is obviously not independent from the one given above

in term of the path-integral (100). So, the same conclusions discussed above actually
apply. Nevertheless, additional peculiar aspects can be inferred. The first one concerns
the synchronous character of the volume-integral variational principle. We stress in fact
that the variation operator δ which appears in the variational principle (119) is again of the
synchronous type. In fact, besides leaving invariant the proper time element ds and the
proper time s, it leaves invariant by construction also the volume element dΩo. As a further
remark, however, we also notice that the same operator δ leaves invariant by construction
also the generic volume element centered at r = r(s), namely dΩ(s) = d4r

√
−|ĝ(r(s))|,

because δĝ(r) = δrµ∇µ ĝ(r) and, again by construction, ∇µ ĝ(r) ≡ 0 since the Christoffel
symbols in the covariant derivative are by assumption defined with respect to the same ĝ(r).
Finally, in the functional (116) the integration is actually carried out on a 3-dimensional
subset of spacetime, that is, a hypersurface Σ3

0. This feature seems interesting because it
may be suggestive of its possible physical interpretation as a “source” of the geodetics.

4.5. A Volume-Integral Hamiltonian Variational Principle

An equivalent realization of the variational principle, alternative to those reported
above, that is, (105) and (119), can be achieved upon parametrizing the canonical state
as xR(r, s) =

{
gµν(r, s), πµν(r, s)

}
. As a result, the Lagrangian coordinates and canonical

momentum now become of the form{
gµν(r, s) = gµν(r, s) + δgµν(r, s),

πµν(r, s) = πµν(r, s) + δπµν(r, s).
(121)

Thus, denoting by ∂Q4
1 the boundary of Q4

1, the following functional setting is adopted∣∣∣{xR(r, s)}Q4
1
=
∣∣∣{

xR|xR(r, s) = xR(r) + δxR(r, s), δxR(r, s)|r∈∂Q4
1
= 0, δxR(r, si) = 0, i = 0, 1

}
, (122)

with δxR(r, s) being assumed again smooth and everywhere bounded on Q4
1 and the boundary

conditions on ∂Q4
1 being set so that{

δgµν(r, s)
∣∣
r∈∂Q4

1
= 0,

δπµν(r, s)|r∈∂Q4
1
= 0.

(123)
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In this case the relevant variational functional can be identified with the action functional

Q(xR(r, s)) =
1∫ s1

so
ds

∫ s1

so
ds
∫

Q4
1

dΩ
{

πµν(r, s)
dgµν(r, s)

ds
− HR(xR(r, s), s)

}
, (124)

with dΩ being the volume element evaluated with respect to the background spacetime,
that is, dΩ = d4r

√
−|ĝ(r)|, and the covariant derivative being prescribed according to

Equation (89). Notice that in the functional setting (122) the tensor variation δxR(r, s)
are required to be continuous so that in accordance with the boundary conditions (123),
δxR(r, s) must tend smoothly to zero on the boundary ∂Q4

1. This implies therefore by
construction that δ

∫
Q4

1
dΩtα(r)∇α

[
gµν(r, s)πµν(r, s)

]
= 0 so that the following identity

δ
∫ s1

so
ds
∫

Q4
1

dΩ
[

πµν(r, s)
dgµν(r, s)

ds
+ gµν(r, s)

dπµν(r, s)
ds

]
= δ

∫
Q4

1

dΩ
[
πµν(r, s)gµν(r, s)

]s1

so
= 0 (125)

necessarily holds. Then, straightforward algebra displays the connection with the canonical
Equation (87). This follows upon invoking that the synchronous variational principle

δQ(xR(r, s)) ≡ d
dα

Q(xR(r, s) + αδxR(r, s))
∣∣∣∣
α=0

= 0 (126)

holds for arbitrary independent variations δxR(r, s) =
{

δgµν(r, s), δπµν(r, s)
}

and the
same considerations indicated above (see Section 4.3) apply to the synchronous varia-
tions of the general solution xR(s) and to the particular solution realized by ĝ(s). Here
we notice again that the variation operator is synchronous in the sense that, besides
Equations (110) and (111), also the requirement δdΩ = 0 holds. Then, the corresponding
Euler-Lagrange equations, namely

δJQ(xR(r,s))
δπµν(r,s) = 0,

δQ(xR(r,s))
δgµν(r,s) = 0,

(127)

can be shown to coincide with Equation (87). We remark, finally, that in the case the
canonical state is assumed not to depend explicitly on s, then the action functional (124)
simply reduces to

Q(xR(r)) =
∫

Q4
1

dΩ
{

πµν(r)
dgµν(r, s)

ds
− HR(xR(r))

}
, (128)

where the Lagrangian derivative is now identified with the directional covariant derivative
d
ds = tα(r)∇α, that is, the covariant derivative projected along the tangent to the local
geodesic curve belonging to the family {Cro , r1}.

5. Physical Interpretation

The results presented above permit to clarify the conditions of validity and limits of
previous approaches to the Lagrangian EH and Hamiltonian ADM variational principles.
The main conclusions are that, with the possible exception of the Palatini approach, some
of the previous approaches to the Lagrangian EH theory appear questionable. As far as
Hamiltonian theory is concerned, we have shown that the attempt of identifying the ADM
variables in terms of true canonical variables fails because of the intrinsic non-Hamiltonian
character of the corresponding non-manifestly covariant theory. The reason of the failure
is that the Ricci 4-scalar unavoidably carries second-order partial derivative of the same
variables, a feature which destroys their Hamiltonian character.
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The way-out solution for the Lagrangian approaches to GR is represented respec-
tively by the unconstrained Lagrangian variational principle (44) and the unconstrained
Lagrangian variational formulation for the ADM representation (74). Instead, the way-out
solution for the Hamiltonian approach is given respectively by the three synchronous
Hamiltonian variational principles represented by the path-integral Hamiltonian varia-
tional principle (105), the hypersurface-integral Hamiltonian variational principle (119)
and the volume-integral Hamiltonian variational principle (126).

We stress that these variational formulations are based on the adoption of constraint-
free variational principles together with a suitable prescription of the functional setting.
For this purpose the Ricci tensor is considered prescribed in terms of a suitable background
metric tensor ĝ(r), to be identified with a particular solution of EFE, which raises and
lowers all tensor indices and determines the geometry of spacetime. This means, more
precisely, that in all variational principles referred to above, the contribution gµνR̂µνenters
the Lagrangian density. The same term, in fact, gives rise to a well-defined contribution to
the effective potential energy (see Equation (91) above) which occurs both in the Lagrangian
and Hamiltonian densities.

Let us now show how this contribution can be given a well-defined physical interpre-
tations. We first notice that, according to Equations (39) and (40), in the same variational
principles R̂µν is considered prescribed and independent of the variational field g(r), while
gµν is variational. As a consequence, R̂µν enters as a linear contribution to the Lagrangian
and Hamiltonian densities defined above. Furthermore, in gµνR̂µν both terms gµν and
R̂µνhave a tensor character so that the same can be equivalently represented as

gµνR̂µν ≡ gµνR̂µν. (129)

This means that gµνR̂µν retains a tensorial character since it behaves as a 4-scalar, a feature
that confirms its physically objective character. As a consequence its possible physical
interpretation follows as a gravitational coupling term.

That such an interpretation is appropriate is also suggested by analogy with the
variational principle of Maxwell equations where the so-called EM coupling term Aµ Jµ

occurs. Its properties are similar. In fact, in the case of the EM variational principle Jµ and
Aµ are considered respectively prescribed and variational tensor fields, thus warranting
the 4-scalar character of the EM coupling term. Moreover, the fact that Jµ is considered
constrained means that it is necessarily independent of Aµ, so that the coupling term
provides a linear relationship in which only the linear term Aµ is involved in the variations
of the field, while Jµ enters linearly the extremal Maxwell equations.

Finally, the fact that the Ricci scalar enters the Lagrangian density function as a
coupling term has another interesting physical implication. Since it carries only a linear
contribution of the metric tensor, namely the field coordinate, and not of the corresponding
generalized velocities dgµν

ds , it follows that it can be interpreted as a potential term in the
Lagrangian (and Hamiltonian) densities. In other words, it contributes only to the effective
potential V(g, ĝ, r(s), s) (see Equation (91) and not to the corresponding effective kinetic
energy TR(π, ĝ) (90).

The conclusion which one infers is therefore the following one: it appears conceptually
incorrect to break the manifest covariance character of the Ricci scalar and the Ricci tensor
and proceed—as done in ADM theory—by attempting to construct a Hamiltonian theory
of GR in terms of non-tensorial terms which appear in the definition of the Ricci tensor.
The same non-tensorial terms, besides breaking the manifest-covariance property, retain in
fact quadratic partial-derivative terms and second-order derivatives which give rise to the
intrinsically non-Hamiltonian character of ADM theory.

Instead, one envisages a manifestly covariant Hamiltonian theory of GR in which
the Ricci tensor is set in its extremal form, acting effectively as a classical “potential” via
a gravitational coupling term for an extended Lagrangian function. It is therefore not
surprising that the abstract Hamiltonian structure of GR pointed out here, and represented
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by the set {xR, HR}, exhibits the standard canonical structure of classical mechanics and
classical field theory.

6. Conclusions

In this paper, aspects of the variational theory of GR have been investigated. As
far as the Lagrangian theory of GR is concerned, based on the Einstein-Hilbert action
functional (as discussed in Section 2), the existence of a novel unconstrained Lagrangian
variational principle has been pointed out (see Sections 2.3 and 2.4). Such a variational
principle represented in ADM variables (see Section 3.2) has also implications for the
physical interpretation and understanding of ADM theory.

The main emphasis has been devoted to the two alternative Hamiltonian representa-
tions of GR, here analyzed and compared in detail: namely the ADM and the manifestly-
covariant Hamiltonian approaches respectively. The outcome in our view is of potential
value for unveiling and weighting the possible physical relevance of the two Hamiltonian
representations, also in view of the corresponding quantum formulations. For this purpose
the main features, analogies and differences arising between them have been pointed out.

Thus, the ADM theory has been shown to exhibit a number of major deficiencies
in particular:

• The structure of the ADM dynamical equations is not truly Hamiltonian, because the
same equations still depend on first and second-order spatial partial derivatives of
the relevant non-tensor variational fields. The same dynamical equations may not
generally satisfy the variational functional characteristic constraint condition of EH
theory pointed out here. We refer in particular to the requirement that the Ricci tensor
components are functions of the background metric tensor ĝ(r). We have shown in
fact that the same Hamilton-like structure is not preserved when such a constraint
condition is taken into account.

• ADM theory is not gauge-invariant, a property which is closely related to the nature
of the asynchronous variational principle required for its construction.

• Despite being covariant with respect to an arbitrary local point transformation, ADM
theory is not manifestly-covariant.

On the contrary, in radical departure from such a complex and even possibly fun-
damentally incorrect picture, the manifestly-covariant Hamiltonian theory pointed out
here presents itself as a straightforward alternative. With a number of notable features,
in particular:

• The relevant dynamical equations for the tensor fields are realized by means of
evolution-type ODEs which identify a Hamiltonian system in a proper sense. Such
a feature is warranted by the fulfillment of the constraint condition characteristic of
the Einstein field equations, namely the requirement that the components of the Ricci
tensor depend on the background metric tensor ĝ(r) only.

• The corresponding Hamiltonian system {xR, HR} is constraint-free because, in con-
trast to the ADM approach, the tensor components of the Hamiltonian state xR(s) ≡
(g(s), π(s)) are independent.

• The Einstein field equations are determined in terms of a particular solution of the
initial-value problem associated with suitable Hamilton equations for the relevant
4-tensor fields. The solution corresponding to such an initial condition, requiring the
initial canonical momentum to vanish, is unique. The same Hamiltonian structure,
unlike in the ADM approach, is preserved also in validity of the initial condition
which actually permits to recover the Einstein field equations.

• The Hamilton equations are determined via a synchronous variational principle which
leaves invariant both the proper-time which parametrizes the same equations and the
4-scalar volume element.
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• The theory is gauge invariant. As a consequence both the Hamiltonian and Lagrangian
densities are intrinsically non-unique, being determined up to an additive gauge
function.

• The Hamiltonian system {xR, HR} is manifestly covariant, that is, it is set in 4-tensor
form, since both xR and HR have a 4-tensor and the frame-independent character with
respect to the background spacetime

{
Q4, ĝ(r)

}
.

To conclude, let us summarize the physical interpretation of the manifestly-covariant
Hamiltonian structure of GR determined above and how it compares to the ADM theory.
The first striking difference is that the manifestly-covariant approach truly realizes a
Hamiltonian structure. In fact in such a context the non-local dependencies characteristic
of ADM theory, which make it intrinsically non-Hamiltonian, are not extant any more.
The ADM dynamical structure appears as a property of the representation of the Ricci

tensor, where
·
hab is identified with the generalized velocity, but this does not define a

true symplectic structure of GR. Curiously, the claimed ADM Hamiltonian structure is
generated by the Ricci tensor Rµν that appears coupled to the variational tensor field gµν in
the EH Lagrangian, even though it is proved that the variations of Rµν should not actually

contribute to EFE. The reason why the ADM velocity
·
hab appears is because Rµν is coupled

to gµν in the Lagrangian. Therefore, the ADM dynamical theory arises indirectly through
the variations of gµν. In contrast, in the new theory the Ricci scalar is interpreted as a
coupling term in the Lagrangian density, which couples the metric tensor gµν (i.e., the
physical field or generalized coordinate) with the Ricci tensor Rµν which determines the
geometry of spacetime and is considered extremal, namely identified with R̂µν, that is,
expressed in terms of the background metric tensor ĝ(r). The basic implications is therefore
that the set {xR, HR} can be naturally identified as possible candidate for the classical
Hamiltonian structure of GR.

The same features indicated above, on the other hand, should be considered as an
obvious requirement for the establishment of canonical quantization theory of gravity and,
in particular, the formulation of a manifestly covariant theory of quantum gravity. And
indeed the implementation of such a task, referred to as CQG-theory, has been recently
successfully achieved [29,30,32–34]. In fact, CQG-theory represents a new, fertile and
promising field of theoretical research in mathematical physics and quantum field theory.

Several questions, not treated in this paper, however, remain still open and are left
to future investigations. One undoubtedly concerns the excruciating long issue whether,
despite all difficulties and inconveniencies pointed out here, a physically meaningful
quantum theory can still be based on ADM theory and more specifically on the Wheeler-
DeWitt quantum wave equation.
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