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Abstract: Classical methods for inverse problems are mainly based on regularization theory, in
particular those, that are based on optimization of a criterion with two parts: a data-model matching
and a regularization term. Different choices for these two terms and a great number of optimization
algorithms have been proposed. When these two terms are distance or divergence measures, they
can have a Bayesian Maximum A Posteriori (MAP) interpretation where these two terms correspond
to the likelihood and prior-probability models, respectively. The Bayesian approach gives more
flexibility in choosing these terms and, in particular, the prior term via hierarchical models and
hidden variables. However, the Bayesian computations can become very heavy computationally. The
machine learning (ML) methods such as classification, clustering, segmentation, and regression, based
on neural networks (NN) and particularly convolutional NN, deep NN, physics-informed neural
networks, etc. can become helpful to obtain approximate practical solutions to inverse problems.
In this tutorial article, particular examples of image denoising, image restoration, and computed-
tomography (CT) image reconstruction will illustrate this cooperation between ML and inversion.

Keywords: inverse problems; regularization; Bayesian inference; machine learning; artificial intelli-
gence; Gauss–Markov–Potts; Variational Bayesian Approach (VBA); physics-informed ML

1. Introduction

Inverse problems arise in almost any scientific and engineering application. In fact,
they arise whenever we want to infer a quantity that is not directly measured. Noting the
unknown quantity f and the measurement data g, we may have a mathematical relation
between them: g = H( f ) where f can be a 1D function (signal), a 2D function (image),
a 3D function, or more (e.g., video, hyperspectral images, etc.). H is a mathematical
model, called a forward operator, and g can also be a 1D, 2D, 3D, or more function.
In practice, we may only have discrete values of it available, and, for this reason, the
inverse problem that is inferring f from this limited data is an ill-posed problem. When
discretized, we may write the relations between them as g = H( f ) + ε where g contains
all the data, f contains all the discretized representations of the unknown quantity, and
H is a multidimensional operator connecting them. Finally, ε represents all the errors of
discretization and measurement uncertainties.

Handling inverse problems, even in the discretized version linear model g = H f + ε
is not easy, at least for two reasons: one is the ill-conditioning of the matrix H and its great
dimensions; the second is accounting for the errors.

Classical methods for inverse problems are mainly based on regularization theory,
particularly those that are based on optimization of a criterion with two parts: a data–model-
matching part ∆1(g, H f ) and a regularization term ∆2( f , f0) with a balancing term between
them: J( f ) = ∆1(g, H f ) + λ∆2( f , f0) where ∆1 and ∆2 are two distances (L2, L1, etc.) or
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divergence measure such as Kullback–Leibler (KL) or any other divergence, when, for
example, f and f0 are densities. f0 can be equal to zero or any other prior default solution.
Different choices for these two terms and a great number of optimization algorithms have
been proposed with success in very diversified domains and applications [1–5].

Bayesian-inference-based methods also had great success for handling inverse prob-
lems, in particular, when the data are noisy, uncertain, some are missing and with some
outliers, and where there is a need to account and to quantify uncertainties. In fact, the two
terms of the regularization methods can have a Bayesian Maximum A Posteriori (MAP)
interpretation where these two terms correspond to the likelihood and prior models, respec-
tively. Indeed, the Bayesian approach gives more flexibility in choosing these terms and
particularly the prior term via hierarchical models and hidden variables [6–9] However,
the Bayesian computations can become very heavy computationally. The machine-learning
(ML) methods, such as classification, clustering, segmentation, and regression, based on
neural networks (NN), such as convolutional NN and deep NN, physics-informed neural
networks, etc., can become helpful to obtain approximate but good-quality and practical
solutions to inverse problems [10–13].

However, even if in many domains of machine learning such as classification and
clustering these methods have shown success, their use in real scientific problems is limited.
The main reasons are twofold. First, the users of these tools cannot explain the reasons why
they are successful and why they are not. The second is that, in general, these tools cannot
quantify the remaining uncertainties.

Model-based and Bayesian-inference approaches have been very successful in linear
inverse problems. However, adjusting the hyperparameters is complex, and the cost of the
computation is high. The convolutional-neural-networks (CNN) and deep-learning (DL)
tools can be useful for pushing these limits further. On the other side, the model-based
methods can be helpful for the selection of the structure of CNN and DL, which are crucial
in ML success. In this tutorial article, first an overview and a survey of the aforementioned
methods are presented, and the possible interactions between them are explored [14,15].

The rest of the article is organized as follows: First, a survey of inverse-problem
examples, analytical inversion methods, generalized inversion and regularization methods,
and finally the Bayesian inference methods is presented. Then, a discussion on the process
and final objectives of imaging systems, for example, in health survey systems, going
from the data acquisition to image reconstruction, its segmentation, its feature extraction,
and finally its interpretation and usage is presented to prepare the more advanced part
of this tutorial—for example, the Bayesian joint reconstruction and segmentation using
Gauss–Markov–Potts prior modeling [16–19]. In the third part, first an introduction to
machine-learning (ML) tools and processes and basic notions and notations on neural
networks (NN) are given. The last part is related to the relations between all these methods
via forward modeling, identification, learning, and inversion. These relations are shown
via a few simple examples, and then we discuss the fully learned and physics-informed
partially learned ML methods for inverse problems.

After mentioning some successful case studies in which the ML tools have been
successful [20–35], we arrive at the main conclusions of this article and the future of the
possible interactions between model-based and machine-learning tools. We conclude by
mentioning the open problems and challenges in both the classical, model-based and the
ML tool.

2. Inverse Problems Example

Inverse problems arise almost everywhere in science and engineering— everywhere
we want to infer an unknown quantity f that is not accessible (observable) directly. We only
have access to another observable quantity g that is related to it via a linear or a non-linear
relation H [36–38].

As you can see, I am going to use a color code: red for unknown quantities and blue for
observed or assumed, known quantities. The forward operator linking the two quantities



Entropy 2021, 23, 1673 3 of 25

is noted H. In general, the forward operator is well-posed, but the inverse problem is
ill-posed. This means that either the classical inverse operator does not exist (existence), or
we can define many generalized inverse operators, so many solutions to the problem can
be defined (uniqueness), or even if we can define an inverse operator, it may be unstable
(stability) [39].

Let us mention a few examples of common inverse problems here.

2.1. Image Restoration

Any photographic system (camera, microscope, or telescope) has a limited field of
view and a limited resolution. If we note by f (x, y) the original image and by the g(x, y)
the observed image and if we assume a linear and space-invariant operator between them,
then the forward relation can be written as a convolution operator:

g(x′, y′) =
∫

f (x, y)h(x′ − x, y′ − y) dx dy , (1)

where h(x, y) represents the point spread function (psf) of the imaging system.
Many examples can be given [40,41]. In Figure 1, two synthetic examples are shown.

Blurred and noisy g(x′, y′) ⇐= Original image f (x, y)
Forward

g

Data g(x′, y′) =⇒ Unknown f (x, y)
g Inverse f

Figure 1. Forward and inverse problems in image restoration. Forward operation is a convolution,
and the inverse operation is called deconvolution.

2.2. X-ray Computed Tomography

In X-ray computed tomography (CT), the relation between the data and the object can
be modeled via the radon transform:

g(r, φ) =
∫∫

f (x, y)δ(r− x cos φ− y sin φ) dx dy , (2)

where δ is the Dirac function; thus, g(r, φ) represents the line integrals over the lines
of angles φ of the object function f (x, y). Forward operation is called projection, and the
inversion process is called image reconstruction. In Figure 2, one synthetic example is shown.
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Line integrals g(r, φ) ⇐= Attenuation distribution f (x, y)
Forward

Data g(r, φ) =⇒ Unknown f (x, y)
g Inverse f

Figure 2. Forward and inverse problems in computed tomography. The horizontal axis on the left is
r, the vertical is φ, and the values of g(r, φ) are presented as the gray levels. On the right, the object
section f (x, y) is presented. Forward operation is called projection, and the inversion process is called
image reconstruction.

2.3. Acoustical Imaging

Acoustic source localization in acoustical imaging can also be considered as an inverse
problem, where the positions and intensities of acoustical sources have to be estimated
from the signal received by the microphone arrays. If we represent the distribution of the
sources by

f (x, y) = ∑
n

snδ(x− xn, y− yn) ,

each microphone receives the sum of the delayed sources’ sounds [42–45]:

gm(t) = ∑
n

sn(t− τmn) ,

where τmn is the delay of transmission from the source position n to the microphone
position m. This delay is a function of the speed of the sound and the distance between the
source position (xn, yn) and the microphone position (xm, ym).

In Figure 3, one synthetic example is shown to explain the main idea.

Array of microphones ⇐= Acoustic sources
Forward

Data =⇒ Unknown
g Inverse f

Figure 3. Forward and inverse problems in acoustical imaging. Each microphone receives the sum of
the delayed sources’ sounds. The inverse problem is to estimate the sources’ distribution from the
received signals by the microphones array.
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2.4. Microwave Imaging for Breast-Cancer Detection

In microwave imaging, the body is illuminated by microwaves. As the electrical
properties (conductivity and permeability) of the healthy and tumor tissues are different,
their corresponding induced sources are different. These differences can be measured via
the electrodes outside of the breast. The inverse problem, in this case, consists in estimating
these induced sources or even directly the distribution of the conductivity and permeability
inside the breast. Looking at such images, the tumor area can be visualized [46,47].

The forward problem here is described by two linked equations:




g(ri) =
∫∫

D
Gm(ri, r′)φ(r′) f (r′) dr′, ri ∈ S ;

φ(r) = φ0(r) +
∫∫

D
Go(r, r′)φ(r′) f (r′) dr′, ; r ∈ D

where f (r) represents the variation of the conductivity, φ(r) the induced field due to the
incident field φ0(r), and Gm(ri, r′) and Go(r, r′) are the Green functions.

The first one relates the measured diffracted field on the sensors g(r) as a function
of the induced currents J(r) = φ(r) f (r) inside the brain due to the external field via the
Green functions, and the second relates the total field as the sum of the incident and the
induced field. So, the forward problem is nonlinear, as φ(r) appears in both sides of the
equation. However, it can be approximated by a linear relation if we assume that the
induced field inside is very small compared to the incident field: (φ(r′) ' φ0(r′)). This is
called Born approximation:

g(ri) =
∫∫

D
Gm(ri, r′)φ0(r′) f (r′) dr′, ri ∈ S .

Both the bi-linear relations and the linear Born approximations are used in microwave
imaging. The first one is more common in industrial non-destructive testing (NDT) and
the second for biological and medical applications.

2.5. Brain Imaging

In brain imaging, the electrical activity of the neurons inside the brain brain are
propagated and can be measured at the surface of the sculpt via the electrodes fixed on
it. These signals are called electroencephalography (EEG). It is also possible to measure
the magnetic field created by this activity. This time, the signals are called (MEG). In both
cases, the inversion process consists in estimating the distribution of the brain activity from
the measured signals. If the brain electrical activity can be modeled as the electrical mono-
or dipoles distributed over the surface of the brain, then the simplified forward model
can be almost similar to acoustical sources localization of the previous example. Here,
the distribution of the sources are in the 3D space of the brain, and the EEG electrodes
are positioned on the sculpt. The signal received by each EEG electrode can be compared
to the signals received by the microphones in the previous example. There are a great
number of forward models, analysis, and inversion methods that have been proposed
for this application. A very good toolbox is the EEGLAB, which can be searched on the
internet and easily obtained.

2.6. Other Applications

Many other imaging systems to see inside the human body or inside any industrial ob-
ject in non-destructive testing (NDT) applications exist. Here, a few of them are illustrated.
We can just mention a few more: magnetic-resonance imaging (MRI), ultrasound imaging
such as echography, positron emission tomography (PET), single-emission computed to-
mography (SPECT), electrical impedance tomography, and eddy current tomography [48].
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3. Classification of Inverse Problems’ Methods

Inverse problems’ methods can be classified in the following categories:

• Analytical inversion methods.
• Generalized inversion approach.
• Regularization methods.
• Bayesian inference methods.

In the first category, the main idea is to recognize the forward operators as one of the
well-known mathematical invertible operator and thus to use the appropriate inversion
operator. Typical examples are Fourier transform (FT) and radon transform (RT). In the
second category, the notion of generalized inversion is used. The corresponding methods
are either based on singular value decomposition (SVD) or the iterative projection based
algorithms. The regularization methods are mainly based on the optimization of a criterion,
often made in two parts: data–model adequacy and the regularization with a regularization
parameter. Finally, the Bayesian inference approach, which I consider to be the most general
and complete, has all the necessary tools to go beyond the regularization methods.

4. Analytical Methods

Figure 4 shows the main idea behind the analytical methods via two classical cases of
image deconvolution and X-ray image reconstruction. In the first case, as the forward model
is a 2D convolution: g(x, y) = h(x, y) ∗ f (x, y) or equivalently a 2D Fourier-transform (FT)
filtering: G(u, v) = H(u, v)F(u, v); the operation consists in going to the Fourier domain,
doing inverse filtering, and coming back. However, the inverse filtering 1

H(u,v) must be
regularized either by limiting the band width or by applying an appropriate window mask
before doing the inverse Fourier transform (IFT).

In the second case, the forward model is the radon transform (RT). Using the relation
between FT and RT (Fourier slice theorem), the analytical inversion process becomes:

1. For each angle φ, compute the 1D FT of gφ(r) = g(r, φ),
2. Relate it to the 2D FT of f (x, y) via the Fourier slice theorem and interpolate to obtain

the full 2D FT of f (x, y); and
3. Compute 2D IFT to obtain f (x, y)

For more details, refer to [49,50].
The main difficulty with the analytical method is that the forward relations are given

for continuous functions or densities. They can give satisfactory results if the inversion
process is regularized and if the data are dense, complete, and without any measurement
or discretization errors. In practical situations, rarely are all these conditions satisfied.

g(x, y) −→ 2D FT −→ Inverse Filter −→ 2D IFT −→ f (x, y)

g(r, φ) −→ 1D FT for all angles φ −→ 2D FT interpolation −→ 2D 2DFT −→ f (x, y)

Figure 4. Transform-based analytical methods. Two examples are given: image deconvolution by
inverse filtering and image reconstruction in CT by using the relation between RT and FT.

5. Generalized Inversion Approach

In this approach, the main idea is based on the fact that the forward operator is
in general a singular one. This means there are many possible solutions to the inverse
problem. In this approach, there are mainly two categories of methods. The first are based
on singular-values decomposition (SVD). The second is based on optimization of a criterion
such as the least squares (LS). In both, the main idea is to define a set of possible solutions,
called generalized inverse solutions:

{ f † : H f † = g} (3)
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or pseudo solutions:
{ f † : ‖H f † − g‖2 < ε} . (4)

Then, between those possible solutions, one tries to define a criterion, such as the
minimum norm, to choose a solution. For the linear inverse problems, the corresponding
solutions are given by

f † = [Ht H]−1Htg = H†g or f † = Ht[HHt]−1g = H†g . (5)

In great dimensional problems, even if we have these analytical expressions, in prac-
tice, the solutions are computed by using iterative optimization algorithms, for example, to
optimize the LS criterion J( f ) = ‖H f − g‖2 by a gradient-based algorithm:

f (k+1) = f (k) + αHt(g− H f (k)) , (6)

with a stopping criteria or just after some fixed number of iterations. We will see in the
next sections how this can lead to a deep-learning NN structure.

6. Model-Based and Regularization Approach

The model-based methods are related to the notions of the forward-model and the
inverse-problems approach. Figure 5 shows the main idea:

Physical model of some
unknown quantity

f

=⇒
g = H( f )

Prediction of
measurement of sensors

g
Forward problem

Estimate of
that unknown quantity

f̂

⇐=
f̂ = H†g

f̂ = arg min f
{
‖g−H( f )‖2 + λR( f )

}
Real gathered data

via measurement sensors
g

Inverse problem

Figure 5. Model-based methods: forward and inverse problems. The solution of the inverse problem is defined either by
the generalized inversion or by a regularization method.

Given the forward modelH and the source f , the prediction of the data g can be done,
either in a deterministic way: g = H( f ) or via a probabilistic model: p(g| f ,H) as we
will see in the next section. In the same way, given the forward model H and the data g,
the estimation of the unknown source f can be done either via a deterministic method
or a probabilistic one. One of the deterministic methods is the generalized inversion:
f = H†(g). A more general method is the regularization:

f̂ = arg min
f
{J( f )} with J( f ) = ‖g−H( f )‖2 + λR( f ) . (7)

As we will see later, the only probabilistic method that can be efficiently used for the
inverse problems is the Bayesian approach.

Regularization Methods

Let consider the discretized linear inverse problem: g = H f + ε, and the regulariza-
tion criterion

J( f ) =
1
2
‖g− H f ‖2

2 + λR( f ) . (8)
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The first main issue in such a regularization method is the choice of the regularizer.
The most-common examples are:

R( f ) =

{
‖ f ‖2

2, ‖ f ‖β
β, ‖D f ‖2

2, ‖D f ‖β
β, ∑

j
φ([D f ]j)

}
, 1 ≤ β ≤ 2 , (9)

where D is a linear operator, generally a first-order derivation, a gradient, or a second-order
derivation. The function φ has to be convex to ensure the uniqueness of the solution. Many
such functions have been proposed, but some non-convex ones have also been proposed,
which then need global optimization techniques.

The second main issue in regularization is the choice of an appropriate optimization
algorithm. This mainly depends on the type of the criterion, and we have:

• R( f ) quadratic: gradient-based and conjugate gradient algorithms are appropriate.
• R( f ) non-quadratic but convex and differentiable: here too the gradient-based and

the conjugate gradient (CG) methods can be used, but there are also a great number of
convex criterion optimization algorithms.

• R( f ) convex but non-differentiable: here, the notion of a sub-gradient is used.

Specific cases are:

• L2 or quadratic: J( f ) = 1
2‖g− H f ‖2

2 + λ‖D f ‖2
2 ;

In this case we have an analytic solution: f̂ = (Ht H + λD′D)−1Htg. However,
in practice, this analytic solution is not usable in high-dimensional problems. In gen-
eral, as the gradient ∇J( f ) = −Ht(g− H f ) + 2λD′D f can be evaluated analytically,
gradient-based algorithms are used.

• L1 (TV): convex but not differentiable at zero: J( f ) = 1
2‖g− H f ‖2

2 + λ‖D f ‖1 ;
The algorithms in this case use the notions of the Fenchel conjugate, the dual problem,
the sub gradient, and the proximal operator [11,51–53]

• Variable splitting and augmented Lagrangian

( f , ẑ) = arg min
f ,z

{
1
2
‖g− H f ‖2

2 + λ‖z‖1 + q‖z‖2
2

}
s.t. z = D f . (10)

A great number of optimization algorithms have been proposed: ADMM, ISTA, FISTA,
etc. [1,5,54].

The main limitations of deterministic regularization methods are:

• A limited choice of the regularization term. Mainly, we have: (a) smoothness (Tikhonov)
and (b) sparsity, piecewise continuous (total variation).

• Determination of the regularization parameter. Even if there are some classical meth-
ods such as the L-curve and cross validation, there are still controversial discussions
about this.

• Quantification of the uncertainties: this is the main limitation of the determinis-
tic methods, particularly in medical and biological applications where this point
is important.

The best possible solution to push further all these limits is the Bayesian approach,
which has: (a) many possibilities to choose prior models, (b) the possibility of the estimation
of the hyperparameters, and, most important, (c) an accounting for the uncertainties.

7. Bayesian-Inference Methods
7.1. Basic Idea

The simple case of the Bayes rule is:

p( f |g,H) =
p(g| f ,H) p( f |H)

p(g|H)
where p(g|H) =

∫∫
p(g| f ,H) p( f |H) d f , (11)
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whereH is a model, p(g| f ,H) is the likelihood of f in the data through the model, p( f |H)
is the prior knowledge about the unknown quantity f , and p( f |g,H) called the posterior
is the result of the combination of the likelihood and the prior. The denominator p(g|H),
called the evidence, is the overall likelihood of the model in the data g.

When there are some hyperparameters, for example, the parameters of the likelihood
and those of the prior law, which have also to be estimated, we have:

p( f , θ|g,H) = p(g| f ,θ,H) p( f b|θ,H) p(θ|H)
p(g|H)

where p(g|H) =
∫∫

p(g| f , θ,H) p( f |θ,H) dθ d f (12)

This is called the joint posterior law of all the unknowns. From that joint posterior
distribution, we may also obtain the marginals:

p( f |g,H) =
∫∫

p( f , θ|g,H) d f and p(θ|g,H) =
∫∫

p( f , θ|g,H) d f . (13)

7.2. Gaussian Priors Case

To be more specific, let us consider the case of linear inverse problems g = H f + ε.
Then, assuming Gaussian noise, we have:

p(g| f ) = N (g|H f , vε I) ∝ exp
{−1

2vε
‖g− H f ‖2

2

}
. (14)

Assuming also a Gaussian prior:

p( f ) ∝ exp

{
−1
2v f
‖ f ‖2

2

}
or exp

{
−1
2v f
‖D f ‖2

2

}
, (15)

it is easy to see that the posterior is also Gaussian, and the MAP and posterior mean (PM) es-
timates become the same and can be computed as the minimizer of :
J( f ) = ‖g− H f ‖2

2 + λR( f ):

p( f |g) ∝ exp
{−1

2vε
J( f )

}
→ f̂MAP = arg max

f
{p( f |g)} = arg min

f
{J( f )} . (16)

In summary, we have:

{
p(g| f ) = N (g|H f , vε I)
p( f ) = N ( f |0, v f I) −→





p( f |g) = N ( f | f̂ , Σ̂)
f̂ = [HtH + λI]−1Htg
Σ̂ = vε[HtH + λI]−1, λ = vε

v f

. (17)

This case is also summarized in (Figure 6).
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We may note that, in this case, we have an analytical expression for the posterior
law, which is also a Gaussian law and entirely specified by its mean f̂ and covariance Σ̂.



Entropy 2021, 23, 1673 10 of 25

However, for great dimensional problems where f is a great size vector, the computation
of Σ̂ can become very costly. The computation of the posterior mean f̂ can be done by
optimization as it is the same as the MAP solution.

7.3. Gaussian Priors with Unknown Parameters

For the case where the hyperparameters vε and v f are unknown (unsupervised case),
we can derive the following:





p(g| f , vε) = N (g|H f , vε I)
p( f |v f ) = N ( f b|0, v f I)
p(vε) = IG(v f |αε0 , βε0)
p(v f ) = IG(v f |α f0 , β f0)

−→





p( f |g, vε, v f ) = N ( f | f̂ , Σ̂)
f̂ = [Ht H + λ̂I]−1Htg
Σ̂ = vεh[HtH + λ̂I]−1, λ̂ = vεh

v f h

p(vε|g, f ) = IG(vε|α̃ε, β̃ε)

p(v f |g, f ) = IG(v f |α̃ f , β̃ f )

α̃ε, β̃ε, α̃ f , β̃ f

, (18)

where all the details and, in particular, the expressions for α̃ε, β̃ε, α̃ f , β̃ f can be found in [19].
As we can see, the expressions of f̂ and Σ̂ are the same as in previous case, except that
the values of vεh, v f h, and λ̂ have to be updated. They are obtained from the conditionals
p(vε|g, f ) and p(v f |g, f ) at each iteration.

This case is also summarized in Figure 7.
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p( f , vε, vξ |g) ∝ exp
{
−J( f , vε, vξ)

}
. (19)

From this expression, we have different possible expansions:

• JMAP: Alternate optimization with respect to f , vε, v f :

J( f , vε, v f ) =
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2 +
1

2v f
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Each iteration can be done in two steps:

1. fixe vε and v f to previous values and optimize with respect to f ;
2. fixe f and optimize with respect to vε and v f .

The first step results to a quadratic criterion with respect to f which results to an
analytical expression for the solution which can be used for small dimension problems

Figure 7. Bayesian-inference scheme in linear systems and Gaussian priors. The posterior is also
Gaussian, and all the computations can be done analytically.

The joint posterior can be written as:

p( f , vε, vξ |g) ∝ exp
{
−J( f , vε, vξ)

}
. (19)

From this expression, we have different possible expansions:

• JMAP: alternate optimization with respect to f , vε, v f :

J( f , vε, v f ) =
1

2vε
‖g− H f ‖2

2 +
1

2v f
‖ f ‖2

2 + (αε0 + 1) ln vε +
βε0
vε

+ (α f0 + 1) ln v f +
β f0
v f

. (20)

Each iteration can be done in two steps:

1. Fix vε and v f to previous values and optimize with respect to f ;
2. Fix f and optimize with respect to vε and v f .

The first step results in a quadratic criterion with respect to f , which results in an ana-
lytical expression for the solution, which can be used for small-dimension problems,
or it can be optimized easily by any gradient-based algorithm. The second step, in
this case, results in two separate explicit solutions: one for vε and one for v f .
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• Gibbs sampling and Markov Chain Monte Carlo (MCMC):

f ∼ p( f , vε, v f |gb→ vε ∼ p(vε|g, f )→ v f ∼ p(v f |g, f ) . (21)

These steps can be done using the expressions of the conditional given in Equation (18).
These methods are used generally when we not only want to have a point estima-
tor such as MAP or the posterior mean but also to quantify the uncertainties by
estimations of the variances and covariances.

• Variational Bayesian Approximation (VBA): approximate p( f , vε, v f |g) by a separable
one q( f , vε, v f ) = q1( f |vε, v f )q2(vε)q3(v f ) minimizing KL(q|p) [19,55–58]. We can
see that the alternate optimization of KL(q1, q2, q3|p) with respect to q1, q2, and q3
result in the same expressions as in Equation (18), only the expressions for updating
the parameters α̃ε, β̃ε, α̃ f , and β̃ f are different.
The Approximate Bayesian Computation (ABC) method and, in particular, the VBA
and mean-field-approximation methods are used when Gibbs sampling and MCMC
methods are too expensive and we still want to quantify uncertainties, for example,
estimating the variances.

8. Imaging inside the Body: From Data Acquisition to Decision

To introduce the link between the different model-based methods and the machine-
learning tools, let us consider the case of medical imaging, from the acquisition to the
decision steps:

• Data acquisition :

Object f → CT scan, MRI, TEP, US,Microwave imaging → Data g

• Image reconstruction by analytical methods:

Data g→ Reconstruction → Image f̂

• Post-processing (segmentation, contour detection, and selection of region of interest):

Image f̂ → Segmentation → ẑ

• Understanding and decision:

Image f̂
Segmentation ẑ

→ Interpretation
Decision

→ Tumor or
Not Tumor

8.1. Bayesian Joint Reconstruction and Segmentation

The questions now are: can we join any of these steps? Can we go directly from the
image to the decision? For the first one, the Bayesian approach can provide a solution:

Data g→ Reconstruction
Segmentation

→ Reconstruction f̂
→ Segmentation ẑ

The main tool here is to introduce a hidden variable that can represent the segmenta-
tion. A solution is to introduce a classification hidden variable z with zj = {1, 2, · · · , K},
which can be used to show the segmented image. See Figure 8.

Figures 8 and 9 summarize this scheme.
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p( f (r)|z(r) = k, mk, vk) = N ( f (r)|mk, vk)

p( f |z, θ) = ∑
k

∏
r∈Rk

akN ( f (r)|mk, vk),

θ = {(ak, mk, vk), k = 1, · · · , K}
p(θ) = D(a|a0)N (a|m0, v0)IG(v|α0, β0)

Potts MRF:

p(z|γ) ∝ exp

{
γ ∑

r
∑

r′∈N (r)
δ(z(r)− z(r′))

}

p( f , z, θ|g) ∝ p(g| f , vε) p( f |z, θ) p(z|γ) p(θ)
MCMC: Gibbs Sampling
VBA: Alternate optimization.

Figure 8. Gauss–Markov–Potts prior model for Bayesian image reconstruction and segmentation.
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Figure 8. Gauss-Markov-Potts prior model for Bayesian image reconstruction and segmentation.
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f , z

p( f |z) p(z) p(g| f )
Hierarchical Prior Likelihood

=⇒
Measurement

g

Estimation
f̂ , ẑ

⇐=
p( f , z|g)

Joint Posterior

Data
g

p( f , z|g) ∝ p(g| f , z) p( f |z) p(z) ∝ p(g| f ) p( f |z) p(z)

Figure 9. Bayesian approach with hierarchical prior model for joint reconstruction and segmentation.

A few comments for these relations:

• p(g| f , z) does not depend on z, so it can be written as p(g| f ).
• We use a Markovian Potts model for p(z) to obtain more compact homogeneous

regions [18,19].
• If we choose for p( f |z) a Gaussian law, then p( f , z|g) becomes a Gauss-Markov-Potts

model [19].
• We can use the joint posterior p( f , z|g) to infer on ( f , z): We may just do JMAP:

( f̂ , ẑ) = arg max{p( f , z|g)} or trying to access to the expected posterior values by
using the Variational Bayesian Approximation (VBA) techniques [17,19,58–62].

• When the iterations finished, we get an estimate of the reconstructed image f and
its segmentation z when using JMAP and also the covariance of f as well as the
parameters of the posterior laws of z

Figure 9. Bayesian approach with hierarchical prior model for joint reconstruction and segmentation.

A few comments for these relations:

• p(g| f , z) does not depend on z, so it can be written as p(g| f ).
• We used a Markovian Potts model for p(z) to obtain more compact homogeneous

regions [18,19].
• If we choose for p( f |z) a Gaussian law, then p( f , z|g) becomes a Gauss–Markov–Potts

model [19].
• We can use the joint posterior p( f , z|g) to infer on ( f , z): we may just do JMAP:

( f̂ , ẑ) = arg max{p( f , z|g)} or trying to access to the expected posterior values by
using the Variational Bayesian Approximation (VBA) techniques [17,19,58–62].

• When the iterations finished, we obtain an estimate of the reconstructed image f
and its segmentation z when using JMAP and also the covariance of f as well as the
parameters of the posterior laws of z
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This scheme can be extended to consider the estimation of the hyperparameters too.
Figure 10 shows this.

Entropy 2021, 1, 0 13 of 25

This scheme can be extended to consider the estimation of the hyper parameters too.
Figure 10 shows this.

Real word
f , z, θ
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=⇒
Measurement

g

Estimation
f̂ , ẑ, θ

⇐=
p( f , z, θ|g)

Joint Posterior

Data
g

p( f , z, θ|g) ∝ p(g| f , θ1) p( f |z, θ2) p(z|θ3)

Figure 10. Advanced Bayesian approach for joint reconstruction, segmentation and
parameter estimation.

Again, here, we can use the joint posterior p( f , z, θ|g) to infer on all the unknowns.
When the iterations finished, we get an estimate of the reconstructed image f , its segmen-
tation z as well as all the unknown parameters such as the means and variances of the
reconstructed image at each of its segments. Giving more details is out of focus of this
overview paper. They can be found more specifically in [17].

8.2. Advantages of the Bayesian Framework

Between the main advantages of the Bayesian framework for inverse problems, we
can mention the following:

• Large flexibility of prior models prior

– Smoothness (Gaussian, Gauss-Markov)
– Direct Sparsity (Double Exp, Heavy-tailed distributions)
– Sparsity in the Transform domain (Double Exp, Heavy-tailed distributions on the WT

coefficients)
– Piecewise continuous (DE or Student-t on the gradient)
– Objects composed of only a few materials (Gauss-Markov-Potts), ...

• Possibility of estimating hyper-parameters via JMAP or VBA
• Natural ways to take account for uncertainties and quantify the remaining uncertainties.

8.3. Imaging inside the Body: From Data to Decision: Classical or Machine Learning

From previous sections, we see that we have many solutions to go from data to an
image by inversion (image reconstruction), then extraction of interesting features (segmen-
tation) and finally the interpretation and decision. The question that we may ask now is:
Can we do all together in a more easily way? Machine Learning and Artificial Intelligence tools
may propose such a solution. See Figure 11.

Data g→ Reconstruction → Image f̂ → Segmentation → ẑ→ Interpretation
Decision → Tumor or

Not Tumor

Data g→ Machine Learning and
Artificial Intelligence → Tumor or

Not Tumor

Figure 11. Two approaches going from the data to decision: Top: from data, first reconstruct an image via inversion, then
post-process to obtain segmentation and do pattern recognition to extract the contours of the region of interest and finally
make a decision. Bottom: Try to use Machine Learning methods to go directly from data to decision.

To be able to use ML to go from data to decision, there is a crucial need of a great and
rich database obtained by experts to let the machine to Learn from that great database. In the
next section, we go a little more in detail to see the advantages, limitations and drawbacks.

Figure 10. Advanced Bayesian approach for joint reconstruction, segmentation and parameter estimation.

Again, here, we can use the joint posterior p( f , z, θ|g) to infer on all the unknowns.
When the iterations are finished, we get an estimate of the reconstructed image f , its
segmentation z, as well as all the unknown parameters such as the means and variances of
the reconstructed image at each of its segments. Giving more details is out of the focus of
this overview article. They can be found more specifically in [17].

8.2. Advantages of the Bayesian Framework

Between the main advantages of the Bayesian framework for inverse problems, we
can mention the following:

• Large flexibility of prior models.

– Smoothness (Gaussian and Gauss–Markov).
– Direct sparsity (double exp., heavy-tailed distributions).
– Sparsity in the transform domain (double exp., heavy-tailed distributions on the

WT coefficients).
– Piecewise continuous (DE or Student-t on the gradient).
– Objects composed of only a few materials (Gauss–Markov–Potts), ...

• Possibility of estimating hyperparameters via JMAP or VBA.
• Natural ways to take account for uncertainties and to quantify the remaining uncertainties.

8.3. Imaging inside the Body: From Data to Decision: Classical or Machine Learning

From previous sections, we see that we have many solutions to go from data to an
image by inversion (image reconstruction), then extraction of interesting features (segmen-
tation), and finally the interpretation and decision. The question that we may ask now
is: can we do all together in a more easy way? Machine-learning and artificial-intelligence
tools may propose such a solution. See Figure 11. To be able to use ML to go from data to
decision, there is a crucial need of a great and rich database obtained by experts to let the
machine learn from that great database. In the next section, we add a little more in detail to
see the advantages, limitations, and drawbacks.

Data g→ Reconstruction → Image f̂ → Segmentation → ẑ→ Interpretation
Decision → Tumor or

Not Tumor

Data g→ Machine Learning and
Artificial Intelligence → Tumor or

Not Tumor

Figure 11. Two approaches going from the data to decision. Top: from data, first, reconstruct an image via inversion, then
post-process to obtain segmentation. Perform pattern recognition to extract the contours of the region of interest and finally
make a decision. Bottom: try to use machine-learning methods to go directly from data to decision.
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9. Machine Learning’s Basic Idea

The main idea in machine learning is first to learn from a great number of data-
decisions: (gi, di), i = 1, · · ·N:

Learning data
(gi, di)

N
i=1

→ Learning step
The weights W of the NN are obtained

→W

and then, when a new case (Test g j) appears, it uses the learned weights W to give a
decision dj

Test case data
gj

→ Testing step
The learned weights W are used

→ Tumor or
Not Tumor

dj

Figure 12 shows the main process of ML.
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Figure 12. Basic Machine Learning process: First Learn a model, then use it. Learning step needs a
rich enough data base which costs a lot. When the model is learned and tested, its use is easy, fast
and its cost is low.

Nowadays, ML methods and tools have made great progress in many different areas
of applications. No need here to go more in detail. Just mentioning a few main components
of all of them. Between the basic tasks we can mention:

• Classification (supervised, semi-supervised);
• Clustering (unsupervised classification when the data have not yet labels);
• Regression (Continuous parameter estimation)

Figure 13 shows these three main tasks.
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Figure 13. Basic Machine Learning Tasks: Classification, Clustering, Regression

Figure 12. Basic machine-learning process: first, learn a model, then use it. Learning step needs a
rich-enough database, which is expensive. When the model is learned and tested, its use is easy and
fast, and its cost is low.

Nowadays, ML methods and tools have made great progress in many different areas
of applications. There is no need here to go more in detail, instead mentioning a few main
components of all of them. Between the basic tasks we can mention:

• Classification (supervised and semi-supervised);
• Clustering (unsupervised classification when the data do not yet have labels);
• Regression (continuous parameter estimation).

Figure 13 shows these three main tasks.

Classification Clustering Regression

Figure 13. Basic machine-learning tasks: classification, clustering, and regression.
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Between the existing ML tools, we may mention: support vector machines (SVM),
decision-tree learning (DT), artificial neural networks (ANN), Bayesian networks (BN),
HMM and random forest (RF), mixture models (GMM, SMM, etc.), KNN, Kmeans, etc.

Additionally, the combination of Imaging technology and systems, image processing,
computer vision, machine learning, and artificial intelligence has been the seed for much
great progress in all areas of health and our environment. The frontiers between science
and technology has become less precise as is shown in Figure 14.

Image technology

Image processing

Computer vision

Machine learning

Artificial intelligence

2D, 3D, hyperspectral acquisition, compression, transmission;
Representation, compression, segmentation;
Enhancement, restoration;
Segmentation, contour detection;
Segments, edges, patterns, RoIs, features extraction;
Pattern matching and localization;
Objects detection and identification;
2D and 3D pattern recognition, interpretation;
Classification, clustering, recognition, decision making, etc.

Figure 14. Frontiers between image technology, image processing (IP), computer vision (CV), machine Learning (ML) and
artificial intelligence (AI).

Between the machine-learning tools using NN, the convolutional NN (CNN), recurrent
NN (RNN), deep learning (DL), generative artificial networks (GAN) had greater success in
different area such as speech recognition, computer vision, and specifically in segmentation,
classification and clustering, and in multi-modality and cross-domain information fusion.

However, there are still many limitations: a lack of interpretability, reliability, and
uncertainty and no reasoning and explaining capabilities. To overcome this, there os still
much to do with the fundamentals.

10. Neural Networks, Machine Learning, and Inverse Problems
10.1. Neural Networks

Let us start this section with a few words on neurons and neural networks. The
following figures show the basic idea. The following figure shows the main idea about a
neuron in a mathematical framework. Figure 15 shows this graphically.

Figure 15. A neuron and its mathematical representation.

Figure 16 shows the components of a neuron and an example of a two-layer NN.
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Figure 16. A neuron with its inputs and outputs and and a neural network with two-hidden-layer neurons.

10.2. NN and Learning

A neural network can be used for modeling a universal relation between its inputs
X and outputs Y. This model can be written as Y = FW(X) where W represents the
parameters of the model represented by the weights of the network nodes relation. They
are commonly used for:

• Classification (supervised learning)
A set of data {(xi, yi)} with labels (classes) {ci} are given. The objective during the
training is to use them for training the network, which is then used for classifying a
new income (xj, yj).

• Clustering (unsupervised learning)
A set of data {(xi, yi)} is given. The objective is to cluster them in different classes {ci}.

• Regression with all data (supervised learning).
A set of data {(xi, yi)} are given. The objective is to find a function F describing
the relation between them: F(x, y) or explicitly y = F(x) for any x (extrapolation
or interpolation).

10.3. Modeling, Identification, and Inversion

Here, we make a connection between the classical and ML tools and show the links
between forward modeling and inversion or inference, model identification and learning
or training, and inversion and using the NN:

• Forward modeling and inversion

f → Forward
modeling

→ data g ‖ data g→ Inversion
inference

→ f̂

• Identification of a system and the training step of NN

f → Identification
W

→ data g ‖ {gi, fi} →
Learning
training

→ Learned
model W

• Inversion (inference) or using the NN-trained model

g→ Inversion
Inference

→ f̂ ‖ g −→ Learned
Model W

−→ f̂

11. ML for Inverse Problems

To show the possibilities of the interaction between inverse problems’ methods, ma-
chine learning, and NN methods, the best way is to give a few examples.
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11.1. First Example: A Linear One- or Two-Layer Feed-Forward NN

The first one is the case of linear inverse problems and quadratic regularization of the
Bayesian with Gaussian priors. The solution has an analytic expression, and we have the
following relations:

g = H f + ε −→ f̂ = (HtH + λI)−1Htg = A g = BHt g or still f̂ = Ht(
1
λ

HHt + I)−1g = HtC g

where A = (Ht H + λI)−1Ht, B = (HtH + λI)−1 and C = ( 1
λ HHt + I)−1.

These relations can be presented schematically as

g→ A → f̂ , g→ Ht → B → f̂ , g→ C → Ht → f̂

As we can see, these relations directly induce a linear feed-forward NN structure.
In particular, if H represents a convolution operator, then Ht, HtH, and HHt are too, as
well as the operators B and C. Thus, the whole inversion can be modeled by CNN [63].

For the case of computed tomography (CT), the first operation is equivalent to an
analytic inversio;, the second corresponds to back-projection first followed by 2D filtering
in the image domain; and the third corresponds to to the famous filtered back-projection
(FBP), which is implemented on classical CT scans. These three cases are illustrated on
Figure 17.

g→ A → f̂

  

Analytical
Inversion

Direct NN
Inversion

g→ Ht → B → f̂

  

Analytical
Inversion

or
Back

Projection

2D
Filtering

2D Filering
By NN

g→ C → Ht → f̂

  

Analytical
Inversion

or
Back

Projection

Analytical
Inversion

Filtering
by NN

Figure 17. Three linear NN structures that are derived directly from quadratic regularization inver-
sion method.
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11.2. Second Example: Image Denoising with a Two-Layer CNN

The second example is the denoising g = f + ε with an L1 regularizer:

f̂ = Dẑ and ẑ = arg min
z
{J(z)} with J(z) = ‖g− Dz|+ λ‖z‖1 , (22)

where D is a filter, i.e., a convolution operator. This can also be considered as the MAP
estimator with a double exponential prior. It is easy to show that the solution can be
obtained by a convolution followed by a thresholding [64–66].

f̂ = Dẑ and ẑ = S 1
λ
(Dtg)

where Sλ is a thresholding operator.

g→ Dt → Thresholding → ẑ→ D → f̂ or equivalently g→ Two-layer CNN → f̂

11.3. Third Example: A Deep-Learning Equivalence

One of the classical iterative methods in linear inverse-problems algorithms is based
on a gradient-based method to optimize J( f ) = ‖g− H f ‖2:

f (k+1) = f (k) + αHt(g− H f (k)) = αHtg + (I − αHtH) f (k) , (23)

where the solution of the problem is obtained recursively. Everybody knows that when
the forward model operator H is singular or ill-conditioned, this iterative algorithm starts
by converging, but it may diverge easily. One of the experimental methods to obtain an
acceptable approximate solution is just to stop the iterations after K iterations. This idea can
be translated to a deep-learning NN by using K layers. Each layer represents one iteration
of the algorithm. See Figures 18 and 19.
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We just need to replace (I − αHtH) by (I − αHtH − αλDtD).
This structure can also be extended to all the sparsity-enforcing regularization terms

such as `1 and total variation (TV) using appropriate algorithms such as ISTA, FISTA,
ADMM, etc. by replacing the update expression and by adding a NL operation much like
the ordinary NNs. A simple example is given in the following subsection.

11.4. Fourth Example: `1 Regularization and NN

Let us consider the linear inverse problem g = H f + ε with `1 regularization criterion:

J( f ) = ‖g− H f ‖2
2 + λ‖ f ‖1 ,

and an iterative optimization algorithm, such as ISTA:

f (k+1) = Prox`1

(
f (k), λ

)4
= Sλα

(
αHtg + (I − αHtH) f (k)

)
,

where Sθ is a soft thresholding operator, and α ≤ |eig(HtH)| is the Lipschitz constant of
the normal operator. When H is a convolution operator, then:

• (I − αHtH) f (k) can also be approximated by a convolution and thus considered as a
filtering operator;

• 1
α Htg can be considered as a bias term and is also a convolution operator; and

• Sθ=λα is a nonlinear point-wise operator. In particular, when f is a positive quantity,
this soft thresholding operator can be compared to the ReLU activation function of
NN. See Figure 20.
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In all these three examples, we directly could obtain the structure of the NN from
the Forward model and known parameters. However, in these approaches there are some
difficulties which consist in the determination of the structure of the NN. For example, in the
first example, obtaining the structure of B depends on the regularization parameter λ. The
same difficulty arises for determining the shape and the threshold level of the Thresholding
bloc of the network in the second example. The same need of the regularization parameter
as well as many other hyper parameters are necessary to create the NN structure and
weights. In practice, we can decide, for example, on the number and structure of a DL
network, but as their corresponding weights depend on many unknown or difficult to fix
parameters, ML may become of help. In the following we first consider the training part of
a general ML method. Then, we will see how to include the physics based knowledge of
the forward model in the structure of learning.

12. ML General Approach

The ML approach can become helpful if we could have a great amount of data: inputs-
outputs {( f , g)k, k = 1, 2, ..., K} examples. Thus, during the Training step, we can learn the
coefficients of the NN and then use it for obtaining a new solution f̂ for a new data g.

The main issue is the number of data input-output examples {( f , g)k, k = 1, 2, ..., K}
we can have for the training step of the network.
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In all these three examples, we directly could obtain the structure of the NN from
the forward model and known parameters. However, in these approaches, there are
some difficulties, which consist in the determination of the structure of the NN. For
example, in the first example, obtaining the structure of B depends on the regularization
parameter λ. The same difficulty arises for determining the shape and the threshold level
of the thresholding bloc of the network in the second example. The same need of the
regularization parameter as well as many other hyperparameters is necessary to create the
NN structure and weights. In practice, we can decide, for example, on the number and
structure of a DL network, but as their corresponding weights depend on many unknown
or difficult to fix parameters, ML may become of help. In the following, we first consider
the training part of a general ML method. Then, we see how to include the physics-based
knowledge of the forward model in the structure of learning.

12. ML General Approach

The ML approach can become helpful if we could have a great amount of data: inputs–
outputs {( f , g)k, k = 1, 2, . . . , K} examples. Thus, during the training step, we can learn
the coefficients of the NN and then use it for obtaining a new solution f̂ for a new data g.

The main issue is the number of data input–output examples {( f , g)k, k = 1, 2, . . . , K}
we can have for the training step of the network.
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Fully Learned Method

Let us consider a one-layer NN where the relation between its input gk and output
fk is given by fk = φ(Wgk) where W is the weighting parameters of the NN, and φ is
the point-wise non-linearity function of the output NN output layer. The estimation of W
from the training data in the learning step is done by an optimization algorithm, which
optimizes a loss function L defined as

L =
K

∑
k=1

`k( fk, φ(Wgk)) (25)

with
`k( fk, φ(Wgk) = ‖ fk −φ(Wgk)‖2 , (26)

a quadratic distance or any other appropriate distance or divergence or a probabilistic one

`k( fk, φ(Wgk) = E
{
‖ fk, φ(Wgk)‖2

}
. (27)

When the NN is trained and we obtain the weights Ŵ, then we can use it easily when
a new case (Test gj) appears, just by applying: fk = φ(Ŵgk). These two steps of training
and using (also called testing) are illustrated in Figure 21.

Entropy 2021, 1, 0 20 of 26

12.1. Fully Learned Method

Let consider a one layer NN where the relation between its input gk and output fk is
given by fk = φ(Wgk) where W is the weighting parameters of the NN and φ is the point
wise non linearity function of the output NN output layer. The estimation of W from the
training data in the learning step is done by an optimization algorithm which optimizes a
Loss function L defined as

L =
K

∑
k=1

`k( fk, φ(Wgk)) (25)

with
`k( fk, φ(Wgk) = ‖ fk −φ(Wgk)‖2 , (26)

a quadratic distance or any other appropriate distance or divergence or a probabilistic one

`k( fk, φ(Wgk) = E
{
‖ fk, φ(Wgk)‖2

}
. (27)

When the NN is trained and we obtain the weights Ŵ, then we can use it easily when
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Figure 21. Training (top) and Testing (bottom) steps in a ML approach

The scheme that we presented is general and can be extended to any multi-layer NN and
DL. In fact, if we had a great number of data-ground truth examples {( f , g)k, k = 1, 2, ..., K}
with K much more than the number of elements Wm,n of the weighting parameters W, then,
we did not even have any need for forward model H. This can be possible for very low
dimensional problems [67–70]. But, in general, in practice we do not have enough data. So,
some prior or regularizer is needed to obtain a usable solution. This can be just by adding
a regularizer R(W) to the loss function (25) and (26), but we can also use the physics of the
forward operator H.

13. Physics based ML

As mentioned above, in general, in practice, a rich enough and complete data set is not
often available in particular for inverse problems. So, some prior or regularizer is needed
to obtain a usable solution. Using a regularizer R(W) to the loss function (25) is good, but
not enough. We have to use the physics of the forward operator H. This can be done in
different ways.

13.1. Decomposition of the NN Structure to Fixed and Trainable Parts

The first easiest and understandable method consists in decomposing the structure of
the network W in two parts: a fixed part and a learnable part. As the simplest example,
we can consider the case of analytical expression of the quadratic regularization: f̂ =
(HHt + λDDt)−1Htg = BHtg which suggests to have a two layers network with a fixed
part structure Ht and a trainable one B = (HHt + λDDt)−1. See Figure 22.
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The scheme that we presented is general and can be extended to any multi-layer NN and
DL. In fact, if we had a great number of data-ground-truth examples {( f , g)k, k = 1, 2, . . . , K}
with K much more than the number of elements Wm,n of the weighting parameters W, then,
we would not even have any need for forward model H. This can be possible for very low
dimensional problems [67–70]. However, in general, in practice, we do not have enough data.
So, some prior or regularizer is needed to obtain a usable solution. This can be done just by
adding a regularizer R(W) to the loss function (25) and (26), but we can also use the physics
of the forward operator H.

13. Physics-Based ML

As mentioned above, in general, in practice, a rich-enough and complete data set
is not often available, particularly for inverse problems. So, some prior or regularizer is
needed to obtain a usable solution. Using a regularizer R(W) to the loss function (25) is
good but is not enough. We have to use the physics of the forward operator H. This can be
done in different ways.

13.1. Decomposition of the NN Structure to Fixed and Trainable Parts

The first, easiest, and understandable method consists in decomposing the structure
of the network W in two parts: a fixed part and a learnable part. As the simplest example,
we can consider the case of the analytical expression of the quadratic regularization:
f̂ = (HHt + λDDt)−1Htg = BHtg which suggests to have a two-layer network with a
fixed part structure Ht and a trainable one B = (HHt + λDDt)−1. See Figure 22.
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Learning Data
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K
k=1
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f̃ k = Htgk

→ f̃ k →
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B̂ = arg minB

{
∑K

k=1 ‖ fk −φ(B f̃ k)|2)
} → B̂

Test case Data
gj

→ Physics based part
f̃ j = Htg j

→ f̃ j →
Trained part
f̂ j = φ(B̂ f̃ j)

→ f̂ j

Figure 22. Training (top) and Testing (bottom) steps in the first use of physics based ML approach

It is interesting to note that in X-ray Computed Tomography (CT) the forward operator
H is called Projection, the adjoint operator Ht is called Back-Projection (BP) and the B
operator is assimilated to a 2D filtering (convolution).

13.2. Using Singular value decomposition of forward and backward operators

Using the eigenvalues and eigenvectors of the pseudo or generalized inverse operators

H† = [HtH]−1Ht or H† = Ht[HHt]−1 (28)

and Singular value decomposition (SVD) of the operators [HtH] and [HHt] give another
possible decomposition of the NN structure. Let us to note

HHt = U∆V ′ or equivalently HtH = V∆U ′ , (29)

where ∆ is a diagonal matrix containing the singular values, U and V containing the
corresponding eigenvectors. This can be used to decompose the W to four operators:

W = V ′∆UHt or W = HtV∆U ′ , (30)

where three of them can be fixed and only one ∆ can be trainable. It is interesting to
know that when the forward operator H has a shift-invariant (convolution) property,
then the operators U and V ′ will correspond, respectively, to the FT and IFT operators
and the diagonal elements of Λ correspond to the FT of the impulse response of the
convolution forward operator. So, we will have a fixed layer corresponding to Ht which
can be interpreted as a matched filtering, then a fixed FT layer which is a feed-forward
linear network, a trainable filtering part corresponding to the diagonal elements of Λ and a
forth fixed layer corresponding to IFT. See Figure 23.
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f̃ = Htg
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U ′ or FT →〉 Trainable part
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V or IFT → f̂

Figure 23. A four-layers NN with three physics based fixed corresponding to Ht, U ′ or FT and V or
IFT layers and one trainable layer corresponding to Λ.

13.2.1. DL structure based on iterative inversion algorithm

Using the iterative gradient based algorithm with fixed number of iterations for
computing a GI or a regularized one as explained in previous section can be used to
propose a DL structure with K layers, K being the number of iterations before stopping.

Figure 22. Training (top) and testing (bottom) steps in the first use of a physics-based ML approach.

It is interesting to note that, in X-ray computed tomography (CT), the forward operator
H is called projection, the adjoint operator Ht is called back-projection (BP), and the B operator
is assimilated to a 2D filtering (convolution).

13.2. Using Singular-Value Decomposition of Forward and Backward Operators

Using the eigenvalues and eigenvectors of the pseudo or generalized inverse operators

H† = [HtH]−1Ht or H† = Ht[HHt]−1 (28)

and singular-value decomposition (SVD) of the operators [HtH] and [HHt] give another
possible decomposition of the NN structure. Let us note

HHt = U∆V ′ or equivalently HtH = V∆U ′ , (29)

where ∆ is a diagonal matrix containing the singular values, U and V , containing the
corresponding eigenvectors. This can be used to decompose the W to four operators:

W = V ′∆UHt or W = HtV∆U ′ , (30)

where three of them can be fixed, and only one ∆ can be trainable. It is interesting to know
that when the forward operator H has a shift-invariant (convolution) property, then the
operators U and V ′ will correspond to the FT and IFT operators, respectively, and the
diagonal elements of Λ correspond to the FT of the impulse response of the convolution
forward operator. So, we will have a fixed layer corresponding to Ht, which can be
interpreted as a matched filtering, and a fixed FT layer, which is a feed-forward linear
network, a trainable filtering part corresponding to the diagonal elements of Λ, and a forth
fixed layer corresponding to IFT. See Figure 23.

Data
g → Fixed physics-based

f̃ = Htg
→ f̃ → Fixed physics-based

U ′ or FT →〉 Trainable part
Λ → Fixed physics-based

V or IFT → f̂

Figure 23. A four-layer NN with three physics-based fixed operators corresponding to Ht, U ′ or FT, and V or IFT layers
and one trainable layer corresponding to Λ.

DL Structure Based on Iterative Inversion Algorithm

Using the iterative gradient-based algorithm with a fixed number of iterations for
computing a GI or a regularized one as explained in previous section can be used to
propose a DL structure with K layers, K being the number of iterations before stopping.
Figure 24 shows this structure for a quadratic regularization, which results to a linear NN
and Figure 25 for the case of `1 regularization.
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Figure 24. A K layers DL NN equivalent to K iterations of a basic gradient based optimization
algorithm. A quadratic regularization results to a linear NN while a `1 regularization results to a
classical NN with a nonlinear activation function. Left: supervised case. Right: unsupervised case.
In both cases, all the K layers have the same structure.

Figure 24. A K layers DL NN equivalent to K iterations of a basic gradient-based optimization
algorithm. A quadratic regularization results in a linear NN, while a `1 regularization results in a
classical NN with a nonlinear activation function. Left: supervised case. Right: unsupervised case. In
both cases, all the K layers have the same structure.
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Figure 25. All the K layers of DL NN equivalent to K iterations of an iterative gradient based
optimization algorithm. The simplest solution is to choose
W0 = αH and W (k) = W = (I − αHt H), k = 1, · · · , K.
A more robust, but more costly is to learn all the layers W (k) = (I − α(k)Ht H), k = 1, · · · , K.

14. Conclusions and Challenges468

Signal and image processing (SIP), imaging systems (IS), computer vision (CV),469

Machine learning (ML) and artificial intelligence (AI) have made great progress in the470

last forty years. The first category of the methods in signal and image was based on471

linear transformation followed by a thresholding or windowing and coming back. The472
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Figure 25. All the K layers of DL NN equivalent to K iterations of an iterative gradient-based
optimization algorithm. The simplest solution is to choose W0 = αH and W(k) = W = (I −
αHt H), k = 1, · · · , K. A more robust but more costly method is to learn all the layers W(k) =

(I − α(k)Ht H), k = 1, · · · , K.

14. Conclusions and Challenges

Signal and image processing (SIP), imaging systems (IS), computer vision (CV), ma-
chine learning (ML), and artificial intelligence (AI) have made great progress in the last
forty years. The first category of the methods in signal and image processing was based
on linear transformation followed by a thresholding or windowing and coming back. The
second generation was model based: the forward-modeling and the inverse-problems
approach. The main successful approach was based on regularization methods using a
combined criterion. The third generation was model based but probabilistic and used the
Bayes rule, which is the Bayesian approach.

Classical methods for inverse problems are mainly based on regularization methods,
particularly those that are based on the optimization of a criterion with two parts: a data-
model matching part and a regularization term. A great number of methods have been
proposed for choosing these two parts and proposing appropriate optimization algorithms.
A Bayesian Maximum A Posteriori (MAP) interpretation for these regularization methods
can be given where these two terms correspond to the likelihood and prior probability
models, respectively.

The Bayesian approach gives more flexibility in different aspects: (i) in choosing these
terms and, in particular, the prior term via hierarchical models and hidden variables; (ii)
a more-extended class of prior models can be obtained, particularly via the hierarchical
prior models; (iii) determination of the regularization parameter, and more generally all
the hyperparameters, can also be estimated; (iv) all the uncertainties are accounted for, and
all the remaining uncertainties can be evaluated.

However, the Bayesian computations can become very heavy computationally, partic-
ularly when we want compute the uncertainties (variances and covariances) and when we
want also to estimate the hyperparameters. Recently, the machine-learning (ML) methods
have become a good help for some aspects of these difficulties.

Nowadays, ML, neural networks (NN), convolutional NN (CNN), and deep-learning
(DL) methods have obtained great success in classification, clustering, object detection,
speech and face recognition, etc. However, they need a great number of training data, still
lack explanation, and they may fail very easily.
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For inverse problems, they still need progress. In fact, using only data-based NN
without any specific structure coming from the forward model (physics) is just an illusion.
However, the progress arrives via their interaction with the model-based methods. In fact,
the success of CNN and DL methods greatly depends on the appropriate choice of the
network structure. This choice can be guided by the model-based methods.

In this work, a few examples of such interactions are described. As we could see,
the main contribution of ML and NN tools can be in reducing the costs of the inversion
method when an appropriate model is trained. However, to obtain a good model, there is
a need for sufficiently rich data and a good network structure obtained from the physics
knowledge of the problem in hand.

For inverse problems, when the forward models are non-linear and complex, NN and
DL may be of great help. However, we may still need to choose the structure of the NN via
an approximate forward model and approximate Bayesian inversion.
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