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Abstract: We consider the problem of designing grid quorum systems for maximum distance separa-
ble (MDS) erasure code based distributed storage systems. Quorums are used as a mechanism to
maintain consistency in replication based storage systems, for which grid quorums have been shown
to produce optimal load characteristics. This motivates the study of grid quorums in the context
of erasure code based distributed storage systems. We show how grid quorums can be built for
erasure coded data, investigate the load characteristics of these quorum systems, and demonstrate
how sequential consistency is achieved even in the presence of storage node failures.
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1. Introduction

We consider the problem of consistency for erasure code based distributed storage
systems. Distributed storage systems store data over a network of nodes, so that data
remains available over time. In order to do so, several properties are desirable, such as
high fault-tolerance and low storage overhead. Fault-tolerance refers to the system’s ability
to sustain failures of some of its components, and is present across three dimensions: (1)
availability (the data should remain available even in the event of failures), (2) persistence,
(the data should remain available over time), and (3) consistency (irrespective of the
sequence of read and write operations on the stored data by multiple processes, and of
possible failures, the data should appear to every process as if it had been manipulated in a
globally agreed order).

Availability and persistence are achieved through redundancy. The data is stored
multiple times, so that even when a node is unavailable, the requested data may be
queried from another node (achieving (1)). Since failures may be temporary or permanent,
redundancy needs to be replenished via maintenance mechanisms, in order to achieve (2),
that is persistence over time. However, since the data is stored redundantly, it becomes
essential to ensure consistency, so that all applications accessing a given data see the same
version, in particular after updates, irrespective of which storage nodes are accessed.

Both maintenance of adequate level of redundancy and consistency depend on the
redundancy mechanisms chosen, which typically induce trade-offs with storage overhead.
Replication has been the most common way to ensure fault-tolerance, though over the past
decade, more and more storage systems have adopted erasure coding techniques instead,
e.g., Reference [1–4], since they provide a good trade-off between fault-tolerance and stor-
age overhead. Processes to maintain the amount of redundancy over time in the presence
of node failures for erasure code based distributed storage systems have been profusely
studied (see, e.g., Reference [5,6] for surveys on erasure coding techniques enabling redun-
dancy maintenance in distributed storage systems). Designs of mechanisms that support
efficient updates of coded data have also been considered; see, e.g., References [7–10].
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1.1. Consistency

In the context of replication, consistency refers to a setting where read and write
operations are performed on shared data (the replicas) by different processes (see the left
of Figure 1), and it informally means that, when one replica is updated by one of the
processes, it should be ensured that the other copies are updated accordingly. This is
achieved by fixing a set of rules the processes obey when they want to read or write the
data, in exchange for which the data the processes obtain is expected to be up-to-date.

x x x

P1 P2 P3 P4

P1 w(x)a
P2 w(x)b
P3 r(x)b r(x)b
P4 r(x)b r(x)b
wall-clock time
P1 w(x)a
P2 w(x)b
P3 r(x)a r(x)b
P4 r(x)b r(x)b

Figure 1. On the left: A simplified view of a distributed storage system, where nodes store replicas
of some data object x. Processes P1, P2, P3, P4 may ask to read the current value, say c, from x,
represented as r(x)c or write the value c to x, represented as w(x)c. They may carry out the operations
at any of the replicas. On the right, two forms of consistency are illustrated: a read operation r(x)c or
a write operation w(x)c at a given point of the wall-clock time indicates that a process is asking for the
corresponding operation on a replica. When it is effectively executed is inferred from the table: under
strict consistency (illustrated in the upper right quadrant), the executions follow the same timeline,
while under sequential consistency (illustrated in the lower right quadrant), the executions follow
some global ordering but need not adhere to the wall clock time at which the operations were invoked
by the processes.

Under strict consistency (see the upper right of Figure 1), processes ask for a read
operation r(x)c or a write operation w(x)c (respectively, reading or writing the value of x
to be c) at a given point of the so-called wall-clock time, and the execution is expected to
be instantaneous and thus follow that same ordering. The wall-clock time represents an
absolute global time, while, in practice, different processes in a distributed system may not
be perfectly synchronized or aware of what other processes locally consider as the time.
In this example, P2 writes w(x)b after P1 as per the wall-clock time; thus, P3, P4 get b on
every occasion when they carry out a read operation subsequently as per wall-clock time.
This corresponds to the ordering w(x)a, w(x)b, r(x)b, r(x)b, r(x)b, r(x)b.

In contrast, sequential consistency only requires for some global ordering of the
operations. We quote Reference [11] to provide the precise way it has been defined “. . . the
result of any execution is the same as if the operations of all the processors were executed
in some sequential order, and the operations of each individual processor appear in this
sequence in the order specified by its program.” The lower right of Figure 1 illustrates an
example scenario meeting this definition. The operations shown are not strictly consistent
because P3 reads a from x, even though P2 has in real time (wall-clock time) already issued
a write b request. Nevertheless, in this case, the following global ordering w(x)a, r(x)a,
w(x)b, r(x)b, r(x)b, r(x)b specifies a legitimate sequential order of operations.

There are several other forms of consistency, including, for example causal and even-
tual consistencies; see, e.g., Reference [12] (Section 7): strict and sequential consistencies
are strong forms of consistency, they have the advantage of maintaining a high level of
global consistency at all times, at a cost in terms of latency. In this work we are interested
in designing a mechanism for achieving sequential consistency over erasure coded data,
and we do so by applying a standard technique to achieve so, namely quorum systems.
A quorum system is defined as a collection of subsets of nodes (called quorums), where
each pair of quorums has a non-empty intersection [13] (Def 3.4). A “vote" (or a “lock”)
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is attributed to every node in the system, and any application wishing to either read or
write data needs to gather enough votes in order to perform its operation. Because of the
intersecting property of quorums, mutual exclusion of a write operation with any other
write or read operations is achieved.

1.2. Related Works

In order to achieve sequential consistency, it is necessary that multiple processes cannot
carry out write operation(s) to change the value of any object, while other operations are
reading or writing said value; and conversely no read operation should be carried out
while a write operation is underway, i.e., mutual exclusion of any write operation from
other write or read operations is needed. One way to achieve this is by means of quorum
systems (we describe quorum systems in detail, later in this paper), which are subsets of
nodes which intersect pair-wise. Coupled with locking mechanisms, such intersecting
subsets of nodes can be used to guarantee the necessary mutual exclusion, enabling the
design of protocols to enforce sequential consistency. We refer to Reference [13] for a more
detailed treatment of how quorum systems are used in storage applications.

Apart from quorum systems, another popular mechanism for consistency is the class
of primary-based protocols, where each data block x has an associated primary, which
is responsible for coordinating operations on x. For example, Reference [9] proposed an
update model assuming a primary which serializes the update executions, and, similarly,
in Reference [10], the node storing a data block enforces serialized writes, while updates are
disseminated in a best effort manner to the redundant blocks, and stale reads are possible,
i.e., there is no consistency guarantee.

Finally the Paxos family of protocols [14] for solving consensus algorithms has been
adapted to erasure coded data. For example, Reference [15] applies Paxos over erasure
coded data by assuming a bound on the deviation of local clocks at nodes, without leverag-
ing the structural properties of codes. Then, Reference [4] is an erasure code based object
storage which realizes consistency using Paxos, but Paxos is used at object granularity.
Coded Atomic Storage (CAS) [16] is aimed at mimicking shared memory abstraction for
erasure coded data, with an emphasis on reducing communication cost, followed up by
Reference [17], which builds upon Reference [16] to explore how reconfiguration of the
system can be carried out while maintaining atomicity.

1.3. Contributions

Quorums exist in two renditions: symmetric, when a single system of sets is used
to represent both reads and writes (though the kind of “vote” or “lock” associated with
the acquired quorum can be different, depending on the purpose being a read or write
operation), and asymmetric, when there are two distinct set systems, representing read
quorums and write quorums separately. When a process uses a quorum, possibly accessing
all nodes in this quorum, this induces a load, which measures the access probability of
the busiest node in the system. The goal of this paper is to study a class of symmetric
quorums called grid quorums [13] (Section 3.2), in the context of erasure coded data. This
is motivated by the knowledge that grid quorums over replicated data exhibit optimal load
characteristic and are, thus, good candidates to be generalized to the context of erasure
coded data.

The contributions of this work are as follows:
(i) We specify requirements for quorum systems in the context of systematic maximally

distance separable (MDS) erasure coded data (in Section 3.1). Our definition encapsulates
sufficiency for the quorum system (it does not preclude the existence of different other
quorum systems) to meet read/write mutual exclusion needs in the system, which in turn
guarantees sequential consistency congruent to the global ordering of quorums formed.

(ii) We demonstrate (in Section 3.3) how to realize different variations Qcod1
grid and Qcod2

grid
of grid quorum systems for erasure coded data subject to the quorum specification referred
above. The former variant Qcod1

grid involves subsets of nodes which occupy a full row and
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a full column of a logical grid layout of nodes, while the latter, i.e., Qcod2
grid , is a variant of

the former, comprising truncated (smaller) groups still meeting the mutual intersection
property. We prove that, for (n, k) MDS codes, where n is a square and k =

√
n
√

n+1
2 ,

the load of the quorums under access strategy S are

LS(Qcod1
grid ) =

2√
n

,

and

LS(Qcod2
grid ) = (2

√
n− 1)Pd + Pp


√

n

∑
j=1

j 6=
√

n−1

√
n− 1√

n− 1 + j
+

√
n

∑
j=1

j 6=
√

n

√
n√

n + j

.

The access strategy S depends on the probabilities Pd, Pp of accessing, respectively, data
and parity nodes. Load is a metric determined by the fraction of time a given node is
used, be it for a read or write operation, and is an important metric to characterize the
performance and impact of a quorum system. Intuitively, lower the load, the freer the
nodes in the system are to carry out other tasks. In Section 2.2 we provide a comprehensive
definition for the load of a quorum.

(iii) In Section 3.4, we extend our study to B-grid quorums, a generalization of grid
quorums. B-grid quorums suitable for erasure coded data are proposed which accommo-
date (n, k) MDS code with n = cbr and k = n− rb2 and, thus, a wide range of rates. Their
load is also computed, giving

LS(Qcod
B−grid) =

1
b

(
1 +

1
r

)
.

We then discuss the trade-offs between load and storage overhead.
(iv) In Section 4, we demonstrate how sequential consistency is achieved using the

proposed quorum systems even in the presence of various combination of faults.

2. Background
2.1. Erasure Coding for Storage

A linear (n, k) erasure code over some finite field Fq is a linear map: (x1, . . . , xk) 7→
(x1, . . . , xk, xk+1, . . . , xn), where xp, p = k + 1, . . . , n are linear combinations in x1, . . . , xk,
referred to as parities:

xp =
k

∑
i=1

ajixi. (1)

The vector (x1, . . . , xk, xk+1, . . . , xn) is called a codeword, and since the first coefficients of
the codeword are x1, . . . , xk, the code is said to be systematic. In a storage system, x1, . . . , xk
are data blocks to be stored, and, in order to provide fault tolerance, the n coefficients
x1, . . . , xn are stored over n nodes, say node d stores xd, d = 1, . . . , k for the data blocks,
and node p stores xp, p = k + 1, . . . , n for the parity blocks. If the node i is unavailable,
xi should be recoverable from the remaining n − 1 blocks. In case several nodes are
unavailable, the data content may or not be recoverable depending on the erasure tolerance
ability of the code. Codes with the best fault tolerance with respect to k and n are called
maximum distance separable (MDS) codes, and can tolerate a loss of up to n− k blocks.
The ratio k/n is called the rate of the code. In the context of storage, people often use the
reciprocal, indicating storage overhead n/k instead.

Non-MDS erasure codes with better repairability properties have been heavily re-
searched [5,6] and even deployed in some practical systems [1]; however, as an initial study
on the topic of quorum systems for erasure coded data, we consider only MDS codes, both
for keeping the study relatively simpler, as well as because they continue to be widely
used [2,3].
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Example 1. The (n, 1) repetition code that maps x1 to (x1, . . . , x1) is an MDS code, x1 may be
recovered as long as at least one out of its n copies is available. This means the storage system is
keeping replicas of the data to be stored. The (n, n− 1) parity check code that maps (x1, . . . , xn−1)
to (x1, . . . , xn−1, x1 + . . . xn−1) is another example. Only one erasure is tolerated. The most
popular class of MDS codes is called Reed-Solomon codes. They may be defined by polynomial
evaluation: coefficients of the polynomial are formed from the data to be encoded, and codewords are
obtained by evaluating this polynomial.

2.2. Quorum Systems

Definition 1. Given n nodes, a quorum system Q is a set of subsets of nodes called quorums,
such that every two quorums intersect, i.e., Q ∩Q′ 6= ∅ for all Q, Q′ ∈ Q.

We will label the set of n nodes by {1, . . . , n}.

Example 2. For example, the smallest quorum system consists of just one quorum, itself consisting
of one node: Qsing = {{i}}, for some i in {1, . . . , n}. It is called the singleton quorum Qsing.
The majority quorum system Qmaj is defined to be all quorums of size b n

2 c+ 1. For example, if the
set of nodes is {1, 2, 3, 4}, then b n

2 c+ 1 = 3, andQmaj = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}.

Quorums are used for maintaining consistency of data that is being read and written
to, by multiple processes. In order to read or write data, and, respectively, read or write
locks on, a quorum of nodes must first be obtained. If the operation is a write, a quorum
Q ∈ Q is formed for the write operation to be performed, and, while the operation is
being processed, no other operation ought to be carried out, preventing reading of stale
information, or for multiple writes to overwrite over each other. This mutual exclusion
is achieved using quorums and write locks, since any other operation would need to
likewise acquire another quorum of nodes, which cannot be obtained since every Q′

intersect with Q but write locks are treated to be exclusive. Multiple read operations
can, however, be allowed, even with intersecting quorums, by associating read locks that
are not mutually exclusive, distinct from write locks which are exclusive. Furthermore,
whenever a write operation is involved, a subsequent read or write operation is guaranteed
to know of the latest update because of the intersecting quorums and the mutual exclusion
achieved through the locking process. Since no other operations are possible when a write
operation is being carried out (because of the mutual exclusion achieved with write locks),
and because any future process will necessarily include at least one node with the latest
written value (from the intersection property of the quorums), the latest update will be
visible to any future read or write accesses.

The load of a node depends on how often it is accessed. For every quorum Q ∈ Q, an ac-
cess probability PS(Q) is defined, for S an access strategy. By definition, ∑Q∈Q PS(Q) = 1.
Then, the load LS(i) of node i using the access strategy S is

LS(i) = ∑
Q∈Q
i∈Q

PS(Q) (2)

so that the load induced by S on the system is the load imposed by the busiest node:

LS(Q) = max
i∈{1,...,n}

LS(i). (3)

The load of a quorum system Q is the minimal load, across all possible access strategies
that can be used.

Example 3. For the load of the busiest node, we have L(Qsing) = 1, since forQ = {{i}}, for some
i in {1, . . . , n}, we have LS(i) = 1. For L(Qmaj) > 1/2, since, in a majority quorum system, all
subsets of {1, . . . , n} of size b n

2 c+ 1 are included, which means (we present the argument for n
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even) that a given node i will belong to (n−1
n
2
) quorums out of the ( n

n
2 +1) quorums. Thus, a uniform

access probability gives

(n− 1)!
( n

2 )!(
n
2 − 1)!

( n
2 + 1)!( n

2 − 1)!
n!

=
n
2 + 1

n
=

1
2
+

1
n
>

1
2

.

Continuing Example 2, with Qmaj = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}, a uniform access
probability means PS(Q) = 1

4 for every Q ∈ Q; thus, LS(1) = PS({1, 2, 3}) + PS({1, 2, 4}) +
PS({1, 3, 4}) = 3

4 , and, similarly, LS(i) = 3
4 for i = 1, 2, 3, 4.

3. Grid Quorums

In the following, we consider logical grid layouts decoupled from the physical data
placement of data and parity or the physical configuration of the storage nodes in the
distributed system.

3.1. Quorum Systems and Erasure Coded Data

The definition of a quorum system (see Definition 1) considers all nodes to play
the same role, since replicated data is stored (thus, every node stores the same thing).
For erasure coded data, we actually have two types of nodes: those storing the actual
data blocks (nodes 1, . . . , k) and those storing the parities (nodes k + 1, . . . , n). When two
quorums intersect, it could thus be a priori on either data nodes or parity nodes. We add
the requirement that in every intersection of two quorums, there is at least one parity node.
The reason is as follows: we consider each data block to be independent of each other,
hence updates on one does not alter other data blocks, while it does affect parities, which,
in a MDS code, are linear combinations of all data blocks. Thus, whenever any data block
is updated, parities need to be updated correspondingly. The requirement that there is
always some parity node in intersection of any two quorums is, thus, formally stated as:

∃ p ∈ Q ∩Q′ for all Q, Q′ ∈ Q and p ∈ {k + 1, . . . , n}. (4)

When an update is carried out, the write lock is released only after every parity in the
quorum acquired to carry out the write operation is already updated. The parities outside
the quorum too need to be updated, but this is let to happen in the background. It can
be carried out efficiently using a standard technique using differentials [7–10], which is
outside the scope of this work.

The quorum mechanism further needs to ensure that at least one of the latest updated
parities will be present in any subsequent quorum:

∃ p ∈ Qt ∩Qt+1 for all Qt, Qt+1 ∈ Q and p ∈ {k + 1, . . . , n}. (5)

Recall that we want to achieve sequential consistency [11] using the proposed mecha-
nism. Here, t indicates a logical marker corresponding to the t-th snapshot view of the
system. t + 1 accordingly refers to the system at the conclusion of the next execution of
any operation. Qt and Qt+1 accordingly refers to the quorums invoked by the operations
that led the system to reach the corresponding sequentially consistent states. The above
invariant should hold irrespective of whether the background update propagation process
is completed, in order to ensure that a process can identify the latest data and does not
inadvertently obtain stale data, thus facilitating sequential consistency.

Lemma 1. Property (5) follows from (4).

Proof. Suppose quorum Qt has been used for an update at time t. Then, all parities
involved in Qt got updated, and since any quorum Qt+1 intersects Qt in such a parity p,
property (5) follows.
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We illustrate Lemma 1 with example instances of grid quorums on the left of Figure 2.
Later, in Section 3.3 we will formally describe grid quorums for coded data. We will
then also demonstrate that indeed grid quorums always satisfy the necessary property (4),
but for the moment, we focus on providing an example to illustrate how (5) follows from (4).
The upper triangular part of the grid comprises parity blocks, data blocks are found strictly
below the diagonal. Two particular instances of quorums—one comprising data block xi
and some parity blocks, and another comprising data block xj and some parity blocks—are
shown. These two specific instances do have one parity block (boxed for emphasis) in
common, satisfying (4). The intersection of a parity across the two write quorums would
ensure that any process carrying out a new write operation will become aware of the
previous update, and will be able to (and need to) incorporate that update along with its
own update at all the parity nodes in its own write quorum. Note that we assume that any
node which has incorporated an update also stores certain meta-information, particularly
the logical time-stamp of the update [18] to enable the identification of the latest version,
and also stores the previous versions (or differentials) for a period of time, until a given
version is propagated to all the other storage nodes in the system, before garbage collecting
obsolete versions. We next provide a sketch of how this ensures sequential consistency
(shown in the right panel of Figure 2 for the data block xi).

P1 w(xi)a
P2 w(xi)b
P3 r(xi)b r(xi)b
P4 r(xi)b r(xi)b
wall-clock time
P1 w(xd)a
P2 w(xd)b
P3 r(xd)a r(xd)b
P4 r(xd)b r(xd)b

Figure 2. Update sequence (for the grid-quorums on the left of the figure): at time t, xi is updated
using its quorum Qt, in which parities are highlighted in row and column 4 (shown on the left).
At time t′ > t, xj is updated using its quorum Qt′ , in which parities are highlighted in row 5 and
column 5 (on the right). Since the parity node (boxed for highlighting) at coordinate (4, 5) is common,
process updating xj would know that xi was updated, and the latest value of xi will have to be taken
into account during its own update, so that all the parities in Qt′ reflect not only the latest value of
xj, but also the latest value of xi, irrespective of whether they had received the update information
regarding xi through the background process prior to the invocation of Qt′ . Two distinct but valid
scenarios of sequential consistency are shown (on the right of the figure) based on different sequences
of quorums acquired.

Without loss of generality, suppose a process P1 asks for a write of the block xd (w(xd)a,
d ∈ {1, . . . , k}) and acquires a write quorum Qt first, while process P2 asks for a write of the
same block xd (w(xd)b) and acquires a quorum Qt′ for P2 subsequently. If this second write
quorum Qt′ is created before any of the read quorums to process the read requests from
processes P3 and P4, then it will result in a wall-clock ordered sequence as shown in the
top right quadrant of Figure 2. As an alternate scenario, it is also possible that, when the
locks for Qt are released after P1 completes w(xd)a, a different pending operation obtains
a quorum before P2 can carry out the next write operation. For instance, the first read
operation by process P3 may be carried out ahead of P2’s write operation, leading to r(xd)(a)
at P3 occurring before w(xd)b by P2, while all the other read operations follow this second
write operation, leading to the scenario shown at the bottom right quadrant of Figure 2.
Both of these scenarios satisfy sequential consistency. We used updates to the same data
object xd to elaborate how sequential consistency is achieved, for keeping the exposition
simple. However, in general, all the write operations will account for the immediately
preceding write operation (Lemma 1) on any arbitrary data object and update the parities
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in its quorum accordingly. The immediately next update will again transitively have access
to these updates. Hence, the global ordering will be determined based on the sequence in
which the quorums are acquired, yielding sequential consistency. To wrap up the current
example, we emphasize that though we used a particular example to demonstrate the ideas,
the arguments advanced here hold for arbitrary quorum systems satisfying (4); thus, (5).

We will next provide a description of grid quorums for replicated data, before delving
into the the design of grid quorums for erasure coded data.

3.2. Basic Grid Quorums

We recall what are basic grid quorums used over replicas.

Definition 2 (Reference [13] (Section 3.2)). Suppose
√

n is an integer. Then, the n nodes are
arranged into a square grid of edge length

√
n. A basic grid quorum system Qgrid consists of

√
n

quorums, each formed by a full row and a full column of the grid, such that rows and columns are
not repeated.

In Figure 3, n = 36 nodes are arranged to form a square grid of edge length
√

n = 6.
An example Q of quorum systems is Q = {Q1 = [1, 1], Q2 = [2, 3], Q3 = [3, 5], Q4 = [4, 2],
Q5 = [5, 6], Q6 = [6, 4]}, where the notation [i, j] means the union of row i and column j.
The quorums Q2 and Q3 are shown, respectively, in yellow and in blue.

Figure 3. Basic grid quorums for n = 36 nodes: on the left, two quorums (one in yellow and the
other in blue) intersect in two points, while, on the right, a variant with smaller quorums is shown,
where they intersect in one point.

In a basic grid quorum system, the size of each quorum is 2
√

n− 1 (there are
√

n nodes
on each row and column, including one node in their intersection), and two distinct quo-
rums intersect exactly in two nodes. When the access strategy S is uniform, the probability
of access is PS(Q) = 1√

n . From (2), the load of node i for S uniform is

LS(i) = ∑
Q∈Q
i∈Q

1√
n
=
|Q ∈ Q, i ∈ Q|√

n
.

Since every quorum Q is the union of one row and one column, and every node i is given
a unique (row, column) allocation in the grid, say i is at position (ir, ic), then i can either
appear in two quorums ([ir, j] and [l, ic] for some j 6= l), or once (if [ir, ic] ∈ Q). Thus,

LS(i) =

{ 1√
n if [ir, ic] ∈ Q

2√
n otherwise.

This holds for every node i and from (3), LS(Qgrid) = maxi∈{1,...,n} LS(i), so LS(Qgrid) =
2√
n for S uniform.

It is known (Reference [13] (Theor. 3.18)) that the minimal load of a quorum system is
lower bounded by 1√

n , and that (Reference [19] (Prop. 4.8)) the minimal load of a quorum

system where every quorum has the same size s is given by s/n. Since s = 2
√

n− 1 for
Qgrid, this gives L(Qgrid) = minS LS(Qgrid) =

2
√

n−1
n ≈ 2√

n .
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In the basic grid construction, two quorums Qi = [i, j] and Ql = [l, m] always intersect
in two points ([i, m] and [l, j]). It is possible to reduce the size of the intersection to one
point, as follows [20]. Once the row i of Qi = [i, j] is fixed, instead of including all nodes
in the jth column, we take instead exactly one node from each row larger than i (the case
where every node in which its row is larger than i, but is in the jth column itself is shown
in Figure 3). The difference with the previous grid quorum is that only one out of the two
intersection points ([i, m] and [l, j]) is present, and the quorums are usually smaller.

3.3. Basic Grid Quorums for Coded Data

To obtain a basic grid quorum system for coded data, the first step we propose is to
choose a (logical) grid layout that distinguishes data nodes from parity nodes: a specific
such layout, where the data blocks are in the lower part of the grid, below and including
the diagonal, and the parity blocks are above the diagonal, is shown in Figure 4. This
layout assumes that the code maps k =

√
n
√

n+1
2 data symbols to n encoded ones for n a

square, that is, the rate of the code is 1
2 (1 + 1√

n ). There are three natural ways to define
quorums based on this layout, as shown in Figure 4: (i) quorums are unions of row i
and column i (on the left), (ii) quorums are unions of row i and truncated column i (in
the middle), (iii) quorums compromise of a node on row i together with truncated row i
and truncated column i which include parity nodes exclusively beside a single data node.
For our discussions and analysis, we will consider (i) and (iii), which are formally defined
next as Qgrid1 and Qgrid2, respectively.

Figure 4. Grid (6× 6) layout for an (36, 21) code: Data blocks are in the lower triangle (including
the diagonal), while the upper triangle has the parities. On the left, an example of two intersecting
quorums Q1 = [1, 1], Q2 = [6, 6] is shown, and they interest in two points, including a parity. In the
middle, all the quorums for a variant with smaller quorums (obtained by truncating columns) are
shown. On the right, each data block on row i has for quorum the union of itself, the parities on row
i and the parities on column i.

Definition 3. Given an (n, k) code where
√

n is an integer and k =
√

n
√

n+1
2 , suppose that the n

nodes are arranged into a square grid of edge length
√

n such that the k data symbols are placed
below and on the diagonal of the square (in positions (i, j) with i ≥ j), and the parities are placed
above. Two basic grid quorums for coded data are given by

Qcod1
grid = {Qi = [i, i], i = 1, . . . ,

√
n}

Qcod2
grid = {Qi,j = {(i, j)} ∪ {(i, c), c > i} ∪ {(r, i), r < i}, i ≥ j, i = 1, . . . ,

√
n}.

Every quorum inQcod2
grid has size 2

√
n− 1, which is larger than that of quorums inQcod2

grid

which is
√

n. But then the cardinality of Qcod1
grid is

√
n, while that of Qcod2

grid is k =
√

n
√

n+1
2 .

Lemma 2. Both quorum system Qcod1
grid and Qcod2

grid satisfy properties (4) and (5).

Proof. It is enough to prove the first property. For Qcod1
grid , given i and j (i 6= j), the quorums

Qi = [i, i] and Qj = [j, j] intersect at (i, j) and (j, i), and the former or latter, respectively,
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contains a parity (above the diagonal) when i < j and j < i. For Qcod2
grid , given that it differs

from Qcod1
grid only on the data blocks, the parity blocks still intersect in the same manner.

Examples are provided in Figure 4 for an (n, k) code with n = 36 and k = 21. Com-
pared with a grid quorum for replicas, there are few choices for defining this quorum
system given the specificities of data and parity block layout: not any choice of pairs of
(row, column) works. For example, choosing Q6 = [6, 1] would not contain any parity,
and, while Q6 = [6, 2] does contain a parity, it would not intersect Q5 = [5, 3] on a parity.
In fact, suppose Q6 = [6, 2] is one quorum, then one cannot find any Qm = [m, l] for any
m 6= 1 that would intersect Q6 at a parity (and not repeating any column or row), since the
row in Q6 comprises only data.

We next consider the load of Qcod1
grid and Qcod2

grid , for which we need to introduce an
access probability.

Since we have two types of nodes, those storing parities and those storing data
blocks, we consider a different access probability PS((i, j)) depending on whether i > j
(PS((i, j)) = Pp for parities) or i ≤ j (PS((i, j)) = Pd for data). When deciding to form a
quorum for a given node, if this node belong to several quorums, then any quorum is
equally likely to be called.

Proposition 1. Given the above setting, for any choice of Pp and Pd, the quorum access probability
PS(Q) is uniform for Q ∈ Qcod1

grid . Consequently, the quorum system Qcod1
grid has load

LS(Qcod1
grid ) =

2√
n

.

Proof. Given the adopted layout, row i of the grid contains i data blocks and
√

n − i
parities while column j contains j− 1 parities and

√
n− j + 1 data blocks. Therefore, the

quorum Qi = [i, i] is formed of (i +
√

n− i + 1)− 1 = (
√

n + 1)− 1 =
√

n data blocks (−1
accounts for the fact that row i and column i intersect on the diagonal which contains a
data block, that should not be counted twice).

For a node located in position (i, j), the access probability of a quorum Qi ∈ Qcod1
grid

depends on whether it is invoked, or Qj ∈ Qcod1
grid is invoked instead. We assume both are

equally likely (introducing a probability factor of 1
2 for (i, j) for the terms in the computation

of PS(Qi)). If j = i, Qi is necessarily called. Hence, we obtain:

PS(Qi) = PS((i, i)) +
1
2

√
n

∑
j=1,j 6=i

(PS((i, j)) + PS((j, i)))

= Pd +
1
2
(
√

n− 1)(Pp + Pd).

For sanity check, ∑i PS(Qi) =
√

nPd +
√

n
2 (
√

n − 1)(Pp + Pd) = kPd + (n − k)Pp since

k =
√

n
2 (
√

n + 1) and n− k =
√

n
2 (
√

n− 1). Since PS(Qi) does not depend on Qi, we have
thus shown that

PS(Q) =
1√
n

since we have
√

n quorums and each are equally likely.
From (2), the load of node i for S uniform is

LS(i) = ∑
Q∈Q
i∈Q

1√
n
=
|Q ∈ Q, i ∈ Q|√

n
=

1√
n

or
2√
n

,

since node i belongs to at most two quorums (one, when node i is on the diagonal).
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Recall for comparison that, for S uniform, LS(Qgrid) = 2√
n ≈

2
√

n−1
n , and thus

LS(Qgrid) = LS(Qcod
grid), we have the same load for grid quorums with replicas as with

other MDS erasure coding strategies. Note that the lower bound 1/
√

n still holds for the
the case where coded data is stored, since (i) requiring property (4) is a particular case of
symmetric quorums, and (ii) setting Pd = Pp reduces to PS.

Proposition 2. Given any choice of parity access probability Pp and data access probability Pd,
the quorum access probability PS(Qi,j) for Qi,j ∈ Qcod2

grid is given by

PS(Qi,j) = Pd + Pp

( √
n

∑
c=i+1

1
i + c

+
i−1

∑
r=1

1
i + r

)
.

Consequently, for n ≥ 4, the quorum system Qcod2
grid has load

LS(Qcod2
grid ) = (2

√
n− 1)Pd + Pp


√

n

∑
j=1

j 6=
√

n−1

√
n− 1√

n− 1 + j
+

√
n

∑
j=1

j 6=
√

n

√
n√

n + j

.

Proof. Since

Qcod
grid2 = {Qi,j = {(i, j)} ∪ {(i, c), c > i} ∪ {(r, i), r < i}, i ≥ j, i = 1, . . . ,

√
n},

the probability of accessing P(Qij) is given by

PS(Qi,j) = Pd + Pp

( √
n

∑
c=i+1

1
i + c

+
i−1

∑
r=1

1
i + r

)
.

For sanity check, ∑j≤i PS(Qi,j) = kPd + Pp ∑
√

n
i=1 i

(
∑
√

n
c=i+1

1
i+c + ∑i−1

r=1
1

i+r

)
, and the factor of

Pp simplifies to ∑
√

n
i=1 i

(
∑
√

n
j=1

1
i+j −

1
2i

)
= ∑i 6=j

i
i+j where i, j range from 1 to

√
n. This sum

equals to n− k because terms in the sum can be grouped into pairs of the form ( i
i+j ,

j
i+j ),

in which the sum is 1, and there are n− k such terms.
Thus, using (2), the load of node (i, j) is

LS((i, j)) = ∑
Q∈Q
(i,j)∈Q

PS(Q);

hence, for a node (i, j) storing a data block, which belongs to a single quorum, we get

LS((i, j)) = Pd + Pp

( √
n

∑
c=i+1

1
i + c

+
i−1

∑
r=1

1
i + r

)
= Pd + Pp

√
n

∑
j=1
j 6=i

1
i + j

,

and the busiest of the nodes storing data is (1, 1): indeed,

LS((i, j)) ≥ LS((i + 1, j)) ⇐⇒
√

n

∑
j=1
j 6=i

1
i + j

≥
√

n

∑
j=1

j 6=i+1

1
i + 1 + j

.

When i = 1, the right-hand sum contains the terms 1/3, 1/4, 1/5, . . . , 1/(1 +
√

n), while
the left-hand sum contains 1/3, 1/5, . . . , 1/(2 +

√
n). Thus, the inequality reduces to

1/4 ≥ 1/(2 +
√

n), which holds for n ≥ 4. When i ≥ 2, the right-hand sum contains
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1/(i + 1), 1/(i + 2), . . . , 1/(2i − 1), 1/(2i + 1), . . . , 1/(i +
√

n), while the left-hand sum
contains 1/(i + 2), 1/(i + 3), . . . , 1/(2(i + 1) − 1), 1/(2(i + 1) + 1), . . . , 1/(i + 1 +

√
n).

Now, the above inequality reduces to 1/(i + 1) + 1/2(i + 1) ≥ 1/2i + 1/(i + 1 +
√

n),
which holds term by term.

If (r, c) is storing a parity block, then (r, c) belongs to r + c quorums; more precisely, it
belongs to r quorums Qr,j, j ≤ r and c quorums Qc,j, j ≤ c. Thus,

LS((r, c)) =
r

∑
j=1

PS(Qr,j) +
c

∑
j=1

PS(Qc,j)

= rPd + rPp

√
n

∑
j=1
j 6=r

1
r + j

+ cPd + cPp

√
n

∑
j=1
j 6=c

1
c + j

.

We have that LS((1, 1)) ≤ LS((r, c)), r ≤ c:

Pd + Pp

√
n

∑
j=2

1
1 + j

≤ (r + c)Pd + Pp

r

√
n

∑
j=1
j 6=r

1
r + j

+ c

√
n

∑
j=1
j 6=c

1
c + j

.

Indeed, Pd ≤ (r + c)Pd and

√
n

∑
j=2

1
1 + j

≤ r

√
n

∑
j=1
j 6=r

1
r + j

+ c

√
n

∑
j=1
j 6=c

1
c + j

because this equality is clearly true if r = 1 for any choice of c (then the first sum on the
right-hand side is the sum of the left-hand side), and we have

r

√
n

∑
j=1
j 6=r

1
r + j

≤ (r + 1)

√
n

∑
j=1

j 6=r+1

1
r + 1 + j

= r

√
n+1

∑
l=2

l 6=r+2

1
r + l

+

√
n

∑
j=1

j 6=r+1

1
r + 1 + j

= r

√
n

∑
l=1
l 6=r

1
r + l

− r
r + 1

+
r

r +
√

n + 1
+

r
2r
− r

2r + 2
+

√
n

∑
j=1

j 6=r+1

1
r + 1 + j

.

But, ∑
√

n
j=1

j 6=r+1

1
r+1+j ≥

√
n−1

r+
√

n+1 gives

r +
√

n− 1
r +
√

n + 1
+

1
2
− 3r

2(r + 1)
≥ 0 ⇐⇒ 3

2
≥ 2

r +
√

n + 1
+

3r
2(r + 1)

,

which holds. This last computation further shows that r ∑
√

n
j=1
j 6=r

1
r+j is increasing as a function

of r; thus, the busiest node containing a parity is obtained by maximizing both r and c; that
is, r =

√
n− 1 and c =

√
n.

From the layout of the data in the grid, intuitively, one would expect the lower most
parity node to be most accessed, since it will be part of all the quorums invoked to access
any of the data nodes situated in the last two rows of the grid, and these rows are most
numerous in terms of data nodes. The analysis above formally confirms this intuition,
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and provides a closed-form formula to quantify the load. Realistically, one would expect
that there will be explicit access (ignoring the access of nodes because of their participation
in any quorum) of data nodes much more frequently than the parity nodes, i.e., Pp << Pd.
In the extreme case, when Pp = 0, we will have Pd = 1

k = 1√
n

2√
n+1 . Then, for the access

strategy S′ for which Pp = 0 and Pd is uniform, LS′(Qcod2
grid ) = (2

√
n− 1)Pd = 2

√
n−1√
n

2√
n+1 ≈

4√
n > 2√

n = LS(Qcod1
grid ) = LS(Qgrid).

If we relax the condition of using nodes from more than one row and one column to
get a quorum, say by allowing the choice of nodes in a quorum from multiple columns,
akin to Reference [20] (of which, the variant discussed above is a special case), then other
quorum systems can also be identified. This leads to a generalized construction, called
B-grid, that we discuss next.

3.4. B-Grid Quorums for Coded Data

We recall the definition of B-grid quorums for replicated data.

Definition 4 (Reference [19] (5.2)). Suppose that n is of the form cbr and the n nodes are arranged
in a rectangular grid of br rows and c columns, where rows are grouped into b bands of r rows,
where band j contains rows (j− 1)r + 1, . . . , jr for j = 1, . . . , b. Denote the intersection of column
c and band j as mini-column [[j, c]]. A quorum in the B-grid system QB−grid consists of one
mini-column in every band, and a representative element in each mini-column of one band. A B-grid
quorum system comprises of multiple independent B-grid quorums. In particular, mini-columns
and the one band from which representative elements are chosen, are independent.

In Figure 5, we show two quorums of a B-grid quorum system with three bands. The
same argument used to derive the load of Qgrid may be applied here, namely, since every
quorum has the same size s = br + c− 1, the minimal load is (Reference [19] (Prop. 4.8))
br+c−1

brc = n/c+c−1
n = 1

c + c−1
n . Note that, consequently, when we have a square grid,

i.e., c = br =
√

n, the load of the B-grid ≈ 2√
n .

Figure 5. A B-grid quorum for n = 48 = cbr nodes, arranged in a grid with c = 8 columns, br = 6
rows, arranged in b = 3 bars each containing r = 2 rows.

Since quorums in QB−grid intersect in the mini-columns, this suggests a possible
adaptation in the context of erasure coded data as follows.

Definition 5. Given an (n, k) code, suppose that the n = cbr nodes are arranged in a rectangular
grid of br rows and c columns, where rows are grouped into b bands of r rows. Let C = {C1, . . . , Cb}
be a fixed set of subsets of mini-columns, where Ci = {[[i, c(i, β)]], β ∈ {1, . . . , b}} contains some
chosen mini-columns in band i, and |Ci| = b for i = 1, . . . , b. Place rb2 parities in the mini-
columns specified by C, and the k = n− rb2 data blocks elsewhere. A quorum Qij in the quorum
system Qcod

B−grid consists of the b mini-columns [[1, c(1, i)]], . . . [[b, c(b, i)]] and of a choice of c− 1
elements in the band i such that there is exactly one element per mini-column. The index j of the
quorum refers to the jth choice out of the r(c− 1) choices to choose one element from a mini-column
of r elements, for each of the c− 1 columns.
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In the proposed B-grid quorum for coded data, each quorum comprises c− b data
nodes, and br + b − 1 parity nodes. Moreover, in this setup, the code rate is n−b2r

brc =
brc−b2r

brc = 1− b
c , so we need to assume c > b. This means, a quorum system for a code with

arbitrarily high rate can be realized using B-grid.
In Figure 6, an example is shown with b = 3, C = {C1, C2, C3}, with C1 = {[[1, 1]], [[1, 5]],

[[1, 7]]}, C2 = {[[2, 2]], [[2, 4]], [[2, 6]]}, C3 = {[[3, 3]], [[3, 5]], [[3, 7]]}. In addition, Q1j (in blue)
contains the mini-columns [[1, 5]], [[2, 2]], [[3, 7]] (indicated by vertical blue lines), and one
choice for j is represented by dotted blue lines. Similarly, Q2j and Q3j are shown in yellow
and pink.

Figure 6. A B-grid with (48, 30) coded data.

Lemma 3. The quorum system Qcod
B−grid satisfies properties (4) and (5).

Proof. It is enough to prove property (4). A quorum Qij must contain an element per
mini-column in band i; therefore, it necessarily intersects the mini-columns [[i, c(i, β)]] for
β = 1, . . . , n, and thus the other quorums, and this intersection happens in parities, since
by construction the parities are placed in these mini-columns.

Proposition 3. Considering the same setting as for Qcod
grid, for any choice of Pp and Pd, the corre-

sponding quorum access S is uniform. Consequently, the quorum system Qcod
B−grid has load

LS(Qcod
B−grid) =

1
b

(
1 +

1
r

)
.

Proof. Since the load is defined for the busiest nodes, we only consider nodes that are in
mini-columns. The probability of accessing a quorum in Qcod

B−grid is

1
br(c− 1)

.

A node (say in band j) experiences the maximum load in the system when it is part of the
mini-column for some quorum Qil ; furthermore, it will be a representative element for the
mini-column for the quorum Qjl′ . Since there are br(c− 1) quorums Qjl′ , the corresponding
contribution to the load is 1

b , while, the load due to the latter is 1
r

1
b , leading to a total load

of 1
b (1 +

1
r ).

To compare the computed load with the square grid from Section 3.3, suppose that
br = c =

√
n. The load can then be rewritten as 1

b

(
1 + 1

r

)
= 1+r√

n . Then, if r = 1, the load is

indeed 2√
n , effectively reducing the system to the basic square grid performance in terms

of load (as expected). However, in terms of grid layout, this reduction only works in the
case where the erasure code is replication.
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Next, we compare the loads for QB−grid and Qcod
B−grid:

LS(QB−grid) =
1
c
+

c− 1
n

=
br− 1

n
+

c
n

LS(Qcod
B−grid) =

1
b
+

1
br

=
1
b
+

c
n

and
1
b
≥ 1

b
br− 1

cr
⇐⇒ br− 1

cr
≤ 1 ⇐⇒ b

c
− 1

cr
≤ 1,

which is always the case, since c > b. This shows that there is a cost to pay in terms of load
to use erasure codes, and the relative cost is given by

γ =
LS(Qcod

B−grid)

LS(QB−grid)
=

c(r + 1)
br− 1 + c

=
r + 1

(−1 + b
c )r−

1
c + 1 + r

.

The function γ is illustrated in Figure 7. The rate 1− b
c is shown on the x-axis. Small values

of c are chosen (3 and 4); then, values of b smaller than c are considered, yielding possible
rates (shown by stars). Then, for each value of c, several values of r are fixed (r = 1, 2, 3),
these choices of parameters yield six piecewise linear functions. We observe that, when
r increases, so does the load of the coded quorum system compared to the load of the
uncoded one. However, for a given r, we also observe that increasing c decreases the load.

Figure 7. On the x-axis, the rate 1− b
c . On the y-axis, the relative load γ of the coding based B-grid

w.r.to replication as a function of (r, c), for (r, c) ∈ {(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)}.

From the view point of definition of load in a quorum system, our analysis indicates
that the parity nodes are the busiest. Its practical implications, and the efficacy of B-grid
quorum systems for erasure coded storage, need to be explored accordingly. However, we
note that, for read operations, the actual work (disk I/Os) will be carried out at the nodes
storing data blocks, while the parity nodes will carry out further operations beyond ‘voting’
for mutual exclusion of conflicting operations, only for write operations, where the parity
values are updated. System implementation accompanied with rigorous benchmarking
with realistic workloads is pending; however, since erasure coding is typically used for
data that is not hot, i.e., data that is not being frequently written to, the proposed quorum
mechanism looks promising for practical usage.
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4. Consistency in Presence of Node Failures

Consider a write operation w(xd)a on a data object xd, 1 ≤ d ≤ k at a given time t. Any
read or write operation involving xd occurring at time t′ > t ought to read r(xd)a, assuming
there has been no write operation involving xd in the interim. Two distinct situations arise:

1. Node d is available: unlike in replicated systems, there is only a single node (node d)
which stores xd, 1 ≤ d ≤ k; thus, w(xd)a does update xd and subsequent read/write
operations will obtain the updated value a from xd. That some of the parity nodes may
not have received all updates possibly involving other data objects has no bearings in
obtaining the latest value of xd.

2. Node d is unavailable: if the node storing xd is temporarily or permanently down,
a read or write request will trigger a degraded read or write operation instead, where
xd is obtained using other data blocks and parities, in which case, it is critical that
parities involved in the degraded operation are up-to-date with respect to xd. This
scenario also needs to take into account that (i) other nodes than d might have been
updated in the interim, leading to changes in nodes storing parities, and/or (ii) other
nodes may be unavailable.

From Lemmas 2 and 3, we established that sequential consistency is achieved in the
first case. We next discuss the second case, namely the consequences of node failures,
and demonstrate how sequential consistency is still achieved. We adopt a level of abstrac-
tion that assumes there are mechanisms to deal with locks so that quorums are eventually
secured for write and read operations, ensuring the liveliness of the system, i.e., that it does
not get in a state where it cannot progress. Accordingly, we focus on the issue of safety,
specifically that the sequential consistency invariant is always met.

The data redundancy is achieved using an (n, k) MDS erasure code, which has the
property that one can reconstruct any missing codeword coefficient from any k other
coefficients. When node d is unavailable, for 1 ≤ d ≤ k, a degraded read will try to read
from k available other nodes, at least one of them must be a parity. Parities called for
degraded operations at time t′ > t must be up-to-date with respect to xd. This requirement
is guaranteed if the parities used belong to the quorum used to permit the operation w(xd)a
at time t. This ensures the parity nodes carry the information with respect to the latest
value of xd without having to rely on the propagation of updates to other parity nodes,
which runs as a background process. There are

√
n− 1 parity nodes in a basic grid quorum

(and br + b− 1 for the B-grid) involved in any quorum.
Consider the baseline case, where all the other data objects are also available. Thus,

we need only one parity to recreate the content of the unavailable node d. In this set-up a
degraded operation is possible as long as one parity is available, which can tolerate

√
n− 2

(br + b− 2 for B-grid) unavailable parities. We also note that this parity will be up-to-date
with respect to any other xd′ , d′ 6= d: indeed, if this parity is not yet up-to-date, it can
first be updated before using it to reconstruct xd since we assume that only a single data
node, namely d, is unavailable. In this case, using k− 1 data objects xd′ , d′ 6= d, 1 ≤ d′ ≤ k
together with an up-to-date parity from the quorum of xd thus guarantees that the latest
value of xd is computed as

xd = a−1
pd (xp −

k

∑
l=1
l 6=d

apl xl) (6)

using xp = ∑k
l=1 apl xl from (1).

Suppose now that not only node d is unavailable which we would like to read, but say
also node d′, storing the data object xd′ is down. We will then need more than one parity
for reconstructing xd. Since we want to access xd in node d which was last updated at time
t, by the above discussion, we need two parities in its quorum, which are assured to be
up-to-date with respect to xd. We would ideally need these two parities to be up-to-date
with respect to all other data nodes. If these are not up-to-date with respect to the data
nodes other than xd′ , since these other data nodes themselves are available, the parities can
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be updated to reflect the latest value of the available data nodes. Using two up-to-date
parities xp and xq, we get:

xp =
k

∑
l=1

l 6=d,d′

apl xl + apdxd + apd′xd′

xq =
k

∑
l=1

l 6=d,d′

aql xl + aqdxd + aqd′xd′ ,

so we multiply the first equation by aqd′ and the second by apd′ and compute the difference
of the two terms, which yields

aqd′xp − apd′xq =
k

∑
l=1

l 6=d,d′

αl xl + (aqd′ apd − apd′ aqd)xd

for αl the corresponding coefficients. Then, xd is found from this equation since we know
xp, xq and xl for l 6= d, d′, and only xd, x′d are assumed unavailable. Specifically, we have

xd = (aqd′ apd − apd′ aqd)
−1(aqd′xp − apd′xq −

k

∑
l=1

l 6=d,d′

αl xl). (7)

Notice that the above computation of xd only assumes that xd′ has the same value
in xp and xq. Therefore, even if the data node xd′ needed for the update is down, it is
actually enough to find two parity nodes which reflect the same (possibly stale) value of
xd′ , for being able to perform a degraded read and recreate the latest value of xd correctly.

Finally, it is possible that a different data node xd′ has been updated subsequent to the
last update to xd, but in the interim, the unique parity node (We consider the case where the
data nodes are from different rows in the grid/B-grid layout, such that they have distinct
set of parities in their quorums, with a single intersecting parity. If they have multiple
common parities in the intersection of their quorums, then the considered problem does
not arise, since all these parities in the intersection would carry information regarding the
latest values for both xd and xd′ .) at the intersection of the quorums required to read or
write xd and xd′ becomes unavailable. Again, as above, if we use any two parities from
the quorum for xd which reflect the same (latest or stale) value of xd′ , and exclude xd′

irrespective of whether it is available or not, then we can reconstruct the latest value of xd
in the same manner, i.e., using (7), as the above scenario.

Note that, while we have not explicitly discussed a truncated B-grid, similar to the
truncated version of basic grid, where quorums were formed comprising only single data
object and the parity nodes determined based on the row the data object belonged to,
one can also truncate the B-grid quorums. Doing so will not alter the fault tolerance or
consistency discussed above.

5. Concluding Remarks

This study is the first of its kind, in synthesizing the concept of quorum systems with
erasure coded storage systems and showing the feasibility of grid quorums in that context.
It creates a stepping stone for further studies on the fault-tolerance and availability of
the proposed quorum systems, including: (1) access of the quorums for repair operations
and degraded read operations, (2) new quorum systems for erasure coded systems with
better characteristics, in terms of practical requirements, such as load, coding rate, and
fault-tolerance, and (3) taking into account the asymmetric role of data and parity nodes
to possibly define quorum load in a more meaningful manner. The design of practical
algorithms, considering system design issues, including background update propagation,



Entropy 2021, 23, 177 18 of 19

mapping the logical layout to the physical layout, replacement of permanently down nodes,
garbage collection of stale information, and the overlying file system, are numerous aspects
which will also need attention once the conceptual foundations mature, to translate the
ideas into a working system.

Furthermore, in the context of storage systems, non-MDS codes but with better re-
pairability properties have been proposed [5] and are also deployed [1] in real-world
systems, where (some) parities have certain locality properties, such that they do not
depend on all the data blocks. As such, the constraint from (4) may not be adequate when
such codes are used, and further studies are needed. For example, it would be interest-
ing to consider the joint design of codes with good repairability and efficient quorum
mechanisms.
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