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Abstract: We calculate the possible interaction between a superconductor and the static Earth’s
gravitational fields, making use of the gravito-Maxwell formalism combined with the time-dependent
Ginzburg–Landau theory. We try to estimate which are the most favorable conditions to enhance the
effect, optimizing the superconductor parameters characterizing the chosen sample. We also give a
qualitative comparison of the behavior of high–Tc and classical low–Tc superconductors with respect
to the gravity/superfluid interplay.
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1. Introduction

The study of possible gravitational effects on superconductors is more than 50 years
old and started with the seminal paper of DeWitt [1]. In the following years, there has
been a fair amount of scientific literature on the subject [2–21], but it was only after the
1992 Podkletnov’s reported effect [22,23] that experimental, laboratory configurations were
proposed to detect the interaction.

Theoretical interpretations of the interplay between the condensate and the local grav-
itational field were produced in 1996 exploiting the framework of quantum gravity [24],
showing how a suitable Lagrangian coupling of the superfluid can determine a gravita-
tional interaction with the condensate and consequent localized slight instabilities [25,26].
Although being a solid and elegant formulation offering a general, theoretical explanation
for the described interplay, the quantum gravity approach involves a formalism that makes
it hard to extract quantitative predictions.

Parallel to DeWitt (and related) studies about gravity/supercondensate coupling, other
theoretical [27,28] and experimental [29–31] research studies were conducted about electric-
type fields induced in conductors by the presence of the gravitational field, analyzing the
importance of the internal structure of special classes of solids and fluids when gravity is
taken into account. Those research studies also inspired other recent papers that focus on
various relevant aspects of the behavior of superconductors interacting with gravitational
waves [32–34].

One of the results of the above studies was the introduction of a fundamental, generalized
electric-like field, featuring an electrical component and a gravitational one. In the following,
we are going to extend those results making use of the gravito-Maxwell formalism [35–39].
In particular, we will see that the latter approach can provide a solid framework where
to obtain a generalized form for the electric/magnetic fields, involved in quantum effects
originating from the interaction with the weak gravitational background. On the other
side, the formalism also turns out to be powerful in the study of gravity/superconductivity
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interplay, since the formal analogy between the Maxwell and weak gravity equations allows
us to use the Ginzburg–Landau theory for the microscopic description of the interaction.
We will in fact analyze how the weak local gravitational field can be affected by the presence
of the superfluid condensate, writing explicit time-dependent Ginzburg–Landau equations
for the superconductor order parameter.

With respect to our previous analysis [35], we will perform new calculations in a
different gauge and this will lead us to clearer and deeper conclusions on the interpretation
of the conjectured effect. We will also analyze which parameters could be optimized to
enhance the interaction, choosing appropriate conditions and sample characteristics.

2. Generalized Gravito-Maxwell Equations

Let us consider a nearly–flat spacetime configuration (weak, static gravitational field
approximation) so that the metric can be expanded as:

gµν ' ηµν + hµν , (1)

where the symmetric tensor hµν is a small perturbation of the constant, flat Minkowski
metric in the mostly plus convention, ηµν = diag(−1,+1,+1,+1). The inverse metric, in
linear approximation, is given by

gµν ' ηµν − hµν , (2)

while the metric determinant can be expanded as

g = det
[
gµν

]
= εµνρσg1µ g2ν g3ρ g4σ ' −1− h ⇒

√
−g ' 1 +

1
2

h , (3)

where h = hσ
σ.

2.1. Generalizing Maxwell Equations

If we consider an inertial coordinate system, to linear order in hµν, the connection is
expanded as

Γλ
µν '

1
2

ηλρ
(
∂µhνρ + ∂νhρµ − ∂ρhµν

)
. (4)

The Riemann tensor is defined as:

Rσ
µλν = ∂λΓσ

µν − ∂νΓσ
µλ + Γσ

ρλ Γρ
νµ − Γσ

ρν Γρ
λµ , (5)

while the Ricci tensor is given by the contraction

Rµν = Rσ
µσν , (6)

and, to linear order in hµν, it reads

Rµν ' ∂σΓσ
µν + ∂µΓσ

σν +��Γ Γ−��Γ Γ =
1
2
(
∂µ∂ρhνρ + ∂ν∂ρhµρ

)
− 1

2
∂ρ∂ρhµν −

1
2

∂µ∂νh

= ∂ρ∂(µhν)ρ −
1
2

∂2hµν −
1
2

∂µ∂νh ,
(7)

having used Equation (4).

The Einstein equations have the form [40]:

Rµν −
1
2

gµν R = 8πG Tµν , (8)
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where R = gµνRµν is the Ricci scalar. In first-order approximation, we can write

1
2

gµν R ' 1
2

ηµν ηρσRρσ =
1
2

ηµν

(
∂ρ∂σhρσ − ∂2h

)
, (9)

having used Equation (7), and the left-hand side of (8) turns out to be

Rµν −
1
2

gµν R ' ∂ρ∂(µhν)ρ −
1
2

∂2hµν −
1
2

∂µ∂νh− 1
2

ηµν

(
∂ρ∂σhρσ − ∂2h

)
. (10)

Now, we introduce the symmetric traceless tensor

h̄µν = hµν −
1
2

ηµν h , (11)

so that the above (10) can be rewritten as

Rµν −
1
2

gµν R ' 1
2
(
∂ρ∂µ h̄νρ + ∂ρ∂ν h̄µρ − ∂ρ∂ρ h̄µν − ηµν ∂ρ∂σ h̄ρσ

)
= ∂ρ∂[ν h̄ρ]µ + ∂ρ∂σηµ[σ h̄ν]ρ

= ∂ρ
(

∂[ν h̄ρ]µ + ∂σηµ[ρ h̄ν]σ

)
.

(12)

Then, we define the tensor

Gµνρ ≡ ∂[ν h̄ρ]µ + ∂σηµ[ρ h̄ν]σ , (13)

so that the Einstein equations can be finally recast in the compact form:

∂ρGµνρ = 8πG Tµν . (14)

2.1.1. Gauge Fixing

We now consider the harmonic coordinate condition, expressed by the relation [40]:

∂µ

(√
−g gµν

)
= 0 ⇔ 2xµ = 0 , (15)

that in turn can be rewritten in the form

gµν Γλ
µν = 0 , (16)

also known as De Donder gauge. The requirement of the above coordinate condition (15)
plays then the role of a gauge fixing. Imposing the above (16) and using Equations (1) and (4),
in linear approximation, we find:

0 ' 1
2

ηµν ηλρ
(
∂µhνρ + ∂νhρµ − ∂ρhµν

)
= ∂µhµλ − 1

2
∂λh , (17)

that is, we have the condition

∂µhµν ' 1
2

∂νh ⇔ ∂µhµν '
1
2

∂νh . (18)

Now, one also has

∂µhµν = ∂µ

(
h̄µν +

1
2

ηµνh
)

= ∂µ h̄µν +
1
2

∂νh , (19)

and, using Equation (18), we find the so-called Lorentz gauge condition:

∂µ h̄µν ' 0 . (20)
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The above relation further simplifies expression (13) for Gµνρ, which takes the very
simple form

Gµνρ ' ∂[ν h̄ρ]µ , (21)

and verifies also the relation

∂[λ|G0|µν] = 0 ⇒ G0µν ∝ ∂µAν − ∂νAµ , (22)

implying the existence of a potential (see next paragraph).

2.1.2. Gravito-Maxwell Equations

Now, let us define the fields (for the sake of simplicity, we initially set the physical
charges e = m = 1)

Eg ≡ Ei = − 1
2

G00i = − 1
2

∂[0h̄i]0 , (23)

Ag ≡ Ai =
1
4

h̄0i , (24)

Bg ≡ Bi =
1
4

εi
jk G0jk , (25)

where i = 1, 2, 3, and

G0ij = ∂[i h̄j]0 =
1
2
(
∂i h̄j0 − ∂j h̄i0

)
= 4 ∂[i Aj] . (26)

One can immediately see that

Bg =
1
4

εi
jk 4 ∂[j Ak] = εi

jk ∂j Ak = ∇×Ag ,

=⇒ ∇ · Bg = 0 .

(27)

Then, one also has

∇ · Eg = ∂iEi = −∂i G00i
2

= −8πG
T00

2
= 4πG ρg , (28)

using Equation (14) and having defined ρg ≡ −T00 .

If we consider the curl of Eg, we obtain

∇× Eg = εi
jk ∂jEk = −εi

jk ∂j
G00k

2
= −1

2
εi

jk ∂j∂[0h̄k]0 =

= −1
4

4 ∂0 εi
jk ∂j Ak = −∂0Bi = −

∂Bg

∂t
.

(29)

Finally, one finds for the curl of Bg

∇× Bg = εi
jk ∂jBk =

1
4

εi
jk εk

`m ∂jG0`m =
1
4

(
δi
`δjm − δi

mδj`
)

∂jG0`m

=
1
2

∂jG0ij =
1
2
(
∂µG0iµ + ∂0G0i0

)
=

1
2
(
∂µG0iµ − ∂0G00i

)
=

1
2
(8πG T0i − ∂0G00i) = 4πG ji +

∂Ei
∂t

= 4πG jg +
∂Eg

∂t
,

(30)

using again Equation (14) and having defined jg ≡ ji ≡ T0i .
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Summarizing, once defined the fields of Equations (23) to (25) and having restored
physical units, one gets the field equations:

∇ · Eg = 4πG ρg ,

∇ · Bg = 0 ,

∇× Eg = −
∂Bg

∂t
,

∇× Bg =
4πG

c2 jg +
1
c2

∂Eg

∂t
,

(31)

formally equivalent to Maxwell equations, where Eg and Bg are the gravitoelectric and
gravitomagnetic field, respectively. For instance, on the Earth’s surface, Eg corresponds
to the Newtonian gravitational acceleration, while Bg is related to angular momentum
interactions [15,41,42]. The mass current density vector jg can also be expressed as:

jg = ρg v , (32)

where v is the velocity, and ρg is the mass density.

2.1.3. Gravito-Lorentz Force

Let us consider the geodesic equation for a particle in the presence of a weak gravita-
tional field:

d2xλ

ds2 + Γλ
µν

dxµ

ds
dxν

ds
= 0 . (33)

If we consider a non-relativistic motion, the velocity of the particle can be expressed

as vi
c '

dxi

dt . If we also neglect terms in the form vi vj

c2 and limit ourselves to static metric
configurations, we find that a geodesic equation for the particle in non-relativistic motion
is written as [43,44]:

dv
dt

= Eg + v× Bg , (34)

which shows that a free falling particle is governed by the analogous of a Lorentz force
produced by the gravito-Maxwell fields.

2.1.4. Generalized Maxwell Equations

It is now straightforward to define generalized electric/magnetic fields, scalar and
vector potentials, containing both electromagnetic and gravitational contributions, as:

E = Ee +
m
e

Eg ; B = Be +
m
e

Bg ; φ = φe +
m
e

φg ; A = Ae +
m
e

Ag , (35)

where m and e are the electron mass and charge, respectively.

The generalized Maxwell equations then become:

∇ · E =

(
1
εg

+
1
ε0

)
ρ ,

∇ · B = 0 ,

∇× E = −∂B
∂t

,

∇× B =
(
µg + µ0

)
j +

1
c2

∂E
∂t

,

(36)
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where ε0 and µ0 are the electric permittivity and magnetic permeability in the vacuum, and
where we have set

ρg =
m
e

ρ , jg =
m
e

j , (37)

ρ and j being the electric charge density and electric current density, respectively. The
introduced vacuum gravitational permittivity εg and vacuum gravitational permeability
µg are defined as

εg =
1

4πG
e2

m2 , µg =
4πG

c2
m2

e2 . (38)

In this Section, we have then shown how to define a new set of generalized Maxwell
equations for generalized electric E and magnetic B fields, in the limit of weak gravitational
field. In the following, we are going to use these results to analyze the interaction between
a superconducting sample and the weak, static Earth’s gravitational field.

3. The Model

Now, we are going to study in detail the conjectured gravity/superconductivity
interplay making use of the Ginzburg–Landau formulation combined with the described
gravito-Maxwell formalism. In particular, we write the Ginzburg–Landau equations for a
superconducting sample in the weak, static Earth’s gravitational field. The latter is formally
treated as the gravitational component of a generalized electric field, exploiting the formal
analogy discussed in the previous Section 2.

3.1. Time-Dependent Ginzburg–Landau Formulation

Since the gravitoelectric field is formally analogous to a generalized electric field, we
can use the time-dependent Ginzburg–Landau equations (TDGL) written in the form [45–51]:

h̄2

2 mD

(
∂

∂t
+

2 i e
h̄

φ

)
ψ − a ψ + b |ψ|2ψ +

1
2 m

(
ih̄∇+

2 e
c

A
)2

ψ = 0 , (39)

∇×∇×A−∇×H = −4π

c
(
jn + js

)
, (40)

where jn and js are expressed as

jn = σ

(
1
c

∂A
∂t

+∇φ

)
,

js =
e
m

(
ih̄(ψ∗∇ψ− ψ∇ψ∗) +

4 e
c
|ψ|2A

)
,

(41)

and denote the contributions related to the normal current and supercurrent densities,
respectively. The TDGL Equations (39) and (40) for the variables ψ, A are derived mini-
mizing the total Gibbs free energy of the system [52–54]. In the above expressions, D is
the diffusion coefficient, σ is the conductivity in the normal phase, H is the applied field
and the vector field A is minimally coupled to ψ. The coefficients a and b in (39) have the
following form:

a = a(T) = a0 (T − Tc) , b = b(Tc) , (42)

a0, b being positive constants, and Tc the critical temperature of the superconductor. The
boundary and initial conditions are
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(
ih̄∇ψ +

2 e
c

A ψ

)
· n = 0

∇×A · n = H · n

A · n = 0

 on ∂Ω× (0, t) ,
ψ(x, 0) = ψ0(x)

A(x, 0) = A0(x)

}
on Ω , (43)

where ∂Ω is the boundary of a smooth and simply connected domain in RN.

3.1.1. Dimensionless TDGL

In order to write Equations (39) and (40) in a dimensionless form, the following
expressions can be introduced:

Ψ2(T) =
|a(T)|

b
, ξ(T) =

h√
2 m |a(T)|

, λ(T) =

√
b m c2

4π |a(T)| e2 , κ =
λ(T)
ξ(T)

,

τ(T) =
λ2(T)
D

, η =
4π σD

ε0 c2 , Hc(T) =

√
4π µ0 |a(T)|2

b
=

h
4 e
√

2π λ(T) ξ(T)
,

(44)

where λ(T), ξ(T) and Hc(T) are the penetration depth, coherence length and thermody-
namic critical field, respectively. We also define the dimensionless quantities

x′ =
x
λ

, t′ =
t
τ

, ψ′ =
ψ

Ψ
, (45)

and the dimensionless fields are then written as:

A′ =
A κ√
2 Hc λ

, φ′ =
φ κ√

2 HcD
, H′ =

H κ√
2 Hc

. (46)

Inserting Equations (45) and (46) in Equations (39) and (40) and dropping the primes
gives the dimensionless TDGL equations in a bounded, smooth and simply connected
domain in RN [45,46]:

∂ψ

∂t
+ i φ ψ + κ2

(
|ψ|2 − 1

)
ψ + (i∇+ A)2ψ = 0 , (47)

∇×∇×A−∇×H = −η

(
∂A
∂t

+∇φ

)
− i

2 κ
(ψ∗∇ψ− ψ∇ψ∗)− |ψ|2A , (48)

and the boundary and initial conditions (43) become, in the dimensionless form,

(i∇ψ + A ψ) · n = 0

∇×A · n = H · n
A · n = 0

 on ∂Ω× (0, t) ;
ψ(x, 0) = ψ0(x)

A(x, 0) = A0(x)

}
on Ω . (49)

3.2. Solving Dimensionless TDGL

Now, we will study the possible local alterations of the Earth’s gravitational field
(weak uniform field) inside a superconductor. Let us consider the dimensionless form of
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the time-dependent Ginzburg–Landau equations in the gauge of vanishing scalar potential
φ = 0 [55]:

∂ψ

∂t
= −

(
i
κ
∇+ A

)2
ψ +

(
1− |ψ|2

)
ψ , (50)

η
∂A
∂t

= −∇×∇×A + ∇×H− |ψ|2
(

A− 1
κ
∇θ

)
, (51)

where ψ ≡ ψ(x, t) is a complex function that we express as

ψ = |ψ| exp(i θ) = Re ψ + i Im ψ = ψ1 + i ψ2 , (52)

so that (50) gives two distinct equations for the real and imaginary parts ψ1 and ψ2.
We remark that here we have decided to use the most convenient option for subsequent

calculations, since any gauge choice shall not influence any physical results, being the
equations gauge-invariant. From a physical point of view, the φ = 0 gauge is also motivated
by the fact that there are no localized charges in the superconductor, while any contribution
to the total gravitational field coming from the superconductor mass is irrelevant and can
be neglected.

3.2.1. 1-D Case

Let us now restrict to the 1-dimensional case
(
∇ ! ∂/∂x, A ! Ax ≡ A

)
. In this

situation, the above TDGL Equations (50) and (51) give rise to the following equations:

∂ψ1

∂t
=

1
κ2

∂2ψ1

∂x2 +
2A
κ

∂ψ2

∂x
+

ψ2

κ

∂A
∂x
− ψ1 A2 + ψ1 − ψ1

(
ψ2

1 + ψ2
2

)
,

∂ψ2

∂t
=

1
κ2

∂2ψ2

∂x2 −
2A
κ

∂ψ1

∂x
− ψ1

κ

∂A
∂x
− ψ2 A2 + ψ2 − ψ2

(
ψ2

1 + ψ2
2

)
,

η
∂A
∂t

= −1
κ

(
ψ2

∂ψ1

∂x
− ψ1

∂ψ2

∂x

)
−
(

ψ2
1 + ψ2

2

)
A− 4π jn ,

(53)

where jn indicates the normal current density.
Now, we consider a half-infinite superconductive region, where the ~x direction is

perpendicular to superconductor surface (coinciding with the yz plane), i.e., we imagine
that, for x > 0, we have an empty space, while the region occupied by the material is located
at x ≤ 0. The system is immersed in a static, uniform gravitational field EEXT

g = −g~ux ,
where g is the standard gravity acceleration. We are in the gauge where, in the dimensional
form, we can write for the gravitoelectric field inside the superconductor

Eg = −
∂Ag(t)

∂t
, (54)

while the external gravitational vector potential outside the superconductor is given by

AEXT
g (t) = g(C + t)~ux , (55)

where C is a constant. In the 1-D dimensionless form, dropping the primes, we have

AEXT =
m
e

AEXT
g

κ√
2 Hc λ

= g?(c1 + t) , (56)

with

c1 =
C
τ

, g? =
m κ λ(T) g√
2 eD Hc(T)

� 1 . (57)

having used relations (44).
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Next, we express the ψ1, ψ2 and A fields as:

ψ1(x, t) = ψ10(x) + g? γ1(x, t) , (58)

ψ2(x, t) = ψ20(x) + g? γ2(x, t) , (59)

A(x, t) = g? β(x, t) , (60)

where ψ10 and ψ20 represent the unperturbed system and satisfy

0 =
1
κ2

∂2ψ10

∂x2 + ψ10 − ψ10

(
ψ2

10 + ψ2
20

)
, (61)

0 =
1
κ2

∂2ψ20

∂x2 + ψ20 − ψ20

(
ψ2

10 + ψ2
20

)
. (62)

The ψ10 and ψ20 components satisfy the same kind of equation, and we choose to set
ψ20 = 0 (ψ0 = ψ10 + i ψ20 = ψ10 ∈ R), so that ψ10 = tanh κx√

2
gives the standard solution

for (61) [53]. We are then left with the following set of equations:

∂γ1

∂t
=

1
κ2

∂2γ1

∂x2 +
(

1− 3 ψ2
10

)
γ1 , (63)

∂γ2

∂t
=

1
κ2

∂2γ2

∂x2 +
(

1− ψ2
10

)
γ1 −

2β

κ

∂ψ10

∂x
− ψ10

κ

∂β

∂x
, (64)

η
∂β

∂t
= −1

κ

(
γ2

∂ψ10

∂x
− ψ10

∂γ2

∂x

)
− ψ2

10 β , (65)

where the last (65) implies that β(x, t) does not depend on γ1(x, t). If we decide to put
ourselves away from borders, we can set ψ10 ' 1 in Equations (63) to (65), obtaining

∂γ1

∂t
' 1

κ2
∂2γ1

∂x2 − 2 γ1 , (66)

∂γ2

∂t
' 1

κ2
∂2γ2

∂x2 −
1
κ

∂β

∂x
, (67)

η
∂β

∂t
' 1

κ

∂γ2

∂x
− β , (68)

that gives for β the explicit solution

β(x, t) = e
− t

η

(
b1(x) +

1
κ η

∫ t

0
dt e

t
η ∂γ2(x, t)

∂x

)
, (69)

where b1(x) = c1, as it is implied by Equation (60) for t ' 0.

Let us keep in mind that we are considering a semi-infinite superconductor whose
surface is parallel to the ground and normal to the ~x axis (one-dimensional case) where the
external vector potential is expressed as:

AEXT(t) = (c1 + t) g? . (70)

At the time t = 0, the sample goes in the superconductive state, while we make the
natural assumption that in the normal state (t < 0) the material has just the standard
(Newtonian) interaction with the Earth’s gravity, implying that the local gravitational field
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assumes the same values inside and outside the sample for t < 0. We then write the
following boundary conditions:

ψ(0, t) = 0 , ψ(x, 0) = ψ10(x) ,
∂ψ1

∂x
(x, 0) = 0 ,

γ1(0, t) = 0 , γ1(x, 0) = 0 ,
∂γ1

∂x
(x, 0) = 0 ,

γ2(0, t) = 0 , γ2(x, 0) = 0 ,
∂γ2

∂x
(x, 0) = 0 ,

(71)

together with the condition

lim
t!0

g?
∂β

∂t
(x, t) = g? , (72)

implying that the effect takes place when the superconducting phase appears.
Let us now fix the constant c1. Using (65), we can express the relation between Eg and

β as
Eg

g?
= −∂β

∂t
=

1
κ η

(
γ2

∂ψ10

∂x
− ψ10

∂γ2

∂x

)
+

ψ2
10
η

β . (73)

Given the natural hypothesis that the affection of the gravitational field only exists
when the material is in the superconductive state (t > 0), we expect that, at initial time,

lim
t!0+

Eg

g?
= 1 , (74)

while, from conditions (71), we also have

lim
t!0+

γ2(x, t) = 0 , lim
t!0+

∂γ2

∂x
(x, t) = 0 , (75)

from which we get, in turn,

1 =
ψ2

10
η

β(x, 0+) =
ψ2

10
η

AEXT(0+)
g?

=
ψ2

10
η

c1 =⇒ c1 =
η

ψ2
10

. (76)

This constant is ineffective in the empty space, while it determines physical effects
in the superconductive state. The above formulation shows how the described interplay
should work: the external gravitational field is affected by the presence of the sample only
when it goes in the superconductive state (when the vector potential starts to “feel” the
presence of the superfluid). From the other side, the external gravitational vector potential
seems involved in the material superconductive transition, since the external constant
c1 tends to assume a fixed value related to the properties of the superfluid entering the
superconducting state.

Now, we can rewrite the explicit solution for β(x, t) away from borders (ψ10 ' 1):

β(x, t) = e
− t

η

(
η +

1
κ η

∫ t

0
dt e

t
η ∂γ2(x, t)

∂x

)
, (77)

from which we get the ratio

Eg

g?
= −∂β(x, t)

∂t
=

1
η

e
− t

η

(
η +

1
κ η

∫ t

0
dt e

t
η ∂γ2(x, t)

∂x

)
− 1

κ η

∂γ2(x, t)
∂x

. (78)
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4. Discussion

Given the explicit expression (78) for the ratio Eg/g?, we can estimate, for t ' 0+, the
value of gravitational field inside the superconductor:

t ' 0+ :
Eg

g?
= 1− t

η
− 1

κ η

∂γ2(x, 0+)
∂x

. (79)

In the superconductive state, the gravitational field is modified in a way that depends
on physical characteristic of the particular material. We can see from the above (79) that
the involved quantities are η, κ and the spatial derivative of γ2.

Let us discuss which should be the most favorable choices for the parameters to
enhance the desired interaction. First of all, we would like to maximize ∂γ2

∂x : to do this, it is
sufficient to introduce disorder in the material, induced, for instance, by means of proton
irradiation or chemical doping. Then, we also want a small η parameter: being the latter
proportional to the product of the diffusion coefficient times the conductivity just above Tc,
it is necessary to have materials that in the normal state are bad conductors and have low
Fermi energies, such as cuprates. The last parameter to optimize is a reduced value for κ,
which is usually small in low–Tc superconductors and high in cuprates. Clearly, we can
see that optimizing at the same time last two parameters gives rise to contrasting effects;
however, analyzing the involved values, the better choice is to maximize η, thus using a
superconducting cuprate with high disorder.

It is also very important to maximize the time scale (τ = λ2/D) in order to better
observe the effect. This is achieved by increasing the penetration length and reducing the
diffusivity coefficient, just as it occurs in superconducting cuprates with disorder.

In Tables 1 and 2 it is possible to see typical parameters of low (Pb) and high (YBCO)
Tc superconductors, some of which calculated at a temperature T∗ such that the quantity
T∗−Tc

Tc
is the same in the two materials. If we go closer to Tc, it is possible to increase the

effect: for example, at T = 87 K in the case of YBCO τ is of the order of 10−9 s and the
reduction of the gravitational field is of the order of 10−7, having neglected the last term in
Equation (79) (In high–Tc superconductors not irradiated, we usually have low disorder,
so that the spatial derivative of γ2 is small; moreover, there is an additional reduction of
order 102 coming from the κ parameter at denominator.).

Table 1. YBCO vs. Pb.

YBCO Pb

Tc 89 K 7.2 K
T? 77 K 6.3 K

ξ(T?) 3.6 · 10−9 m 1.7 · 10−7 m
λ(T?) 3.3 · 10−7 m 7.8 · 10−8 m
σ−1 4.0 · 10−7 Ω m (∗) 2.5 · 10−9 Ω m (∗∗)

Hc(T?) 0.2 Tesla 0.018 Tesla
κ 94.4 0.48

τ(T?) 3.4 · 10−10 s 6.1 · 10−15 s
η 1.3 · 10−2 6.6 · 103

g? 2.0 · 10−11 8.2 · 10−17

D 3.2 · 10−4 m2/s 1 m2/s
` 6.0 · 10−9 m 1.7 · 10−6 m
vF 1.6 · 105 m/s 1.8 · 106 m/s

(∗) T = 90 K (∗∗) T = 15 K
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Table 2. (i): YBCO. (ii): Pb.

(i)

YBCO λ τ g?

T = 0 K 1.7 · 10−7 m 9.03 · 10−11 s 2.6 · 10−12

T = 70 K 2.6 · 10−7 m 2.1 · 10−10 s 9.8 · 10−12

T = 77 K 3.3 · 10−7 m 3.4 · 10−10 s 2 · 10−11

T = 87 K 8 · 10−7 m 2 · 10−9 s 2.8 · 10−7

(ii)

Pb λ τ g?

T = 0 K 3.90 · 10−8 m 1.5 · 10−15 s 1 · 10−17

T = 4.20 K 4.3 · 10−8 m 1.8 · 10−15 s 1.4 · 10−17

T = 6.26 K 7.8 · 10−8 m 6.1 · 10−15 s 8.2 · 10−17

T = 7.10 K 2.3 · 10−7 m 5.3 · 10−14 s 2.2 · 10−15

5. Concluding Remarks

We have shown how the gravito-Maxwell formalism can be instrumental in describing
a gravity/superfluid interplay, when combined with the condensed matter formalism of the
time-dependent Ginzburg–Landau equations. Our analysis suggests that a non-negligible
interaction could be present, despite the experimental detection difficulties that may arise,
especially in relation to the short time intervals in which the effect occurs. In particular,
the dimensionless TDGL can provide qualitative and quantitative suggestion about the
magnitude of the interaction, once chosen appropriate boundary conditions.

Clearly, proper arrangement of the experimental setup is crucial to maximize the effect.
In particular, the focus should be on suitable sample geometry, material parameters and
laboratory settings, so as to enhance the interaction in workable time scales [37,38,56]. It is
also possible that a significant improvement comes from the presence of external electric
and magnetic fields, since the latter determine the presence of moving vortices, giving rise
to a possible additional affection of the local gravitational field.
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