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Abstract: We study convex empirical risk minimization for high-dimensional inference in binary
linear classification under both discriminative binary linear models, as well as generative Gaussian-
mixture models. Our first result sharply predicts the statistical performance of such estimators in the
proportional asymptotic regime under isotropic Gaussian features. Importantly, the predictions hold
for a wide class of convex loss functions, which we exploit to prove bounds on the best achievable
performance. Notably, we show that the proposed bounds are tight for popular binary models
(such as signed and logistic) and for the Gaussian-mixture model by constructing appropriate loss
functions that achieve it. Our numerical simulations suggest that the theory is accurate even for
relatively small problem dimensions and that it enjoys a certain universality property.

Keywords: signal processing in machine learning; statistics; optimization

1. Introduction
1.1. Motivation

Classical estimation theory studies problems in which the number of unknown param-
eters n is small compared to the number of observations m. In contrast, modern inference
problems are typically high-dimensional, that is n can be of the same order as m. Examples
are abundant in a wide range of signal processing and machine learning applications such
as medical imaging, wireless communications, recommendation systems, etc. Classical
tools and theories are not applicable in these modern inference problems [1]. As such, over
the last two decades or so, the study of high-dimensional estimation problems has received
significant attention.

Perhaps the most well-studied setting is that of noisy linear observations (namely,
linear regression). The literature on the topic is vast with remarkable contributions from
the statistics, signal processing and machine learning communities. Several recent works
focus on the proportional/linear asymptotic regime and derive sharp results on the inference
performance of appropriate convex optimization methods (e.g., [2–23]). These works show
that, albeit challenging, sharp results are advantageous over loose order-wise bounds. Not
only do they allow for accurate comparisons between different choices of the optimization
parameters, but they also form the basis for establishing optimal such choices as well as
fundamental performance limitations (e.g., [12,14–16,24–26]).

This paper takes this recent line of work a step further by demonstrating that results
of this nature can be achieved in binary observation models. While we depart from
the previously studied linear regression model, we remain faithful to the requirement
and promise of sharp results. Binary models are popularly applicable in a wide range
of signal-processing (e.g., highly quantized measurements) and machine learning (e.g.,
binary classification) problems. We derive sharp asymptotics for a rich class of convex
optimization estimators, which include least-squares, logistic regression and hinge loss
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as special cases. Perhaps more interestingly, we use these results to derive fundamental
performance limitations and design optimal loss functions that provably outperform
existing choices. Our results hold both for discriminative and generative data models.

In Section 1.2, we formally introduce the problem setup. The paper’s main contri-
butions and organization are presented in Section 1.4. A detailed discussion of prior art
follows in Section 1.5.

Notation 1. The symbols P(·), E[·] and Var[·] denote probability, expectation and variance,
respectively. We use boldface notation for vectors. ‖v‖2 denotes the Euclidean norm of a vector v. We
write i ∈ [m] for i = 1, 2, . . . , m. When writing x∗ = arg minx f (x), we let the operator arg min
return any one of the possible minimizers of f . For all x ∈ R, Φ(x) is the cumulative distribution
function of standard normal and Gaussian Q-function at x is defined as Q(x) = 1−Φ(x).

1.2. Data Models

Consider m data pairs (yi, ai)
m
i=1 generated i.i.d from one of the following two models

such that yi ∈ {−1,+1} and ai ∈ Rn for all i ∈ [m].

Binary models with Gaussian features: Here, the feature/measurement vectors ai, i ∈ [n]
have i.i.d Gaussian entries, i.e., ai ∼ N (0, In). Given the feature vector ai, the corresponding
label takes the form

yi = f (aT
i x0), i ∈ [m], (1)

for some unknown true signal x0 ∈ Rn and a label/link function f : R → {−1,+1} a
(possibly random) binary function. Some popular examples for the label function f include
the following:

• (Noisy) Signed:

{
sign(aT

i x0) , w.p. 1− ε,
−sign(aT

i x0) , w.p. ε,
where ε ∈ [0, 1/2].

• Logistic: yi =

+1 , w.p. 1
1+exp(−aT

i x0)
,

−1 , w.p. 1− 1
1+exp(−aT

i x0)
.

• Probit: yi =

{
+1 , w.p. Φ(aT

i x0),
−1 , w.p. 1−Φ(aT

i x0).

We remark that when the signal strength ‖x0‖2 → +∞, logistic and Probit label functions
approach the signed model (i.e., noisy-signed function with ε = 0).

Throughout, we assume that ‖x0‖2 = 1. This assumption is without loss of generality
since the norm of x0 can always be absorbed in the link function. Indeed, letting ‖x0‖2 = r,
we can always write the measurements as f (aTx0) = f̃

(
aT x̃0

)
, where x̃0 = x0/r (hence,

‖x̃0‖2 = 1) and f̃ (t) = f
(
rt
)
. We make no further assumptions on the distribution of the

true vector x0.

Gaussian-mixture model: In Section 5, we also study the following generative Gaussian-
mixture model (GMM):

yi =

{
+1 , w.p. π,
−1 , w.p. 1− π,

, ai|yi ∼ N (yix0, In), i ∈ [m]. (2)

Above, π ∈ [0, 1] is the prior of class +1 and x0 ∈ Rn is the true signal, which here
represents the mean of the features.
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1.3. Empirical Risk Minimization

We study the performance of empirical-risk minimization (ERM) estimators x̂` of x0 that
solve the following optimization problem for some convex loss function ` : R→ R

x̂` := arg min
x

1
m

m

∑
i=1

`(yiaT
i x). (3)

Loss function. Different choices for ` lead to popular specific estimators including the
following:

• Least Squares (LS): `(t) = (t− 1)2,
• Least-Absolute Deviations (LAD): `(t) = |t− 1|,
• Logistic Loss: `(t) = log(1 + exp(−t)),
• Exponential Loss: `(t) = exp(−t),
• Hinge Loss: `(t) = max{1− t , 0}.

Performance Measure. We measure performance of the estimator x̂` by the value of its
correlation to x0, i.e.,

corr( x̂` ; x0 ) :=
〈x̂`, x0〉
‖x̂`‖2‖x0‖2

∈ [−1, 1]. (4)

Obviously, we seek estimates that maximize correlation. While correlation is the
measure of primal interest, our results extend rather naturally to other prediction metrics,
such as classification error given by (e.g., see [27] (Section D.2.)),

E` := Ea,y

[
1{y 6= sign(〈x̂`, a〉)}

]
. (5)

Expectation in (5) is derived based on a test sample (a, y) from the same distribution of the
training set.

1.4. Contributions and Organization

As mentioned, our techniques naturally apply to both binary Gaussian and Gaussian-
mixture models. For concreteness, we focus our presentation on the former models (see
Sections 2–4.1). Then, we extend our results to Gaussian mixtures in Section 5. Nu-
merical simulations corroborating our theoretical findings for both models are presented
in Section 6.

Now, we state the paper’s main contributions:

• Precise Asymptotics: We show that the absolute value of correlation of x̂` to the true

vector x0 is sharply predicted by
√

1/(1 + σ2
` ) where the “effective noise” parameter

σ` can be explicitly computed by solving a system of three non-linear equations in
three unknowns. We find that the system of equations (and, thus, the value of σ`)
depends on the loss function ` through its Moreau envelope function. Our prediction
holds in the linear asymptotic regime in which m, n → ∞ and m/n → δ > 1 (see
Section 2).

• Fundamental Limits: We establish fundamental limits on the performance of convex
optimization-based estimators by computing an upper bound on the best possible
correlation performance among all convex loss functions. We compute the upper
bound by solving a certain nonlinear equation and we show that such a solution exists
for all δ > 1 (see Section 3.1).

• Optimal Performance and (sub)-optimality of LS for binary models: For certain
binary models including signed and logistic, we find the loss functions that achieve
the optimal performance, i.e., they attain the previously derived upper bound (see
Section 3.2). Interestingly, for logistic and Probit models with ‖x0‖2 = 1, we prove
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that the correlation performance of least-squares (LS) is at least as good 0.9972 and
0.9804 times the optimal performance. However, as ‖x0‖2 grows large, logistic and
Probit models approach the signed model, in which case LS becomes sub-optimal (see
Section 4.1).

• Extension to the Gaussian-Mixture Model: In Section 5, we extend the fundamental
limits and the system of equations to the Gaussian-mixture model. Interestingly, our
results indicate that, for this model, LS is optimal among all convex loss functions for
all δ > 1.

• Numerical Simulations: We do numerous experiments to specialize our results to
popular models and loss functions, for which we provide simulation results that
demonstrate the accuracy of the theoretical predictions (see Section 6 and Appendix E).

Figure 1 contains a pictorial preview of our results described above for the special
case of signed measurements. First, Figure 1a depicts the correlation performance of LS
and LAD estimators as a function of the aspect ratio δ. Both theoretical predictions and
numerical results are shown; note the close match between theory and empirical results
for both i.i.d. Gaussian (shown by circles) and i.i.d. Rademacher (shown by squares)
distributions of the feature vectors for even small dimensions. Second, the red line on the
same figure shows the upper bound derived in this paper—there is no convex loss function
that results in correlation exceeding this line. Third, we show that the upper bound can be
achieved by the loss functions depicted in Figure 1b for several values of δ. We solve (3) for
this choice of loss functions using gradient descent and numerically evaluate the achieved
correlation performance. The recorded values are compared in Table 1 to the corresponding
values of the upper bound; again, note the close agreement between the values as predicted
by the findings of this paper, which suggests that the fundamental limits derived in this
paper hold for sub-Gaussian features. We present corresponding results for the logistic and
Probit models in Section 6 and for the noisy-signed model in Appendix E.
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Figure 1. (a) Comparison between theoretical (solid lines) and empirical (markers) performance for least-squares (LS) and
least-absolute deviations (LAD), as predicted by Theorem 1, and the optimal performance, as predicted by the upper bound
of Theorem 2, for the signed model. The squares and circles denote the empirical performance for Gaussian and Rademacher
features, respectively. (b) Illustrations of optimal loss functions for the signed model for different values of δ according to
Theorem 3.

Table 1. Theoretical predictions and empirical performance of the optimal loss function for signed
model. Empirical results are averaged over 20 experiments for n = 128.

δ 2 3 4 5 6 7 8 9

Predicted Performance 0.8168 0.9101 0.9457 0.9645 0.9748 0.9813 0.9855 0.9885

Empirical (Gaussian) 0.8213 0.9045 0.9504 0.9669 0.9734 0.9801 0.9834 0.9873

Empirical (Rademacher) 0.8096 0.9158 0.9490 0.9633 0.9644 0.9768 0.9808 0.9829
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A remark on the Gaussianity assumption. Our results on precise asymptotics (to which
our study of fundamental limits rely upon) hold rigorously for the two data models in
Section 1.2, in which the feature vectors have entries i.i.d. standard Gaussian. However, we
conjecture that the Gaussianity assumption can be relaxed. As partial numerical evidence,
note in Figure 1a the perfect match of our theory with the empirical performance over
data in which the feature vectors ai, i ∈ [m] have entries i.i.d. Rademacher (i.e., centered
Bernoulli with probability 1/2). Figure 2 shows corresponding results for the Gaussian-
mixture model. Our conjecture that the so-called universality property holds in our setting is
also in line with similar numerical observations and partial theoretical evidence previously
made for linear regression settings [7,28–31]. A formal proof of universality of our results
is beyond the scope of this paper. However, we remark that, as long as the asymptotic
predictions of Section 2 enjoy this property, then all our results on fundamental performance
limits and optimal functions automatically hold under the same relaxed assumptions.

1 2 3 4 5 6 7 8
0.15

0.2

0.25

0.3

0.35

Figure 2. Theoretical (solid lines) and empirical (markers) results of classification risk in GMM as in
Theorem 4 and (39) for LS, LAD and logistic loss functions as a function of δ for r = 1. The vertical
line represents the threshold δ? ≈ 3.7 as evaluated by (36). Logistic loss gives unbounded solution if
and only if δ < δ?.

1.5. Related Works

Over the past two decades, there has been a long list of works that derive statistical
guarantees for high-dimensional estimation problems. Many of these are concerned with
convex optimization-based inference methods. Our work is most closely related to the
following three lines of research.

(a) Sharp asymptotics for linear measurements.

Most of the results in the literature of high-dimensional statistics are order-wise in
nature. Sharp asymptotic predictions have only more recently appeared in the literature
for the case of noisy linear measurements with Gaussian measurement vectors. There are
by now three different approaches that have been used towards asymptotic analysis of
convex regularized estimators: (i) the one that is based on the approximate message passing
(AMP) algorithm and its state-evolution analysis (e.g., [5,8,14,20,32–34]); (ii) the one that is
based on Gaussian process (GP) inequalities, specifically on the convex Gaussian min-max
Theorem (CGMT) (e.g., [9,10,13,15,18,19]); and (iii) the “leave-one-out” approach [11,35].
The three approaches are quite different to each other and each comes with its unique
distinguishing features and disadvantages. A detailed comparison is beyond our scope.

Our results in Theorems 2 and 3 for achieving the best performance across all loss
functions is complementary to [12] (Theorem 1) and the work of Advani and Ganguli [16],
who proposed a method for deriving optimal loss function and measuring its performance,
albeit for linear models. Instead, we study binary models. The optimality of regularization
for linear measurements is recently studied in [22].
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In terms of analysis, we follow the GP approach and build upon the CGMT. Since the
previous works are concerned with linear measurements, they consider estimators that
solve minimization problems of the form

x̂ := arg min
x

m

∑
i=1

˜̀(yi − aT
i x) + rR(x) (6)

Specifically, the loss function ˜̀ penalizes the residual. In this paper, we show that the
CGMT is applicable to optimization problems in the form of (3). For our case of binary
observations, (3) is more general than (6). To see this, note that, for yi ∈ ±1 and popular
symmetric loss functions ˜̀(t) = ˜̀(−t), e.g., least-squares (LS), (3) results in (6) by choosing
`(t) = ˜̀(t− 1) in the former. Moreover, (3) includes several other popular loss functions
such as the logistic loss and the hinge loss which cannot be expressed by (6).

(b) One-bit compressed sensing.

Our work naturally relates to the literature on one-bit compressed sensing (CS) [36].
The vast majority of performance guarantees for one-bit CS are order-wise in nature (e.g., [37–42]).
To the best of our knowledge, the only existing sharp results are presented in [43] for Gaus-
sian measurement vectors, which studies the asymptotic performance of regularized LS.
Our work can be seen as a direct extension of the work in [43] to loss functions beyond
least-squares (see Section 4.1 for details).

Similar to the generality of our paper, Genzel [41] also studied the high-dimensional
performance of general loss functions. However, in contrast to our results, their perfor-
mance bounds are loose (order-wise); as such, they are not informative about the question
of optimal performance which we also address here.

(c) Classification in high-dimensions.

In [44,45], the authors studied the high-dimensional performance of maximum-
likelihood (ML) estimation for the logistic model. The ML estimator is a special case
of (3) and we consider general binary models. In addition, their analysis is based on the
AMP framework. The asymptotics of logistic loss under different classification models is
also recently studied in [46]. In yet another closely related recent work [47], the authors
extended the results of Sur and Candès [45] to regularized ML by using the CGMT. In-
stead, we present results for general convex loss functions and for binary linear models.
Importantly, we also study performance bounds and optimal loss functions.

We also remark on the following closely related parallel works. While the conference
version of this paper was being reviewed, the CGMT was applied by Montanari et al. [48]
and Deng et al. [49] to determine the generalization performance of max-margin linear
classifiers in a binary classification setting. In essence, these results are complementary
to the results of our paper in the following sense. Consider a binary classification setting
under the logistic model and Gaussian regressors. As discussed in Section 4.2, the optimal
set of (3) is bounded with probability approaching one if and only if δ > δ?f , for appropriate
threshold δ?f determined for first time in [44] (see also Figure 3a). Our results hold in this
regime. In contrast, the papers by Montanari et al. [48] and Deng et al. [49] study the regime
δ < δ?f .

We close this section by mentioning works that build on our results and appeared
after the initial submission of this paper. The paper by Mignacco et al. [50] studies sharp
asymptotics of ridge-regularized ERM with an intercept for Gaussian-mixture models.
In [27], we extend the results of this paper on fundamental limits and optimality to the case
of ridge-regularized ERM (see also the concurrent work by Aubin et al. [51]).
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2. Sharp Performance Guarantees
2.1. Definitions

Moreau Envelopes. Before stating the first result, we need a definition. We write

M`(x; λ) := min
v

1
2λ

(x− v)2 + `(v),

for the Moreau envelope function of the loss ` : R → R at x with parameter λ > 0. The
minimizer (which is unique by strong convexity) is known as the proximal operator of `
at x with parameter λ and we denote it as prox`(x; λ). A useful property of the Moreau
envelope function is that it is continuously differentiable with respect to both x and λ [52].
We denote these derivatives as follows

M′
`,1(x; λ) :=

∂M`(x; λ)

∂x
,

M′
`,2(x; λ) :=

∂M`(x; λ)

∂λ
.

2.2. A System of Equations

As we show shortly the asymptotic performance of the optimization in (3) is tightly
connected to the solution of a certain system of nonlinear equations, which we introduce
here. Specifically, define random variables G, S and Y as follows:

G, S i.i.d.∼ N (0, 1) and Y = f (S), (7)

and consider the following system of non-linear equations in three unknowns
(µ, α ≥ 0, λ ≥ 0):

E
[

Y S ·M′
`,1(αG + µSY; λ)

]
= 0, (8a)

λ2 δE
[ (
M′

`,1(αG + µSY; λ)
)2
]
= α2, (8b)

λ δE
[

G ·M′
`,1(αG + µSY; λ)

]
= α. (8c)

The expectations are with respect to the randomness of the random variables G, S and Y. We
remark that the equations are well defined even if the loss function ` is not differentiable. In
Appendix A, we summarize some well-known properties of the Moreau envelope function
and use them to simplify (8) for differentiable loss functions.

2.3. Asymptotic Prediction

We are now ready to state our first main result.

Theorem 1 (Sharp Asymptotics). Assume data generated from the binary model with Gaussian
features and assume δ > 1 such that the set of minimizers in (3) is bounded and the system of
Equation (8) has a unique solution (µ, α ≥ 0, λ ≥ 0), such that µ 6= 0. Let x̂` be as in (3). Then,
in the limit of m, n→ +∞, m/n→ δ, it holds with probability one that

lim
n→∞

corr( x̂` ; x0 ) =
µ√

µ2 + α2
. (9)

Moreover,

lim
n→∞

∥∥∥∥x̂` − µ · x0

‖x0‖2

∥∥∥∥2

2
= α2. (10)
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Theorem 1 holds for any convex loss function. In Section 4, we specialize the result to
specific popular choices and also present numerical simulations that confirm the validity
of the predictions (see Figures 1a, 3a, 4a and A4a,b). Before that, we include a few remarks
on the conditions, interpretation and implications of the theorem. The proof is deferred to
Appendix B and uses the convex Gaussian min-max theorem (CGMT) [13,15].

Remark 1 (The Role of µ and α). According to (9), the prediction for the limiting behavior of
the correlation value is given in terms of an effective noise parameter σ` := α

/
µ, where µ and α

are unique solutions of (8). The smaller is the value of σ` is, the larger the correlation value
becomes. While the correlation value is fully determined by the ratio of α and µ, their individual
role is clarified in (10). Specifically, according to (10), x̂` is a biased estimate of the true x0 and µ
represents exactly the correlation bias term. In other words, solving (3) returns an estimator that
is close to a µ-scaled version of x0. When x0 and x̂` are scaled appropriately, the `2-norm of their
difference converges to α.

Remark 2 (Why δ > 1). The theorem requires that δ > 1 (equivalently, m > n asymptotically).
Here, we show that this condition is necessary for Equations (8) to have a bounded solution. To see
this, take squares in both sides of (8c) and divide by (8b) to find that

δ =

E
[ (
M′

`,1(αG + µSY; λ)
)2
]

(
E
[

G ·M′
`,1(αG + µSY; λ)

])2 ≥ 1.

The inequality follows by applying Cauchy–Schwarz and using the fact that E[G2] = 1.

Remark 3 (On the Existence of a Solution to (8)). While δ > 1 is a necessary condition for the
equations in (8) to have a solution, it is not sufficient in general. This depends on the specific choice
of the loss function. For example, in Section 4.1, we show that, for the squared loss `(t) = (t− 1)2,
the equations have a unique solution iff δ > 1. On the other hand, for logistic loss and hinge loss, it
is argued in Section 4.2 that there exists a threshold value δ?f > 2 such that the set of minimizers
in (3) is unbounded if δ < δ?f . In this case, the assumptions of Theorem 1 do not hold. We conjecture
that, for these choices of loss, Equations (8) are solvable iff δ > δ?f . Justifying this conjecture and
further studying more general sufficient and necessary conditions under which the Equation (8)
admit a solution is left to future work. However, in what follows, given such a solution, we prove
that it is unique for a wide class of convex loss functions of interest.

Remark 4 (On the Uniqueness of Solutions to (8)). We show that, if the system of equations
in (8) has a solution, then it is unique provided that ` is strictly convex, continuously differentiable
and its derivative satisfies `′(0) 6= 0. For instance, this class includes the square, the logistic and
the exponential losses. However, it excludes non-differentiable functions such as the LAD and hinge
loss. We believe that the differentiability assumption can be relaxed without major modification in
our proof, but we leave this for future work. Our result is summarized in Proposition 1 below.

Proposition 1 (Uniqueness). Assume that the loss function ` : R → R has the following
properties: (i) it is proper strictly convex; and (ii) it is continuously differentiable and its derivative
`′ is such that `′(0) 6= 0. Further, assume that the (possibly random) link function f is such that
SY = S f (S), S ∼ N (0, 1) has strictly positive density on the real line. The following statement is
true. For any δ > 1, if the system of equations in (8) has a bounded solution, then it is unique.
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The detailed proof of Proposition 1 is deferred to Appendix B.5. Here, we highlight some key ideas.
The CGMT relates—in a rather natural way—the original ERM optimization (3) to the following
deterministic min-max optimization on four variables

min
α>0,µ,τ>0

max
γ>0

F(α, µ, τ, γ) :=
γτ

2
− αγ√

δ
+E

[
M`

(
αG + µYS;

τ

γ

)]
. (11)

In Appendix B.4, we show that the optimization above is convex-concave for any lower semi-
continuous, proper and convex function ` : R → R. Moreover, it is shown that one arrives
at the system of equations in (8) by simplifying the first-order optimality conditions of the min-
max optimization in (11). This connection is key to the proof of Proposition 1. Indeed, we prove
uniqueness of the solution (if such a solution exists) to (8), by proving instead that the function
F(α, µ, τ, γ) above is (jointly) strictly convex in (α, µ, τ) and strictly concave in γ, provided that
` satisfies the conditions of the proposition. Next, let us briefly discuss how strict convex-concavity
of (11) can be shown. For concreteness, we only discuss strict convexity here; the ideas are similar
for strict concavity. At the heart of the proof of strict convexity of F is understanding the properties
of the expected Moreau envelope function Ω : R+ ×R×R+ ×R+ → R defined as follows:

Ω(α, µ, τ, γ) := E
[
M`

(
αG + µYS;

τ

γ

)]
.

Specifically, we prove in Proposition A7 in Appendix A.6 that if ` is strictly convex, differentiable
and does not attain its minimum at 0, then Ω is strictly convex in (α, µ, τ) and strictly concave
in γ. It is worth noting that the Moreau envelope functionM`(αg + µys; τ) for fixed g, s and
y = f (s) is not necessarily strictly convex. Interestingly, we show that the expected Moreau
envelope has this desired feature. We refer the reader to Appendices A.6 and B.5 for more details.
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Figure 3. (a) Comparison between analytical and empirical results for the performance of LS, logistic loss, hinge loss and
optimal loss function for logistic model. The vertical dashed line represents δ?f ≈ 2.275, as evaluated by (35). (b) Illustrations
of optimal loss functions for different values of δ, derived according to Theorem 3 for logistic model. To signify the similarity
of optimal loss function to the LS loss, the optimal loss functions (hardly visible) are scaled such that `(1) = 0 and `(2) = 1.



Entropy 2021, 23, 178 10 of 46

1 2 3 4 5 6 7 8 9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

10

(b)

Figure 4. (a) Comparison between analytical and empirical results for the performance of LS, hinge loss and optimal loss
function for Probit model. The vertical dashed line represents δ?f ≈ 2.699, as evaluated by (35). (b) Illustrations of optimal
loss functions for different values of δ derived according to Theorem 3 for Probit model. To signify the similarity of optimal
loss function to the LS loss, the optimal loss functions (hardly visible) are scaled such that `(1) = 0 and `(2) = 1.

3. On Optimal Performance
3.1. Fundamental Limits

In this section, we establish fundamental limits on the performance of (3) by deriving
an upper bound on the absolute value of correlation corr( x̂` ; x0 ) that holds for all choices
of loss functions satisfying Theorem 1. The result builds on the prediction of Theorem 1. In
view of (9), upper bounding correlation is equivalent to lower bounding the effective noise
parameter σ` = α/µ. Theorem 2 derives such a lower bound.

Before stating the theorem, we need a definition. For a random variable H with
density pH(h) that has a derivative p′H(h), ∀h ∈ R, we denote its score function ξH(h) :=
∂

∂h log pH(h) =
p′H(h)
pH(h) . Then, the Fisher information of H, denoted by I(H) ∈ R+, is defined

as follows (e.g., [53] (Sec. 2)):

I(H) := E
[
(ξH(H))2

]
.

Theorem 2 (Best Achievable Performance). Let the assumptions and notation of Theorem 1
hold and recall the definition of random variables G, S and Y in (7). For σ > 0, define a new random
variable Wσ := σG + SY, and the function κ : (0, ∞]→ [0, 1] as follows,

κ(σ) :=
σ2(σ2I(Wσ) + I(Wσ)− 1

)
1 + σ2(σ2I(Wσ)− 1)

.

Further, define σopt as follows,

σopt := min
{

σ ≥ 0 : κ(σ) =
1
δ

}
. (12)

Then, for σ` := α
µ , it holds that σ` ≥ σopt.

The theorem above establishes an upper bound on the best possible correlation perfor-
mance among all convex loss functions. In Section 3.2, we show that this bound is often
tight, i.e., there exists a loss function that achieves the specified best possible performance.

Remark 5. Theorem 2 complements the results in [12], [14] (Lem. 3.4) and [15] (Rem. 5.3.3),
in which the authors considered only linear regression. In particular, Theorem 2 shows that it is
possible to achieve results of this nature for the more challenging setting of binary classification
considered here.
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Proof of Theorem 2. Fix a loss function ` and let (µ 6= 0, α > 0, λ ≥ 0) be a solution to (8),
which by assumptions of Theorem 1 is unique. The first important observation is that the
error of a loss function is unique up to a multiplicative constant. To see this, consider an
arbitrary loss function `(t) and let x̂` be a minimizer in (3). Now, consider (3) with the
following loss function instead, for some arbitrary constants C1 > 0, C2 6= 0:

̂̀(t) :=
1

C1
`
(
C2t
)
. (13)

It is not hard to see that 1
C2

x̂` is the minimizer for ̂̀. Clearly, 1
C2

x̂` has the same correlation

value with x0 as x̂`, showing that the two loss functions ` and ̂̀ perform the same. With
this observation in mind, consider the function ̂̀ : R→ R such that ̂̀(t) = λ

µ2 `(µ t). Then,
notice that

M′
`,1(x; λ) =

1
λ
M′̂̀,1(x/µ; 1).

Using this relation in (8) and setting σ := σ` = α/µ, the system of equations in (8) can be
equivalently rewritten in the following convenient form,

E
[

Y S ·M′̂̀,1(Wσ; 1)
]
= 0, (14a)

E
[ (
M′̂̀,1(Wσ; 1)

)2
]
= σ2/δ , (14b)

E
[

G ·M′̂̀,1(Wσ; 1)
]
= σ/δ . (14c)

Next, we show how to use (14) to derive an equivalent system of equations based on Wσ.
Starting with (14c), we have

E
[

G ·M′̂̀,1(Wσ; 1)
]
=

1
σ

∫∫
uM′̂̀,1(u + z; 1)φσ(u)pSY(z)dudz, (15)

where φσ(u) := pσG(u) = 1
σ
√

2π
e−

u2

2σ2 . Since it holds that φσ(u) = −σ2

u φ′σ(u), using (A74),
it follows that

E
[

G ·M′̂̀,1(Wσ; 1)
]
= −σ

∫∫
M′̂̀,1(u + z; 1)φ′σ(u)pSY(z)dudz

= −σ
∫∫
M′̂̀,1(w; 1)φ′σ(u)pSY(w− u)dudw

= −σ
∫
M′̂̀,1(w; 1)p′Wσ

(w)dw,

(16)

where in the last step we use

p′Wσ
(w) =

∫
φ′σ(u)pSY(w− u)du.

Therefore, we have by (16) that

E
[

G ·M′̂̀,1(Wσ; 1)
]
= −σE

[
M′̂̀,1(Wσ; 1)ξWσ

(Wσ)

]
. (17)
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This combined with (14c) gives E
[
M′̂̀,1(Wσ; 1)ξWσ

(Wσ)
]

= −1/δ. Second, multiply-

ing (14c) with σ2 and adding it to (14a) yields that,

E
[
Wσ ·M′̂̀,1(Wσ; 1)

]
= σ2/δ, (18)

Putting these together, we conclude with the following system of equations which is
equivalent to (14),

E
[

Wσ ·M′̂̀,1(Wσ; 1)
]
= σ2/δ , (19a)

E
[ (
M′̂̀,1(Wσ; 1)

)2
]
= σ2/δ , (19b)

E
[
M′̂̀,1(Wσ; 1)ξWσ

(Wσ)

]
= −1/δ . (19c)

Note that, for σ > 0, ξWσ
= p′Wσ

/pWσ
exists everywhere. This is because for all w ∈ R:

pWσ
(w) > 0 and pWσ

(·) is continuously differentiable. Combining (19a) and (19c), we
derive the following equation which holds for α1, α2 ∈ R,

E
[
(α1Wσ + α2ξWσ

(Wσ)) ·M′̂̀,1(Wσ; 1)
]
= α1σ2/δ− α2/δ.

By Cauchy–Schwarz inequality, we have that(
E
[
(α1Wσ + α2ξWσ

(Wσ)) ·M′̂̀,1(Wσ; 1)
])2
≤

E
[
(α1Wσ + α2ξWσ

(Wσ))
2
]
E
[(
M′̂̀,1(Wσ; 1)

)2
]

. (20)

Using the fact that E[WσξWσ
(Wσ)] = −1 (by integration by parts), E[(ξWσ

(Wσ))2] = I(Wσ),
E[W2

σ ] = σ2 + 1 and (19b), the right hand side of (20) is equal to(
α2

1(σ
2 + 1) + α2

2 I(Wσ)− 2α1α2

)
σ2/δ.

Therefore, we conclude with the following inequality for σ,

δσ2
(

α2
1(σ

2 + 1) + α2
2 I(Wσ)− 2α1α2

)
≥ (α1σ2 − α2)

2, (21)

which holds for all α1, α2 ∈ R. In particular, (21) holds for the following choice of values
for α1 and α2:

α1 =
1− σ2I(Wσ)

δ(σ2I(Wσ) + I(Wσ)− 1)
, α2 =

1
δ(σ2I(Wσ) + I(Wσ)− 1)

.

(The choice above is motivated by the result of Section 3.2; see Theorem 3). Rewriting (21)
with the chosen values of α1 and α2 yields the following inequality,

1
δ
≤ σ2(σ2I(Wσ) + I(Wσ)− 1)

1 + σ2(σ2I(Wσ)− 1)
= κ(σ), (22)

where on the right-hand side above, we recognize the function κ defined in the theorem.
Next, we use (22) to show that σopt defined in (12) yields a lower bound on the

achievable value of σ. For the sake of contradiction, assume that σ < σopt. By the above,
1/δ ≤ κ(σ). Moreover, by the definition of σopt, we must have that 1/δ < κ(σ). Since
κ(0) = 0 and κ(·) is a continuous function we conclude that for some σ1 ∈ (0, σ), it holds
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that κ(σ1) = 1/δ. Therefore, for σ1 < σopt, we have κ(σ1) = 1/δ, which contradicts the
definition of σopt. This proves that σ ≥ σopt, as desired.

To complete the proof, it remains to show that the equation κ(σ) = 1/δ admits a solu-
tion for all δ > 1. For this purpose, we use the continuous mapping theorem and the fact
that the Fisher information is a continuous function [54]. Recall that, for two independent
and non-constant random variables, it holds that I(X + Y) < I(X) [53] (Eq. 2.18). Since
G and SY are independent random variables, we find that I(σG + SY) < I(SY) which
implies that I(σG + SY) is uniformly bounded for all values of σ. Therefore,

lim
σ→0

κ(σ) = lim
σ→0

σ2(σ2I(Wσ) + I(Wσ)− 1
)

1 + σ2(σ2I(Wσ)− 1)
= 0.

Furthermore, σ2I(σG + SY) = I(G + 1
σ SY)→ I(G) = 1 when σ→ ∞. Hence,

lim
σ→∞

κ(σ) = lim
σ→∞

σ2(σ2I(Wσ) + I(Wσ)− 1
)

1 + σ2(σ2I(Wσ)− 1)
= 1.

Note that σ2I(σG + SY) < σ2I(σG) = 1, which further yields that κ(σ) < 1 for all σ ≥ 0.
Finally, since I(·) is a continuous function, we deduce that range of κ : R+ ∪ 0 → R is
[0, 1), implying the existence of a solution to (12) for all δ > 1. This completes the proof of
Theorem 2.

A useful closed-form bound on the best achievable performance: In general, determin-
ing σopt requires computing the Fisher information of the random variable σG + SY for
σ > 0. If the probability distribution of SY is continuously differentiable (e.g., logistic
model; see Appendix C.2), then we obtain the following simplified bound.

Corollary 1 (Closed-form Lower Bound on σopt). Let pSY : R→ R be the probability distribu-
tion of SY. If pSY(x) is differentiable for all x ∈ R, then,

σ2
opt ≥

1
(δ− 1)(I(SY)− 1)

. (23)

Proof. Based on Theorem 2, the following equation holds for σ = σopt

1
δ
= κ(σ)

or, equivalently, by rewriting the right-hand side,

1
δ
= 1− 1

1
1−σ2I(Wσ)

− σ2
. (24)

Define the following function

h(x) := 1− 1
1

1−σ2x − σ2
.

The function h is increasing in the region Rσ = {z : z > σ−2 − σ−4}. According to
Stam’s inequality [55], for two independent random variables X and Y with continuously
differentiable pX and pY, it holds that

I(X + Y) ≤ I(X) · I(Y)
I(X) + I(Y) ,
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where equality is achieved if and only if X and Y are independent Gaussian random
variables. Therefore, since by assumption pSY is differentiable on the real line, Stam’s
inequality yields

I(Wσ) = I(σ G + SY) ≤ I(σ G) · I(SY)
I(σ G) + I(SY)

. (25)

Next, we prove that for all σ > 0, both sides of (25) are in the region Rσ. First, we prove
that I(Wσ) ∈ Rσ. By Cramer–Rao bound (e.g., see [53] (Eq. 2.15)) for Fisher information
of a random variable X, we have that I(X) ≥ 1/(Var[X]). In addition, for the random
variable Wσ, we know that Var[Wσ] = 1 + σ2 − (E[SY])2, thus

I(Wσ) ≥
1

1 + σ2 − (E[SY])2 . (26)

Using the relation (E[SY])2 ≤ E[S2]E[Y2] = 1, one can check that the following inequal-
ity holds:

1
1 + σ2 − (E[SY])2 ≥ σ−2 − σ−4. (27)

Therefore, from (26) and (27), we derive that I(Wσ) ∈ Rσ for all σ > 0. Furthermore, by
the inequality in (25) and the definition ofRσ it directly follows that for all σ > 0

I(σ G) I(SY)
I(σ G) + I(SY)

∈ Rσ .

Finally, noting that h(·) is increasing inRσ, combined with (25), we have

1
δ
= h(I(Wσ)) ≤ h

(
I(σ G) · I(SY)
I(σ G) + I(SY)

)
,

which after using the relation I(σ G) = σ−2 and further simplification yields the inequality
in the statement of the corollary.

The proof of the corollary reveals that (23) holds with equality when SY is Gaussian.
In Appendix C.2, we compute pSY for the logistic and the Probit models with ‖x0‖2 = 1
and numerically show that it is close to the density of a Gaussian random variable. Conse-
quently, the lower bound of Corollary 1 is almost exact when measurements are obtained
according to the logistic and Probit models (see Figure A2 in the Appendix C).

3.2. On the Optimal Loss Function

It is natural to ask whether there exists a loss function that attains the bound of
Theorem 2. If such a loss function exists, then we say it is optimal in the sense that it
maximizes the correlation performance among all convex loss functions in (3).

Our next theorem derives a candidate for the optimal loss function, which we denote
`opt. Before stating the result, we provide some intuition about the proof which builds on
Theorem 2. The critical observation in the proof of Theorem 2 is that the effective noise σ̂

`

of ̂̀ is minimized (i.e., it attains the value σopt) if the Cauchy–Schwartz inequality in (20)
holds with equality. Hence, we seek ̂̀= `opt so that for some c ∈ R,

M′
`opt,1(w; 1) = c(α1w + α2 · ξWopt(w)). (28)

By choosing c = −1, integrating and ignoring constants irrelevant to the minimization
of the loss function, the previous condition is equivalent to the followingM`opt(w; 1) =
−α1w2/2− α2 log(pWopt(w)). It turns out that this condition can be “inverted" to yield



Entropy 2021, 23, 178 15 of 46

the explicit formula for `opt as, `opt(w) = −Mα1q+α2 log(pWopt )
(w; 1). Of course, one has to

properly choose α1 and α2 to make sure that this function satisfies the system of equations
in (19) with σ = σopt. The correct choice is specified in the theorem below. The proof is
deferred to Appendix D.1.

Theorem 3 (Optimal Loss Function). Recall the definition of σopt in (12). Define the random
variable Wopt := σopt G + SY and let pWopt denote its density. Consider the following loss function
`opt : R→ R

`opt(w) = −Mα1q+α2 log(pWopt )
(w; 1), (29)

where q(x) = x2/2 and

α1 =
1− σ2

optI(Wopt)

δ(σ2
optI(Wopt) + I(Wopt)− 1)

,

α2 =
1

δ(σ2
optI(Wopt) + I(Wopt)− 1)

.
(30)

If `opt defined as in (29) is convex and the equation κ(σ) = 1/δ has a unique solution, then
σ`opt = σopt.

In general, there is no guarantee that the function `opt(·) as defined in (29) is convex.
However, if this is the case, the theorem above guarantees that it is optimal (Strictly
speaking, the performance is optimal among all convex loss functions ` for which (8) has a
unique solution as required by Theorem 2.). A sufficient condition for `opt(w) to be convex
is provided in Appendix D.2. Importantly, in Appendix D.2.1, we show that this condition
holds for observations following the signed model. Thus, for this case, the resulting
function is convex. Although we do not prove the convexity of optimal loss function for
the logistic and Probit models, our numerical results (e.g., see Figure 3b) suggest that this
is the case. Concretely, we conjecture that the loss function `opt is convex for logistic and
Probit models, and therefore by Theorem 3 its performance is optimal.

4. Special Cases
4.1. Least-Squares

By choosing `(t) = (t− 1)2 in (3), we obtain the standard least-squares estimate. To
see this, note that since yi = ±1, it holds for all i that (yiaT

i x− 1)2 = (yi − aT
i x)2. Thus, x̂ is

minimizing the sum of squares of the residuals:

x̂ = arg min
x ∑(yi − aT

i x)2. (31)

For this choice of a loss function, we can solve the equations in (8) in closed form. Fur-
thermore, the equations have a (unique, bounded) solution for any δ > 1 provided that
E[SY] > 0. The final result is summarized in the corollary below (see Appendix F.1 for
the proof).

Corollary 2 (Least-squares). Assume data generated from the binary model and δ > 1. For the
label function assume that E[SY] > 0 in the notation of (7). Let x̂ be as in (41). Then, in the limit
of m, n → +∞, m/n → δ, Equations (9) and (10) hold with probability one with α and µ given
as follows:

µ = E[SY], (32)

α =

√
1− (E[SY])2 ·

√
1

δ− 1
. (33)
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Corollary 2 appears in [43] (see also [40,41,56] and Appendix F for an interpretation of
the result). However, these previous works obtain results that are limited to least-squares
loss. In contrast, our results are general and LS prediction is obtained as a simple corollary
of our general Theorem 1. Moreover, our study of fundamental limits allows us to quantify
the sub-optimality gap of least-square (LS) as follows.

On the Optimality of LS. On the one hand, Corollary 2 derives an explicit formula for
the effective noise variance σLS = α/µ of LS in terms of E[YS] and δ. On the other hand,
Corollary 1 provides an explicit lower bound on the optimal value σopt in terms of I(SY)
and δ. Combining the two, we conclude that

σ2
LS

σ2
opt
≤ ξ := (I(SY)− 1)

1− (E[SY])2

(E[SY])2 .

In terms of correlation,

corropt

corrLS
=

√√√√ 1 + σ2
LS

1 + σ2
opt
≤ σLS

σopt
≤
√

ξ ,

where the first inequality follows from the fact that σLS ≥ σopt. Therefore, the performance
of LS is at least as good as 1√

ξ
times the optimal one. In particular, assuming ‖x0‖ = 1 and

for logistic and Probit models (for which Corollary 1 holds), we can explicitly compute
1√
ξ
= 0.9972 and 0.9804, respectively. However, we recall that for large ‖x0‖ logistic and

Probit models approach the signed model, and, as Figure 1a demonstrates, LS becomes
suboptimal.

Another interesting consequence of combining Corollaries 1 and 2 is that LS would be
optimal if SY were a Gaussian random variable. To see this, recall from Corollary 1 that, if
SY is Gaussian, then:

σ2
opt =

1
(δ− 1)(I(SY)− 1)

.

However, for SY Gaussian, we can explicitly compute I(SY) = 1/Var[SY], which leads to

σ2
opt =

1− (E[SY])2

(E[SY])2(δ− 1)
.

The right hand side is exactly σ2
LS. Therefore, the optimal performance is achieved by the

square loss function if SY is a Gaussian random variable. Remarkably, for logistic and
Probit models with small SNR (i.e., small ‖x0‖), density of SY is close to the density of a
normal random variable (see Figure A2 in the Appendix C), implying the optimality of LS
for these models.

4.2. Logistic and Hinge Loss

Theorem 1 only holds in regimes for which the set of minimizers of (3) is bounded. As
we show here, this is not always the case. Specifically, consider non-negative loss functions
`(t) ≥ 0 with the property limt→+∞ `(t) = 0. For example, the hinge, exponential and
logistic loss functions all satisfy this property. Now, we show that for such loss functions
the set of minimizers is unbounded if δ < δ?f for some appropriate δ?f > 2. First, note that
the set of minimizers is unbounded if the following condition holds:

∃xs 6= 0 such that yiaT
i xs ≥ 0, ∀i ∈ [m]. (34)

Indeed, if (34) holds then x = c · xs with c→ +∞, attains zero cost in (3); thus, it is optimal
and the set of minimizers is unbounded. To proceed, we rely on a recent result by Candes
and Sur [44] who proved that (34) holds iff (To be precise, Candès and Sur [44] proved
the statement for measurements yi, i ∈ [m] that follow a logistic model. Close inspection
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of their proof shows that this requirement can be relaxed by appropriately defining the
random variable Y in (7) (see also [48,49]).)

δ ≤ δ?f :=
(

min
c∈R

E
[
(G + c S Y)2

−

])−1
, (35)

where G, S and Y are random variables as in (7) and (t)− := min{0, t}. We highlight that
logistic and hinge losses give unbounded solutions in the noisy-signed model with ε = 0,
since the condition (34) holds for xs = x0. However, their performances are comparable to
the optimal performance in both logistic and Probit models (see Figures 3a and 4a).

5. Extensions to Gaussian-Mixture Models

In this section, we show that our results on sharp asymptotics and lower bounds
on error can be extended to include the Gaussian-Mixture model (GMM) presented in
Section 1.2. The discussions on the phase transition for the existence of a bounded solution
in Section 4.2 applies here as well. We rely on a phase-transition result [49] (Prop. 3.1),
which proves that (34) holds if and only if

δ ≤ δ? :=
(

min
t∈R

E
[
(W1 + t W2)

2
−

])−1
, (36)

where W1 and W2 are random variables defined in (7) and (x)2
− := (min{x, 0})2. Therefore,

for loss functions satisfying this property, e.g., hinge loss and logistic loss, the solution
to (3) is unbounded if and only if δ ≤ δ?.

5.1. System of Equations for GMM

It turns out that, similar to the generative models, the asymptotic performance of (3)
for GMM depends on the loss function ` via its Moreau envelope. Specifically, let W1 and
W2 be independent Gaussian random variables such that

W1 ∼ N (0, 1), W2 ∼ N (r, 1), (37)

where r := ‖x0‖2 > 0.
Consider the following system of non-linear equations in three unknowns (µ, α ≥ 0, λ ≥ 0):

0 = E
[

W2 ·M′
`,1(αW1 + µW2; λ)

]
, (38a)

α2 = λ2 δE
[(
M′

`,1(αW1 + µW2; λ)
)2
]

, (38b)

α = λ δE
[

W1 ·M′
`,1(αW1 + µW2; λ)

]
. (38c)

The expectations above are with respect to the randomness of the random variables W1
and W2.

As we show shortly, the solution to these equations is tightly connected to the asymp-
totic behavior of the optimization in (3).

5.2. Theoretical Prediction of Error for Convex Loss Functions

Theorem 4 (Asymptotic Prediction). Assume data generated from the Gaussian-mixture model
and assume δ > 1 such that the set of minimizers in (3) is bounded and the system of Equation (38)
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has a unique solution (µ, α, λ), such that µ 6= 0. Let x̂` be as in (3) and σ` = α/µ. Then, in the
limit of m, n→ +∞, m/n→ δ, it holds with probability one that

lim
n→∞

corr( x̂` ; x0 ) =
µ√

µ2 + α2
, lim

n→∞
E` = Q

(
r√

1 + σ2
`

)
, (39)

where E` denotes the classification test error defined in (5).

Remark 6 (Proof of Theorem 4). The high-level steps of the proof of Theorem 4 follow closely the
proof of Theorem 1. Particularly, for GMM one can show the correlation of the ERM estimate with
the true vector x0 is predicted by a system of Equations as in (38), only with W2 replaced by a non-
gaussian random variable (denoted as SY in Theorem 1). Specifically, by rotational invariance of
the Gaussian feature vectors ai, we can assume, without loss of generality, that x0 = [r, 0, 0, ..., 0]T .
Then, we can can guarantee that with probability one it holds that

lim
n→∞

x̂`(1) = µ, lim
n→∞

n

∑
j=2

x̂2
`(j) = α2, (40)

where µ and α are specified by (38). To see how this implies (39), we argue as follows. Recalling that
x|y ∼ N (yx0, I), we have

y〈x̂`, a〉 ∼ N
(

rx̂`(1), ‖x̂`‖2
2

)
.

Using this and (40) leads to the asymptotic value of correlation and classification error as presented
in (39).

Remark 7. (On the Uniqueness of Solutions to Equations (38)) Our results in proving the unique-
ness of solutions to the equations for generative models (8) in Proposition 1, extend to GMM. Noting
that W2 ∼ N (r, 1) in (38) plays the role of SY in (8), we straightforwardly deduce the following
result for uniqueness of solutions to (38).

Proposition 2. Assume that the loss function ` : R → R has the following properties: (i) it is
proper strictly convex; and (ii) it is continuously differentiable and its derivative `′ is such that
`′(0) 6= 0. The following statement is true. For any δ > 1, if the system of equations in (38) has a
bounded solution, then it is unique.

5.3. Special Case: Least-Squares

By choosing `(t) = (t− 1)2 in (3), we obtain the standard least-squares estimate. To
see this, note that since yi = ±1, it holds for all i that (yiaT

i x− 1)2 = (yi − aT
i x)2.

Thus, the estimator x̂LS is minimizing the sum of squares of the residuals:

x̂LS = arg min
x ∑(yi − aT

i x)2. (41)

For the choice `(t) = (t − 1)2, it turns out that we can solve the equations in (38)
in closed form. The final result is summarized in the corollary below and proved in
Appendix G.1.

Corollary 3 (Least-Squares). Let x̂LS be as in (41) and δ > 1. Then, in the limit of m, n→ +∞,
m/n→ δ, Equation (39) holds with probability one with σ2

LS given as follows:

σ2
LS =

1 + r2

r2 · 1
(δ− 1)

. (42)

5.4. Optimal Risk for GMM

Next, we characterize the best achievable classification error by different choices of
loss function. Considering (39), we see that an optimal choice of ` is the one that minimizes
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σ2
` . The next theorem characterizes the best achievable σ` among convex loss functions by

deriving an equivalent set of equations to (38) and combining them with proper coefficients.
Similar to the proof of Theorem 2, a key step in the proof is properly setting up a Cauchy–
Schwarz inequality that exploits the structure of the new set of equations. The proof is
deferred to Appendix G.2.

Theorem 5 (Lower Bound on Risk). Under the assumptions of Theorem 4, the following inequal-
ity holds for the effective risk parameter (σ`) of a loss function `:

lim
n→∞

σ2
` ≥ σ2

? :=
1 + r2

r2 · 1
δ− 1

(43)

Remark 8 (Optimality of Least-squares for GMM). Theorem 5 provides a lower bound for the
asymptotic value of σ` which holds for all δ > 1 and r > 0. This result together with Corollary 3
implies that least-squares achieves the least value of risk (i.e., σ` and E`) for all δ > 1 and r > 0
among all convex loss functions ` for which the set of minimizers in (3) is bounded.

6. Numerical Experiments

In this section, we present numerical simulations that validate the predictions of
Theorems 1–5. To begin, we use the following three popular models as our case study:
signed, logistic and Probit. We generate random measurements according to (1). Without
loss of generality (due to rotational invariance of the Gaussian measure), we set x0 =
[1, 0, ..., 0]T . We then obtain estimates x̂` of x0 by numerically solving (3) and measure
performance by the correlation value corr( x̂` ; x0 ). Throughout the experiments, we
set n = 128 and the recorded values of correlation are averages over 25 independent
realizations. For each label function, we first provide plots that compare results of Monte
Carlo simulations to the asymptotic predictions for loss functions discussed in Section 4, as
well as to the optimal performance of Theorem 2. We next present numerical results on
optimal loss functions. To empirically derive the correlation of optimal loss function, we run
gradient descent-based optimization with 1000 iterations. As a general comment, we note
that, despite being asymptotic, our predictions appear accurate even for relatively small
problem dimensions. For the analytical predictions, we apply Theorem 1. In particular, for
solving the system of non-linear equations in (3), we empirically observe (see also [15,47]
for similar observation) that, if a solution exists, then it can be efficiently found by the
following fixed-point iteration method. Let v := [µ, α, λ]T and F : R3 → R3 be such that (3)
is equivalent to v = F (v). With this notation, we initialize v = v0 and for k ≥ 1 repeat the
iterations vk+1 = F (vk) until convergence.

Logistic model. For the logistic model, comparison between the predicted values and the
numerical results is illustrated in Figure 3a. Results are shown for LS, logistic and hinge loss
functions. Note that minimizing the logistic loss corresponds to the maximum-likelihood
estimator (MLE) for logistic model. An interesting observation in Figure 3a is that in the
high-dimensional setting (finite δ) LS has comparable (if not slightly better) performance
to MLE. Additionally, we observe that in this model, performance of LS is almost the
same as the best possible performance derived according to Theorem 2. This confirms the
analytical conclusion of Section 4.1. The comparison between the optimal loss function
as in Theorem 3 and other loss functions is illustrated in Figure 3b. We note the obvious
similarity between the shapes of optimal loss functions and LS which further explains the
similarity between their performance.

Probit model. Theoretical predictions for the performance of hinge and LS loss func-
tions are compared with the empirical results and optimal performance of Theorem 2 in
Figure 4a. Similar to the logistic model, in this model, LS also outperforms hinge loss and
its performance resembles the performance of optimal loss function derived according to
Theorem 3. Figure 4b illustrates the shapes of LS, hinge loss and the optimal loss functions
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for the Probit model. The obvious similarity between the shape of LS and optimal loss
functions for all values of δ explains the close similarity of their performance.

Additionally, by comparing the LS performance for the three models in
Figures 1a, 3a and 4a, it is clear that higher (respectively, lower) correlation values are
achieved for signed (respectively, logistic) measurements. This behavior is indeed pre-
dicted by Corollary 2: correlation performance is higher for higher values of µ = E[SY]. It
can be shown that, for the signed, probit and logistic models (with ‖x0‖2 = 1), we have
µ =
√

2/π,
√

1/π and 0.4132, respectively.

Optimal loss function. By putting together Theorems 2 and 3, we obtain a method on
deriving the optimal loss function for generative binary models. This requires the follow-
ing steps.

1. Find σopt by solving (12).
2. Compute the density of Wopt = σoptG + SY.
3. Compute `opt according to (29).

Note that computing σopt needs the density function pW of the random variable W = σ G + SY.
In principle pW can be calculated as the convolution of the Gaussian density with the pdf
pSY of SY. Moreover, it follows from the recipe above that the optimal loss function
depends on δ in general. This is because σopt itself depends on δ via (12).

Numerical Experiments for GMM

Theorem 5 implies the optimality of least-squares among convex loss functions in
the under-parameterized regime δ > 1. In Figure 2, we demonstrate the classification risk
of least-squares alongside other well-known loss functions LAD and logistic, for r = 1.
Solid lines correspond to the theoretical predictions of Theorem 4. For least-squares we
rely on the result of Corollary 3 and for LAD and logistic loss, the system of equations
are solved by iterating over the equations, where we observe that after relatively small
number of iterations the triple (µ, α, λ) converges to (µ?, α?, λ?). We use 105 and 103

samples to compute the expectations in (38) for LAD and logistic loss, respectively. After
deriving σ` = α/µ, the classification risk E` is obtained according to the formula in (39).
Dots correspond to the empirical evaluations of the classification risk of loss functions
for n = 60 and for different values of δ = m/n > 1. The resulting numbers are averaged
over 30 independent experiments. As is observed, the empirical results closely follow
the theoretical predictions of Theorem 4. Furthermore, as predicted by Theorem 5, least-
squares has the minimum expected classification risk among other convex loss functions
and for all δ > 1.

7. Conclusions

We derive theoretical predictions for the generalization error of estimators obtained
by ERM for generative binary models and a Gaussian Mixture model. Furthermore, we
use this theoretical characterizations to find the optimal performance and optimal loss
function among all convex losses. Although our analysis is true for Gaussian matrices,
we empirically show they hold for sub-Gaussian matrices as well. As an exciting future
direction, we plan to extend our analysis on sharp asymptotics and optimal loss function
to non-isotropic (Gaussian) features with arbitrary covariance. A more challenging, albeit
interesting, direction is going beyond (binary) linear models studied in this paper, by con-
sidering asymptotics and optimal error for kernel models and neural networks (see [48,57]
for partial progress in this direction).
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Appendix A. Properties of Moreau Envelopes

Appendix A.1. Derivatives

Recall the definition of the Moreau envelopeM`(x; λ) and proximal operator prox`(x; λ)
of a function `:

M`(x; λ) = min
y

1
2λ

(x− y)2 + `(y), (A1)

and prox`(x; λ) = arg miny
1

2λ (x− y)2 + `(y).

Proposition A1 (Basic properties of M` and prox` [52]). Let ` : R → R be lower semi-
continuous (lsc), proper and convex. The following statements hold for any λ > 0.

(a) The proximal operator prox`(x; λ) is unique and continuous. In fact, prox`(x; λ) →
prox`(x′; λ′) whenever (x, λ)→ (x′, λ′) with λ′ > 0.

(b) The valueM`(x; λ) is finite and depends continuously on (λ, x), withM`(x; λ) → f (x)
for all x as λ→ 0+.

(c) The Moreau envelope function is differentiable with respect to both arguments. Specifically,
for all x ∈ R, the following properties are true:

M′
`,1(x; λ) =

1
λ
(x− prox`(x; λ)), (A2)

M′
`,2(x; λ) = − 1

2λ2 (x− prox`(x; λ))2. (A3)

If in addition ` is differentiable and `
′
denotes its derivative, then

M′
`,1(x; λ) = `′(prox`(x; λ)), (A4)

M′
`,2(x; λ) = −1

2
(`′(prox`(x; λ))2. (A5)

Appendix A.2. Alternative Representations of (8)

Replacing the above relations for derivative ofM` in (8), we can write the equations in
terms of the proximal operator. If ` is differentiable, then Equations (8) can be equivalently
written as follows:

E
[

Y S · `′(prox`(αG + µSY; λ))

]
= 0, (A6a)

λ2 δE
[(
`′(prox`(αG + µSY; λ))

)2
]
= α2, (A6b)

λ δE
[

G · `′(prox`(αG + µSY; λ))

]
= α. (A6c)

Finally, if ` is two times differentiable, then applying integration by parts in Equation (14c)
results in the following reformulation of (8c):

1 = λ δE
[

`′′(prox`(αG + µSY; λ))

1 + λ `′′(prox`(αG + µSY; λ))

]
. (A7)
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Appendix A.3. Examples of Proximal Operators
LAD.

For `(t) = |t− 1|, the proximal operator admits a simple expression, as follows:

prox`(x; λ) = 1 +H(x− 1; λ), (A8)

where

H(x; λ) =


x− λ, if x > λ,
x + λ, if x < −λ,
0, otherwise.

is the standard soft-thresholding function.

Hinge Loss.

When `(t) = max{0, 1− t}, the proximal operator can be expressed in terms of the
soft-thresholding function as follows:

prox`(x; λ) = 1 +H
(

x +
λ

2
− 1;

λ

2

)
.

Appendix A.4. Fenchel–Legendre Conjugate Representation

For a function h : R→ R, its Fenchel–Legendre conjugate, h? : R→ R is defined as:

h?(x) = max
y

[xy− h(y)].

The following proposition relates Moreau Envelope of a function to its Fenchel–Legendre con-
jugate.

Proposition A2. For λ > 0 and a function h, we have:

Mh(x; λ) =
q(x)

λ
− 1

λ
(q + λh)?(x), (A9)

where q(x) = x2/2.

Proof.
Mh(x; λ) = 1

2λ miny
[
(x− y)2 + 2λh(y)

]
= x2

2λ + 1
2λ miny

[
y2 − 2xy + 2λh(y)

]
= x2

2λ −
1
λ maxy

[
xy−

(
y2/2 + λh(y)

)]
= q(x)

λ −
1
λ (q + λh)?(x).

Appendix A.5. Convexity of the Moreau Envelope

Lemma A1. The function H : R3 → R defined as follows

H(x, v, λ) =
1

2λ
(x− v)2, (A10)

is jointly convex in its arguments.

Proof. Note that the function h(x, v) = (x − v)2 is jointly convex in (x, v). Thus, its
perspective function

λ h(x/λ, v/λ) = (x− v)2/λ = 2H(x, v, λ)
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is jointly convex in (x, v, λ) [58] (Sec. 2.3.3), which completes the proof.

Proposition A3. (a) Ref. [52] (Prop. 2.22) Let f (x, y) be jointly convex in its arguments. Then,
the function g(x) = miny f (x, y) is convex.

(b) Ref. [58] (Sec. 3.2.3) Suppose fi : R→ R is a set of concave functions, with i ∈ A an index set.
Then, the function f : R→ R defined as f (x) := infi∈A fi(x) is concave.

Lemma A2. Let ` : R→ R be a lsc, proper, convex function. Then,M`(x; λ) is jointly convex
in (x, λ).

Proof. Recall that

M`(x; λ) = min
v

G(a) :=
1

2λ
(x− v)2 + `(v), (A11)

where, for compactness, we let a ∈ R3 denote the triplet (x, v, λ). Now, let ai = (xi, vi, λi), i =
1, 2, θ ∈ (0, 1) and θ := 1− θ. With this notation, we may write

G(θa1 + θa2) = H
(
θx1 + θx2, θλ1 + θλ2, θv1 + θv2

)
+ `(θv1 + θv2)

≤ θH(x1, v1, λ1) + θH(x2, v2, λ2) + θ`(v1) + θ`(v2)

= θG(a1) + θG(a2).

For the first equality above, we recall the definition of H : R3 → R in (A10) and the
inequality right after follows from Lemma A1 and convexity of `. Thus, the function
G is jointly convex in its arguments. Using this fact, as well as (A11), and applying
Proposition A3(a) completes the proof.

Appendix A.6. The Expected Moreau-Envelope (EME) Function and its Properties

The performance of the ERM estimator (3) is governed by the system of equations (8)
in which the Moreau envelope functionM`(x; λ) of the loss function ` plays a central role.
More precisely, as already hinted by (8) and becomes clear in Appendix B, what governs
the behavior is the function

(α > 0, µ, τ > 0, γ > 0) 7→ E
[
M`(αG + µSY; τ/γ)

]
, (A12)

which we call the expected Moreau envelope (EME). Recall here that Y = f (S). Hence,
the EME is the key summary parameter that captures the role of both the loss function
` : R→ R and of the link function f : R→ {±1} on the statistical performance of (3).

In this section, we study several favorable properties of the EME. In (A12), the ex-

pectation is over G, S iid∼ N (0, 1). We first study the EME under more general distribution
assumptions in Appendices A.6.1–A.6.3 and we then specialize our results to Gaussian
random variables G and S in Appendix A.6.4.

Appendix A.6.1. Derivatives

Proposition A4. Let ` : R → R be a lsc, proper and convex function. Further, let X, Z be
independent random variables with bounded second moments E[X2] < ∞, E[Z2] < ∞. Then, the
expected Moreau envelope function E[M`(cX + Z; λ)] is differentiable with respect to both c and
λ and the derivatives are given as follows:

∂

∂c
E
[
M`(cX + Z; λ)

]
= E

[
XM′

`,1(cX + Z; λ)
]
, (A13)

∂

∂λ
E
[
M`(cX + Z; λ)

]
= E

[
M′

`,2(cX + Z; λ)
]
. (A14)
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Proof. The proof is an application of the Dominated Convergence Theorem (DCT). First,
by Proposition A1(b), for every c ∈ R and any λ > 0, the function E[M`(cX + Z; λ)] takes
a finite value. Second, by Proposition A1(c),M`(cx + z; λ) is continuously differentiable
with respect to both c and λ:

∂

∂c
M`(cX + Z; λ) = XM′

`,1(cX + Z; λ) = X
1
λ

(
cX + Z− prox`(cX + Z; λ)

)
,

∂

∂λ
M`(cX + Z; λ) =M′

`,2(cX + Z; λ) = − 1
2λ2

(
cX + Z− prox`(cX + Z; λ)

)2.

From this, note that the Cauchy–Schwarz inequality gives

E
[ ∂

∂c
M`(cX + Z; λ)

]
≤
(
E[X2])1/2

)(
E
[ 1

λ2

(
cX + Z− prox`(cX + Z; λ)

)2︸ ︷︷ ︸
:=A

])1/2
,

Therefore, the remaining condition to check so that DCT can be applied is that the term
A/λ2 above is integrable. To begin with, we can easily bound A as: A ≤ 2(cX + Z)2 +
2(prox`(cX + Z; λ))2. Next, by non-expansiveness (Lipschitz property) of the proximal
operator [52] (Prop. 12.19), we have that |prox`(cX + Z; λ)| ≤ |cX + Z| + |prox`(0; λ)|.
Putting together, we find that

A ≤ 6(cX + Z)2 + 2|prox`(0; λ)|2 ≤ 12c2X2 + 12Z2 + 2|prox`(0; λ)|2.

We consider two cases. First, for fixed λ > 0 and any compact interval I , we have that

E sup
c∈I

[A] ≤ 12(sup
c∈I

c2)E[X2] + 12E[Z]2 + 2|prox`(0; λ)|2 < ∞.

Similarly, for fixed c and any compact interval J on the positive real line, we have that

E sup
λ∈J

[A/λ2] ≤ 12 sup
λ∈J

c2E[X2] +E[Z]2
λ2 + 2 sup

λ∈J

|prox`(0; λ)|2
λ2 < ∞,

where we also used boundedness of the proximal operator (cf. Proposition A1(a)). This
completes the proof.

Appendix A.6.2. Strict Convexity

We study convexity properties of the expected Moreau envelope function Ψ : R3 → R:

Ψ(v) := Ψ(α, µ, λ) := E
[
M`(αX + µZ; λ)

]
, (A15)

for a lsc, proper, convex function ` and independent random variables X and Z with
positive densities. Here, and onwards, we let v ∈ R3 denote a triplet (α, µ, λ) and the
expectation is over the randomness of X and Z. From Lemma A2, it is easy to see that Ψ(v)
is convex. In this section, we prove a stronger claim:

“ If ` is strictly convex and does not attain its minimum at 0, then Ψ(v) is also
strictly convex. ”

This is summarized in Proposition A5 below.

Proposition A5 (Strict Convexity). Let ` : R→ R be a function with the following properties:
(i) it is proper strictly convex; and (ii) it is continuously differentiable and its derivative `′ is such
that `′(0) 6= 0. Further, let X, Z be independent random variables with strictly positive densities.
Then, the function Ψ : R3 → R in (A15) is jointly strictly convex in its arguments.
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Proof. Let vi = (αi, µi, λi), i = 1, 2, θ ∈ (0, 1) and θ = 1− θ. Further, assume that v1 6= v2
and define the proximal operators

pi(X, Z) := prox`(αiX + µiZ; λi) = arg min
v

1
2λi

(αiX + µiZ− v)2 + `(v),

for i = 1, 2. Finally, denote λθ := θλ1 + θλ2, αθ := θα1 + θα2 and µθ := θµ1 + θµ2. With
this notation,

Ψ(θv1 + θv2)

≤ E
[

1
2λθ

(
αθ X + µθ Z− (θp1(X, Z) + θp2(X, Z))

)2
+ `
(

θp1(X, Z) + θp2(X, Z)
) ]

= E
[

H
(

αθ X + µθ Z, θp1(X, Z) + θp2(X, Z), λθ

)
+ `
(

θp1(X, Z) + θp2(X, Z)
) ]

≤ E
[

θH
(

α1X + µ1Z, p1(X, Z), λ1

)
+ θH

(
α2X + µ2Z, p2(X, Z), λ2

)
+ `
(

θp1(X, Z) + θp2(X, Z)
) ]

. (A16)

The first inequality above follows by the definition of the Moreau envelope in (A1). The
equality in the second line uses the definition of the function H : R3 → R in (A10). Finally,
the last inequality follows from convexity of H as proved in Lemma A1.
Continuing from (A16), we may use convexity of ` to find that

Ψ(θv1 + θv2)

≤ E
[

θH(α1X + µ1Z, λ1, p1(X, Z)) + θH(α2X + µ2Z, λ2, p2(X, Z))

+ θ`(p1(X, Z)) + θ`(p2(X, Z))
]

(A17)

= θΨ(v1) + θΨ(v2).

This already proves convexity of (A15). In what follows, we argue that the inequality
in (A17) is in fact strict under the assumption of the lemma.

Specifically, in Lemma A3, we prove that, under the assumptions of the proposition,
for v1 6= v2, it holds that

E
[
`
(
θp1(X, Z) + θp2(X, Z)

)]
< θ E

[
`(p1(X, Z))

]
+ θ E

[
`(p2(X, Z))

]
.

Using this in (A16) completes the proof of the proposition. The idea behind the proof of
Lemma A3 is as follows. First, we use the fact that v1 6= v2 and `′(0) 6= 0 to argue that
there exists a non-zero measure set of (x, z) ∈ R2 such that p1(x, z) 6= p2(x, z). Then, the
desired claim follows by strict convexity of `.

Lemma A3. Let ` : R → R be a proper strictly convex function that is continuously differ-
entiable with `′(0) 6= 0. Further, assume independent continuous random variables X, Z with
strictly positive densities. Fix arbitrary triplets vi = (αi, µi, λi), i = 1, 2 such that v1 6= v2.
Further, denote

pi(X, Z) := prox`(αiX + µiZ; λi), i = 1, 2. (A18)
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Then, there exists a ball S ⊂ R2 of nonzero measure, i.e., P((X, Z) ∈ S) > 0, such that p1(x, z) 6=
p2(x, z), for all (x, z) ∈ S . Consequently, for any θ ∈ (0, 1) and θ = 1− θ, the following strict
inequality holds,

E
[
`
(
θp1(X, Z) + θp2(X, Z)

)]
< θ E

[
`(p1(X, Z))

]
+ θ E

[
`(p2(X, Z))

]
. (A19)

Proof. Note that (A19) holds trivially with “< ” replaced by “≤ ” due to the convexity of
`. To prove that the inequality is strict, it suffices, by strict convexity of `, that there exists
subset S ⊂ R2 that satisfies the following two properties:

1. p1(x, z) 6= p2(x, z), for all (x, z) ∈ S .
2. P((X, Z) ∈ S) > 0.

Consider the following function f : R2 → R:

f (x, z) := p1(x, z)− p2(x, z). (A20)

By Lemma A4, there exists (x0, z0) such that

f (x0, z0) 6= 0. (A21)

Moreover, by continuity of the proximal operator (cf. Proposition A1(a)), it follows that f is
continuous. From this and (A21), we conclude that for sufficiently small ζ > 0 there exists
a ζ-ball S centered at (x0, z0), such that property 1 holds. Property 2 is also guaranteed to
hold for S , since both X, Z have strictly positive densities and are independent.

Lemma A4. Let ` : R → R be a proper, convex function. Further, assume that ` : R → R
is continuously differentiable and `′(0) 6= 0. Let α1, α2 > 0, λ1, λ2 > 0. Then, the following
statement is true

(α1, µ1, λ1) 6= (α2, µ2, λ2)→ ∃(x, z) ∈ R2 : prox`(α1x + µ1z; λ1) 6= prox`(α2x + µ2z; λ2).
(A22)

Proof. We prove the claim by contradiction, but first, let us set up some useful notation.
Let v ∈ R3 denote triplets (α, µ, λ) and further define

pα,µ,λ(x, z) := prox`(αx + µz; λ),

and
Lα,µ,λ(x, z) := `′(prox`(αx + µz; λ)).

By Proposition A1, the following is true:

Lα,µ,λ(x, z) =
1
λ

(
αx + µz− pα,µ,λ(x, z)

)
. (A23)

For the sake of contradiction, assume that the claim of the lemma is false. Then,

pα1,µ1,λ1(x, z) = pα2,µ2,λ2(x, z), ∀(x, z) ∈ R2. (A24)

From this, it also holds that

Lα1,µ1,λ1(x, z) = Lα2,µ2,λ2(x, z), ∀(x, z) ∈ R2. (A25)

Recalling (A23) and applying (A24), we derive the following from (A25):

(λ2 − λ1)pα1,µ1,λ1(x, z) = (λ2α1 − λ1α2)x + (λ2µ1 − λ1µ2)z, ∀(x, z) ∈ R2. (A26)

We consider the following two cases separately.
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Case 1: λ1 = λ2 : Since v1 6= v2, it holds that

∃(x, z) ∈ R2 : α1x + µ1z 6= α2x + µ2z. (A27)

However, from (A26) we have that (α1 − α2)x + (µ1 − µ2)z = 0 for all (x, z) ∈ R2. This
contradicts (A27) and completes the proof for this case.

Case 2: λ1 6= λ2 : Continuing from (A26), we can compute that for all (x, z) ∈ R2

`′(pα1,µ1,λ1(x, z)) =
1

λ1
(α1x + µ1z− pα1,µ1,λ1(x, z))

=
α2 − α1

λ2 − λ1
x +

µ2 − µ1

λ2 − λ1
z. (A28)

By replacing pα1,µ1,λ1(x, z) from (A26), we derive that:

`′(ε1x + ε2z) = ε3x + ε4z, ∀(x, z) ∈ R2, (A29)

where

ε1 =
λ2α1 − λ1α2

λ2 − λ1
, ε2 =

λ2µ1 − λ1µ2

λ2 − λ1
,

ε3 =
α2 − α1

λ2 − λ1
, ε4 =

µ2 − µ1

λ2 − λ1
.

By replacing x = z = 0 in (A29), we find that `′(0) = 0. This contradicts the assumption of
the lemma and completes the proof.

Appendix A.6.3. Strict Concavity

In this section, we study the following variant Γ : R+ → R of the expected Moreau en-
velope:

Γ(γ) := E[M`(X; 1/γ)], (A30)

for a lower semi-continuous, proper, convex function ` and continuous random variable
X. The expectation above is over the randomness of X. In Appendix B.4, we show that
the function Γ is concave in γ. Here, we prove the following statement regarding strict-
concavity of Γ:

“ If ` is convex, continuously differentiable and `′(0) 6= 0, then Γ is strictly
concave. ”

This is summarized in Proposition A6 below.

Proposition A6 (Strict concavity). Let ` : R → R be a convex, continuously differentiable
function for which `′(0) 6= 0. Further, let X be a continuous random variable in R with strictly
positive density in the real line. Then, the function Γ in (A30) is strictly concave in R+.

Proof. Before everything, we introduce the following convenient notation:

Γ̃x(γ) :=M`(x; 1/γ) and px
γ := prox`(x; 1/γ).

Note from Proposition A1 that Γ̃x is differentiable with derivative

Γ̃′x(γ) =
1
2

(
x− prox`(x; 1/γ)

)2
. (A31)
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We proceed in two steps as follows. First, for fixed x ∈ R and γ2 > γ1, we prove in
Lemma A5 that

(x− px
γ2
)2 − (x− px

γ1
)2 ≤ − γ1

γ2 − γ1
(px

γ1
− px

γ2
)2, (A32)

This shows that for all x ∈ R

Γ̃′x(γ2)− Γ̃′x(γ1) ≤ 0. (A33)

Second, we use Lemma A3 to argue that the inequality is in fact strict for all x ∈ S
whereS ⊂ R andP(X ∈ S) > 0. To be concrete, apply Lemma A3 for vi = (1, 0, 1/γi), i = 1, 2.
Notice that all the assumptions of the lemma are satisfied, hence there exists interval S ⊂ R
for which P(X ∈ S) > 0 and

px
γ1
6= px

γ2
⇒ (px

γ1
− px

γ2
)2 > 0, ∀x ∈ S .

Hence, from (A32), it follows that

(x− px
γ2
)2 − (x− px

γ1
)2 < 0, ∀x ∈ S .

From this, and (A31) we conclude that

Γ̃′x(γ2)− Γ̃′x(γ1) < 0, ∀x ∈ S . (A34)

Thus, from (A33) and (A34), as well as the facts that Γ(γ) = E
[

Γ̃X(γ)
]

and P(X ∈ S) > 0,
we conclude that Γ is strictly concave in R+.

Lemma A5. Let ` : R → R be a convex, continuously differentiable function. Fix x ∈ R and
denote pγ := prox`(x; 1/γ). Then, for any γ, γ̃ > 0, it holds that

(γ̃− γ)(pγ̃ − pγ)(pγ − x) + γ̃(pγ̃ − pγ)
2 ≤ 0. (A35)

Moreover, for γ2 > γ1, the following statement is true:

(x− pγ2)
2 − (x− pγ1)

2 ≤ − γ1

γ2 − γ1
(pγ1 − pγ2)

2. (A36)

Proof. First, we prove (A35). Then, we use it to prove (A36).

Proof of (A35): Consider function g : R→ R defined as follows g(p) = γ̃
2 (x− p)2 + `(p).

By assumption, g is differentiable with derivative g′(p) = γ̃(p− x) + `′(p). Moreover, g is
γ2-strongly convex. Finally, by optimality of the proximal operator (cf. Proposition A1), it
holds that γ(x− pγ) = `′(pγ) and γ̃(x− pγ̃) = `′(pγ̃). Using these, it can be computed
that g′(pγ̃) = 0 and g′(pγ) = (γ̃− γ)(pγ − x).

In the following inequalities, we combine all the aforementioned properties of the
function g to find that

g(pγ) ≥ g(pγ̃) +
γ̃

2
(pγ − pγ̃)

2 ≥ g(pγ) + (γ̃− γ)(pγ − x)(pγ̃ − pγ) + γ̃(pγ − pγ̃)
2.

This leads to the desired statement and completes the proof of (A35).

Proof of (A36): We fix γ2 > γ1 and apply (A35) two times as follows. First, applying (A35)
for (γ̃, γ) = (γ2, γ1) and using the fact that γ2 > γ1, we find that

(pγ2 − pγ1)(pγ1 − x) ≤ − γ2

γ2 − γ1
(pγ2 − pγ1)

2. (A37)
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Second, applying (A35) for (γ̃, γ) = (γ1, γ2) and using again the fact that γ2 > γ1, we
find that

(γ1 − γ2)(pγ1 − pγ2)(pγ2 − x) + γ1(pγ1 − pγ2)
2 ≤ 0

⇒ (pγ2 − pγ1)(pγ2 − x) ≤ − γ1

γ2 − γ1
(pγ1 − pγ2)

2. (A38)

Adding (A37) and (A38), we show the desired property as follows:

(pγ2 − pγ1)(pγ2 − x) + (pγ2 − pγ1)(pγ1 − x) ≤ −γ2 + γ1

γ2 − γ1
(pγ1 − pγ2)

2.

Appendix A.6.4. Summary of Properties of (A12)

Proposition A7. Let ` : R → R be a lsc, proper, convex function. Let G, S iid∼ N (0, 1) and
function f : R → {±1} such that the random variable YS = f (S)S has a continuous strictly
positive density on the real line. Then, the following properties are true for the expected Moreau
envelope function

Ω : (α > 0, µ, τ > 0, γ > 0) 7→ E
[
M`(αG + µSY; τ/γ)

]
: (A39)

(a) The function Ω is differentiable and its derivatives are given as follows:

∂

∂α
Ω(α, µ, τ, γ) = E

[
GM′

`,1(αG + µSY; τ/γ)
]
,

∂

∂µ
Ω(α, µ, τ, γ) = E

[
SYM′

`,1(αG + µSY; τ/γ)
]
,

∂

∂τ
Ω(α, µ, τ, γ) =

1
γ
E
[
M′

`,2(αG + µSY; τ/γ)
]
,

∂

∂γ
Ω(α, µ, τ, γ) = − τ

γ2E
[
M′

`,2(αG + µSY; τ/γ)
]
.

(b) The function Ω is jointly convex (α, µ, τ) and concave on γ.
(c) The function Ω is increasing in α.

For the statements below, further assume that ` is strictly convex and continuously differen-
tiable with `′(0) 6= 0.

(d) The function Ω is strictly convex in (α, µ, τ) and strictly concave in λ.
(e) The function Ω is strictly increasing in α.

Proof. Statements (a), (b) and (d) follow directly by Propositions A4–A6. It remains to
prove Statements (c) and (e). Let α2 > α1. Then, there exist independent copies G′, G′′ of G
and α̃ > 0 such that α2G = α1G′ + α̃G′′. Hence, we have the following chain of inequalities:

Ω(α2, µ, τ, γ) = E
[
M`

(
α1G′ + α̃G′′ + µSY; τ/γ

)]
≥ E

[
M`

(
α1G′ + α̃E[G′′] + µSY; τ/γ

)]
= E

[
M`

(
α1G′ + µSY; τ/γ

)]
= Ω(α1, µ, τ, γ),

where the inequality follows from Jensen and convexity of Ω with respect to α (see State-
ment (b) of the Proposition). This proves Statement (c). For Statement (e), note that the
inequality is strict provided that Ω is strictly convex (see Statement (d) of the Proposi-
tion).

Appendix B. Proof of Theorem 1

In this section, we provide a proof sketch of Theorem 1. The main technical tool that
facilitates our analysis is the convex Gaussian min-max theorem (CGMT), which is an
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extension of Gordon’s Gaussian min-max inequality (GMT). We introduce the necessary
background on the CGMT in Appendix B.1.

The CGMT has been mostly applied to linear measurements [9,10,13,15,19]. The simple,
yet central idea, which allows for this extension, is a certain projection trick inspired by Plan
and Vershynin [40]. Here, we apply a similar trick, but, in our setting, we recognize that it
suffices to simply rotate x0 to align with the first basis vector. The simple rotation decouples
the measurements yi from the last n− 1 coordinates of the measurement vectors ai (see
Appendix B.2). While this is sufficient for LS in [43], to study more general loss functions,
we further need to combine this with a duality argument similar to that in [13]. Second,
while the steps that bring the ERM minimization to the form of a PO (see (A48)) bear the
aforementioned similarities to those in [13,43], the resulting AO is different from the one
studied in previous works. Hence, the mathematical derivations in Appendices B.3 and B.4
are different. This also leads to a different system of equations characterizing the statistical
behavior of ERM. Finally, in Appendix B.5, we prove uniqueness of the solution of this
system of equations using the properties of the expected Moreau envelope function studied
in Appendix A.6.

Appendix B.1. Technical Tool: CGMT

Appendix B.1.1. Gordon’s Min-Max Theorem (GMT)

The Gordon’s Gaussian comparison inequality [59] compares the min-max value of
two doubly indexed Gaussian processes based on how their autocorrelation functions
compare. The inequality is quite general (see [59]), but for our purposes we only need its
application to the following two Gaussian processes:

Xw,u := uTGw + ψ(w, u), (A40a)

Yw,u := ‖w‖2gTu + ‖u‖2hTw + ψ(w, u), (A40b)

where G ∈ Rm×n, g ∈ Rm, h ∈ Rn, they all have entries iid Gaussian; the sets Sw ⊂ Rn

and Su ⊂ Rm are compact; and ψ : Rn ×Rm → R. For these two processes, define the
following (random) min-max optimization programs, which we refer to as the primary
optimization (PO) problem and the auxiliary optimization (AO).

Φ̃(G) = min
w∈Sw

max
u∈Su

Xw,u, (A41a)

φ(g, h) = min
w∈Sw

max
u∈Su

Yw,u. (A41b)

According to Gordon’s comparison inequality (To be precise, the formulation in (A42),
which is due to [13], is slightly different from the original statement in Gordon’s paper
(see [13] for details).), for any c ∈ R, it holds:

P
(

Φ̃(G) < c
)
≤ 2P(φ(g, h) < c). (A42)

In other words, a high-probability lower bound on the AO is a high-probability lower
bound on the PO. The premise is that it is often much simpler to lower bound the AO
rather than the PO. To be precise, (A42) is a slight reformulation of Gordon’s original result
proved in [13].

Appendix B.1.2. Convex Gaussian Min-Max Theorem (CGMT)

The proof of Theorem 1 builds on the CGMT [13]. For ease of reference, we summarize
here the essential ideas of the framework following the presentation in [15] (please see [15]
(Section 6) for the formal statement of the theorem and further details). The CGMT is
an extension of the GMT and it asserts that the AO in (A41b) can be used to tightly infer
properties of the original (PO) in (A41a), including the optimal cost and the optimal
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solution. According to the CGMT [15] (Theorem 6.1), if the sets Sw and Su are convex and
ψ is continuous convex-concave on Sw × Su, then, for any ν ∈ R and t > 0, it holds that

P
(
|Φ̃(G)− ν| > t

)
≤ 2P

(
|φ(g, h)− ν| > t

)
. (A43)

In words, concentration of the optimal cost of the AO problem around µ implies concen-
tration of the optimal cost of the corresponding PO problem around the same value µ.
Moreover, starting from (A43) and under strict convexity conditions, the CGMT shows
that concentration of the optimal solution of the AO problem implies concentration of
the optimal solution of the PO to the same value. For example, if minimizers of (A41b)
satisfy ‖w∗(g, h)‖2 → ζ∗ for some ζ∗ > 0, then the same holds true for the minimizers
of (A41a): ‖w∗(G)‖2 → ζ∗ [15] ([Theorem 6.1(iii)). Thus, one can analyze the AO to infer
corresponding properties of the PO, the premise being of course that the former is simpler
to handle than the latter.

Appendix B.2. Applying the CGMT to ERM for Binary Classification

In this section, we show how to apply the CGMT to (3). For convenience, we drop the
subscript ` from x̂` and simply write

x̂ = arg min
x

1
m

m

∑
i=1

`(yiaT
i x), (A44)

where the measurements yi, i ∈ [m] follow (1). By rotational invariance of the Gaussian
distribution of the measurement vectors ai, i ∈ [m], we assume without loss of generality
that x0 = [1, 0, ..., 0]T . We can rewrite (A44) as a constrained optimization problem by
introducing n variables ui as follows:

x̂ = arg min
x,u

1
m

m

∑
i=1

`(ui)subject to ui = yiaT
i x, i ∈ [n].

This problem is now equivalent to the following min-max formulation:

min
u,x

max
βββ

1
m

m

∑
i=1

`(ui) +
1
m

m

∑
i=1

βiui −
1
m

m

∑
i=1

βiyiaT
i x. (A45)

Now, let us define
ai = [si; ãi], i ∈ [m] and x = [x1; x̃],

such that si and x1 are the first entries of ai and x, respectively. Note that in this new
notation (1) becomes:

yi = f (si), (A46)

and

corr( x̂ ; x0 ) =
x̂1√

x̂2
1 + ‖˜̂x‖2

2

, (A47)

where we decompose x̂ = [x̂1; ˜̂x]. In addition, (A45) is written as

min
u,x

max
βββ

1
m

m

∑
i=1

`(ui) +
1
m

m

∑
i=1

βiui +
1
m

m

∑
i=1

βiyiãT
i x̃− 1

m

m

∑
i=1

βiyisix1
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or, in matrix form, as

min
u,x

max
βββ

1
m

βTDyÃx̃ +
1
m

x1βββTDys +
1
m

βββTu +
1
m

m

∑
i=1

`(ui). (A48)

where Dy := diag(y1, y2, ..., ym) is a diagonal matrix with y1, y2, ...ym on the diagonal,
s = [s1, . . . , sm]T and Ã is an m× (n− 1) matrix with rows ãT

i , i ∈ [m].
In (A48), we recognize that the first term has the bilinear form required by the GMT

in (A41a). The rest of the terms form the function ψ in (A41a): they are independent of Ã
and convex-concave as desired by the CGMT. Therefore, we express (A44) in the desired
form of a PO and for the rest of the proof we analyze the probabilistically equivalent AO
problem. In view of (A41b), this is given as follows,

min
u,x

max
βββ

1
m
‖x̃‖2gTDyβββ +

1
m
∥∥Dyβββ

∥∥
2hT x̃− 1

m
x1βββTDys +

1
m

βββTu +
1
m

m

∑
i=1

`(ui) , (A49)

where as in (A41b) g ∼ N (0, Im) and h ∼ N (0, In−1).

Appendix B.3. Analysis of the Auxiliary Optimization

Here, we show how to analyze the AO in (A49). To begin with, note that yi ∈ {±1},
therefore Dyg ∼ N (0, Im) and

∥∥Dyβββ
∥∥

2 = ‖βββ‖2. In addition, let us denote the first entry x1
of x as

µ := x1.

The first step is to optimize over the direction of x̃. For this, we express the AO as:

min
u,µ,α≥0

min
‖x̃‖2=α

max
βββ

1
m
‖x̃‖2gTDyβββ +

1
m
∥∥Dyβββ

∥∥
2hT x̃− 1

m
µβββTDys +

1
m

βββTu +
1
m

m

∑
i=1

`(ui) ,

(A50)
Now, denote x̃? = −α‖h‖2 and observe that for every β the objective above is minimized
(with respect to to x̃) at x̃?. Thus, it follows by [23] (Lem. 8) that (A50) simplifies to

min
α≥0,µ,u

max
βββ

1
m

αgTβββ− α

m
‖βββ‖2‖h‖2 −

1
m

µsTDyβββ +
1
m

βββTu +
1
m

m

∑
i=1

`(ui). (A51)

Next, let γ := ‖βββ‖2√
m and optimize over the direction of β to yield

min
α≥0,u,µ

max
γ≥0

γ√
m

∥∥αg− µDys + u
∥∥

2 −
α√
m

γ‖h‖2 +
1
m

m

∑
i=1

`(ui). (A52)

To continue, we utilize the fact that for all x ∈ R, minτ>0
τ
2 + x2

2τm = x√
m . Hence,

γ√
m

∥∥αg− µDys + u
∥∥

2 = min
τ>0

γτ

2
+

γ

2τm
∥∥−αg + µDys− u

∥∥2
2 .

With this trick, the optimization over u becomes separable over its coordinates ui, i ∈ [m].
By inserting this in (A52), we have

min
α≥0,u,µ

max
γ≥0

min
τ>0

γτ

2
− α√

m
γ‖h‖2 +

γ

2τm

m

∑
i=1

(−αgi + µyisi − ui)
2 +

1
m

m

∑
i=1

`(ui),

Now, we show that the objective function above is convex-concave. Clearly, the function is
linear (thus, concave in γ). Moreover, from Lemma A1, the function 1

2τ (αgi + µyisi − ui)
2

is jointly convex in (α, µ, ui, τ). The rest of the terms are clearly convex and this completes
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the argument. Hence, with a permissible change in the order of min-max, we arrive at
the following convenient form (Here, we skip certain technical details in this argument
regarding boundedness of the constraint sets in (A49). While they are not trivial, they can
be handled with the same techniques used in [15,60].):

min
µ,α≥0,τ>0

max
γ≥0

γτ

2
− α√

m
γ‖h‖2 +

1
m

m

∑
i=1
M`

(
−αgi + µsiyi;

τ

γ

)
, (A53)

where recall the definition of the Moreau envelope in (A1). As to now, we have reduced
the AO into a random min-max optimization over only four scalar variables in (A53). For
fixed µ, α, τ, γ, direct application of the weak law of large numbers shows that the objective
function of (A53) converges in probability to the following as m, n→ ∞ and m

n = δ:

γ
τ

2
− αγ√

δ
+E

[
M`

(
αG + µYS;

τ

γ

)]
,

where G, S ∼ N (0, 1) and Y ∼ f (S) (in view of (A46)). Based on that, it can be shown
(similar arguments are developed in [15,60]) that the random optimizers αn and µn of (A53)
converge to the deterministic optimizers α and µ of the following (deterministic) optimiza-
tion problem (whenever these are bounded as the statement of the theorem requires):

min
α≥0,µ,τ>0

max
γ≥0

γ
τ

2
− αγ√

δ
+E

[
M`

(
αG + µYS;

τ

γ

)]
. (A54)

At this point, recall that α represents the norm of x̃ and µ the value of x1. Thus, in view of
(i) (A47); (ii) the equivalence between the PO and the AO; and (iii) our derivations thus far,
we have that with probability approaching 1,

lim
n→+∞

corr( x̂ ; x0 ) =
µ√

µ2 + α2
,

where µ and α are the minimizers in (A54). The three equations in (8) are derived by the
first-order optimality conditions of the optimization in (A54). We show this next.

Appendix B.4. Convex-Concavity and First-Order Optimality Conditions

First, we prove that the objective function in (A54) is convex–concave. For convenience
define the function F : R4 → R as follows

F(α, µ, τ, γ) :=
γτ

2
− αγ√

δ
+E

[
M`

(
αG + µYS;

τ

γ

)]
. (A55)

Based on Lemma A2, it immediately follows that, if ` is convex, F is jointly convex in
(α, µ, τ). To prove concavity of F based on γ, it suffices to show thatM`(x; 1/γ) is concave
in γ for all x ∈ R. To show this, we note that

M`(x; 1/γ) = min
u

γ

2
(x− u)2 + `(u),

which is the point-wise minimum of linear functions of γ. Thus, using Proposition A3(b),
we conclude thatM`(x; 1/γ) is concave in γ. This completes the proof of convex-concavity
of the function F in (A55) when ` is convex. By direct differentiation and applying
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Proposition A7(a), the first-order optimality conditions of the min–max optimization
in (A54) are as follows:

E
[

SY ·M′
`,1

(
αG + µSY;

τ

γ

)]
= 0, (A56a)

E
[

G ·M′
`,1

(
αG + µSY;

τ

γ

)]
=

γ√
δ

, (A56b)

γ

2
+

1
γ
E
[
M′

`,2

(
αG + µSY;

τ

γ

)]
= 0, (A56c)

− α√
δ
− τ

γ2E
[
M′

`,2

(
αG + µSY;

τ

γ

)]
+

τ

2
= 0. (A56d)

Next, we show how these equations simplify to the following system of equations (same
as (8):

E
[

Y S ·M′
`,1(αG + µSY; λ)

]
= 0, (A57a)

λ2 δE
[ (
M′

`,1(αG + µSY; λ)
)2
]
= α2, (A57b)

λ δE
[

G ·M′
`,1(αG + µSY; λ)

]
= α. (A57c)

Let λ := τ
γ . First, (A57a) is immediate from equation (A56a). Second, substituting γ

from (A56c) in (A56d) yields τ = α√
δ

or γ = α
λ
√

δ
, which together with (A56b) leads

to (A57c). Finally, (A57b) can be obtained by substituting γ = α
λ
√

δ
in (A56c) and using the

fact that (see Proposition A1):

M′
`,2(αG + µSY; λ) = −1

2
(M′

`,1(αG + µSY; λ))2.

Appendix B.5. On the Uniqueness of Solutions to (A57): Proof of Proposition 1

Here, we prove the claim of Proposition 1 through the following lemmas. As discussed
in Remark 4, the main part of the proof is showing strict convex-concavity of F in (11).
Lemma A6 proves that this is the case, and Lemmas A7 and A8 show that this is sufficient
for the uniqueness of solutions to (A57). When put together, these complete the proof of
Proposition 1.

Lemma A6 (Strict Convex-Concavity of (A55)). Let ` : R→ R be proper and strictly convex
function. Further, assume that ` is continuously differentiable with `′(0) 6= 0. In addition, assume
that SY has positive density in the real line. Then, the function F : R4 → R defined in (A55) is
strictly convex in (α, µ, τ) and strictly concave in γ.

Proof. The claim follows directly from the strict convexity-concavity properties of the
expected Moreau-envelope proved in Propositions A5 and A6. Specifically, we apply
Proposition A7.

Lemma A7. If the objective function in (A55) is strictly convex in (α, µ, τ) and strictly concave
in γ, then (A56) has a unique solution (α, µ, τ, γ).

Proof. Let (αi, µi, τi, γi), i = 1, 2, be two different saddle points of (A55). For convenience,
let xi := (αi, µi, τi) for i = 1, 2. By strict-concavity in γ, for fixed values of x := (α, µ, τ), the
value of γ maximizing F(x, γ) is unique. Thus, if x1 = x2, then it must hold that γ1 = γ2,
which is a contraction to our assumption of (x1, γ1) 6= (x2, γ2). Similarly, we can use
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strict-convexity to derive that γ1 6= γ2. Then, based on the definition of the saddle point
and strict convexity-concavity, the following two relations hold for i = 1, 2:

F(xi, γ) < F(xi, γi) < F(x, γi), for all x 6= xi, γ 6= γi.

We choose x = x2, γ = γ2 for i = 1 and x = x1, γ = γ1 for i = 2 to find

F(x1, γ2) < F(x1, γ1) < F(x2, γ1),

F(x2, γ1) < F(x2, γ2) < F(x1, γ2).

From the above, it follows that F(x1, γ1) < F(x2, γ2) and F(x1, γ1) > F(x2, γ2), which is a
contradiction. This completes the proof.

Lemma A8. If (A56) has a unique solution (α?, µ?, τ?, γ?), then (A57) has a unique solution
(α?, µ?, λ?).

Proof. First, following the same approach of deriving Equations (A57) from (A56) in
Appendix B.4, it is easy to see that existence of solution (α1, µ1, τ1, γ1) to (A56) implies
existence of solution (α1, µ1, λ1 := τ1

γ1
) to (A57). Now, for the sake of contradiction to the

statement of the lemma, assume that there are two different triplets v1 := (α1, µ1, λ1) and
v2 := (α2, µ2, λ2) with α1, α2, λ1, λ2 > 0 and satisfying (A57). Then, we can show that both
wi := (αi, µi, τi, γi) i = 1, 2, such that:

τi :=
αi√

δ
, γi =

αi

λi
√

δ
, i = 1, 2,

satisfy the system of equations in (A56). However, since v1 6= v2, it must be that w1 6= w2.
This contradicts the assumption of uniqueness of solutions to (A56) and completes the
proof.

Appendix C. Discussions on the Fundamental Limits for Binary Models

Appendix C.1. On the Uniqueness of Solutions to Equation κ(σ) = 1
δ

The existence of a solution to the equation κ(σ) = 1
δ is proved in the previous section.

However, it is not clear if the solution to this equation is unique, i.e., for any δ > 1 there
exists only one σopt > 0 such that κ(σopt) = 1

δ . If this is the case, then Equation (12) in
Theorem 2 can be equivalently written as

σopt = σ, s.t. κ(σ) =
1
δ

.

Although we do not prove this claim, our numerical experiments in Figure A1 show that
κ(·) is a monotonic function for noisy-signed, logistic and Probit measurements, implying
the uniqueness of solution to the equation κ(σ) = 1

δ for all δ > 1.

Appendix C.2. Distribution of SY in Special Cases

We derive the following densities for SY for the special cases (‖x0‖2 = 1):

• Signed: pSY(w) =
√

2
π exp(−w2/2)1{w≥0}.

• Logistic: pSY(w) =
√

2
π

exp(−w2/2)
1+exp(−w)

.

• Probit: pSY(w) =
√

2
π Φ(w) exp(−w2/2).

In particular, we numerically observe that for logistic and Probit models; the result-
ing densities are similar to the density of a gaussian distribution derived according to
N (E[SY], Var[SY]). Figure A2 illustrates this similarity for these two models. As discussed
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in Corollary 1, this similarity results in the tightness of the lower bound achieved for σopt
in Equation (23).
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Figure A1. The value of κ(σ) as in Theorem 2 for various measurement models. Since κ(σ) is a
monotonic function of σ, the solution to κ(σ) = 1/δ determines the minimum possible value of σ.
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Figure A2. Probability distribution function of SY for the logistic and Probit models (‖x0‖2 = 1)
compared with the probability distribution function of the Gaussian random variable (dashed lines)
with the same mean and variance i.e., N (E[SY], Var[SY]).

Appendix D. Proofs and Discussions on the Optimal Loss Function

Appendix D.1. Proof of Theorem 3

We show that the triplet (µ = 1, α = σopt, λ = 1) is a solution to Equations (8) for
` chosen as in (29). Using Proposition A2 in the Appendix, we rewrite `opt using the
Fenchel–Legendre conjugate as follows:

`opt(w) =
(

q + α1q + α2 log pWopt

)?
(w)− q(w), (A58)

where q(w) = w2/2. For a function f , its Fenchel–Legendre conjugate is defined as:

f ?(x) = max
y

xy− f (y).
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Next, we use the fact that, for any proper, closed and convex function f , it holds that
( f ?)? = f [61] (theorem 12.2). Therefore, noting that q + α1q + α2 log pWopt is a convex
function (see the proof of Lemma A9 in the Appendix), combined with (A58), it yields that

(`opt + q)? = q + α1q + α2 log pWopt . (A59)

Additionally, using Proposition A2, we find that M`opt(w; 1) = q(w) − (q + `opt)?(w),
which by (A59) reduces to:

M`opt(w; 1) = −α1q(w)− α2 log pWopt(w).

Thus, by differentiation, we find that `opt satisfies (28) with c = −1, i.e.,

M′
`opt,1(w; 1) = −α1w− α2 · ξWopt(w). (A60)

Next, we establish the desired by directly substituting (A60) into the system of equations
in (19). First, using the values of α1 and α2 in (30), as well as the fact that κ(σopt) = 1/δ, we
have the following chain of equations:

E
[ (
M′`opt,1

(
Wopt; 1

))2
]
= E

[
(α1Wopt + α2 ξWopt (Wopt))

2
]

= α2
1 (σ

2
opt + 1) + α2

2 I(Wopt) + 2 α1α2 E
[
Wopt · ξWopt (Wopt)

]
=

1 + σ2
opt

(
σ2

opt I(Wopt)− 1
)

δ2
(

σ2
opt I(Wopt) + I(Wopt)− 1

) =
σ2

opt

δ2 κ(σopt)

= σ2
opt/δ. (A61)

This shows (8b). Second, using again the specified values of α1 and α2, a similar calculation
yields

E
[
M′

`opt,1
(
Wopt; 1

)
ξWopt(Wopt)

]
= −E

[(
α1Wopt + α2 ξWopt(Wopt)

)
ξWopt(Wopt)

]
= α1 − α2 I(Wopt)

= −1/δ. (A62)

Recall from (17) that E
[

G · M′
`opt,1

(
Wopt; 1

)]
= −σopt E

[
M′

`opt,1
(
Wopt; 1

)
ξWopt(Wopt)

]
.

This combined with (A62) yields (8c). Finally, we use again (A60) and the specified values
of α1 and α2 to find that

E
[

Wopt ·M′
`opt,1

(
Wopt; 1

)]
= E

[
Wopt · (−α1Wopt − α2 ξWopt(Wopt))

]
= −α1 E

[
W2

opt

]
− α2 E

[
Wopt ξWopt(Wopt)

]
= −α1(σ

2
opt + 1)− α2

∫ ∞

−∞
w p′Wopt

(w)dw

= −α1(σ
2
opt + 1) + α2

= σ2
opt/δ. (A63)

However, using (17), it holds that
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E
[

Wopt ·M′
`opt,1

(
Wopt; 1

)]
=

− σ2
opt E

[
M′

`opt,1
(
Wopt; 1

)
ξWopt(Wopt)

]
+E

[
Y S ·M′

`opt,1
(
Wopt; λ

)]
.

This combined with (A63) and (A62) shows that E
[

Y S ·M′
`opt,1

(
Wopt; λ

)]
= 0, as desired

to satisfy (8a). This completes the proof of the theorem.

Appendix D.2. On the Convexity of Optimal Loss Function

Here, we provide a sufficient condition for `opt(w) to be convex.

Lemma A9. The optimal loss function as defined in Theorem 3 is convex if

(log(pWσ
))′′(w) ≤ − 1

σ2 + 1
, for all w ∈ R and σ ≥ 0.

Proof. Using (A9) optimal loss function is written in the following form

`opt(w) =
(

q + α1q + α2 log(pWopt)
)?

(w)− q(w). (A64)

Next, we prove that q + α1q + α2 log(pWopt) is a convex function. We first show that both
α1 and α2 are positive numbers for all values of σopt. We first note that, since G and SY are
independent random variables, σ2

optI(Wopt) < σ2
optI(σopt G) = 1. Therefore,

1− σ2
optI(Wopt) > 0. (A65)

Additionally, following the Cramer–Rao bound [53] for Fisher information yields that:

I(Wopt) >
1

E
[
(Wopt −E[Wopt])2

]
=

1
1 + σ2

opt − (E[SY])2
.

Using this inequality for I(Wopt), we derive that

σ2
optI(Wopt) + I(Wopt)− 1 > 0. (A66)

From (A65) and (A66), it follows that α1, α2 > 0.
Based on the definition of the random variable Wopt:

log pWopt(w) = −w2/(2σ2
opt) + log

∫ ∞

−∞
exp

(
(2wz− z2)/2σ2

opt

)
pSY(z)dz + c,

where c is a constant independent of w. By differentiating twice, we see that

log
∫ ∞

−∞
exp

(
(2wz− z2)/2σ2

opt

)
pSY(z)dz

is a convex function of w. Therefore, to prove that q + α1q + α2 log(pWopt) is a convex
function, it is sufficient to prove that (1 + α1 − α2/σ2

opt)q is a convex function or equiva-
lently 1 + α1 − α2/σ2

opt ≥ 0. Replacing values of α1, α2 and recalling the equation for σopt
yields that

1 + α1 − α2/σ2
opt = 0,
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which implies the convexity of q + α1q + α2 log(pWopt). To obtain the derivative of `opt, we
use the result in [61] (Cor. 23.5.1), which states that, for a convex function f ,

( f ?)′ = ( f ′)−1.

Therefore, following (A64),

`′opt(w) = (q′ + α1q′ + α2(log(pWopt))
′)−1(w)− w. (A67)

Differentiating again and using the properties of inverse function yields that

`′′opt(w) =
1

1 + α1 + α2(log(pWopt))
′′(g(w))

− 1, (A68)

where
g(w) := (q′ + α1q′ + α2(log(pWopt))

′)−1(w).

Note that the denominator of (A68) is nonnegative since it is second derivative of a convex
function. Therefore, it is evident from (A68) that a sufficient condition for the convexity of
`opt is that

α1 + α2(log(pWopt))
′′(w) ≤ 0, for all w ∈ R,

or
1− σ2

optI(Wopt) + (log(pWopt))
′′(w) ≤ 0.

This condition is satisfied if the statement of the lemma holds for σ = σopt:

1− σ2
optI(Wopt) + (log(pWopt))

′′(w) ≤ 1− σ2
optI(Wopt)−

1
1 + σ2

opt
< 0,

where we use (A66) in the last inequality. This concludes the proof.

Appendix D.2.1. Provable Convexity of the Optimal Loss Function for Signed Model

In the case of signed model, it can be proved that the conditions of Lemma A9 is
satisfied. Since Wσ = σG + SY, we derive the probability density of Wσ as follows:

pWσ
(w) = p

σG (w) ∗ pSY(w) =
exp(−w2/(2 + 2σ2))√

2π(1 + σ2)
· f (w),

where
f (w) = 2− 2Q(w/(σ

√
2 + 2σ2)).

Direct calculation shows that f is a log-concave function for all w ∈ R. Therefore,

(log(pWσ
))′′(w) = − 1

σ2 + 1
+ (log( f ))′′(w)

≤ − 1
σ2 + 1

.

This proves the convexity of optimal loss function derived according to Theorem 3 when
measurements follow the signed model.

Appendix E. Noisy-Signed Measurement Model

Consider a noisy-signed label function as follows:

yi = fε(aT
i x0) =

{
sign(aT

i x0) , w.p.1− ε,
−sign(aT

i x0) , w.p.ε,
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where ε ∈ [0, 1/2].
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Figure A3. The value of the threshold δ?fε
in (A69) as a function of probability of error ε ∈ [0, 1/2].

For logistic and hinge losses, the set of minimizers in (3) is bounded (as required by Theorem 1) iff
δ > δ?fε

.

In the case of signed measurements, i.e., yi = sign(aT
i x0), it can be observed that for

all possible values of δ, the condition (34) in Section 4.2 holds for xs = x0. This implies
the separability of data and therefore the solution to the optimization problem (3) is
unbounded for all δ. However, in the case of noisy signed label function, boundedness or
unboundedness of solutions to (3) depends on δ. As discussed in Section 4.2, the minimum
value of δ for bounded solutions is derived from the following:

δ?fε
(ε) :=

(
min
c∈R

E
[
(G + c S Y)2

−

])−1
, (A69)

where Y = fε(S). It can be checked analytically that δ?fε
is a decreasing function of ε with

δ?fε
(0+) = +∞ and δ?fε

(1/2) = 2.
In Figure A3, we numerically evaluate the threshold value δ?fε

as a function of the
probability of error ε. For δ < δ?fε

, the set of minimizers of the (3) with logistic or hinge loss
is unbounded.

The performances of LS, LAD and hinge loss functions for noisy-signed measurement
model with ε = 0.1 and ε = 0.25 are demonstrated in Figure A4a,b, respectively. Comparing
performances of least-squares and hinge loss functions suggest that hinge loss is robust
to measurement corruptions, as for moderate to large values of δ it outperforms the LS
estimator. Theorem 1 opens the way to analytically confirm such conclusions, which is an
interesting future direction.
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(a) ε = 0.1
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(b) ε = 0.25
Figure A4. Comparisons between analytical and empirical results for the least-squares (LS), least-absolute deviations and
hinge loss functions along with the upper bound on performance and the empirical performance of optimal loss function as
in Theorem 3, for noisy-signed measurement model with ε = 0.1 (a) and ε = 0.25 (b). The vertical dashed lines are evaluated
by (A69) and represent δ?fε

≈ 3 and 2.25 for ε = 0.1 and 0.25, respectively.

Appendix F. On LS Performance for Binary Models

Appendix F.1. Proof of Corollary 2

To get the values of α and µ as in the statement of the corollary, we show how to
simplify Equations (8) for `(t) = (t− 1)2. In this case, the proximal operator admits a
simple expression:

prox`(x; λ) = (x + 2λ)
/
(1 + 2λ).

In addition, `′(t) = 2(t− 1). Substituting these in (14a) gives the formula for µ as follows:

0 = E[YS(αG + µSY− 1)] = µE[S2]−E[YS]

=⇒ µ = E[YS],

where we have also used from (7) that E[S2] = 1 and G is independent of S. In addition,
since `′′(t) = 2, direct application of (A7) gives

1 = λδ
2

1 + 2λ
=⇒ λ =

1
2(δ− 1)

.

Finally, substituting the value of λ into (14b), we obtain the desired value for α as follows:

α2 = 4λ2δE
[
(prox`(αG + µSY; λ)− 1)2

]
=

4λ2

(1 + 2λ)2 δE
[
(αG + µSY− 1)2

]
=

4λ2δ

(1 + 2λ)2 (α
2 + µ2 + 1− 2µE[SY])

=
1
δ
(α2 + 1− (E[SY])2)

=⇒ α =

√
1− (E[SY])2 ·

√
1

δ− 1
.
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Appendix F.2. Discussion
Linear vs. Binary

On the one hand, Corollary 2 shows that least-squares performance for binary mea-
surements satisfies

lim
n→∞

∥∥∥x̂− µ

‖x0‖2
· x0

∥∥∥2

2
= τ2 · 1

δ− 1
, (A70)

where µ is as in (32) and τ2 := 1− (E[SY])2. On the other hand, it is well-known (e.g., see
references in [15] (Sec. 5.1)) that least-squares for (scaled) linear measurements with addi-
tive Gaussian noise (i.e., yi = ρaT

i x0 + σzi, zi ∼ N (0, 1)) leads to an estimator that satisfies

lim
n→∞
‖x̂− ρ · x0‖2

2 = σ2 · 1
δ− 1

. (A71)

Direct comparison of (A70) to (A71) suggests that least-squares with binary measurements
performs the same as if measurements were linear with scaling factor ρ = µ/‖x0‖2 and
noise variance σ2 = τ2 = α2(δ− 1). This worth-mentioning conclusion is not new, as it
is proved in [40,43,56,62]. We include a short discussion on the relation to this prior work
in the following paragraph. We highlight that all these existing results are limited to a
least-squares loss unlike our general analysis.

Prior work. There is a lot of recent work on the use of least-squares-type estimators for
recovering signals from nonlinear measurements of the form yi = h(aT

i x0) with Gaussian
vectors ai. The original work that suggests least-squares as a reasonable estimator in this
setting is due to Brillinger [56]. In his 1982 paper, Brillinger studied the problem in the
classical statistics regime (namely, n is fixed not scaling with m→ +∞) and he proved for
the least-squares solution satisfies

lim
m→+∞

1
m

∥∥∥∥x̂− µ

‖x0‖2
· x0

∥∥∥∥2

2
= τ2,

where

µ = E[SY], S ∼ N (0, 1),

τ2 = E[(Y− µS)2]. (A72)

and the expectations are with respect to S and possible randomness of f . Evaluating (A72)
for Y = fε(S) leads to the same values for µ and τ2 in (A70). In other works, (A70) for
δ→ +∞ indeed recovers Brillinger’s result. The extension of Brillinger’s original work to
the high-dimensional setting (both m, n large) was first studied by Plan and Vershynin [40],
who derived (non-sharp) non-asymptotic upper bounds on the performance of constrained
least-squares (such as the Lasso). Shortly after, Thrampoulidis et al. [43] extended this result
to sharp asymtpotic predictions and to regularized least-squares. In particular, Corollary 2
is a special case of the main theorem in [43]. Several other interesting extensions of the
result by Plan and Vershynin have recently appeared in the literature (e.g., [41,62–64]).
However, the one in [43] is the only one to give results that are sharp in the flavor of this
paper. Our work, extends the result of Thrampoulidis et al. [43] to general loss functions
beyond least-squares. The techniques of Thrampoulidis et al. [43] that have guided the use
of the CGMT in our context were also recently applied by Dhifallah et al. [60] in the context
of phase-retrieval.
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Appendix G. Fundamental Limits for Gaussian-Mixture Models: Proofs for Section 5

Appendix G.1. Proof of Corollary 3

The proof follows directly by noting that, when `(t) = (t − 1)2, it holds that

M`(x; λ) = (x−1)2

2λ+1 . By inserting this into (38a) and simplifying the equations, we find
the value of µ:

µ =
r

1 + r2 .

Similarly, we derive λ using Equation (38c):

λ =
1

2(δ− 1)
.

Substituting these values of µ and λ into (38b) yields that

α2 =
1

δ− 1
· 1

r2 + 1
.

Recalling that σLS = α/µ concludes the proof.

Appendix G.2. Proof of Theorem 5

The high-level steps of the proof follow the proof of Theorem 2. First, we note that by
scaling the loss function ` the value of σ` does not change. In particular, if ˜̀(t) := C1`(C2t)
for arbitrary constants C1 > 0, C2 6= 0, it is not hard to see that x̂˜̀ = 1/C2 x̂` is the
minimizer of (3). Thus, we conclude from (40) that σ̃

`
= σ`. With this observation, consider

the function ˜̀ : R→ R such that ˜̀(t) = λ
µ2 `(µ t). Then, notice that

M′
`,1(x; λ) =

1
λ
M′˜̀,1(x/µ; 1).

Using this relation in (38) and setting σ := σ` = α/µ, the system of equations in (38) can be
equivalently rewritten in the following convenient form, where Zσ = σW1 + W2:

E
[

W2 ·M′˜̀,1(Zσ; 1)
]
= 0, (A73a)

E
[ (
M′˜̀,1(Zσ; 1)

)2
]
= σ2/δ , (A73b)

E
[

W1 ·M′˜̀,1(Zσ; 1)
]
= σ/δ . (A73c)

Next, we show how to use (A73) to derive an equivalent system of equations in terms
of only Zσ. Starting with (A73c), we have

E
[

W1 ·M′˜̀,1(Zσ; 1)
]
=

1
σ

∫∫
xM′˜̀,1(x + y; 1)pσW1(x)pW2(y)dxdy, (A74)

where recall that pσW1(x) = 1
σ
√

2π
e−

x2

2σ2 . Since it holds that pσW1(x) = −σ2

x p′σW1
(x), us-

ing (A74) yields that

E
[

W1 ·M′˜̀,1(Zσ ; 1)
]
= −σ

∫∫
M′˜̀,1(x + y; 1)p′σW1

(x)pW2 (y)dxdy

= −σ
∫∫
M′˜̀,1(z; 1)p′σW1

(x)pW2 (z− x)dxdz = −σ
∫
M′˜̀,1(z; 1)p′Zσ

(z)dz,



Entropy 2021, 23, 178 44 of 46

where in the last step we use

p′Zσ
(w) =

∫
p′σW1

(x)pW2(z− x)dx.

Therefore,

E
[

W1 ·M′˜̀,1(Zσ; 1)
]
= −σE

[
M′˜̀,1(Zσ; 1)ξZσ (Zσ)

]
.

This combined with (A73c) gives

E
[
M′˜̀,1(Zσ; 1)ξZσ (Zσ)

]
= −1/δ.

Second, multiplying (A73c) with σ2 and adding it to (A73a) yields

E
[

Zσ ·M′˜̀,1(Zσ; 1)
]
= σ2/δ. (A75)

Putting these together, we conclude with the following system of equations which is
equivalent to (A73),

E
[

Zσ ·M′˜̀,1(Zσ; 1)
]
= σ2/δ, (A76a)

E
[ (
M′˜̀,1(Zσ; 1)

)2
]
= σ2/δ, (A76b)

E
[
M′˜̀,1(Zσ; 1)ξZσ (Zσ)

]
= −1/δ. (A76c)

Next, considering (A76a) and (A76c), the following holds for any c1, c2 ∈ R,

E
[
(c1Zσ + c2 ξZσ (Zσ)) ·M′˜̀,1(Zσ; 1)

]
= c1σ2/δ− c2/δ. (A77)

Applying Cauchy–Schwarz inequality to the LHS of (A77) gives

(
c1σ2/δ− c2/δ

)2
=

(
E
[(

c1Zσ + c2 ξZσ (Zσ)
)
·M′˜̀,1(Zσ; 1)

])2

≤ E
[(

c1Zσ + c2 ξZσ (Zσ)
)2
]
E
[(
M′˜̀,1(Zσ; 1)

)2
]

. (A78)

By considering (A76b), E[ZσξZσ (Zσ)] = −1 (follows from integration by parts) and
E
[
(ξZσ (Zσ))2] = I(Zσ) = (σ2 + 1)−1, we simplify (A78) to the following:

(c1σ2/δ− c2/δ)2 ≤
(

c2
1(σ

2 + 1 + r2) + c2
2/(σ2 + 1)− 2c1c2)

)
σ2/δ.

Choosing c1 = 1 and c2 = (1 + r2)(1 + σ2) and simplifying both sides, we derive the lower
bound for σ2:

σ2 ≥ 1 + r2

r2 · 1
(δ− 1)

.

This completes the proof of theorem.
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