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Abstract: Multiscale thermodynamics is a theory of the relations among the levels of investigation of
complex systems. It includes the classical equilibrium thermodynamics as a special case, but it is
applicable to both static and time evolving processes in externally and internally driven macroscopic
systems that are far from equilibrium and are investigated at the microscopic, mesoscopic, and
macroscopic levels. In this paper we formulate multiscale thermodynamics, explain its origin, and
illustrate it in mesoscopic dynamics that combines levels.

Keywords: equilibrium and nonequilibrium thermodynamics and statistical mechanics; generic; con-
tact geometry

1. Introduction

A level of investigation is a collection of results of a certain type of experimental
observations (different for different levels) made on complex systems together with a
theory that allows organizing them, reproducing them, and making predictions. The theory,
based on the insight inspired by experimental data and by investigating relations to nearby
levels involving less or more details, offers also an understanding of the physics involved.
For instance, the equilibrium level with the energy E, number of moles N, and volume V
serving as state variables [1] and the microscopic level with the position and momenta of
∼1023 particles composing the macroscopic system serving as state variables are examples
of two different autonomous levels of description. The latter is more microscopic (it takes
into account more details) than the former. We call the latter level an upper level and the
former a lower level.

Multiscale thermodynamics is a theory of the relations among different levels.
Hamilton’s mechanics, classical thermodynamics, fluid mechanics, Boltzmann’s ki-

netic theory, Gibbs’ equilibrium statistical mechanics, and extensive studies of the relations
among them provide methods, tools, and also an inspiration to formulate a multiscale
thermodynamics of which all these classical investigations are particular realizations. Mul-
tiscale thermodynamics provides a framework for investigating the static and dynamic
aspects of reductions from an upper to a lower level with no constrains to the closeness to
equilibrium or to the absence of external or internal driving forces.

The motivation for developing multiscale thermodynamics comes also from problems
arising in nanotechnology and machine learning. For example, egg whites (as well as other
polymeric fluids) behave under imposed external forces differently than water. This is
because the deformations of the internal structure of egg whites (polymer macromolecules)
cannot be decoupled from macroscopic deformations described by hydrodynamic fields.
The fluid mechanics of complex fluids has to combine at least two different scales. Multi-
scale thermodynamics provides a framework for making such combinations. Its earlier
versions have indeed been shown to be very useful in rheological modeling (e.g., [2] and
the references cited therein). In machine learning, the objective is to extract from big data a
pattern allowing making predictions. Multiscale thermodynamics was recently applied to
these types of problems in [3].

Our objective in this paper is to formulate multiscale thermodynamics as a passage
upper level → lower level, (in Sections 2 and 3), to present classical investigations of
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mesoscopic dynamics through the eyes of multiscale thermodynamics (in Section 4), and to
demonstrate its application in the mesoscopic dynamics in which the levels are combined
(in Section 5).

2. Structures in Multiscale Thermodynamics

Let L, L, and l be three autonomous levels. The level L involves more details than
the level L, which in turn involves more details than the level l. We shall call the levels
involving more details upper levels or also more microscopic levels; the levels involving
less details are called lower levels or also more macroscopic levels. We investigate the chain:

−→ L −→ L −→ l −→ (1)

where −→ represents a reduction in which unimportant details are ignored and important
overall features emerge. In the diagram (1), the way up (i.e., towards more microscopic
levels) is to the left, and the way down (i.e., towards more macroscopic levels) is to the
right. The level L in the diagram has two structures: one is reduced structure arising in
the reduction L −→ L, and the other is the reducing structure arising in the reduction
L −→ l. Every structure, both reduced and reducing, consists of a thermodynamic relation
and a vector field. The former generates the geometry and the latter the time-evolution.
Both depend on the other level that is involved in the reduction (i.e., at the level L in the
case of the reduced structure and at the level l in the case of the reducing structure). Every
mesoscopic level L that has neighbors on both the left and the right sides in the chain (1)
has thus reduced and reducing thermodynamic relations and reduced and reducing vector
fields. In general, all the reduced structures will depend on the choice of the level on its left
side (i.e., the level from which it is reduced) and the reducing structures on the choice of the
level on its right side (i.e., the level to which it is reducing).

The passages upper level −→ lower level representing the reduction process can be
mathematically formulated in two ways, one called a time-evolution passage and the other
a maximum entropy passage (MaxEnt passage). The former is a mathematical formulation
of the time-evolution process that prepares the macroscopic systems under investigation for
experimental observations at the lower level. The latter is a map transforming initial states
at the level L into the final states by following the preparation process to its conclusion.
In other words, the latter is a property of the solutions of the time-evolution equations
introduced in the former.

If the focus of the investigation of the relations between the levels L and l is put on the
rates of the processes involved rather than on the processes themselves, then the resulting
passages and structures form what we call multiscale rate thermodynamics. The two
passages, time-evolution passage and MaxEnt passage, become in rate thermodynamics the
rate time-evolution passage and maximum rate-entropy passage, which we write as MaxRent
passage. The structures become reducing and reduced rate structures.

Since we shall be investigating in this paper also direct links L −→ l and we shall be
comparing them with the composed links L −→ L −→ l, it is more convenient to replace
the chain (1) with an oriented graph in which the levels L,L, l, ... are vertices and the
reductions are links connecting them. The links are directed from upper to lower levels (see
more in Section 4.5). Altogether, the level L in the graph is equipped with many structures
depending at the levels with which it is compared (with which it is linked). The reduction
represented by −→ has two versions: time-evolution and MaxEnt. Moreover, if the vector
fields rather than state spaces are compared, then the reducing and reduced structures
become reducing and reduced rate structures, and the total number of structures doubles.
All the structures are not however independent. We shall see some of the dependencies
below in this paper.

Before proceeding to the actual formulation of the structure and the passages, we
emphasize that the term “reduction” has in this paper the same meaning as “emergence”.
Some details at the upper level are lost in the reduction from an upper level to a lower
level, but at the same time, an emerging overall pattern is gained. The process of reduction,
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as well as the processes conducive to an emergence of overall features (pattern-recognition
processes) involve both a loss and a gain. The lower level is inferior to the upper level in
the amount of details, but superior in the ability to display overall patterns.

2.1. Time-Evolution Passage

We begin by formulating the reducing structure at a level L that is being compared with
a lower level l. Both levels L and l are assumed to be well established and autonomous. This
means that the macroscopic systems whose behavior are found to be well described at both
levels can be prepared for the level l. The time-evolution describing the preparation process
is the reducing time-evolution taking place at L. For example, if the level l is the equilibrium
level, the preparation process consists of leaving the macroscopic systems free of external
influences and internal constraints for asufficiently long time (see more in Section 4.1).

Investigations of many pairs of levels (L, equilibrium) (see more in Section 4) revealed
the following structure of the reducing time-evolution. Let x denote the state variable (for
instance, x is the one particle distribution function in kinetic theory) used at the level L.
The vector field generating the reducing time-evolution at the level L is the sum of two
terms: one is the Hamiltonian vector field and the other the gradient vector field. The
former is an inheritance of the mechanics seen at the microscopic level, and the latter drives
trajectories (i.e., solutions of the governing equations) towards the time-evolution at the
level l. Both the Hamiltonian and the gradient parts of the vector fields are gradients of
a potential (i.e., co-vectors) transformed into vectors by a geometrical structure. In the
Hamiltonian part, the potential is the energy and the geometrical structure the Poisson
structure (in the simplest case, a skew-symmetric matrix). In the gradient part, the potential
is the entropy, and the geometrical structure is the metric structure (in the simplest case, a
symmetric matrix). Both geometrical structures are degenerate in order to guarantee the
conservation of energy and the increase of entropy. Comments concerning the provenance
of the reducing time-evolution are given in Section 4.1.

We now proceed to the mathematical formulation. The quantities characterizing states
are denoted by x at the upper level and y at the lower level. All other quantities belonging
to the upper level are denoted with the upper index ↑ and to the lower level with the upper
index ↓. The state space at the upper level is denoted M↑ (i.e., x ∈ M↑) and the state space
at the lower level M↓ (i.e., y ∈ M↓). A special notation is used for the equilibrium level;
the state variables are (E, N), where E is the energy per unit volume and N the number of
particles per unit volume; the state space is M(eq) (i.e., (E, N) ∈ M(eq)). We use a shorthand
notation for derivatives: Ax = ∂A

∂x , where A : M↑ → R and ∂
∂x is an appropriate functional

derivative in the case when M↑ is an infinite-dimensional space.
We begin the mathematical formulation of the reducing structure at the level L with

the equilibrium level playing the role of the level l with which we are comparing the level
L. First, we need a map:

M↑ → M(eq); x 7→ (E↑(x), N↑(x)) (2)

The time-evolution taking place in the process of preparing the macroscopic system under
investigation for the equilibrium level (the reducing time-evolution) brings x ∈ M↑ to
M↑(eq) ⊂ M↑, which is in one-to-one relation with the equilibrium state space M(eq). Our
goal now is to identify the reducing time-evolution. First, we turn to the Hamiltonian part,
then to the gradient part, and finally, we combine them.

2.1.1. Hamiltonian Time-Evolution

The Hamiltonian part of the time-evolution is governed by [4]:

ẋ = L↑E↑x (3)
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The operator L↑ is a Poisson bivector, which means that the bracket defined by:

{A, B}↑ =< Ax, L↑Bx > (4)

is a Poisson bracket (i.e., {A, B}↑ = −{B, A}↑ and the Jacobi identity {A, {B, C}↑}↑ +
{B, {C, A}↑}↑ + {C, {A, B}↑}↑ = 0 holds), A, B, C are sufficiently regular real valued
functions of x ∈ M↑, and <,> denote the pairing in the space M↑. From the physical
point of view, the bivector L↑ expresses mathematically the kinematics of the chosen state
variable x ∈ M↑. For example, if x = (r, v), where r is the position coordinate and v

the momentum of one particle, then L↑ =

(
0 1
−1 0

)
, expressing mathematically the

cotangent bundle structure of M↑. Other examples are given in Section 4.1.
We note that the energy E↑(x) is conserved in the time-evolution governed by (3)

since Ė↑ = {E↑, E↑} = 0. In order to conserve other potentials in the time-evolution (3)
with an arbitrary energy E↑, the Poisson bivector L↑ has to be degenerate. We say that
C↑(x) is a Casimir of the Poisson bracket {A, B}↑ if {A, C↑}↑ = 0 ∀A. Consequently,
Ċ↑ = {C↑, E↑} = 0. We require that the Poisson bivector L↑ arising in the Hamiltonian part
(3) of the reducing time-evolution be degenerate with the number of moles N↑(x) in (2),
and the entropy S↑(x) introduced below in the gradient part of the reducing time-evolution
is its Casimirs.

2.1.2. Gradient Time-Evolution

The Hamiltonian dynamics (3) can be transformed into a reducing dynamics by making
the following three-step reduction: (Step 1) All trajectories are found (i.e., all solutions of (3)
passing through all x ∈ M↑ for an ensemble of E↑(x) are found). The collection of all such
trajectories is called a phase portrait. (Step 2) A pattern is extracted in the phase portrait.
(Step 3) The pattern is interpreted as a phase portrait of the dynamics at the lower level l. Let
us assume that the above three steps have been made. The result is expressed in the reducing
time-evolution. By following it to its conclusion, we arrive at the level l (i.e., in the context of
this section, at the equilibrium level). The equation governing the reducing time evolution is
(3) modified by including a seed of dissipation. The dissipation makes unimportant details
disappear (this is the loss in the reduction) and makes the pattern emerge (this is the gain in
the reduction). How do we formulate the dissipation?

The most significant contribution of classical thermodynamics is the MaxEnt principle
(see more in Section 4). The pattern is revealed and unimportant details discarded by
maximizing a new potential S↑(x) called a reducing entropy. The role of the new potential
S↑(x) in mechanics is to reveal some overall features of solutions to its governing equations.
It is thus a potential that feels already some overall features of solutions and feeds them
back to the initial upper vector field (see more in Section 4.1).

When reaching the lower level, the reducing entropy becomes, at the lower level,
the reduced entropy S↓(y), where y is the state variable used at the lower level. In particular,
if the lower level is the equilibrium level, then S↓(E, N) is the classical equilibrium entropy.

The simplest time-evolution making the entropy S↑(x) grow is the gradient dynam-
ics [5,6]:

ẋ = Λ↑S↑x (5)

where Λ↑ is the positive definite operator. Indeed, (5) implies:

Ṡ↑ =< S↑xΛ↑S↑x >> 0 (6)

where <,> denotes the pairing in M↑.
A straightforward generalization of (5) is a dissipation-potential gradient dynamics

(see more in Section 4.4):
ẋ =

[
Ξ↑x∗(x; X)

]
x∗=S↑x

(7)
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where Ξ↑, called a dissipation potential [7], is a real-valued function of (x, X) such that:

(i) Ξ↑(x, 0) = 0

(ii)Ξ↑ reaches its minimum at X = 0

(iii)Ξ↑ is a convex f unction o f X in a neighborhood o f X = 0

(iv) X is a linear f unction o f x∗ such that

< x∗, Ξx∗ >= a < X, ΞX >, where a > 0 (8)

We note that the potential that generates the time-evolution (7) is the entropy S(x). The dis-
sipation potential is a different type of potential. It does not generate the time-evolution,
but it plays the role of the geometrical structure transforming the gradient Sx(x) of the
entropy (that is a co-vector) into a vector field. The right-hand side of (7) becomes the
same as the right-hand side of (5) when X = x∗ and Ξ↑ = 1

2 < X, Λ↑X >. Regarding
the requirement (iv) in (8), we note that it is obviously satisfied for X(x∗) = x∗. In the
case of x being a field (i.e., a function of the position coordinate r), then the property (iv)
is for example satisfied for X = ∇x∗ provided the boundary condition guarantees the
disappearance of integrals over the boundary. An example illustrating the requirement (iv)
in the case when (x = one particle distribution function) is presented in Section 4.1 in (41).

A real-valued function C↑(x) for which X(C↑x) = 0 is called gradient Casimirs. They
are conserved (due to the property (iv) in (8)) in the dissipation-potential gradient time-
evolution (7).

The inequality (6) becomes:

Ṡ↑ =< S↑x
[
Ξ↑x∗(x; x∗)

]
x∗=S↑x

>= a[< X∗, ΞX∗ >]x∗=S↑x
>≥ 0 (9)

where the equality holds for the dissipation equilibrium states:

M↑(deq) = {x ∈ M↑|Φ↑(diss)
x = 0} (10)

The upper thermodynamic potential Φ↑ is given by:

Φ↑(x;C∗) = −S↑(x)+ < C∗,C↑(x) > (11)

and C∗ can be seen as being Lagrange multipliers since (10) can be read as maximization of
the entropy S↑(x) subject to constraints C↑(x).

If the thermodynamic potential Φ↑(x;C∗) is convex, then the inequality (9) makes
it possible to consider Φ↑(x;C∗) as a Lyapunov function for the approach (as t → ∞) of
solutions to (7) toM↑(deq).

The size of the manifold M↑(deq) makes it also possible to give a meaning to the
strength of dissipation. We say that the dissipation generated by a dissipation potential
Ξ(1) is weaker than the dissipation generated by the dissipation potential Ξ(2) ifM(deq)1 ⊃
M(deq)2. The weakest dissipation is, of course, no dissipation whenM(deq) ≡ M↑.

2.1.3. GENERIC Time-Evolution

We now combine the seed of dissipation (7) with the Hamiltonian time-evolution (3)
in a way that essential features of both mechanics (in particular, the energy conservation)
and gradient dynamics (in particular, the growth of the entropy) are preserved. Both from
the physical and the mathematical point of view, the combination can be best argued in the
setting of the contact geometry that we present in Section 2.3 below. Here, we introduce it
in the form:

ẋ = L↑E↑x +
[
Ξ↑x∗
]

x∗=S↑x
(12)
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which is called GENERIC (General Equation for Nonlinear Equilibrium Reversible-Irreversible
Coupling) (its provenance is recalled in Section 4). Solutions to (12) are required to satisfy
the following properties:

Ė↑ = 0

Ṅ↑ = 0

Ṡ↑ ≥ 0 (13)

The first two conservations (conservations of the energy and of the number of moles) are
dictated by mechanics. In (12), we are modifying the Hamiltonian mechanics (3) by adding
dissipation, but the essence of mechanics must remain intact. The modification is made in
order to bring to light the overall features of solutions to (3) and not to significantly change
them. The modified Hamilton Equation (12) still represents mechanics. The total energy and
the total mass conservations are essential to mechanics. The last inequality in (13) (the entropy
inequality) is a new feature, brought about by the modification, which is fundamental for
revealing the overall features (for proving that solutions to (12) approach equilibrium states).

Before proceeding to the proof, we note that (13) are guaranteed if both the Poisson
and the gradient structures are degenerate in the sense that:

N↑(x), S↑(x) are Casimirs

N↑(x), E↑(x) are gradient Casimirs (14)

The proof of the approach to equilibrium begins with introducing an upper reducing
thermodynamic potential:

Φ↑(x; E∗, N∗) = −S↑(x) + E∗E↑(x) + N∗N↑(x) (15)

where E∗ ∈ R and N∗ ∈ R. If we use the notation established in the equilibrium ther-
modynamics, E∗ = 1

T and N∗ = − µ
T , where T is the equilibrium temperature and µ the

equilibrium chemical potential. We want to prove that solutions to (12) approach, as t→ ∞
equilibrium states x̂(E∗, N∗) that are minima of (15), i.e., that are solutions to:

Φ↑x = 0 (16)

We thus want to prove that solutions to (12) approach the manifold:

M↑(eq) = {x ∈ M↑|Φ↑x = 0} (17)

composed of the equilibrium states x̂. We recall that the experimentally observed approach
to the equilibrium states is in equilibrium thermodynamics sometimes [8] called a zero
axiom of thermodynamics. A formulation of the time-evolution passage to the equilibrium
level is thus a more detailed formulation of the zero axiom.

We proceed now to recall the main steps in the proof. If N↑(x), E↑(x) is a complete
set of gradient Casimirs, then the upper reducing thermodynamic potential (15) is the
same as the gradient thermodynamic potential (11). Since (due to (14)) the Hamiltonian
time-evolution implies Φ̇↑ = 0, the upper reducing thermodynamic potential (15) plays the
role of the Lyapunov function for the approach to dissipation equilibrium statesM↑(deq) ≡
M↑(eq) that are the same as the equilibrium states. In this case, the inequality in the third
equation is sharp; the thermodynamic potential plays the role of the Lyapunov function
(provided Φ↑ is a convex function of x), and indeed, the equilibrium manifold (17) is
approached as t→ ∞.

If however the gradient part of (12) has a larger set of gradient Casimirs than N↑(x),
E↑(x) (i.e., if the dissipation is weaker), then the gradient part of (12) drives solutions to:

M↑(deq) = {x ∈ M↑|[Ξ↑x∗ ]x∗=S↑x(x) = 0} (18)
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For example (see more in Section 4.1), in the Boltzmann kinetic theory, the setM↑(deq) is
composed of local Maxwell distribution functions andM↑(eq) of total Maxwell distribution
functions. The inequality Φ̇↑ ≤ 0 does not suffice to prove the approach to the manifold
of equilibrium statesM↑(eq). What is needed in addition is to prove that in the course of
the time-evolution, solutions to (12) never touchM↑(deq). Only at the final destination,
the solution to (12) settles on bothM↑(deq) andM↑(eq). This phenomenon started to be
investigated by Grad [9]. A complete and rigorous mathematical proof for the Boltzmann
equation earned Cedric Villani the Fields Medal [10]. We shall refer to the enhancement
of dissipation arising in the combined gradient and Hamiltonian dynamics Grad–Villani
dissipation enhancement. It is very likely an important mechanism in the onset of dissipa-
tion. Only a seed (a nucleus) of dissipation can trigger the passage from an upper level to a
lower level expressed mathematically in the reducing time-evolution.

Finally, we sum up the input and the output of the reducing time-evolution to the
equilibrium level. The input consists of the reducing thermodynamic relation:

N = N↑(x)

E = E↑(x)

S = S↑(x) (19)

which, if inserted into (12), implies that the manifoldM↑(eq) given in (17) is approached as
t→ ∞, and no time-evolution takes place at the equilibrium level, i.e.,[

L↑E↑x +
[
Ξ↑x∗
]

x∗=S↑x

]
M↑(eq)

≡ 0 (20)

The two potentials (E↑(x), N↑(x)) were introduced in (2) and S↑(x) in (5). All three
arise either from a detailed experimental investigation of the preparation process for the
equilibrium (by trying to express it mathematically) or from a pattern recognition process
in the microscopic phase portrait (see the beginning of Section 2.1.2).

The equilibrium thermodynamic relation:

N = N

E = E

S = S(E, N) (21)

is the output of the reduction. It is obtained from (19) by following the time-evolution
governed by (12) to its conclusion (see more in Section 2.2).

2.2. MaxEnt Passage

Investigations of the process of the preparation for the equilibrium level (i.e., investi-
gations of solutions to the upper reducing time-evolution Equation (12)) in Section 2.1.3
led us to the reducing thermodynamic relation (19). We have seen that solutions to (12)
approach, as t→ ∞, equilibrium states x̂(E∗, N∗) ∈ M↑(eq) that are minima of the upper
thermodynamic potential (15) (i.e., x̂(E∗, N∗) are solutions to (16)).

We now take this result of the investigations of the process of preparation for the equi-
librium level as our starting point and make the passage to the equilibrium level without
an explicit reference to the preparation process itself. We thus begin with the reducing
thermodynamic relation (19) and with the MaxEnt principle. Our objective is to pass to
the equilibrium level and arrive at the equilibrium thermodynamic relation (21) implied
by (19). The passage (19)→ (21) is a mapping that, as we shall see below, is a reducing
Legendre transformation. The same mapping is made in Section 2.1.3, but by following
the time-evolution governed by (12). The maximization of the entropy S↑(x) subject to
constraints E↑(x), N↑(x), postulated in this section (MaxEnt principle), is in Section 2.1.3
a consequence of the reducing time-evolution governed by (12). Furthermore, the reduc-
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ing thermodynamic relation (19) arises in Section 2.1.3 from an analysis of the process of
the preparation for the equilibrium level. In this section, where we do not consider the
preparation process, we have to either postulate it or obtain it by using arguments based
on various interpretations of the entropy (e.g., its relation to the measure of information)
that were developed mainly in the context of the Gibbs equilibrium statistical mechan-
ics (i.e., in investigations made at the microscopic level) or in the stochastic approach
to thermodynamics.

The equilibrium thermodynamic relation S∗(E∗, N∗) implied by (19) is:

S∗(E∗, N∗) = Φ↑(x̂(E∗, N∗); E∗, N∗) (22)

where x̂(E∗, N∗) is an equilibrium state (i.e., a solution to (16)). The equilibrium thermo-
dynamic relation S = S(E, N) is then obtained by the Legendre transformation. This
means that:

S(E, N) = Φ∗(Ẽ∗(E, N), Ñ∗(E, N); E, N) (23)

where Φ∗(E∗, N∗; E, N) = −S∗(E∗, N∗) + E∗E + N∗N and (Ẽ∗(E, N), Ñ∗(E, N)) is a so-
lution to Φ∗E∗ = 0, Φ∗N∗ = 0. Summing up, the equilibrium thermodynamic relation
S = S(E, N) is obtained from the reducing thermodynamic relation (19) by two mappings:

(S↑(x), E↑(x), N↑(x))→ (S∗(E∗, N∗), E∗, N∗)→ (S(E, N), E, N) (24)

where the first mapping is the reducing Legendre transformation (22) and the second
mapping is the Legendre transformation (23). We call (24) the maximum entropy principle
(MaxEnt principle).

We now comment about the physical interpretation of the quantities E∗ and N∗.
They appear at both the upper level in the thermodynamic potential Φ↑ (see (15)) and
at the equilibrium level in the equilibrium thermodynamic potential Φ(E, N; E∗, N∗) =
−S(E, N) + E∗E + N∗N.

At the equilibrium level, the quantities E∗ and N∗ are the conjugate variables to E
and N, respectively, since the following relations hold: E∗ = SE(E, N) and N∗ = SN(E, N).
They play a very important role in the equilibrium thermodynamics since they can be
easily measured. The measurement of E∗ (and consequently, of the temperature T since
E∗ = 1

T ) is made possible by the ubiquity in nature of membranes, which either pass freely
or prevent completely the passage of the internal energy E. If a macroscopic system is put
into contact with another macroscopic system called a thermometer in such a way that the
internal energy freely passes freely between the system and the thermometer and both the
system and the thermometer are surrounded by the membrane that blocks the passage of
the internal energy, then, due to the maximization of the entropy in the equilibrium states
reached as t → ∞, the temperature of the system becomes the same as the temperature
of the thermometer. The temperature of the thermometer is then made visible through a
known relation between the temperature and another state variable of the thermometer
(e.g., volume or pressure) that can be directly observed. The existence of membranes that
freely pass or block the passage of the mass then similarly makes it possible to measure
N∗. Moreover, since E∗ = SE > 0, there is a one-to-one relation between the equilibrium
thermodynamics formulated in terms of (S(E, N), E, N) and (E(S, N), S, N). Using the
terminology of Callen [8], the former formulation is called an entropy representation and
the latter an energy representation of the equilibrium thermodynamics.

At the upper level, the quantities (E∗, N∗) play only the role of the Lagrange multi-
pliers in the maximization of the reducing entropy S↑(x). They are no longer conjugate
variables, and they cannot be simply measured at the upper level. This is the well-known
problem with the definition and measurements of the temperature at mesoscopic levels
(including the levels used in direct numerical simulation).

The observations that we just made about (E∗, N∗) are also related to the relation
between the entropy representation (in which (E, N) are independent state variables) and
the energy representation (in which (S, N) are independent state variables) in the classical
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equilibrium thermodynamics (see [8]). Due to the positivity of the absolute temperature
T = (SE(E, N))−1, these two representations are interchangeable in the classical equilib-
rium thermodynamics. The equilibrium fundamental thermodynamics relation can be
given either in the form (21) or in the form (N = N, E = E(S, N), S = S). This exchange-
ability of entropy and energy representations extends to fluid mechanics (with the fields
of mass, energy, and momentum playing the role of state variables) only under the local
equilibrium assumption according to which the entropy field (i.e., the local entropy) is
the same function of the mass and the energy fields as in equilibrium, and thus, the field
of the temperature (i.e., the local temperature) is positive (see more about this point in
Section 4.3.3). In the context of a general mesoscopic level with state variables x, the up-
per reducing thermodynamic relation has only one form (19); there are no energy and
entropy representations.

It is also interesting to note the difference in the inclusion of the constraints in the
maximization of the reducing entropy S↑(x) made in the MaxEnt principle and in the
maximization of the same entropy made by following the reducing time-evolution. While
the former is made simply by the method of Lagrange multipliers, the latter, as we see in
Section 2.1.3, is made by requiring the degeneracies of the geometrical structures involved
in the vector fields and by the Grad–Villani dissipation enhancement.

Still continuing with the comparison of the MaxEnt reduction (in this section) and
the reduction made in the reducing time-evolution (in Section 2.1.3, we look more closely
into the role of Legendre transformations. We already noted that the MaxEnt reduction (24)
is a sequence of two Legendre transformations. The first one is a reducing Legendre
transformation, and the second is a regular Legendre transformation. A natural question is
as to whether the reducing time-evolution is in fact also a sequence (an infinite sequence)
of (infinitesimal) Legendre transformations. We answer this question in the next section.

2.3. Contact Geometry

Having realized that the fundamental group of thermodynamics is the group of Legen-
dre transformations, we ask the question of what is the mathematical environment in which
the Legendre transformations appear as natural transformations. The geometrical structure
that is preserved in the Legendre transformations is the contact structure [4,11]. We can
thus suggest that the contact geometry provides a natural mathematical environment for
thermodynamics. For the classical equilibrium thermodynamics, this suggestion was made
in [12,13] and for multiscale thermodynamics in [14]. In this section, we only discuss the
physical aspects of the contact geometry formulation of thermodynamics. Its mathematical
background can be found in [4,11].

The time-evolution governed by (12) will be a sequence of contact structure preserving
(Legendre) transformations if (12) is lifted into a larger space that is equipped with a contact
structure and the lifted Equation (12) will generate the time-evolution that preserves it.
From the side of physics, the motivation (and guidance) for this type of reformulation of
(12) comes from the following considerations. In classical (both equilibrium and nonequilib-
rium) thermodynamics, the conjugate state variables like the temperature and the pressure
play a role of the same (if not larger) importance as the energy and volume. We can therefore
suggest to adopt the conjugate state variables x∗ as independent state variables. We introduce
a large space M↑ with coordinates (x, x∗, z), x ∈ M↑; x∗ ∈ M↑∗; z ∈ R. The fact that x and
x∗ are related in thermodynamics by x∗ = S↑x(x) suggests that its submanifold:

M↑ = {(x, x∗, z) ∈M↑|x∗ = S↑x(x); z = S↑(x)} (25)

is both physically and mathematically significant. From the physical point of view, the ther-
modynamics takes place on M↑. The mathematical significance of the submanifold M↑

stems from the fact that M↑ is equipped with the contact structure defined by the one-form:

dz− x∗dx (26)
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and M↑ is its Legendre submanifold. We recall that the Legendre submanifold is defined
as a manifold on which the contact one-form equals zero. We note that [dz− x∗dx]M↑ = 0.

In order to include the MaxEnt reduction (19) to the contact geometry formulation,
we have to still enlarge the space M↑. We enlarge it into the space M̂↑ with coordinates
(x, x∗, E∗, N∗, E, N, z) and equip it with the one-form dz− x∗dx− EdE∗ − NdN∗. The Leg-
endre manifold (25) turns in M̂↑ into another Legendre manifold:

M̂↑ = {(x, x∗, E∗, N∗, E, N, z) ∈ M̂↑|x∗ = Φ↑x; E = Φ↑E∗ ; N = Φ↑N∗ ; z = Φ↑} (27)

The MaxEnt reduction takes place on M̂↑, and M̂↑ is again the Legendre manifold.
What remains is to lift (12) to M̂↑ in such a way that: (i) the one-form dz − x∗dx −

EdE∗ − NdN∗ is preserved in the time-evolution generated by the lifted (12), and (ii) the
Legendre manifold M̂↑ is invariant in the time-evolution generated by the lifted (12), while
the lifted Equation (12) restricted to M̂↑ is exactly the Equation (12). The time-evolution in
M̂↑ satisfying these properties is called contact reducing time-evolution.

As for the first point, the canonical form of the time-evolution equations preserving a
given (maximally non-integrable) one-form is well known [4,11]. The form resembles the
form of the canonical Hamilton equations. In particular, the vector field is a gradient of
a potential (called a reducing contact Hamiltonian E↑(x, x∗, E∗, N∗, E, N, z)) transformed
into a vector by the contact geometrical structure (similar to how the Hamiltonian vector
field (3) is the gradient E↑x of the Hamiltonian E↑(x) transformed into a vector by the
symplectic structure, i.e., by the bivector L↑).

Regarding the second point, the contact Hamiltonian E↑(x, x∗, E∗, N∗, E, N, z)), iden-
tified in [14,15], is essentially the rate reducing thermodynamic potential (37) with Σ↑ =
Ξ↑(x, x∗)−

[
Ξ↑(x, x∗)

]
x∗=Φ↑x

, W∗ = E∗, and W↑ =< x∗, L↑E↑x >.

Summing up: (i) the contact structure of the space M̂↑ remains unchanged during the
contact reducing time-evolution; (ii) the contact reducing time-evolution takes place on
the Legendre manifold M̂↑ given in (27); (iii) the geometrical structures appearing in (12),
i.e., the symplectic structure expressed in the bivector L↑ and the generalized gradient struc-
ture expressed in the reducing dissipation potential Ξ↑, make their appearance in the con-
tact reducing time-evolution in the reducing contact Hamiltonian E↑(x, x∗, E∗, N∗, E, N, z)).

The contact formulation is thus very satisfactory both from the physical and the math-
ematical point of view. The physical satisfaction comes from seeing the reducing thermo-
dynamic relation (19) as a relation determining the manifold (the Legendre manifold (27))
on which the time-evolution takes place and seeing the symplectic and the gradient geo-
metrical structures in the generating potential E↑(x, x∗, E∗, N∗, E, N, z) (we recall that they
enter GENERIC (12) in the geometry used to transform gradients of potentials into forces).
The mathematical satisfaction comes mainly from the fact that the contact geometry of the
space M̂↑ in which the contact time-evolution takes place remains unchanged during the
time-evolution. From the mathematical point of view, we are thus as comfortable as we
are with the Hamiltonian dynamics in the setting of the symplectic geometry and with the
gradient dynamics in the setting of the Riemannian geometry. The GENERIC dynamics for-
mulated in (12) involves two geometrical structures (symplectic and Riemannian); neither
of them are preserved in the course of the time-evolution.

Finally, we also recall that the variational formulation that is well known for both
the Hamiltonian dynamics and the gradient dynamics can be, in the setting of the contact
geometry, extended to their combination, i.e., to the GENERIC dynamics [14]. The contact
geometry provides also a natural setting for using the thermodynamic methods in the
control theory [16,17].
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2.4. Passage to a Lower Level with Lower Dynamics

So far, the lower level l with which we are comparing the upper level L is the equi-
librium level that distinguishes itself among other levels mainly by the absence of the
time-evolution. No time-evolution takes place at the equilibrium level (see (20). We re-
place now the equilibrium level with a general (but still lower than L) level l at which a
time-evolution (called a lower time-evolution) takes place. What has to be changed in the
investigation of the passage L → l?

If both levels L and l are well established (i.e., well tested with the results of experi-
mental observations), then there has to be a way to prepare the macroscopic systems under
investigations for the level l, and such a preparation process has to be presentable as a
time-evolution at the level L. In this respect, the replacement of the equilibrium level
with the level l that involves the time-evolution does not bring any change. The question
that remains to be answered is as to whether the preparation process is governed again
by (12). We shall assume that it is (12) that governs the preparation process, but (12) with
different potentials and geometrical structures. We recall that Equation (12) describing the
preparation process at the equilibrium level has arisen as a common structure of this type of
equations developed independently, by many researchers, in different times, and at many
different levels (see Section 4). No such pool of equations is available for investigating the
approach to mesoscopic levels l with the time-evolution. However, the basic physics that is
behind (12) remains the same. We are looking essentially at the same preparation process
except that we are interrupting it before its completion. The microscopic basis of the time-
evolution describing the preparation process is again the particle Hamiltonian mechanics
and the gradual disappearance of details in the preparation process that is expected to
be mathematically manifested in the gradual decrease (or increase) of a Lyapunov-like
potential. As for the question of what are the potentials and the geometrical structures
appearing in (12) that represent a given macroscopic systems, we leave this at this point
unanswered. We shall discuss some examples in Sections 4 and 5.

There are however some important differences in the time-evolution representing
the preparation for the equilibrium level and for the mesoscopic level l involving the
time-evolution. First, the requirement (13) is weakened. The energy can be transferred
from one level to another. Only the total energy is conserved. The energy E↑(x) does not
have to be a gradient Casimir. The requirement (13) for the time-evolution describing
L → l thus becomes Ṡ ≥ 0. A new requirement however emerges. In the reduction to
the equilibrium level, solutions to the upper reducing time-evolution equations approach
fixed points (see (20)). This means that the fixed points are eventually (as t→ ∞) reached
and then never leave it. The fixed points are, of course, invariant manifolds. In other
words, the approach to fixed points is automatically an approach to an invariant manifold.
In investigations of the approach to a lower level with the lower time-evolution, trajectories
in M↑ approach M↑(low) ⊂ M↑, which is in one-to-one relation with the lower state
space M↓.

The requirement of the invariance of the manifoldM↑(low) is now highly non-trivial.
It is this requirement that makes the investigation of the reduction to a lower level with
the time-evolution more difficult than the investigation of the reduction to the equilibrium
level. The result of the investigation L → l, where l involves the lower time-evolution, is
not only the lower thermodynamic relation (i.e., the equilibrium thermodynamic relation
when l is the equilibrium level), but also the lower time-evolution. Historically, in the first
investigation of this type [18], known as the Chapman–Enskog method, the level L is the
level of kinetic theory represented by the Boltzmann kinetic equation, and the level l is the
level of hydrodynamics with the five hydrodynamic fields serving as state variables (see
more in Section 4.1).

As in the investigation of the reduction to the equilibrium level (see (2)), we begin
with:

M↑ → M↓(l); x 7→ y(x) (28)
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In the Chapman and Enskog investigation (see more in Section 4.1), y(x) are the hydrody-
namic fields expressed in terms of the one particle distribution function.

The reducing time-evolution equation is (12) with the reducing thermodynamic relation:

y = y(x)

E↑(x)

S↑(x) (29)

Both the reducing energy E↑(x) and the reducing entropy S↑(x) are, in general, different
from those appearing in (19). All reductions depend on both the upper level L and the
lower level l. If the lower level changes, all quantities appearing in the reduction change.
In particular, the energy E↑(x) appearing in (29) is only the energy involving the state
variables that belong to x, but that do not belong to y. In order to avoid overburdening our
notation, we do not show explicitly the dependence on the lower level l.

The reducing thermodynamic relation (29) is again obtained as a result of a pattern
recognition process in the upper phase portrait, but the focus is put on a different pattern
than in the the investigation of the passage to the equilibrium level. Instead of looking for
the fixed points (17), we look for manifoldsM↑(low) satisfying the following five properties:

(i)M↑(low) ⊂ M↑

(ii)M↑(low) is in one− to− one relation with M↓

(iii)M↑(low) = {x ∈ M↑|Φ↑x(x; y∗) = 0}
(iv)M↑(low) is approached as t→ ∞

(v)M↑(low) is maximally invariant (30)

where:
Φ↑(x; y∗) = −S↑(x) + E↓∗E↑(x)+ < y∗, y(x) > (31)

In the context of the reducing time-evolution Equation (12), we require that y(x) is both
the Casimir and the gradient Casimir, E↑(x) is the gradient Casimir, and S↑(x) is the
Casimir. The fifth requirement was not, of course, needed in the previous section. This
new requirement plays now a very important role in determining the potentials appearing
in (29). The precise meaning of maximally invariant (or alternatively “quasi-invariant”)
used in (30) as well as the meaning of “appropriately projected” used in (33) below remains
still a part of the pattern recognition analysis of the upper time-evolution that has to be
investigated [2,19–22].

The output of the reduction L → l is the lower thermodynamics relation:

S↓ = S↓(y) (32)

obtained from (29) in the same way as (21) is obtained from (19) (see more in Section 2.2)
and the vector field (compare with (20)):[

L↑E↑x +
[
Ξ↑x∗
]

x∗=S↑x

]
M↑(low)

(33)

which, if appropriately projected on the tangent space TM↑(low) of the manifoldM↑(low)

and pushed forward on M↓(l) by the mapping (28), becomes the vector field generating
the time-evolution at the lower level l. In this paper, we limit ourselves only to recalling
the main idea behind the Chapman and Enskog analysis (see more in Section 4.1 and
in [2,18–23]).

Before leaving this section, we make two remarks.
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Remark 1. The original Chapman–Enskog investigation of the reduction of kinetic theory to
hydrodynamics, as well as its continuation in [19] concentrate only on the derivation of the lower
time-evolution generated by the vector field (33). The larger context of multiscale reductions has led
us to the derivation of an additional result, namely to the reduced thermodynamics relation (32) that
is associated with the lower time-evolution. In the reduction L → equilibrium level, we obtained
the equilibrium thermodynamic relation as the reduced thermodynamic relation, and the reduced
vector field is not a vector field. In the reduction L → l that involves time-evolution, we obtain the
lower thermodynamic relation (32) and the lower time-evolution generated by (33). The reduced
thermodynamic relation (32) represents the thermodynamics at the equilibrium level that is inherited
from the reduction L → equilibrium level. The reduced thermodynamic relation (32) represents the
thermodynamics at the level l that is inherited from the reduction L → l. As we saw in Section 2.3,
the reduced thermodynamic relation (21) provides the lower state space M↓(i) with geometry.

Remark 2. Externally or internally driven macroscopic systems are prevented from reaching the
equilibrium level. Equilibrium thermodynamics does not exist for such systems. However, the behav-
ior of externally or internally driven macroscopic systems can often be described at a mesoscopic level
l. For example, the experimentally observed behavior of the Rayleigh–Bénard system (a horizontal
layer of a fluid heated from below) can be described at the level of hydrodynamics (with Boussinesq
equations governing the lower time-evolution). In other words, the level of hydrodynamics is well
established for the Rayleigh–Bénard system. This then means that any other level L that involves
more details and that allows expressing the physics of the Rayleigh–Bénard system (for example,
the microscopic level) has to be reducible to the level of hydrodynamics. The resulting lower ther-
modynamic relation (32) implied by the reduction provides thus the thermodynamics replacing the
equilibrium thermodynamics that does not exist. Summing up, if there exists a well-established
mesoscopic level for an externally or internally driven macroscopic system (however far from equi-
librium and however strong the external and internal driving forces are), then there also exists
thermodynamics (expressed in the thermodynamic relation (32)) for such a system.

2.5. Transitivity of Reductions

A single reduction L → l introduces two structures: reducing structure at the level
L and reduced structure at the level l. The reducing structure consists of the reducing
thermodynamic relation and the reducing time-evolution equation. The reduced structure
consists of the reduced thermodynamic relation and the reduced time-evolution equation.
Moreover, since for a given lower level l, there are, in general, many upper levels L from
which it can be reduced, the every level has not one, but many reducing and reduced
structures. In addition, by replacing the reduction with rate reduction, the number of the
structures is multiplied by two.

Not all such structures are however independent. We shall now explore some of the
relations among them. First, we turn to systems with no external and internal forces that
would prevent the approach to equilibrium and to the chain:

L −→ L −→ equilibrium (34)

We expect that the reductions are transitive in the sense that the reduced equilibrium
structure arising as a result of the gradual reduction L −→ L → equilibriumis the same as
the reduced equilibrium structures obtained from the direct reductions L −→ equilibrium
and L −→ equilibrium. This transitivity then implies the following relation between the
reduced and the reducing entropies at the level L:

H↓(y) = S↑(y) (35)

where H denotes the entropy associated with the reduction L −→ L and S is the entropy
associated with the reduction L −→ equilibrium.

Gradual reductions (34) are more difficult to investigate than direct reductions. Nev-
ertheless, we can, at least partially, illustrate the relation (35) with two examples. In both
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examples, the upper level L is the level of kinetic theory. The intermediate level L is in the
first example the level of the classical fluid mechanics with the fields of mass, momentum,
and internal energy as state variables. In the second example, the intermediate level L is
the level of the extended fluid mechanics with n fields, which are velocity moments of the
one particle distribution function (see more in Section 5).

In both examples, only the non-dissipative part of the time-evolution at the level
L is considered. The passage L −→ L is, in both examples, the MaxEnt reduction (see
Section 2.2), which does not explicitly involve the reducing time-evolution. The reduction
L −→ equilibrium is not made, in both examples, in the way described in Section 2.1.3,
but in the way developed in the classical nonequilibrium thermodynamics (i.e., as an
appearance of a companion local conservation law implied by a system of local conservation
laws; see Section 4.3).

The first example is in fact a well-known result of the classical nonequilibrium ther-
modynamics. We begin with the reducing thermodynamic relation (29) at the level
L in which x = f (r, v); y(x) = (ρ(r), u(r), e(r)) = (

∫
dv f ,

∫
dvv f ;

∫
dv v2

2 ); N↑(x) =∫
dr
∫

dv f ; E↑(x) =
∫

dr
∫

dv v2

2 ; H↑(x) = −
∫

dr
∫

dv f ln f . The fields (ρ(r), u(r), e(r))
are hydrodynamics fields; ρ is the mass, u momentum, and e internal energy. The reducing
thermodynamic potential (15) reaches its minimum at the local Maxwell distribution, and
finally, the reduced entropy S↓(y) at the level L is the local equilibrium entropy given
in (32) (see also Section 4.3.3). Neither the reducing, nor the reduced time-evolution is
included in the investigation of the reduction L → l.

Next, we look at the time-evolution passage L −→ equilibrium. The non-dissipative
part of the reducing time-evolution is the Euler hydrodynamics. Together with the reducing
thermodynamic relation (19) in which N =

∫
drρ(r); E =

∫
dre(r) and S =

∫
drs(ρ, u, e; r),

where s(ρ, u, e; r) is the local equilibrium entropy field, the Euler hydrodynamic equations
imply (13) with the equality in the third equation. The entropy conservation Ṡ↓ = 0 arises
in fact as a local conservation law ∂s

∂t = − ∂(sui/ρ)
∂ri

(see more in Section 4.3.3). This is a
well-known result of the classical nonequilibrium thermodynamics. The relation (35) is
thus in the context of the first illustration proven.

In the second example [24], we put the first example into the larger context of Grad’s
hierarchy, which is a particular reformulation of Boltzmann’s kinetic equation in which the
one particle distribution function is presented in the form of an infinite set of equations
governing the time-evolution of its velocity moments (see more in Section 5). We realize
that the hydrodynamic fields are the first five moments. In the context of Grad’s hierarchy,
the first illustration is in fact a splitting of the infinite Grad hierarchy into two parts: the
lower part is a closed system of equations governing the first five moments (the governing
equations of Euler’s hydrodynamics), and the upper part is the remaining equations in the
infinite hierarchy. The analysis of solutions to the upper part of the hierarchy is replaced
(as was done also in the first illustration) by the MaxEnt passage (with the Boltzmann
entropy) from the one particle distribution to its five moments. The second illustration
of (35), worked out in [24], is thus the same as the first one, but with a general number n of
Grad’s moments serving as hydrodynamic fields. Dreyer proved in [24] that all the results
that we have recalled above in the first example for n = 5 hold also for n > 5.

The transitivity of rate reductions in the chain (34) is discussed in Section 3.

2.6. Criticality

The strength of the autonomy of a level is measured by the strength of fluctuations.
The larger are the fluctuations, the less autonomous is the level. Large fluctuations in-
dicate that the details that were ignored, in both experimental observations and in the
mathematical formulation, cannot be ignored any longer. From the mathematical point of
view, the loss of autonomy is manifested by the loss of the convexity of thermodynamic
potentials. The regions in which this is happening are called critical regions.

Investigations of critical phenomena bring extra difficulties, but also extra simplifica-
tions. The first simplification is the mathematical universality of reducing thermodynamic
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potentials. As shown in catastrophe theory [25], real-valued smooth functions have in
the vicinity of their degenerate critical points only a few nonequivalent forms (Landau
polynomials). The second simplification is the inseparability of levels in the critical region
allowing defining the critical region alternatively in terms of reductions.

The first simplification was noted by Landau [26]. Viewing his theory through the
eyes of multiscale thermodynamics, we formulate it in the following three steps. (i) The
equilibrium level is extended to an upper level with an order parameter, ξ, playing the
role of an extra state variable. (ii) The upper reducing thermodynamic potential potential
Φ(ξ; E∗, N∗) has a universal form of Landau polynomials in the extra state variable ξ [25].
(iii) MaxEnt reduction of the extension formulated at the upper level to the equilibrium
level implies a universal critical behavior at the equilibrium level.

This multiscale viewpoint of the Landau theory is formulated and illustrated by the
van der Waals theory in [27,28]. The mathematical results of the universality of thermody-
namic potentials in critical regions that have arisen in catastrophe theory [25] may become
less surprising if we allegorically compare them with the very familiar observation that our
two friends, Bill and Bob, are very different in many respects, but their behavior in critical
situations is very similar. The criticality overrides the diversity.

The realization of the existence of the second simplification originally arose in the
comparison of the predictions of Landau’s theory with the results of experimental obser-
vations. The agreement is found to be only qualitative. In order to explain it, attention
was turned to the inseparability of levels at the critical point. It has been realized that
the critical points themselves can be defined as fixed points of a group of transformations
(called a renormalization group) representing a pattern recognition process. The fixed
point, i.e., the critical point, is the point where no pattern can be recognized. This type
of idea was originally formulated in the context of the Gibbs equilibrium statistical me-
chanics in [29]. In this formulation, the microscopic Hamiltonians approach in the pattern
recognition process (consisting usually of a spatial coarse graining) fixed points. In the
context of multiscale thermodynamics, the renormalization group approach to critical
phenomena was formulated in [27,28]. In this formulation, the coefficients of the Landau
polynomials approach the fixed points. The pattern recognition process is not the spatial
coarse graining, but an extension of the original one component system to a two component
system followed by MaxEnt reduction back to the original one component system. The two
components are completely identical; they are distinguished only by a feature that does
not influence at all the physical properties determining the dynamics (e.g., by a color).

3. Rate Thermodynamics

As we already emphasized several times, the reduction L → l is either a mathematical
formulation of the experimental investigation of the preparation process for the level l
or, in the case when the time-evolution taking place at the level L is known, a pattern
recognition process in the upper phase portrait. The recognized pattern is then the reduced
phase portrait. In the search for the pattern, we have so far concentrated on the phase
portrait in the state space M↑. Alternatively, we can look at what is happening in the course
of the preparation process in the space X(M↑) of the vector fields on M↑. Such a change in
the focus of our attention is expected to help in recognizing overall features since the lift to
higher order tangent spaces is in fact a way to see larger pieces of trajectories. Moreover,
the recognized lower time-evolution will appear in X(M↑) as a fixed point (as the lower
vector field) and not as a quasi-invariant submanifold of the state space M↑. It is easier
to recognize fixed points than quasi-invariant submanifolds. For reasons that will appear
later in the discussion of the relations between rate reductions and reductions (see also (8)),
we shall observe the upper time-evolution in the space X∗(M↑) of co-vector fields rather
than in the space X(M↑) of vector fields. The elements of X∗(M↑) (denoted by the symbol
X, i.e., X ∈ X∗(M↑)) are physically interpreted as thermodynamic forces.

The change from M↑ to X∗(M↑) is reflected in our terminology by adding the prefix
“rate”. The reducing time-evolution in X(M↑) is thus the reducing rate-time-evolution, and
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the thermodynamic relation is the rate thermodynamic relation. The elements of X∗(M↑)
are denoted by X (i.e., X ∈ X∗(M↑)) and Y ∈ X∗(M↓). The reducing rate-entropy is de-
noted by Σ↑(X), the reducing rate-energy by W↑(X), and the reducing rate-thermodynamic
potential by Ψ↑(X; I). Similarly, Σ↓(Y) is the reduced rate-entropy and W↓(Y) the reduced
rate-energy. The maximum entropy principle (MaxEnt principle) becomes the maximum
rate entropy principle (MaxRent principle). We try to use the notation established in
nonequilibrium thermodynamics (see also Section 4.3.1). We depart therefore from using
X∗ to denote the conjugate of X. Instead, we denote the conjugates of X, having the physi-
cal interpretation of thermodynamic fluxes, by the symbol J, as is customary in classical
nonequilibrium thermodynamics (see also Section 4.3.1). Similarly, at the lower level l,
the thermodynamic forces are denoted by the symbol Y and its conjugates, having the
physical interpretation of lower level thermodynamic fluxes, by the symbol I.

From the physical point of view, the preparation process for the level l is the same as
in Section 2.4. We just observe it differently. The mathematical formulation of the MaxRent
passage L → l begins with the reducing rate thermodynamic relation:

Y = Y(X)

W↑(X) (36)

Σ↑(X)

where W↑(X) is the rate of energy. The rate thermodynamic corresponding to it potential reads:

Ψ↑(X; W↓∗, I) = −Σ↑(X) + W↑(X)W↓∗+ < Y(X), I > (37)

where (W↓∗, I) are Lagrange multipliers.
Next, we pass by the MaxRent reduction from Σ↑(X) to Σ↓∗(W↓∗, I) and finally (by the

ordinary Legendre transformation) to Σ↓(W↓, Y). The Legendre transformations involved
in the MaxRent reduction are the same as the Legendre transformations made in the
MaxEnt reduction in Section 2.2.

If we compare the rate thermodynamic potential (37) with the thermodynamic poten-
tial (15), we note that the coefficient W↓∗ is in rate reductions analogous to the coefficient
E∗ = 1

T introduced in reductions. We therefore physically interpret W↓∗ as an inverse
rate temperature T , i.e., W↓∗ = 1

T . In terms of the lower entropy Σ↓(W↓, Y), the rate
temperature T becomes:

Σ↓W↓(W
↓, Y) =

1
T (38)

The rate temperature T can be measured with a rate thermometer similarly as the tempera-
ture T is measured with a standard thermometer. The difference between the standard
and the rate thermometers is in the walls separating the thermometers from the system
whose temperature is measured. In the standard thermometers, it is a wall that freely
passes or stops passing the internal energy. Such walls are ubiquitous in nature. In the rate
thermometers, the walls have to freely pass or stop passing the rate of the internal energy.
Such walls are certainly not ubiquitous in nature. The rate temperature remains thus still
only a theoretical concept.

As for the rate time-evolution passage L → l, we already noted that even if the
lower level l involves the lower time-evolution in the space of vector fields, X∗(M↑) still
approaches a fixed point (the lower vector field) and not a quasi-invariant manifold. We
shall make some additional observations addressing this aspect of the reducing rate time-
evolution in Section 5. Regarding other aspects of the time-evolution governing the passage
X∗(M↑)→ X∗(M↓), we conjecture that it possesses the GENERIC structure discussed in
Section 2.1.3. Contrary to the passage M↑ → M(eq) for which we have many specific
examples (which have been developed independently and at many different levels) that all
possess GENERIC, the argument supporting this conjecture is only the consistency that
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GENERIC provides for combining the time reversible and non-dissipative mechanics with a
time irreversible and dissipative mechanism in which unimportant details are disappearing.

Our discussion of the rate thermodynamics remains so far in the space X∗(M↑) in
which we did not relate its elements X to M↑. We have so far no connection between
the time-evolution of X ∈ X∗(M↑) and the time-evolution of x ∈ M↑. These two time-
evolutions become related if X ∈ X∗(M↑) becomes related to x ∈ M↑. We have to say
something about the function X(x∗). We recall that we have already addressed this
function in (8), where we collected the properties of the dissipation potential. In particular,
the dissipation potential Ξ↑ has been found to depend on x∗ through its dependence on
the thermodynamic force X and in a way that all four properties in (8) are satisfied.

In order to discuss the compatibility of the rate thermodynamics with the thermody-
namics presented in Section 2, we consider a macroscopic system at three levels (34) in the
absence of external and internal forces that prevent the approach to equilibrium. The dif-
ference between (34) in Section 2.5 and this section is that −→ in Section 2.5 represents
reductions, and in this section, it represents rate reductions. The compatibility of the rate
passage L→ L with the passage L → equilibrium requires:

Σ↓(Y) = Ξ↑(Y) (39)

where Y is the co-vector field at the levelL. This compatibility relation implies then the relation:

S↑ =< S↑y(y), ẏ >= [< y∗, Ξ↑y∗ >]y∗=S↑y(y)
= a[< Y(y∗), Σ↓Y(y∗) >]y∗=S↑y(y)

(40)

between the reduced rate entropy and the entropy production, both at the level L.
The results of the classical nonequilibrium thermodynamics that gave birth to the rate

thermodynamics are recalled in Section 4.3.3.

4. Particular Realizations of the GENERIC Structure

The unified formulation of equilibrium thermodynamics, non-equilibrium thermo-
dynamics, equilibrium statistical mechanics, and non-equilibrium statistical mechanics
provided by multiscale thermodynamics has emerged as a collection of common features
extracted from a large body of investigations of macroscopic systems at many different
levels ranging from the equilibrium to the microscopic. We now recall some of the principal
results on which multiscale thermodynamics stands. The feedback of the abstract formula-
tion to the investigation of some specific problems arising in hierarchy reformulations of
dynamics is explored in Section 5.

The first step towards a unified viewpoint of microscopic and mesoscopic dynamics
was made by Alfred Clebsch [30], who cast the Euler hydrodynamics (i.e., a continuum
version of Newton’s mechanics) into the Hamiltonian form. In particular, in Arnold’s [31]
formulation, the Hamiltonian fluid mechanics inspired efforts to see also other mesoscopic
non-dissipative dynamical theories (including for instance kinetic theories) as particular
realizations of an abstract Hamilton dynamics. A modification needed to include dissipa-
tive mesoscopic dynamics was made in [32] and later in [33–35]. The importance of such
a unified formulation was gradually realized in [36,37]. Its usefulness, for instance in the
fluid mechanics of complex fluids, was first demonstrated in [38,39]. An important step in
the further theoretical development and in applications was made in [40,41] (where the
acronym GENERIC (General Equation for Nonlinear Equilibrium Reversible-Irreversible
Coupling) appeared for the first time) and also in [36,42]. The contact geometry formula-
tion of GENERIC was introduced in [14]. A recent systematic presentation of multiscale
thermodynamics, together with many applications, can be found in [43].

4.1. Boltzmann Kinetic Equation: Time-Evolution Passage

Historically, the first investigation of the time-evolution passage L → equilibrium was
made by Boltzmann [44]. The physical system in his analysis is the ideal gas, and the upper
level L is the level of kinetic theory in which one particle distribution function f (r, v) ∈ M↑
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plays the role of the state variable (r is the position vector and v the momentum of one gas
particle). The power and the enormous importance of Boltzmann’s results, as well as the
results obtained by his numerous followers, is not the narrow focus on the ideal gas, but
the physical insight and the mathematical structure involved in the investigation.

We introduced in Section 2.1.2 the notion of the entropy S↑(x) as a quantity that plays
in mechanics the role of revealing the overall features of the phase portrait. Following
Boltzmann’s insight, the entropy arises in the investigation of gas dynamics as follows.
The events in the gas time-evolution that play the most important role in determining the
overall appearance of the phase portrait are binary collisions. We therefore consider the free
flow of the gas particles and their binary collisions separately. The former induces directly
the time-evolution of the one particle distribution function: f (r, v, t) = f0(Γ−t(r, v)), where
f0(r, v) is the distribution function at t = 0 and Γt(r, v) is the trajectory generated by
ṙ = v

m ; v̇ = 0. The latter enters the vector field on M↑ indirectly. Complete trajectories of
colliding particles are found first and then transformed into a gain loss balance-type vector
field on M↑. The transformation is, allegorically speaking, a “retouch” of the trajectories of
colliding particles in which the details are ignored and only the energy and the momentum
conservations are kept. The Boltzmann entropy is then born in an analysis of the solutions
of the Boltzmann equation in which the time-evolution is generated by a vector field that is
the sum of the Hamiltonian free flow part and the modified collision part.

In mathematical terms, the Boltzmann kinetic equation takes the form of (12) with:

E↑( f ) =
∫

dr
∫

dv f
v2

2m
; N↑( f ) =

∫
dr
∫

dv f

{A, B} =
∫

dr
∫

dv f
(

∂A f

∂ri

∂B f

∂vi
−

∂B f

∂ri

∂A f

∂vi

)
(41)

Ξ↑( f , f ∗) =
∫

d1
∫

d2
∫

d1′
∫

d2′W( f ; 1, 2, 1′, 2′)
(

eX + e−X − 2
)

X = f ∗(1) + f ∗(2)− f ∗(1′)− f ∗(2′)

where m is the mass of one particle. We use hereafter the summation convention over the
repeated indices and the shorthand notation 1 = (r1, v1); 2 = (r2, v2), 1′ = (r′1, v′1); 2′ =
(r′2, v′2). Two particles enter the collision with coordinates 1 and 2 and leave it with coor-
dinates 1′ and 2′. It is assumed that the particles are point particles, and their position
coordinates remain unchanged in the collisions (i.e., r1 = r′1 = r2 = r′2). The mechanics of
binary collisions is introduced into the formulation of the kinetic Equation (12) with (41)
in two places, First, in the dissipation potential Ξ↑( f , f ∗) in the following restrictions
on the choice of W: (i) W 6= 0 only if the energy and momentum are conserved, i.e., if
v2

1 + v2
2 = (v′1)

2 + (v′2)
2 and v1 + v2 = v′1 + v′2, (ii) W > 0, and (iii) W is symmetric with

respect to 1 � 2 and (1, 2) � (1′, 2′). The second place where the mechanics of binary
collision enters is in the specification of the entropy S↑( f ) that enters the dissipation po-
tential Ξ↑( f , f ∗) in the relation between f and f ∗ (i.e., f ∗ = S↑f ). The Boltzmann entropy

S↑( f ) = −
∫

dr
∫

dv f (r, v) ln f (r, v) emerges when the form of the collision gain loss bal-
ance calculated from the collision mechanics (see, e.g., [18]) is cast into the form Ξ↑f ∗( f , f ∗)

(the second term on the right-hand side of (12) with Ξ↑ given in (41)).
The form of the dissipation potential Ξ↑( f , f ∗) of the collision part of the Boltzmann

kinetic equation arises naturally if we regard binary collisions as chemical reactions [45,46]
in which two species labeled by v1 and v2 react and produce two species labeled by v′1 and
v′2 and vice versa. The thermodynamic force X is called in chemical kinetics a chemical
affinity. The dissipation potential Ξ↑( f , f ∗) appearing in (41) is indeed the dissipation
potential arising in chemical kinetics [46] (see more in Section 4.4. The property (iv) in (8)
is a straightforward consequence of the symmetries of W( f ; 1, 2, 1′, 2′). The coefficient a
appearing in the property (iv) is in this example a = 1/4.

We now recall some important properties of solutions to the Boltzmann kinetic equa-
tion. We begin with the global existence of its solutions that was proven in [47]. DiPerna
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and Lions received for this work the Fields Medal. Another Fields Medal was received
by Cedric Villani [10] for proving the approach of the solutions of the Boltzmann kinetic
equation to the equilibrium states.

The dissipation equilibrium manifold M↑(deq) (see Section 2.1.3) is composed of
solutions to Ξ↑f ∗( f , f ∗) = 0. i.e., solutions to X( f ∗) = 0. With the Boltzmann entropy,
the solutions are the local Maxwell distribution functions, which are also solutions to:

Φ↑(loc)
f (r,v) = 0;

Φ↑(loc)( f ; e∗(r), u∗(r), n∗(r)) = −S↑( f ) (42)

+
∫

dre∗(r)e( f ; r) +
∫

dru∗i (r)ui( f ; r) +
∫

drn∗(r)n( f ; r);

e( f ; r) =
∫

dv f
v2

2m
; u( f ; r) =

∫
dv f v; n( f ; r) =

∫
dv f

The equilibrium manifoldM↑(eq) is composed of solutions to the Boltzmann kinetic
equation reached as t→ ∞. These distribution functions are Maxwell distribution functions
that are solutions to:

Φ↑f (r,v) = 0

Φ↑( f ; E∗.N∗) = −S↑( f ) + E∗E↑( f ) + N∗N↑( f ) (43)

The two manifoldsM↑(eq) andM↑(deq) are related byM↑(eq) ⊂M↑(deq) ⊂ M↑.
The fact that the Boltzmann kinetic equation is a particular realization (41) of the

abstract GENERIC Equation (12) implies that its solutions approach the local Maxwell
distribution functions (42). To prove that they approach a smaller manifold, namely the
manifold composed by the Maxwell distribution functions expressing equilibrium states
(i.e., solutions to (43)), requires extra effort [10]. The Grad–Villani dissipation enhancement
(see Section 2.1.3), needed to narrow down the asymptotically reached manifold, arises due
to the presence of the free flow in the vector field.

Beside the opportunity to investigate rigorously the approach to the equilibrium level,
Boltzmann’s kinetic theory provides also an opportunity to investigate the approach to a
lower level involving the time-evolution (i.e., the situation discussed in Section 2.4). The
mapping (28) is chosen as follows:

f (r, v) 7→ (ρ(r), u(r), e(r)) =
(∫

dvm f (r, v),
∫

dvv f (r, v),
∫

dv
v2

2m
f (r, v)

)
(44)

The l-manifoldM↑(l) ⊂ M↑ is searched by a perturbation method in which the dissipation
equilibrium manifold (42) serves as its initial approximation [18]. In this initial approxi-
mation, the Boltzmann kinetic equation turns into the Euler hydrodynamic equations (i.e.,
into the Hamiltonian part of the hydrodynamic equations).

The Chapman–Enskog method thus begins with the dissipation equilibrium manifold (42),
the Euler vector field on its tangent space, the Boltzmann entropy, and the local equilibrium
reduced thermodynamic relation in the hydrodynamics state space that is implied (see (42))
by the Boltzmann entropy. The next step in the Chapman–Enskog method is a deformation
of the dissipation equilibrium manifold (42), (that we now denoteM↑(deq0)) intoM↑(deq1),
which is required to be more invariant thanM↑(deq0)). We say that a manifoldM ⊂ M
is more invariant, with respect to F ∈ X(M), than a submanifold N ⊂ M if, roughly
speaking, the vector field [F ]M is sticking out of TMmore than the vector field [F ]N is
sticking out of TN . The results of the investigation will still, of course, depend on the
precise meaning we give to “sticking out more” and “sticking out less” (see more in [19]).

After making the first step in the Chapman–Enskog method, we obtain an appro-
priately deformed manifoldM↑(deq1) with the Navier–Stokes–Fourier vector field on its
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tangent space and a new entropy S(1) (whose maximization providesM↑(deq1)) and the
new reduced thermodynamic relation corresponding to it.

The Navier–Stokes–Fourier vector field is the vector field
[Boltzmann vector f ield]M↑(deq1) that is appropriately projected on the tangent space of the
manifoldM↑(deq1) (see more details in [2,19–22]). The reducing entropy S↑(x) is obtained
as follows. LetM↑(l0) be the initial manifold with which the Chapman–Enskog iterations
begin. In the context of the reduction of kinetic theory to hydrodynamics, the manifold
M↑(l0) is the manifold formed by local Maxwell distributions. The manifold corresponding
to the first Chapman–Enskog approximation is denoted byM↑(l1). Let S↑(0)(x), S↑(1)(x)
be the entropies corresponding toM↑(l0), M↑(l1) in the sense thatM↑(l0) is formed by
solutions to (16) with S↑(0)(x) andM↑(l1) is formed by solutions to (16) with S↑(1)(x). In the
context of the reduction of kinetic theory to hydrodynamics, S↑(0)(x) is the Boltzmann
entropy. This type of the Chapman–Enskog sequence of reducing entropies that is induced
by the sequence of the Chapman–Enskog reduced vector fields was discussed in [2,20–22].

An alternative investigation of the reduction kinetic theory level→ hydrodynamics
level that begins with the Grad hierarchy formulation of the kinetic equation [48] will be
discussed in Sections 4.3.2 and 5.

Both the Chapman–Enskog and the Grad types of reductions require a complex
investigation of the solutions of the kinetic equations. If we however concentrate our
attention only on kinematics, then the reduction from the kinematics of the one particle
distribution function expressed in the Poisson bracket (41) to the kinematics of the hy-
drodynamic fields expressed mathematically in the Poisson bracket (57) is completely
straightforward and completely rigorous. The derivation proceeds as follows. First, we
limit the Poisson bracket in (41) to functions A, B that depend on f only through their
dependence on (

∫
dv f ,

∫
dvη( f ),

∫
dvv f ), where

∫
dr
∫

dvη( f ) is a Casimir of the Poisson
bracket (41). This means that we replace A f with Aρ + η f As + vAv, and similarly, B f with
Bρ + η f Bs + vBv. Straightforward calculations (see [43] and the references cited therein
and [49]) lead then from (41) to (57).

4.2. Gibbs MaxEnt Passage: Gibbs Equilibrium Statistical Mechanics

The MaxEnt passage L → l, discussed in Section 2.2, was made first by Gibbs [50] for
L being the microscopic level and l the equilibrium level. The reducing time-evolution
equation describing the preparation process for such a passage is not a part of the Gibbs
analysis. The preparation process is represented only in a few requirements: the gradient
part of the reducing time-evolution by a reducing entropy that is required to be maximized,
the Hamiltonian part by constraints in the maximization. The applicability of the Gibbs
reduction is universal.

In mathematical terms, the upper state variable is the n particle distribution function
f (1, ..., n) ∈ M↑; n ∼ 1023 is the number of particles. The Gibbs MaxEnt reduction starts
with the upper reducing thermodynamic relation:

N↑( f ) =
∫

d1, ...,
∫

dn f (1, ..., n)

E↑( f ) =
∫

d1, ...,
∫

dn f (1, ..., n)e(1, ..., n) (45)

S↑( f ) = −kB

∫
d1, ...,

∫
dn f (1, ..., n) ln f (1, ..., n)

where kB is the Boltzmann constant, e(1, ..., n) is the energy (Hamiltonian) of n particles, and
kB is the Boltzmann constant. The passage to the equilibrium thermodynamic relation (21)
is made in the way described in Section 2.2.

We now compare the Gibbs MaxEnt passage to the equilibrium level with the Boltz-
mann’s time-evolution passage (see Section 4.1) also to the equilibrium level. Boltzmann
begins with an insight into the appearance of the phase portrait of the reducing time-
evolution equation. The crucial role in the emergence of the equilibrium pattern in the
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phase portrait is expected to be played by collisions. The part of the vector field generating
the collision trajectories is thus first “pre-processed” before putting it back into the total
vector field. The pre-processing consists of ignoring the details and keeping only the
momentum and energy conservations. From this viewpoint, the pre-processed collision
vector field takes the form of a gain-loss balance known from chemical kinetics. An in-
vestigation of the time-evolution governed by the Boltzmann equation, i.e., by the free
flow vector field + the pre-processed collision vector field, reveals that the approach to
the equilibrium level is driven by Boltzmann’s H-function, which we call the Boltzmann
entropy. The equilibrium level can be reached by following the time-evolution governed by
the Boltzmann equation or alternatively and equivalently by the MaxEnt reduction process
in which the Boltzmann H-function is maximized subject to the energy and the number of
moles constraints.

Gibbs also begins with an insight into the appearance of the phase portrait. However,
instead of expressing it in a modification of the vector field that generates it, as Boltzmann
does, Gibbs expresses it directly in the entropy that generates it in the MaxEnt reduction.
Both the Gibbs entropy (that is universal at the microscopic level) and its maximization (the
MaxEnt principle) are postulated. The microscopic Hamiltonian vector field is represented
in the Gibbs MaxEnt reduction only in the constraint of the Gibbs entropy maximization.
The energy is required to remain unchanged in the reduction. The Gibbs equilibrium
pattern is also often called “ergodic” with only very vague reference to the rigorous
mathematical definition of ergodicity in the theory of dynamical systems on measurable
spaces [51]. The phase portrait of the ergodic (in the rigorous mathematical sense) time-
evolution does possess the Gibbs pattern, but the Gibbs MaxEnt reduction applies to a
much larger class of time-evolutions.

There is, of course, an enormous difference between the Boltzmann and the Gibbs
approaches to the passage L → l in the domain of applicability. While the Gibbs theory
is applicable to all macroscopic systems, the Boltzmann theory is applicable only to ideal
gases. The pattern that in the upper-level phase space in the Gibbs theory characterizes the
equilibrium level (as well as the entropy generating it in the MaxEnt reduction) is universal,
but it is postulated. In Boltzmann’s theory, the pattern in the upper-level phase portrait
characterizing the equilibrium level is generated by the time-evolution governed by the
Boltzmann equation, but the analysis is made only for ideal gases. Nevertheless, as we have
already pointed out in the previous section, the mathematical structure of the Boltzmann
equation has inspired and continues to inspire investigations of the time-evolution of
macroscopic systems at all levels.

Gibbs Time-Evolution Passage

An obvious question is: What is the Gibbs time-evolution passage that becomes the Gibbs
MaxEnt passage if only an initial state and the final state reached as t → ∞ are considered?
This question was already asked in [52]. We continue to discuss it here. The kinematics of the
N particle distribution function is expressed mathematically in the Poisson bracket:

{A, B} =
∫

d1...
∫

dn f
[

∂A f

∂rαi

∂B f

∂vαi
−

∂B f

∂rαi

∂A f

∂vαi

]
(46)

Its derivation follows completely the derivation of the Poisson bracket for the one particle
distribution function appearing in (41). The time-evolution Equation (3) corresponding to
the bracket (46) is the Liouville equation [53–55]:

∂ f
∂t

= − ∂

∂rαi

(
f

∂E f

∂vαi

)
+

∂

∂vαi

(
f

∂E f

∂rαi

)
(47)

We note that the Liouville Equation (47) is a linear equation independent of the complexity
of the interaction among the particles. The Liouville lift transforms the very nonlinear
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particle dynamics in the finite-dimensional space with (1, ..., n) as its elements into a linear
dynamics in the infinite-dimensional space with ( f (1, ..., n) as its elements.

Next, we follow Boltzmann and introduce dissipation. From the physical point of
view, we need to identify an event (or events) in which unimportant details are generated.
Such events are analogical to binary collisions in ideal gases. Let such an event be identified.
The vector field generating it is replaced by an in-and-out balance generated by mappings:

Υ(1, ..., n) = (1′, ..., n′) (48)

that we call Boltzmann regularization mappings. In Boltzmann’s analysis of an ideal
gas, the mapping Υ represents transformations of incoming momenta (v1, v2) of a binary
collision into the outgoing momenta (v′1, v′2). The invariants of Υ are (r1, (r1 − r2 = 0),
(v1 + v2), (v1)

2 + (v2)
2), expressing the physical assumption that the gas particles are point

particles and that the particle trajectories in the collision are determined by Hamilton’s
mechanics, but their details are ignored; only the momentum and the energy conservations
are honored. In the general setting (48), we assume that the mappings are one-to-one and
that their invariants are:

B = {b1(1, ..., n), ..., bm(1, ..., n)} (49)

where m functions (b1, ..., bm), satisfy:

b1(1, ..., n) = b1(Υ(1, ..., n)), ..., bm(1, ..., n) = bm(Υ(1, ..., n)) (50)

Still following Boltzmann’s analysis, we introduce the thermodynamic forces:

X( f ∗) = f ∗(1, ..., n)− f ∗(1′, ..., n′) (51)

and the dissipation potential Ξ↑. We choose Ξ↑ to be the same as the one appearing in (41),
but with X given in (51). We now add to the right-hand side of the Liouville Equation (47)
an additional term Ξ f ∗ . The resulting equation:

∂ f
∂t

==
∂

∂rαi

(
f

∂E f

∂vαi

)
+

∂

∂vαi

(
f

∂E f

∂rαi

)
+ Ξ f ∗ (52)

possesses the GENERIC structure, and consequently (see Section 2.1.3), its solutions ap-
proach the solutions to X = 0. Such solutions form a manifoldM↑(eq) = { f ∈ M↑| f ∗ =
∑m

i=1 < b∗i , bi >}, parametrized by b∗1 , ..., b∗m. With the Gibbs entropy, the dissipation poten-
tial Ξ given in (41), and the thermodynamic force X (51), the time-evolution Equation (52)
becomes:

∂ f
∂t

= − ∂

∂rαi

(
f

∂E f

∂vαi

)
+

∂

∂vαi

(
f

∂E f

∂rαi

)
+
∫

d1...
∫

dnW(1, ..., n, 1′, ..., n′)( f (1′, ..., n′)− f (1, ..., n)) (53)

where W is symmetric with respect to (1, ..., n)→ (1′, ..., n′), W ≥ 0, and W = 0 unless (50)
holds. As is the case with the Liouville Equation (47), the complex and typically very
nonlinear transformations Υ in the Boltzmann regularization mappings turn in the Liouville
lift into a linear collision-like term.

The Boltzmann-inspired “retouch” of the phase portrait that we presented above is
similar to the Ehrenfest regularization (Ehrenfest “retouch”) [21,56] in which very small
pieces of trajectories are pre-processed.

A likely scenario of the Gibbs time-evolution passage to the equilibrium level is the
following. The time-evolution begins with a weak dissipation, i.e., with a large set (49)
of invariants, which means that only a few details are being ignored. In the course of
the time-evolution, the dissipation increases due to the Grad–Villani enhancement (see
Section 2.1.3) until the set B of invariants of the Boltzmann regularization mappings (48)
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becomes the small set { f ∈ M↑|E( f ) = E; N( f ) = N}. In order to continue to discuss this
scenario, one must discuss in particular the set of invariants (49) representing the seed of the
dissipation, the applicability of the Grad–Villani enhancement of the dissipation, and the
entropy entering the relation between f and f ∗. All these discussions have to arise in an
analysis of the solutions to (47).

4.3. Euler Fluid Mechanics: Local Conservation Laws

The level of fluid mechanics is the oldest [57] and undoubtedly the most important (at
least from the application point of view) mesoscopic level. It has also served as a nucleus
of other nearby levels, like for instance the level of the mechanics of solids, the level of
the mechanics of complex fluids (rheology), classical nonequilibrium thermodynamics,
and also many fields in mathematics. We recall below some aspects of its relations to
mechanics, kinetic theory, and equilibrium thermodynamics. We also recall some branches
of physics and mathematics that grew out of these investigations.

4.3.1. Relation to Newton’s Mechanics

Leonhard Euler [57] introduced fluid mechanics as a continuum version of Newton’s
mechanics of particles. The state variables are the fields:

(ρ(r), e(r), u(r)) (54)

of mass, energy, and momentum, respectively. The total mass M( f m) =
∫

drρ(r), the total
energy E( f m) =

∫
dre(r), and the total momentum U( f m) =

∫
dru(r) remain unchanged

during the time-evolution. If we limit ourselves to fluids with only local interactions, then
this property implies that the time-evolution equations form a system of local conservation
laws (also called balance laws):

∂ρ

∂t
= −

∂J(ρ)i
∂ri

∂e
∂t

= −
∂J(e)i
∂ri

(55)

∂ui
∂t

= −
∂J(u)ij

∂rj

The fields (J(ρ), J(e), J(u)) appearing in (55) are fluxes. Their specification as functions
of the state variables (ρ(r), e(r), u(r)) is called a constitutive relation (see, e.g., [58,59]).
The individual nature of the fluids is expressed in (55) in the constitutive relations. The
third equation in (55) has two physical interpretations, one as a local conservation law
(momentum conservation) and the other as a continuum version of Newton’s law (mass
times acceleration equals force).

The Hamilton formulation of the governing equations of fluid mechanics appeared
in 1859 in [30]. We present it in the form introduced by Arnold [31]. We begin with only
the field u(r) in the set of the state variables (54). Our objective is to find a particular
realization of (3) with x = u(r). In order to find the kinematics of u(r) (i.e., in order
to determine the Poisson bivector L↑), we turn to the physics of continuum. Following
Euler [57], continuum is the space R3, and its motion is a Lie group of transformations
R3 → R3. Arnold [31] realized that the momentum field u(r) is an element of the dual
of the Lie algebra that is associated with the Lie group of the transformations R3 → R3

and consequently that the Poisson bracket that is canonically associated with the Lie
algebra [60,61] (which in the case of Lie group of transformations R3 → R3 has the

form {A, B} =
∫

drui

(
∂Aui
∂rj

Buj −
∂Bui
∂rj

Auj

)
) expresses mathematically the kinematics of

the continuum.



Entropy 2021, 23, 165 24 of 46

In order to identify the kinematics of the full set (54) of the state variables that also
satisfy the degeneracy requirement (see Section 2.1.1), we make an extra hypothesis about
the time-evolution at the level of fluid mechanics. We replace the energy field e(r) in (54)
with another scalar field s(r) = s(ρ, e, u; r) that is required to satisfy:

(ρ(r), e(r), u(r)) � (ρ(r), s(r), u(r)) is a one-to-one transformation

∂s
∂t

= sρ
∂ρ

∂t
+ se

∂e
∂t

+ sui

∂ui
∂t

= −
∂J(s)i
∂ri

(56)

where J(s) is a flux of the field s. The flux J(s) is a function of the hydrodynamic fields. Its
specification is a part of the constitutive relation. The physical interpretation of (56) will
appear in Section 4.3.3 in the discussion of the relation of fluid mechanics with equilibrium
thermodynamics. In the rest of this section, we shall use the fields (ρ(r), s(r), u(r)) as the
state variables of fluid mechanics.

The two scalar fields (ρ(r), s(r)) are assumed to be passively advected with the motion
of the continuum. With the use of the concept of the semi-direct product [60,61], the
complete Poisson bracket expressing the kinematics of (ρ(r), s(r), u(r)) is given by:

{A, B} =
∫

dr

[
ui

(
∂Aui

∂rj
Buj −

∂Bui

∂rj
Auj

)

+ρ

(
∂Aρ

∂rj
Buj −

∂Bρ

∂rj
Auj

)
(57)

s

(
∂As

∂rj
Buj −

∂Bs

∂rj
Auj

)]

The equations (3) governing the Hamiltonian time-evolution of (ρ(r), s(r), u(r)) are
thus:

∂ρ

∂t
= −

∂J(ρ)i
∂ri

∂s
∂t

= −
∂J(s)i
∂ri

(58)

∂ui
∂t

= −
∂J(u)ij

∂rj

where:

J(ρ)i = ρE↑ui

J(s)i = sE↑ui

J(u)ij = uiE
↑
uj + pδij

p = −e + ρE↑ρ + sE↑s + uiE
↑
ui (59)

We see thus that the requirement expressed in the second equation in (56) is satisfied, and
thus, S =

∫
drs(r) is the Casimir of the Poisson bracket (57).

The Hamiltonian formulation of Euler’s equations (58) has at least four advantages:
(i) the constitutive relation for the non-dissipative part of the time-evolution is specified
(see (59)) with only the energy E(ρ, s, u) remaining to be determined; (ii) it provides a
framework for investigations into the dynamics of more general fluids (e.g., complex fluids
studied in rheology [2]) for which the framework (55) of balance laws cannot be used; (iii) it
can also be used at other mesoscopic and microscopic levels of description; (iv) it offers
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promising new approaches to numerical fluid mechanics [62]. In spite of these obvious
advantages, the Hamiltonian formulation is still absent in most standard textbooks of
fluid mechanics.

The gradient part of the time-evolution appears in Section 4.3.3 in the discussion of
the relation between the level of fluid mechanics and the equilibrium level.

Looking at (55) and (56) just from the mathematical point of view, we see a system
of local conservation laws (55) implying another companion conservation law (56). Are
there any mathematical consequences of the physical regularity of (55) expressed in the
requirement (56)? Godunov [63,64] (see also [65–68]) showed that the physical regularity
implies the mathematical regularity in the sense that (56) guarantees that the Riemannian
problem for (58) is well posed. More specifically, (56) implies that (55) rewritten in the
conjugate state variables is a system of symmetric local conservation laws.

The observations that (55), besides being the system of local conservation laws, is
also a Hamiltonian system and that (56) is a stronger formulation of the degeneracy of
the Hamiltonian structure (

∫
drs(r) is a Casimir) evoke several questions that remain

unanswered. For instance: (i) When does a general system of local conservation laws
possess the Hamiltonian structure? (ii) Does the degeneracy of a Hamiltonian system imply
an increase in its mathematical regularity?

4.3.2. Relation to More Microscopic Levels

The level of fluid mechanics is presented in the previous section as a continuum
version of Newton’s (or Hamilton’s) dynamics. Let us now take an upper mesoscopic level
L that involves more details than the level of fluid mechanics (e.g., the level of kinetic
theory) and consider the passage L → fluid mechanics. We have already recalled one such
passage with L being the level of kinetic theory in Section 4.3.2. An alternative way (a way
based on the hierarchy formulation of the Boltzmann equation) to make the same passage
is discussed below in Section 5.

With the microscopic level (i.e., a level at which an n particle distribution function,
n ∼ 1023, rather than a one particle distribution function serves as the state variable)
playing the role of the upper level L, the passage L → fluid mechanics was investigated
by Kirkwood [69]. This type of investigation has led to the theoretical fluid mechanics of
complex fluids as for example polymeric fluids and suspensions [71].

We make two remarks. First, we note an important difference between the multiscale
viewpoint of the passage Boltzmann kinetic equation→ fluid mechanics and its classical
analysis found for example in [18,72–76]. In the latter, the Boltzmann kinetic equation
plays the role of a microscopic basis for the classical nonequilibrium thermodynamics.
In the former, the Boltzmann kinetic theory, as well as the classical nonequilibrium thermo-
dynamics are two particular realizations, at two different levels, of a single, but abstract
nonequilibrium thermodynamics.

In the second remark, we note an obvious paradox in the investigation of Boltzmann
kinetic equation→ fluid mechanics. Boltzmann’s kinetic theory is applicable only to ideal
gases, while the domain of applicability of fluid mechanics includes a large family of fluids.
The usefulness of the investigation Boltzmann kinetic equation→ fluid mechanics is an
indirect proof of the usefulness of seeing mesoscopic dynamical systems in a modular way
as is done for example in Section 2.1. What transpires from kinetic theory to fluid mechanics
are only some of its modules (in particular, the overall mathematical structure), not the
complete theory (in particular, not specific energies and specific entropies). The completely
straightforward and completely rigorous derivation of the Poisson bracket expressing
the kinematics of the hydrodynamic state variables from the Poisson bracket expressing
the kinematics of the one particle distribution function, which we recalled at the end
of Section 4.1, illustrates this point well. As we shall see also in the next section, some
modules of the mathematical structure of the Boltzmann kinetic equation that are revealed
in its Grad hierarchy formulation have inspired, and continue to inspire, not only classical
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fluid mechanics, but also its extensions towards dense fluids, polymeric fluids, and many
other types of complex fluids.

4.3.3. Relation to Equilibrium Thermodynamics: Nonequilibrium Thermodynamics

Inquiries into relations between fluid mechanics and equilibrium thermodynamics
gave rise to nonequilibrium thermodynamics. Our objective in this section is to identify
in its tumultuous history a path pointing to multiscale thermodynamics discussed in this
paper. We present the path as a sequence of four steps.

The basis on which classical nonequilibrium thermodynamics stands is the contin-
uum mechanics introduced by Euler and Bernoulli [57]. If we put it into the context of
Section 4.3.1, it is the fluid mechanics with only the momentum field u(r) playing the role
of the state variable. In other words, the fluids under investigation are isothermal and in-
compressible. This type of fluid mechanics has played and continues to play an enormously
important role in all types of the most basic, as well as the most advanced technologies.

The first step towards multiscale thermodynamics is the mechanics of non-isothermal
and compressible fluids and the investigations of its compatibility with classical equilibrium
thermodynamics. Two extra fields, namely the fields of mass density and internal energy,
are adopted for the set of state variables. In such an enlarged setting, the fluid mechanics
becomes essentially a local classical thermodynamics superimposed on the mechanics of
continuum. The equilibrium fundamental thermodynamic relation becomes a local equilib-
rium fundamental thermodynamic relation, and the entropy conservation takes the form of
the local conservation law (56). The Navier–Stokes friction and the Fourier heat diffusion
enter the entropy production (or the dissipation potential), which with the entropy are two
potentials of non-mechanical origin that join the formulation of fluid mechanics. We note
that the last equation in (59) in which the local pressure p(r) is expressed in terms of the
hydrodynamic fields (ρ(r), u(r), s(r)) and the energy e(ρ, u, s; r) is the same (in the absence
of the flow, i.e., if u ≡ 0) as the expression for the equilibrium pressure in equilibrium
thermodynamics. This means that the requirement of the Hamiltonian structure of the
non-dissipative time-evolution of the hydrodynamic fields (ρ(r), u(r), s(r)) together with
the requirement of the conservation of the total momentum

∫
dru(r) is equivalent to a part

of the local equilibrium assumption. A complete equivalence still requires an additional
requirement. E↑s has to be interpreted as the local absolute temperature. This extra require-
ment then also means (due to the positivity of the absolute temperature) that fluid mechanics
can be cast into two equivalent representations: (i) energy representation with the state
variables (ρ(r), u(r), s(r)) and the fundamental thermodynamic relation e(r) = e(ρ, u, s)
and (ii) entropy representation with the state variables (ρ(r), u(r), e(r)) and the fundamental
thermodynamic relation s(r) = e(ρ, u, e). As we have seen in Section 2.2, this type of a two
representation formulation does not extend to more microscopic levels.

Combinations of mechanics and equilibrium thermodynamics inspired also more
abstract viewpoints. Their explorations constitute the second step in the evolution path
of the nonequilibrium thermodynamics. The first example of an abstraction inspired by
fluid mechanics is the replacement of (55) with a general system of local conservation
laws governing the time-evolution of n fields (ξ1(r), ..., ξn(r)) with an extra companion
local conservation law governing the time-evolution of the (n + 1)th field ξn+1(r) that is a
convex function of (ξ1(r), ..., ξn(r)). From the physical point of view, the (n + 1)th field is
the entropy field (see the end of Section 4.3.1).

The second example of the abstraction is the emergence (already in the early stages of
the development of nonequilibrium thermodynamics [77–79]) of the concepts of entropy
production, thermodynamic forces, and thermodynamic fluxes [80]. Their particular realiza-
tions in the context of fluid mechanics have served as their illustrations, but they were seen
from the beginning as abstract concepts. The thermodynamic fluxes and thermodynamic
forces together form the entropy production:

S =< X, J > (60)
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or in terms of the dissipation potential Ξ(X):

S =< X, ΞX > (61)

Particularly significant in this line of research are the results of Onsager [81], who showed
that in the case of the quadratic dissipation potential Ξ =< X, ΛX > (which physically
corresponds to situations with small X and thus situations when the macroscopic systems
under investigation are close to equilibrium), the operator Λ is symmetric and positive
definite. The rate thermodynamics that we recalled in Section 3 is an incorporation of this
type of investigations into the larger context of multiscale thermodynamics.

The third example is Truesdell’s axiomatic formulation of continuum mechanics [58].
While his choice of axioms may be questioned, the emphasis on the abstract mathematics
is unquestionably a significant contribution to fluid mechanics. For instance, restrictions
on the choice of constitutive relations brought about by the requirement of the entropy
increase were first investigated in Truesdell’s formulation of fluid mechanics [82].

In the spirit of multiscale thermodynamics discussed in this paper, an important
criterion for abstract formulations is the occurrence and applicability at all levels. Not all
Truesdell’s axioms fulfill this criterion. For instance, the local temperature cannot be seen
at more microscopic levels as a fundamental state variable (see Section 2.2).

The third step on the path to multiscale thermodynamics is seeing Boltzmann’s kinetic
theory as nonequilibrium thermodynamics itself, not only as a microscopic basis for
classical (i.e., fluid mechanics-based) nonequilibrium thermodynamics.

The fourth step towards multiscale thermodynamics is the necessity to enlarge the set
of the five hydrodynamic fields playing the role of state variables in classical fluid mechan-
ics when dealing with complex fluids (as for example polymeric fluids and suspensions).
The molecules (or alternatively, particles in suspensions) composing the complex fluids
deform and reorient themselves at the same time scale as the hydrodynamic fields evolve.
Consequently, extra fields characterizing the internal structure have to be adopted for the
set of state variables. However, then, the system of local conservation laws (also called
“balance laws”) (55) cannot be the point of departure (as in classical fluid mechanics and
classical nonequilibrium thermodynamics) since the extra fields are typically not conserved.
What is then an overall structure that would replace (55)? In the setting of mesoscopic
thermodynamics, the answer is: it is the Hamiltonian (or the GENERIC) structure.

4.4. Guldberg–Waage Chemical Kinetics: Dissipation Potentials

Historically, the first investigation of the time-evolution passage, which we recalled in
Section 4.1, is also historically the first introduction of the dissipation-potential gradient
dynamics (7). Initially, the Boltzmann collision term did not have the form of the right-
hand side of (7). Its dissipation-potential formulation became possible [33] only after
an observation (made by Ludwig Waldmann in [45]) that binary collisions can be seen
as chemical reactions and after the gradual realization [7,83–86] that the time-evolution
arising in chemical kinetics can be cast into the form of (7). In this section, we argue that
the chemical kinetics provides a particularly suitable setting for a deeper investigation of
the solution to the GENERIC equation.

The need to extend linear relations between thermodynamic fluxes and thermody-
namic forces to nonlinear relations appeared very clearly in particular in chemical kinet-
ics [87] describing the time-evolution of chemically reacting species. Let us consider q
chemical reactions among p components (we assume p > q):

α1jAi + ... + αpjAp � β1jAi + ... + βpjAp (62)

where A1, ...,Ap denote the species. The quantities:

γij = αij − βij; i = 1, ..., p; j = 1, ..., q (63)
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are called stoichiometric coefficients, and the matrix Γ = (γij); i = 1, ..., p; j = 1, ..., q is
called a stoichiometric matrix.

The state variables in isothermal chemical kinetics are n = (n1, ..., np), denoting the
number of moles of the species, and the constant temperature T. The equations:

ṅi = γij Jj (64)

governing the time-evolution of n resemble the system of local conservation laws (55).
The gradient ∇ appearing in (55) is replaced by the stoichiometric matrix Γ, and the fluxes
(J1, ..., Jq) in (64) are extensions of the reactions.

Guldberg and Waage [87] completed (64) with the mass-action-law constitutive relations:

Jj =
−→
k jn

α1j
1 ...n

αpj
p −

←−
k jn

β1j
1 ...n

βpj
p ; j = 1, ..., q (65)

where
−→
k j,
←−
k j are the rate coefficients of the forward j-th reaction and the backward j-th

reaction, respectively.
It has been gradually [7,46,83–86,88,89] realized that (64) with the constitutive relation (65)

can be cast into the form:
ṅi = −Ξn∗i

(n, T, X) (66)

with the dissipation potential Ξ given in (41) in which the thermodynamic forces X = (X1, ..., Xq),
called in chemical kinetics affinities, are:

Xj = γjin∗i ; j = 1, ..., q (67)

n∗i = Φni (n, T). W is expressed in terms of the rate coefficients
−→
k j,
←−
k j (see details in [46])

and an appropriately chosen thermodynamic potential Φ(n, T) (see the details in [46]).

4.4.1. GENERIC Formulation of Chemical Kinetics

The state spaces in the Guldberg–Waage dynamics are finite-dimensional. This is ob-
viously an advantage in the investigation of solutions. Another advantage of the Guldberg–
Waage dynamics, in particular in the context of multiscale thermodynamics, is the nat-
ural appearance of intermediate levels. We begin by extending (66) to a full GENERIC
Equation (12), and the intermediate levels are discussed in Section 4.4.2 below.

From the physical point of view, the extension of (66) to GENERIC expresses mathemat-
ically an inclusion of inertia in chemical reactions. The fluxes J = (J1, ..., Jq) are promoted to
the status of independent state variables. We are thus making in chemical kinetics the same
type of extension as the one made in fluid mechanics in [67,76]. The time-evolution of the
fluxes is assumed to be faster than the time-evolution of n. After the fast time-evolution of
the fluxes is complete, the subsequent slow time-evolution of n is expected to be governed
by the standard chemical kinetics equations (66).

Equations: (
ṅ
ẇ

)
=

(
0 Γ
−ΓT 0

)(
n?

w?

)
−
(

0
Θw?

)
(68)

governing such a time-evolution of the extended set of state variables were introduced
in [43,88]: The extra state variables w = (w1, ..., wq) are related to J = (J1, ..., Jq) by

w?
j = Jj; j = 1, ..., q, where n? = Φ(ext)

n , w? = Φ(ext)
w , Φ(ext)(n, w) is the thermodynamic

potential in the extended theory, and Θ(n?, w?) is the dissipation potential in the extended
theory. First, we show that (68) is a particular realization of the GENERIC Equation (12),
and then, we find the relation between the extended dissipation potential Θ appearing
in the extended chemical kinetics (68) and the dissipation potential Ξ appearing in the
standard chemical kinetics (66).
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The first term on the right-hand side of (68) is Hamiltonian since (An, Aw)

(
0 Γ
−ΓT 0

)
(

Bn
Bw

)
is a Poisson bracket (because the matrix

(
0 Γ
−ΓT 0

)
is skew-symmetric and

independent of the state variables), and A and B are real-valued sufficiently regular func-
tions of the state variables. The time-evolution Equation (68) is thus a particular realization
of (12).

Now, we turn to the problem of finding the relation between the dissipation potential
Ξ appearing in (66) and the extended dissipation potential Θ appearing in (68). We assume
that the time-evolution of w is faster than the time-evolution of n. Moreover, we require
that when the fast variable w reaches its stationary state, i.e., when:

− ΓTn? −Θw? = 0 (69)

then the subsequent time-evolution is governed by (66). This requirement is satisfied
provided the dissipation potentials Ξ(X) and the extended dissipation potential Θ(Y) are
related by:

Ξn∗ =
[
Θ†

Y†(Y†)
]

Y†=−X
(70)

and the thermodynamic potential Φ(n, T) and the extended thermodynamic potential
Φ(ext)(n, w, T) are related in such a way that n∗ = n?.

The superscript † denotes the conjugation with respect to the dissipation potential
Θ, i.e., (w?)† = Θw? . By the symbol Y, we denote the extended thermodynamic force
Y = Γw?. The dissipation potential Θ†(Y†, T) is the Legendre transformation of Θ(Y, T).

We now prove that (70) implies the compatibility between (66) and (68). We introduce
the dissipation thermodynamic potential:

Ψ(Y, T; Y†) = −Θ(Y, T)+ < Y†, Y >,

and recall that Y = Θ†
Y† . Finally, we note that (69) is the equation

[
ΨY(Y, T; Y†)

]
Y†=−X = 0.

Before leaving this section, we make a comment about the difference between the
potentials like the energy, entropy, number of moles, and dissipation potential. Gradients
of the former generate the forces driving the time-evolution, and gradients of the latter
transform the forces (co-vectors) into vector fields. Specifically, the forces generated by the
energy are transformed into the Hamiltonian vector fields by the Poisson bracket. The forces
generated by the entropy are transformed into vector fields by the dissipation potential.
The dissipation potential in gradient dynamics is thus a counterpart of the Poisson bracket
in the Hamiltonian dynamics. Locally, in a small neighborhood of X = 0, the dissipation
potentials become quadratic. Such quadratic dissipation potentials can be then interpreted
as a dissipation brackets (introduced in [33]). In this linearized formulation, there are thus
two brackets transforming forces into vectors. The symmetric dissipation bracket can be
extended to a nonlinear dissipation potential. No such extension can be made for the
skew-symmetric Poisson bracket.

If both the Poisson bracket and the dissipation potentials participate in the dynamics,
then the Poisson bracket is completely insensitive to the forces generated by the entropy
and the total number of moles. The dissipation potential is on the other hand completely
insensitive to the forces generated by the energy and the total number of moles. The insen-
sitivities are mathematically expressed in the degeneracies of the Poisson brackets and the
dissipation potentials.

In the contact structure formulation of the GENERIC dynamics (see Section 2.3),
both the Poisson bracket and the dissipation potential become potentials generating the
contact-structure preserving time-evolution. The potentials like the energy, the entropy,
and number of moles determine the Legendre submanifold on which the time-evolution
takes place. Dissipation potentials arise [90] also in the stochastic thermodynamics in
extensions to the large deviation stochastic theory.
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4.4.2. Problem: Grad–Villani Dissipation Enhancement in Chemical Kinetics

Let some of the chemical reactions (62) be faster than the others. Specifically, let the
first m reactions be fast and the remaining q−m reactions slow. We write the stoichiometric
matrix in the form:

Γ = Γ( f ast) + Γ(slow) (71)

The matrix Γ( f ast) = (γ
( f ast)
ij = γij), i = 1, ..., p; j = 1, ..., m and (γ( f ast) = 0), i = 1, ..., p; j =

m+ 1, ..., q. The matrix Γ(slow) = (γ
(slow)
ij = γij) i = 1, ..., p, j = m+ 1, ..., q and (γ(slow) = 0),

i = 1, ..., p; j = 1, ..., m. The split (71) induces (see (67)) the splits X = X( f ast) + X(slow)

and Y = Y( f ast) + Y(slow). The passage to the chemical equilibrium at which X = 0 can
be seen as a two stage process. The first stage is the approach to the fast equilibrium
at which X( f ast) = 0. The fast approach is then followed by a slow time-evolution that
terminates at the total equilibrium at which both X( f ast) and X(slow) equal zero. This type
of time-evolution was recently investigated in the setting of the stochastic thermodynamics
in [91]. With the results obtained in the preceding section, we can investigate the same
problem in the setting of multiscale thermodynamics. In this paper, we limit ourselves only
to formulating two questions.

Question 1:
How exactly are solutions to (66) and solutions to (68) related (the dissipation potential

Θ appearing in (68) is assumed to satisfy (70))?
Question 2:
We modify Equation (68) by replacing the dissipation potential Θ with the fast dissi-

pation potential Θ( f ast) = [Θ]Y=Y( f ast) that provides a weaker dissipation. Do solutions to
such modified equations with a weaker dissipation still approach the same chemical equi-
librium state as solutions to (68)? Investigations of this question are investigations of the
Grad–Villani dissipation enhancement (see Section 2.1.3) in the context of chemical kinetics.

4.5. Statistical Mechanics

The problems discussed in this and the previous sections belong to statistical me-
chanics. The way we presented and discussed microscopic, mesoscopic, and macroscopic
dynamics suggests an alternative view of statistical mechanics. First, we recall the conven-
tional viewpoint, and then, we introduce its alternative.

Traditionally, statistical mechanics is divided into two parts: equilibrium and nonequi-
librium. In the broader viewpoint of the microscopic-mesoscopic-macroscopic dynamics
that we are taking in this paper, thermodynamics has to be also seen as a part of statisti-
cal mechanics. Thermodynamics traditionally is divided into classical equilibrium and
nonequilibrium. In the following four paragraphs, we briefly recall the main tenets of the
four parts of statistical mechanics.

Equilibrium statistical mechanics is an investigation of the MaxEnt passage from the
level of classical (or quantum) mechanics of ∼1023 particles to the equilibrium level with
the volume V, number of moles N, and energy E playing the role of the state variables
(see Section 2.2 with the upper thermodynamic relation (45)). The investigation includes
its thermodynamic limit N → ∞, V → ∞, N/V = const. in [92], as well as its various
geometrical deformations (e.g., in [93]) and approximations [94].

Nonequilibrium statistical mechanics is a collection of various investigations, both
in deterministic and stochastic settings, of the time evolution taking place at mesoscopic
levels [95]. The collection has no clear organizing principle.

Classical equilibrium thermodynamics [1,8] is a very clearly formulated theory. How-
ever, the postulates on which it stands are disconnected from the more microscopic view-
points, and its domain of applicability is limited to macroscopic systems at equilibrium,
i.e., to macroscopic systems that are particularly prepared by leaving them a sufficiently
long time without external influences.

Nonequilibrium thermodynamics is a theory recalled in Section 4.3.3. The difference
between nonequilibrium statistical mechanics and nonequilibrium thermodynamics is only
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in the state variables. If the state variables can be physically interpreted as distribution
functions, then it is customary to consider the investigation as a part of statistical mechanics.
For example, if the state variable is the one particle distribution function, then investigations
of its time-evolution belong traditionally to kinetic theory, which is considered to be a part of
nonequilibrium statistical mechanics. If however the state variables are the first five moments
of the one particle distribution function (i.e., the hydrodynamic fields), then investigations of
their time-evolution belong traditionally to nonequilibrium thermodynamics.

Following Section 2, we suggest regarding statistical mechanics (which we call mul-
tiscale thermodynamics) as an oriented graph in which vertices are levels and links are
reductions. The links point from the upper to lower levels. Depending on the features of
the time-evolution that are being compared in the reductions, the links are of three types:
state space, rate, and boundary. Each link is then of two types: time-evolution and MaxEnt.
Altogether, every upper level is connected with a lower level by three pairs of arrows, all
pointing to the lower level.

State space reductions are described in Section 2. The essence of the reduction is a recog-
nition of a pattern in the upper phase portrait. The recognized pattern is then identified
with the lower phase portrait. We recall that an upper phase portrait is a collection of
trajectories generated by an ensemble of upper vector fields and passing through all points
in the upper state space. Similarly, the lower phase portrait is a collection of trajectories
generated by an ensemble of lower vector fields and passing through all points in the lower
state space.

Rate reductions are described in Section 3. They are the same as the state space reductions
except that the pattern is searched in rate phase portraits rather than in phase portraits.
The rate phase portrait is a collection of rate trajectories in the space of vector fields on the
state space. The rate trajectories are solutions of the time-evolution lifted from the state
space to the space of vector fields on the state space.

Boundary reductions are the same type of reductions as the two previous ones except
that the focus is put on the behavior in the region in which the bulk meets the boundary of
the system under investigation. In this paper, we have not discussed them, but this part of
statistical mechanics is obviously very important and will be pursued in the future.

All three types of reductions are made by following reducing time-evolutions to their
conclusions. All reducing time-evolutions are generated by a potential called an entropy.
Two different reductions are generated (at least in general) by two different entropies. The
entropy increases during the reducing time-evolution. The states at which the entropy
reaches its maximum (subject to constraints determined by the target lower level) are thus
the states representing the lower state variables in the upper state space. These states
can be thus reached either by following the reducing time-evolution to its conclusion or
simply by maximizing the entropy subject to appropriate constraints. The former way is
the time-evolution reduction (see Section 2.1), and the latter is the MaxEnt reduction (see
Section 2.2).

Two vertices in the multiscale-thermodynamics graphs have a special status. One is
with no incoming arrows and the other with no outgoing arrows. The former is the most
microscopic level at which macroscopic systems are seen as composed of ∼1023 particles.
The latter is the level of the classical equilibrium thermodynamics on which states are
characterized by the volume, the number of moles, and the energy.

The reducing entropies at the most microscopic level are potentials, called Casimirs,
that remain unchanged during the upper time-evolution. There are infinitely many Casimirs.
In order to single out one among them, we need to identify a nucleus of dissipation (e.g.,
collisions in dilute gases). The nucleus increases during the time-evolution, and the result-
ing dissipative time-evolution gives rise to a reduction represented by an outgoing arrow.
The reduction is generated by a potential, which is then the entropy singled out among the
infinitely many Casimirs.

The reduced entropies appearing at the level of the classical equilibrium thermodynamics
due to incoming arrows manifest themselves in the separation of the total energy into a macro-
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scopic mechanical energy and heat. The former can be directly and completely converted into
macroscopic mechanical work, the latter only incompletely in Carnot’s machines.

Seeing the conventional viewpoint of statistical mechanics in the context of the graph
of multiscale thermodynamics, we note that the conventional viewpoint concentrates on
some particular links (in particular, those leaving the microscopic level), while the graph
viewpoint puts the same attention on all links in the graph. We may anticipate that a general
theory of the graph (in particular, the identification of the common features of all the links)
can contribute to a deeper understanding of the links leaving the microscopic level (which
are obviously of particular importance for understanding emerging phenomena). For
instance, it was suggested in Section 4.2 that the Grad–Villani dissipation enhancement
that seems to be present in all links may be such a contribution.

5. Kinematics-Preserving Hierarchies

This section illustrates the use of multiscale thermodynamics in advancing specific
problems. One of the oldest and probably still the most frequently used strategies to make
reductions is to begin by casting the upper level governing equations into a hierarchy of
equations. The hierarchy reformulation is chosen in such a way that the lower part of the
hierarchy is already the system of reduced governing equations that we look for except that
the equations still remain coupled to the rest of the hierarchy. Our objective in this section
is to place the hierarchy reductions into the larger context of multiscale thermodynamics
and to show some of the implications.

We present the mathematical formulation first for the case when the upper state
variable x ∈ M↑ is the N particle distribution function f (1, ..., N) (we recall that we use the
shorthand notation 1 = (r1, v1), ..., N = (rN , vN)). Our objective is to lift the time-evolution
of f to space M↑ with the state variables Z = (Z, f (1, ..., N)) ∈ M↑, where:

Z = (Z1, ..., Zn) =

(∫
d1...

∫
dN f (1, ..., N)z1(1, ...N), ...,∫

d1...
∫

dN f (1, ..., N)zn(1, ...N)

)
(72)

and z(1, ..., N) = (z1(1, ..., N), ..., zn(1, ..., N)) is a fixed set of n functions. We recall that
reduction is a pattern recognition in the upper phase portrait. We assume that from
some previous considerations, we already have a reason to anticipate that Z will play an
important role in expressing the pattern (see the examples in Sections 5.2.1 and 5.2.2).

As for the time-evolution of f at the level L, we restrict ourselves to the time-evolution
equations in the form of (3). In other words, we consider the time-evolution equations in
the form:

Ȧ = {A, E}↑ ∀A (73)

where {A, B}↑ is a Poisson bracket. We thus consider in this section only Hamiltonian
dynamics. However, the contact geometry setting that is discussed in Section 2.3, a slightly
modified Equation (73) (see Equation (7.7) in [43]), represents also GENERIC dynamics.
The kinematics-preserving hierarchy formulation of GENERIC dynamics will be explored
in a future paper.

Having the time-evolution Equation (3) and the mapping (72), the first equation in the
standard hierarchy reformulation of (3) is obtained by multiplying (3) by z1(1, ..., N) and
integrating over

∫
d1...

∫
dN. The second equation is obtained in the same way, but with

z2(1, ..., N) replacing z1(1, ..., N). Continuing this process, we obtain the standard hierarchy
consisting of n + 1 time-evolution equations; n equations governing the time-evolution
of Z that are coupled to the (n + 1)th Equation (47) governing the time-evolution of f .
The next step in the reduction is the “closure of the hierarchy” consisting of expressing
f in terms of Z. The final reduced dynamics in M↓ consists of n equations governing
the time-evolution of Z. In the unclosed form, the hierarchical reformulation represents
in fact a coupled dynamics of the upper and the lower levels. By choosing appropri-
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ately the functions z(1, ..., N) = (z1(1, ..., N), ..., zn(1, ..., N)) (see, e.g., the illustrations in
Sections 5.2.1 and 5.2.2), the resulting hierarchy can be made to involve only Z and not f .
The prize to pay for such elimination of the overall state variable f is that n = ∞, i.e., the
hierarchy is infinite. The closure in such a case consists of replacing an infinite hierarchy
with a finite hierarchy (see Sections 5.2.1 and 5.2.2 below).

In this paper, we take another path. We shall make an alternative hierarchy refor-
mulation of (3). We use the fact that the vector field (3) (i.e., the right-hand side of (3)) is
composed of two structural elements, and only one of them is cast into the hierarchy form.
The vector field (3) is a force (the gradient of a potential E) transformed into a vector by
kinematics expressed mathematically in the bivector L↑ (or equivalently in the Poisson
bracket {, }↑). In the hierarchy reformulation, we concentrate only on the kinematics,
i.e., only on the Poisson bracket {, }↑. We reformulate it into a hierarchy form that retains
the Poisson structure. The energy E remains in the reformulation undetermined. Since it is
the energy where the individual nature of the macroscopic systems is expressed, the partic-
ular physics of the system under investigation does not enter the mathematical modeling
before starting the hierarchy reformulation (as is done in the standard approach), but after
the kinematics-preserving hierarchy reformulation has been made. The specification of the
energy becomes thus an extra tool in reductions.

In order to obtain such a kinematics-preserving reformulation of the Liouville Equation (47),
we proceed as follows. The functions A and B in the Poisson bracket {A, B} are assumed
to depend on f both directly and through their dependence on Z given in (72). This means
that A f (1,...,N) turns into zα(1, ..., N)AZα + A f , where α = 1, ..., n (the summation conven-
tion over repeated indices is used). With these expressions for A f and B f , the Poisson
bracket (46) becomes:

{A, B} =
∫

d1...
∫

dN f
[

∂zα

∂rγi

∂zβ

∂vγi

(
AZα BZβ

− BZα AZβ

)
+

∂zα

∂rγi

(
AZα

∂B f

∂vγi
− BZα

∂A f

∂vγi

)]
+

∂zα

∂vγi

(
BZα

∂A f

∂rγi
− AZα

∂B f

∂rγi

)
+

(
∂A f

∂rγi

∂B f

∂vγi
−

∂B f

∂rγi

∂A f

∂vγi

)]
(74)

The time-evolution equations (73) with {A, B}↑ given in (74) take the form:

Żα =
∫

d1...
∫

dN f
[(

∂zα

∂rγi

∂zβ

∂vγi
−

∂zβ

∂rγi

∂zα

∂vγi

)
EZβ

+

(
∂zα

∂rγi

∂E f

∂vγi
− ∂zα

∂vγi

∂E f

∂rγi

)]
∂ f
∂t

= − ∂

∂rγi

(
f

∂zα

∂vγi

)
EZα +

∂

∂vγi

(
f

∂zα

∂rγi

)
EZα

− ∂

∂rγi

(
f

∂E f

∂vγi

)
+

∂

∂vγi

(
f

∂E f

∂rγi

)
(75)

Summing up, we have cast (47) into the form (75). Both Equations (47) and (75) are
Hamilton’s equations, and both are particular realizations of (73). The reason why we have
passed from (47) to (75) is that the latter equation is more suitable for starting the reduction
process. We assume we know from some other considerations (for instance, from experimental
observations) that the pattern that represents the lower level in the phase portrait of (47) can
be expressed in terms of Z. If this is the case, then clearly, the reformulation (75) of (47) is
more suitable for investigating the reduction. Both (75) and (47) share the same kinematics,
but the energies in them remain so far completely unrelated and at this point undetermined.
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Their determination is a part of the continuation of the pattern recognition process in the
phase portrait of (47) that has to enter into an actual analysis of the solutions to (47).

In this paper, we make only a few comments about the physical aspects of the hierarchy (75).
Let Z be the state variables used at the lower level. The hierarchy (75) thus governs the time
evolution at the lower level. However, the time-evolution governed by (75) is still coupled to
the time-evolution of f . We can physically interpret f as a state variable characterizing the
overall features of the phase portrait of (47) that are not expressed in the lower state variables Z.
An example of the considerations, based on physical assumptions and approximations, that
lead to expressing f in terms of Z) is presented in the next section.

Still another insight into the physics expressed in the hierarchy (75) is revealed in its
following reformulation. We note that the last equation in (75) (i.e., the equation governing
the time-evolution of f ) can be seen as the Liouville (i.e., continuity) equation corresponding
to 6N ordinary differential equations governing the time-evolution of (1, ..., N). We can
thus reformulate (75) into a system (n + 6N) of ordinary differential equations:

Żα =
∫

d1...
∫

dN f
[(

∂zα

∂rγi

∂zβ

∂vγi
−

∂zβ

∂rγi

∂zα

∂vγi

)
EZβ

+

(
∂zα

∂rγi

∂E f

∂vγi
− ∂zα

∂vγi

∂E f

∂rγi

)]
ṙγi =

∂zα

∂vγi
EZα +

∂E f

∂vγi
(76)

v̇γi = − ∂zα

∂rγi
EZα −

∂E f

∂rγi

that is accompanied by:
f (1, ..., N, t) = f0(T−t(1, ..., N)) (77)

where Tt is the trajectory of (1, ..., N) and f0(1, ..., N) is an initial distribution function.
In this formulation, we see clearly the role of f . It is indeed a state variable expressing the
overall features of the dynamics that are expressed neither in (1, ..., N), nor in Z.

Finally, we emphasize that all the reformulations that we have made above in this
section do not involve any approximation. Both (47) and (75) share the same kinematics
(but in different representations), and the energies in both equations remain undetermined.
We can see (75) as a combination of the microscopic level represented by (47) and the
mesoscopic level at which Z serve as state variables. In the next section, we take initial
steps in the pattern recognition process leading to the closure of (75) (i.e., to expressing f in
terms of Z).

5.1. Dissipation, Closure

In order to recognize a pattern in the phase portrait corresponding to (47) or to its
reformulation (75), the phase portrait has to be first created (i.e., the solutions to (47) or
to (75) have to be found). This can be done only if we specify the energy E↑(x) entering (47)
or (75) and thus commit ourselves to specific macroscopic systems. An example of such an
analysis was given in [10] for the Boltzmann equation. We shall not follow this path. Instead,
we limit ourselves to some observations of a qualitative nature that combine physical and
mathematical arguments.

First, we emphasize that the choice (72) of the lower state variables Z is already a
part of the pattern recognition process. We anticipate that the pattern that we search in
the phase portrait corresponding to (47) can be expressed in terms of Z. For example, we
may recall the considerations leading to the choice of the hydrodynamic fields. Since the
total mass, momentum, and energy are conserved, the local mass, momentum, and energy
change at a slower pace than other mesoscopic state variables.

Having chosen (72), we follow the previous section and arrive at the hierarchy (75)
(or (76)) combining the upper and lower levels. Now, we make a very obvious, but
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important observation. We can look at the hierarchy in two ways: “bottom up” and “top
down”. In (75), the bottom part is the first equation, and the top part is the second equation.
In infinite hierarchies, the second equation is replaced by an infinite hierarchy of equations
governing the time-evolution of (Zn+1, Zn+2, ...).

The standard view is bottom up. It is the reduced dynamics, which is an appropriately
closed bottom part of the hierarchy, which is typically the reason why the reductions are
made. We look at the bottom part of the hierarchy and try to close it. In the hierarchy (75),
this means that we look at the first equation and try to express f appearing in it in terms
of Z (or in infinite hierarchies in terms of (Zn+1, Zn+2, ...)). The closure can be argued by
putting various requirements on the closed system of equations. In our analysis, the natural
requirement is that the closed system of equations remains to be a system of Hamilton’s
equations. In the case of dissipative dynamics, we may require that an appropriate entropy
(a real-valued function of Z) will not decrease during the time-evolution governed by the
closed system of equations. This latter requirement first appeared in [82] and was later
developed in [96].

However, the closure can also be argued from top down. As we already noticed in
Section 2.5, this viewpoint of the closure is in fact present in the Chapman–Enskog method,
and it was also compared with the bottom up viewpoint in [24] (where, however, only the
static MaxEnt version of the top part of the hierarchy was considered). In this paper, we
continue to explore the top down view of the closure.

The top part of the hierarchy (75) is its second equation in which z1(1, ..., N), ..., zn(1, ..., N)
are seen as quantities representing external influences in the time-evolution of f . If (75) is
cast into the form (76), then the top part consists of the last two equations in (76) together
with (77). The quantities Z appear in (76) indeed as extra velocities and extra forces in
the Hamilton time-evolution of (1, ..., N). In order to close the hierarchy (75), we have
to find the phase portrait corresponding to its top part and then recognize in it a pattern
parametrized by Z. In other words, we have to express f in terms of Z (we denote it
by f̂ (Z; 1, ..., N)) by analyzing the solutions of the top part of the hierarchy. By inserting
f̂ (Z; 1, ..., N) into the lower part of the hierarchy (i.e., into the first equation in (75)), we
arrive at the lower dynamics.

Such investigation cannot be done without making a commitment to a specific physical
system and without a type of analysis displayed for example in [10]. In the rest of this section,
we make only a very qualitative analysis that transforms the bottom part of (75) with the
Onsager time-evolution equation.

We begin by noting that S( f ) =
∫

d1...
∫

dNη( f ), where η : R → R is a sufficiently
regular function, is a Casimir of the Poisson bracket (74). We can therefore put (76) into the
form:

Żα =
∫

d1...
∫

dN f
[(

∂zα

∂rγi

∂zβ

∂vγi
−

∂zβ

∂rγi

∂zα

∂vγi

)
ΦZβ

+

(
∂zα

∂rγi

∂Φ f

∂vγi
− ∂zα

∂vγi

∂Φ f

∂rγi

)]
∂ f
∂t

= − ∂

∂rγi

(
f

∂zα

∂vγi

)
ΦZα +

∂

∂vγi

(
f

∂zα

∂rγi

)
ΦZα (78)

− ∂

∂rγi

(
f

∂Φ f

∂vγi

)
+

∂

∂vγi

(
f

∂Φ f

∂rγi

)
where Φ(Z, f ) = −S( f )+ 1

T E(Z, f ) and the constant temperature T is absorbed in rescaling
the time. In the next step, we introduce to the top equation in the hierarchy (i.e., to the
second equation in (78)) a dissipation. From physical considerations, we anticipate that
the dominant dissipation is the Fokker–Planck-type diffusion in momenta. If we restrict
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ourselves to the linear dissipation (i.e., if we restrict ourselves to states that are not far from
equilibrium states), the top part of the hierarchy (78) becomes:

∂ f
∂t

= − ∂

∂rγi

(
f

∂zα

∂vγi

)
ΦZα +

∂

∂vγi

(
f

∂zα

∂rγi

)
ΦZα

− ∂

∂rγi

(
f

∂Φ f

∂vγi

)
+

∂

∂vγi

(
f

∂Φ f

∂rγi

)
− ∂

∂vγi

(
f λγδij

∂Φ f

∂vδj

)
(79)

where λ is a symmetric matrix guaranteeing
∫

d1...
∫

dN f
∂Φ f
∂vγi

λγδij
∂Φ f
∂vδj
≥ 0.

To continue, we use physical considerations to identify dominant terms on the right-
hand side of (79). We recall that this type of argument is also the point of departure of the
Chapman–Enskog passage from the Boltzmann kinetic equations to fluid mechanics (see
Section 4.1). The anticipated dominance of variations in momenta (which can be physically
interpreted as an anticipation of the occurrence of turbulence at the micro scale), which led
us already to the introduction of the dissipative term in (79), leads us to regard the second
term on the right-hand side of (79) as dominant. We thus assume that the main part of (79)
is the time-evolution equation:

∂ f
∂t

=
∂

∂vγi

(
f

∂zα

∂rγi

)
ΦZα −

∂

∂vγi

(
f λγδij

∂Φ f

∂vδj

)
(80)

We have omitted the term ∂
∂rγi

(
f

∂Φ f
∂vγi

)
, which we assume to be smaller than the remaining

two terms. Next, we assume that the distribution function f evolves faster than Z and that
we are already in the stage of the time-evolution in which f reaches the stationary state.

We need now to solve:

0 =
∂

∂vγi

(
f

∂zα

∂rγi

)
ΦZα −

∂

∂vγi

(
f λγδij

∂Φ f

∂vδj

)
(81)

In order to avoid complications with the degeneracy of the matrix λ (which is needed to
satisfy the energy conservation), we limit ourselves in this paper to isothermal systems.
The thermodynamic potential Φ is thus the Helmholtz free energy, and the matrix λ is a
positive definite matrix, which can be inverted. We can thus easily solve (81). If we insert
the solution into the first equation in (78) (in which we omit the term ∂

∂rγi

(
f ∂zα

∂vγi

)
that we

assume to be small relative to the other terms in (78)), we obtain:

Żα = LαβΦZβ
−ΛαβΦZβ

(82)

where:

Lαβ =
∫

d1...
∫

dN f
(

∂zα

∂rγi

∂zβ

∂vγi
−

∂zβ

∂rγi

∂zα

∂vγi

)
(83)

Λαβ =
∫

d1...
∫

dN f
∂zα

∂rγi
λ−1

γδ,ij
∂zβ

∂rδj
(84)

Equation (82) governing the time-evolution of Z still needs to be closed. The distribu-
tion functions f still appears in the matrices L and Λ in (83) and (84). We assume now that
we have independent information about the overall state of the system under investigation
and thus about f . For instance, if the system under investigation is close to equilibrium,
we can replace f in (83) and (84) by the Gibbs equilibrium distribution function.
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Considering f in (83) and (84) to be known, Equation (82) is a closed equation govern-
ing the time-evolution of the mesoscopic state variables Z. Equation (82) is the Onsager
equation [81]. The matrix Λ is symmetric, positive definite, and does not change its sign
if the momenta (v1, ..., vN) change their signs. The matrix L is skew-symmetric, and it
changes its sign if (v1, ..., vN)→ (−v1, ...,−vN). Equation (82) is also a GENERIC equation
since (82) is a particular realization of (12). The matrix L is indeed skew-symmetric, and the
Poisson bracket {A, B} = AZα LαβBZβ

satisfies the Jacobi identity since L is independent
of Z. We note that the only unspecified parameter in the Formulas (83) and (84) for the
matrices L and Λ is the matrix λ (entering the microscopic time-evolution (81)).

Summing up, the Onsager [81] result (82) has emerged as a part of the reduced
structure at the lower level with the state variables Z. The reduction is made by reducing
the time-evolution that preserves the Hamiltonian structure of the time-evolution that
takes place at the upper level. We note in particular that the Onsager symmetry of Λ is a
direct consequence of the gradient structure at the upper level that guarantees the existence
of the reduction. The skew-symmetry of L and its sign change in the transformation
(v1, ..., vN) → (−v1, ...,−vN) are a direct consequence of the Hamiltonian structure of
the upper level time-evolution. In the absence of dissipation, Equation (82) represents
GENERIC dynamics.

We can also find the lower rate thermodynamic relation Σ↓(y) implied by the reduction
discussed above. We note that with:

Σ↑(X) = −1
2

∫
d1...

∫
dN f XγiλγδijXδj (85)

we can write (81) as:
Ψ↑X(X, Y) = 0 (86)

where:
Ψ↑(X, Y) = −Σ↑(X) +

∫
d1...

∫
dN f YγiXγi (87)

with:
Yγi =

∂zα

∂rγi
ΦZα (88)

Consequently, the lower rate entropy implied by the above reduction is:

Σ↓(Y) =
1
2

∫
d1...

∫
dN f

∂zα

∂rγi
λ−1

γδ,ij
∂zβ

∂rδj
(89)

We note that Equation (82) implies:

Φ̇ = ΦZα Żα =
1
2

Σ↓ (90)

which relates the lower rate entropy to the lower entropy production.

5.2. Illustrations

The Liouville Equation (47) governing the Hamiltonian time-evolution of the N parti-
cle distribution function, N ∼ 1023, was the first equation that was cast into the hierarchy
form. The hierarchy reformulation of the Liouville Equation (47) is called the BBGKYhier-
archy [93,97]. Another time-evolution equation that gave rise to a famous hierarchy (Grad
hierarchy [48]) is the Boltzmann kinetic equation. Below, we shall cast into the hierarchy
also the Euler hydrodynamic equation. The kinematics-preserving hierarchies for all three
equations illustrate the general analysis presented above. In all three hierarchies, we limit
ourselves in this paper only to the Hamiltonian part of the time-evolution.
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5.2.1. BBGKY Kinematics-Preserving Hierarchy

The state variable at the upper level is the N particle distribution function fN(1, ..., N).
The lower level state variables are 1, ..., N − 1 distribution functions obtained from fN by
integrating over the N − 1, ..., 2 coordinates, respectively. All distribution functions are
symmetric with respect to relabeling the particles. The kinematics of fN is expressed in the
Poisson bracket (46).

The infinite kinematics-preserving hierarchy in this setting was developed in [98]
for 1, ..., N, ... distribution functions. Here, we present a kinematics-preserving hierarchy
reformulation of the Liouville equation governing the time-evolution of f2(1, 2). To simplify
the notation, we use f to denote f2 and g to denote f1. The one particle distribution function
g is related to f by:

g(r, v) =
∫

d1
∫

d2 f (1, 2)[δ(r− r1)δ(v− v1) + δ(r− r2)δ(v− v2)] (91)

In order to find the kinematics of ( f , g), we take the Poisson bracket (46) for N = 2 with
the functions A and B that depend on f directly and also indirectly through their dependence
on g (which depends on f ; see (91)). By replacing A f in (46) with A f (1,2) = Ag(1) + Ag(2) +
A f (1,2) and similarly B f (1,2), the Poisson bracket (46) becomes the Poisson bracket:

{A, B} = {A, B}(N=1)

+
∫

d1
∫

d2
[

f
(

∂A f

∂r1i

∂Bg(1)

∂v1i
−

∂B f

∂r1i

∂Ag(1)

∂v1i

)
+ f
(

∂A f

∂r2i

∂Bg(2)

∂v2i
−

∂B f

∂r2i

∂Ag(2)

∂v2i

)
(92)

+ f
(

∂Ag(1)

∂r1i

∂B f

∂v1i
−

∂Bg(1)

∂r1i

∂A f

∂v1i

)
+ f
(

∂Ag(2)

∂r2i

∂B f

∂v2i
−

∂Bg(2)

∂r2i

∂A f

∂v2i

)]
+{A, B}(N=2)

where {A, B}(N=1) and {A, B}(N=2) are the Poisson brackets (46) for N = 1 and N = 2,
respectively. There is an important difference between the Poisson bracket (92) and the
bracket (74). In (92), the bracket is the sum of three brackets, one involving only the lower
state variable g, the other involving both the upper f and the lower g state variables,
and the third involves only the upper state variable f . The bracket (74) is the sum of two
terms, one involving both the upper and the lower state variables and the other only the
upper state variable.

The time-evolution Equation (73) corresponding to the Poisson bracket (92) becomes:

∂g
∂t

= − ∂

∂ri

(
g

∂Eg

∂vi

)
+

∂

∂vi

(
g

∂Eg

∂ri

)
+2

∫
dr2

∫
dv2

[
− ∂

∂ri

(
f

∂E f

∂vi

)
+

∂

∂vi

(
f

∂E f

∂ri

)]
∂ f
∂t

=
2

∑
α=1

[
∂

∂rαi

(
f

∂Eg

∂vαi

)
+

∂

∂vαi

(
f

∂Eg

∂rαi

)]
(93)

+
2

∑
α=1

[
− ∂

∂rαi

(
f

∂E f

∂vαi

)
+

∂

∂vαi

(
f

∂E f

∂rαi

)]
The energy E( f , g) remains in these equations undetermined.

Now, we discuss qualitative properties of solutions to (93). We note that if the energy
E( f , g) is chosen to be independent of f , then (93) turns into the standard one parti-
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cle Hamiltonian kinetic equation. This is a consequence of the presence of the bracket
{A, B}(N=1) (that does not involve f ) on the right-hand side of (92). If, on the other hand,
the energy E( f , g) is independent of g, then (93) becomes the two particle Hamiltonian ki-
netic equation. For the energy E that depends on both g and f , the time-evolution of the one
and the two particle distribution functions are coupled, and the two particle distribution
function f represents extra details that are ignored in the one particle kinetic theory.

We also note that the kinematics-preserving hierarchy (93) is different from the classical
BBGKY hierarchy:

∂g(r, v)
∂t

= − ∂

∂ri

(
2
∫

d2 f (r, v, r2, v2)
∂E f (r,v,r2,v2)

∂vi

)
+

∂

∂vi

(
2
∫

d2 f (r, v, r2, v2)
∂E f (r,v,r2,v2)

∂ri

)
(94)

∂ f (1, 2)
∂t

=
2

∑
α=1

[
− ∂

∂rαi

(
f

∂E f

∂vαi

)
+

∂

∂vαi

(
f

∂E f

∂rαi

)]
where E is a function of f . The classical BBGKY hierarchy is obtained from Equation (47) with
N = 2 by simply integrating it over

∫
d2. We recall that the point of departure for obtaining

the kinematics-preserving hierarchy (93) is the kinematics (46) with N = 2, while the point
of departure for the classical hierarchy (94) is the two particle Liouville Equation (47). The
original Equation (47) with N = 2 is Hamiltonian; its classical hierarchy reformulation (94) is
not Hamiltonian, but its kinematics-preserving hierarchy (93) keeps the Hamiltonian structure.

5.2.2. Grad Kinematics-Preserving Hierarchy

For the second illustration, we turn to the Boltzmann equation governing the time-
evolution of the one particle distribution function f (r, v) and to the time-evolution of its
Grad moments:

f (r, v) 7→ (c(0)(r), c(1)i (r), ..., c(k)i1,...,ik
(r), ...) (95)

where:
c(k)i1,...,ik

(r) =
∫

dvvi1 ...vik f (r, v) (96)

The kinematics of f is expressed in the Poisson bracket (46) with N = 1.
The infinite kinematics-preserving hierarchy with an infinite number of Grad moments

(96) as lower state variables was worked out in [99]. Here, we present a Grad kinematics-
preserving five moment hierarchy closed by an equation governing the time-evolution of
f .

We choose (95) and (96) with:

f (r, v) 7→ (ρ(r), u(r), s(r))

ρ(r) =
∫

dv f (r, v); u(r) =
∫

dvv f (r, v); s(r) =
∫

dvη( f (r, v))

(97)

where η( f ) is a sufficiently regular function R → R. We recall that (see Section 4.1)∫
dr
∫

dvη( f ) is a Casimir (see Section 2.1.1) of the Poisson bracket (46) with N = 1.
We choose the hydrodynamic state variables in the energy representation (i.e., the state
variables are the fields (ρ(r), u(r), s(r)) denoting the mass, momentum, and entropy) rather
than in the entropy representation with the state variables (ρ(r), u(r), e(r), where e(r) is
the energy field. The reason for the choice is explained in Section 4.3.2.

From the kinematics of the kinetic theory that is expressed in the Poisson bracket (46)
with N = 1, we derive the kinematics-preserving hierarchy in the same way as in the previ-
ous two sections. The functions A and B in (46) with N = 1 depend on f directly and also
through their dependence on the moments (97). Consequently, we replace A f and B f with
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Aρ(r) + vi Aui(r) + η f (r,v)As(r) + A f (r,v) and the same expression for B f . Straightforward
calculations then lead to the Poisson bracket:

{A, B}(kh) = {A, B}(hyd)

+
∫

dr
∫

dv
[

f
(

∂A f

∂ri
Bui −

∂B f

∂ri
Aui

)
+ f

∂η f

∂vi

(
∂A f

∂ri
Bs −

∂B f

∂ri
As

)
+ f
(

∂Aρ

∂ri

∂B f

∂vi
−

∂Bρ

∂ri

∂A f

∂vi

)
(98)

+ f vj

(
∂Auj

∂ri

∂B f

∂vi
−

∂Buj

∂ri

∂A f

∂vi

)

+ f

(
∂(Asη f )

∂ri

∂B f

∂vi
−

∂(Bsη f )

∂ri

∂A f

∂vi

)]
+{A, B}(N=1)

where {A, B}(hyd) is the Poisson bracket (57) expressing the kinematics of fluids and
{A, B}(N=1) is the Poisson bracket (46) with N = 1. Like the Poisson bracket (92), but unlike
the Poisson bracket (74), the Poisson bracket (98) is the sum of three brackets, one depending
only on the lower, the other only on the upper, and only the third on both the lower and
the upper state variables. As we have already discussed in Section 4.3.2, the hydrodynamic
bracket {A, B}(hyd) appears in the kinematics-preserving hierarchy bracket only with
the hydrodynamic moments (97). With any other choice of the moments (e.g., if the
entropy field s(r) is replaced by the energy field e(r) =

∫
dvε(r, v) f (r, v), where ε(r, v) is a

microscopic energy), the one particle distribution function f will still remain in all terms in
the Poisson bracket.

The time-evolution equations (3) with the Poisson bracket (98) and energy:

E( f , ρ, u, s) =
∫

dre( f , ρ, u, s; r) =
∫

dr
∫

dvε( f , ρ, u, s; r, v) (99)

are:

∂ρ

∂t
= − ∂

∂ri

(
ρEui +

∫
dv f

∂E f

∂vi

)
∂s
∂t

= − ∂

∂ri

(
sEui +

∫
dvη

∂E f

∂vi

)
∂ui
∂t

= − ∂

∂rj

(
uiEuj +

∫
dv f vi

∂E f

∂vj

)

+
∂

∂ri

(
−
∫

dvε + ρEρ + sEs + ujEuj +
∫

dv f E f

)
(100)

∂ f
∂t

= − ∂

∂ri

(
f Eui + f

∂η f

∂vi
Es

)
+

∂

∂vi

(
f

∂Eρ

∂ri
+ f

∂(Esη f )

∂ri
+ f vj

∂Eui

∂rj

)

− ∂

∂ri

(
f

∂E f

∂vi

)
+

∂

∂vi

(
f

∂E f

∂ri

)
This kinematics-preserving hierarchy was already derived in [100].

The disadvantage of the choice of the energy representation (i.e., the disadvantage
of the choice of the state variables (ρ(r), s(r), u(r))) is that the transformation to the en-
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tropy representation with the state variables (ρ(r), u(r), e(r)), which is more suitable in
most applications, requires an additional assumption. The passage (ρ(r), u(r), s(r)) →
(ρ(r), u(r), e(ρ(r), u(r), s(r)) is one-to-one only if ∂e(r)

∂s(r) > 0. The assumption that ∂e(r)
∂s(r) > 0 is

in fact a weak form of the local equilibrium assumption. According to this assumption, the
quantities s(r) and e(r) are the (local) equilibrium entropy and (local) energy, respectively,
and consequently, ∂e(r)

∂s(r) = T(r) > 0 is the (local) absolute (and thus positive) temperature.
We recall that when passing from one representation to another, the gradients change as
follows: Es =

1
Se

; Eu = − Su
Se

.
If there is a one-to-one relation between the energy and the entropy representations,

then the time-evolution of the energy field e(r) is governed by:

∂e
∂t

= − ∂

∂ri

[
ρEρEui + sEsEui + ujEuj Eui

+
∫

dv
(

f E f Eui + f Eρ
∂E f

∂vi
+ ηEs

∂E f

∂vi
+ f E f

∂E f

∂vi

)]
(101)

We turn now to the qualitative properties of the solutions of (100). A direct consequence
of the presence of the term {A, B}(hyd) on the right-hand side of the Poisson bracket (98)
(a term that does not involve f ) is that the hierarchy (100) reduces to the standard non-
dissipative hydrodynamic equations if the energy E is chosen to be independent of f , On
the other hand, if E is chosen to depend only on f , then (100) becomes the non-dissipative
one particle kinetic equation. For a general energy E depending on both the hydrodynamic
fields and the one particle distribution function f , the kinematics-preserving hierarchy (100)
represents a Hamiltonian extended hydrodynamics in which the one particle distribution
function plays the role of an extra state variable f . The specific physical interpretation of f
is determined by the specification of the energy E( f , g), i.e., by the role that f plays in the
forces driving the time-evolution.

Having the hierarchy reformulation (100) of the kinetic equation (or other hierarchy
reformulations discussed in the previous two sections), how can we use it to make the
MaxRent passage to the hydrodynamic equations? A detailed analysis of the solutions of
(100), in particular an analysis of the onset of irregularities in solutions (see e.g., [10]), is
expected to lead us to the upper rate entropy Σ↑ generating the dissipation that eventually,
by following the dissipative time-evolution, eliminates the details expressed in f and leaves
us only with equations governing the time-evolution of hydrodynamic fields. An exam-
ple of this type of physical consideration, but in the context of MaxEnt not MaxRent, is
Boltzmann’s realization that the binary collisions are responsible for the onset of the irregu-
larities of solutions of the Hamilton one particle kinetic equation and for the emergence of
dissipation in its regularized solutions. We hope to follow this route in the future.

In this paper, we only note that already, the hierarchy reformulation (100) is useful
in determining the upper rate fundamental thermodynamic relation. The vector field
J↑( f ; ρ, s, u) is read in the second terms on the right-hand side of the equations governing
the time-evolution of the hydrodynamic fields. Moreover, the first two lines in the equations
governing the time evolution of f in (100) indicate also J∗(ρ, s, u). However, we emphasize
that the passage from (100) to the upper rate fundamental thermodynamic relation and to
a proof that solutions to (100) modified by supplying it with the dissipative term approach
the upper equilibrium state x̆ is left unsolved in this paper.

5.2.3. Euler Kinematics-Preserving Hierarchy

All three examples (75), (93), and (100) of kinematics-preserving hierarchies are hierar-
chy reformulations of equations governing the time-evolution of distribution functions.
In this last illustration, we present the kinematics-preserving hierarchy of the Euler hydro-
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dynamic equation. The upper level is the level of fluid mechanics; the upper state variable
is the momentum field u(r); and the Poisson bracket:

{A, B} =
∫

drui

(
∂Aui

∂rj
Buj −

∂Bui

∂rj
Auj

)
(102)

expresses mathematically its kinematics. The lower level state variables
W = (W1, ..., Wn) are introduced by:

Wαi =
∫

drwα(r)ui(r) (103)

where (w1(r), ..., wn(r)) is a given fixed set of n functions R3 → R.
In order to reformulate the Euler equation as a kinematics-preserving hierarchy involving

W (see (103)) as the lower level state variables, we proceed as in the previous sections. The
functions A and B in (102) depend on u directly and also indirectly through the dependence
on W (which depends on u(r); see (103)). We thus replace Au and Bu in (102) with Aui(r) =
wα(r)AWαi + Aui(r) and with the same expression for Bu. This change transforms (102) into:

{A, B} =
∫

dr

[
uiwβ

∂wα

∂rj

(
AWαi BWβj − BWαi AWβj

)
+ui

∂wα

∂rj

(
AWαi Buj − BWαi Auj

)
+uiwβ

(
∂Aui

∂rj
BWβj −

∂Bui

∂rj
AWβj

)

+ui

(
∂Aui

∂rj
Buj −

∂Bui

∂rj
Auj

)]
(104)

In this Poisson bracket (as well as in the Poisson bracket (74)), the upper state variable u
appears in all its terms. The Poisson brackets (92) and (98) involving only the lower state
variables are rather exceptional.

The time-evolution equations corresponding to this bracket is the following kinematics-
preserving hierarchy:

Ẇαi =
∫

dr

[(
uiwβ

∂wα

∂rj
− ujwα

∂wβ

∂ri

)
EWβj

−ujwα

∂Euj

∂ri
+ ui

∂wα

∂rj
Euj

]
(105)

∂ui
∂t

= − ∂

∂rj

(
uiEuj + uiwβEWβj

)
− ∂p

∂ri

where p = −e + ujwβEWβj + ujEuj and E(u, W) =
∫

dre(u, W; r). The momentum field
u(r) appearing in (105) can be physically interpreted as an average momentum field and
W as its fine internal structure. The possible suitability of this reformulation of the Euler
equation for, for example, turbulence modeling or numerical investigations is intended to
be explored in a future paper.

6. Concluding Remarks

Multiscale thermodynamics is a theory of relations among the levels of investigation of
complex systems. It is a theory that sprung from the classical equilibrium thermodynamics,
Boltzmann’s kinetic theory, and the Gibbs equilibrium statistical mechanics. A level is well
established if its predictions agree with the results of experimental observations. A level L
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is an upper level vis-á-vis another level l if L includes more details than l. If both levels
L and l are well established, then there must exist a way to prepare the systems under
investigation for the level l, and the preparation process has to be possible to be seen as a
time-evolution at the level L The entropy appearing in the vector field governing such a
time-evolution plays at the level L the role of an ambassador of the lower level l. During the
time-evolution, the entropy is maximized subject to certain constraints that, as well as
the entropy, represent the lower level l inside the upper level L. The time-evolution in
L leading to l is a sequence of infinitesimal contact structure-preserving transformations,
and the whole process of passing from the level L to the level l is a reducing Legendre
transformation. Multiscale thermodynamics investigates the chain −→ L −→ L −→ l −→,
where L is a level that involves more details than both levels L and l. More generally, the
chain is replaced by an oriented graph with levels as its vertices and links, directed toward
lower levels, as reductions.

In this paper, we first present the main tenets of multiscale thermodynamics (in
Sections 2 and 3), and then, in Section 4, we show its realizations in the setting of classical
theories like Boltzmann’s kinetic theory, Gibbs equilibrium statistical mechanics, and fluid
mechanics. Dynamic and static theories at a wide range of scales become particular realiza-
tions of a single abstract theory applicable to externally and internally unforced and forced
complex systems with no limitations regarding the closeness to equilibrium. In Section 5,
we turn multiscale thermodynamics towards a new path in hierarchy reformulations of
dynamical theories. Our objective is to formulate hierarchies that preserve kinematics. In
both the classical and the newly explored theories, the multiscale thermodynamics inspires
novel insights and viewpoints.
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