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Abstract: We use an m-vicinity method to examine Ising models on hypercube lattices of high
dimensions d ≥ 3. This method is applicable for both short-range and long-range interactions. We
introduce a small parameter, which determines whether the method can be used when calculating
the free energy. When we account for interaction with the nearest neighbors only, the value of
this parameter depends on the dimension of the lattice d. We obtain an expression for the critical
temperature in terms of the interaction constants that is in a good agreement with the results of
computer simulations. For d = 5, 6, 7, our theoretical estimates match the numerical results both
qualitatively and quantitatively. For d = 3, 4, our method is sufficiently accurate for the calculation of
the critical temperatures; however, it predicts a finite jump of the heat capacity at the critical point. In
the case of the three-dimensional lattice (d = 3), this contradicts the commonly accepted ideas of the
type of the singularity at the critical point. For the four-dimensional lattice (d = 4), the character of
the singularity is under current discussion. For the dimensions d = 1, 2 the m-vicinity method is
not applicable.

Keywords: Ising model on hypercube; free energy; density of states; m-vicinity method

1. Introduction

Statistical physics provides effective methods of analysis, allowing us to investigate
large systems of elementary “agents” and to determine macroscopic characteristics—in
particular, the free energy based on interactions between the “agents”. If we know the free
energy—by means of computer simulations or theoretical calculations—we can calculate
such properties of the system as the internal energy, magnetization, heat capacity, and
susceptibility. The singularities of the temperature dependences of these characteristics
define the critical temperatures at which the internal restructurings take place in the system
and phase transitions occur.

Such results (even if they are not quite accurate) are important, and not only for
physicists. In the second half of the 1980s, the statistical physics methods were applied
to estimate the storage capacity of the Hopfield neural network. Later on, a lot of inves-
tigations in the field of neural science based on the statistical physics followed (see, for
example, [1–3]). At the same time, the statistical physics methods became popular in the
combinatorial optimization problems [4–6]. Starting from the mid-1990s, a new scientific
branch named econophysics appeared. In econophysics, the statistical physics methods are
the main instruments for analyzing economic models [7,8].

Physics provides a wide variety of methods for the calculation of the free energy,
from computer simulations (where one uses the Metropolis or the Wang-Landau algo-
rithms [9–11]) to cumbersome theoretical approaches of the type of the renormalization
group or the transfer-matrix methods [12–14].

In the present paper, we sum up the results obtained when developing the m-vicinity
method (at first, we called it “the n-vicinity method”, but then it became clear that the
more appropriate term was “the m-vicinity method”) for analysis of the Ising systems.
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Our method allows us to calculate the free energy for an arbitrary connection matrix. We
present a review of our results for the Ising models on hypercubic lattice of the dimensions
d = 3, 4, 5, 6, and 7. The dimensions d = 1 and d = 2 are absent in this list because this
method is not applicable for such lattices.

There is an enormous number of papers of theoretical or numerical studies on the
behavior of spin systems on specific types of lattices. Here, we cite only the papers that
we used in the course of our work. Cubic lattices are studied, for example, in [9,15–19].
Four-dimensional lattices are discussed in [20–22]. Studies on higher-dimensional systems
are very rare. Our single source on d ≥ 5 was [23].

In the next section, we justify the main approximation of our method. It consists of
the substitution of the Gaussian distribution in place of the unknown state distribution of
the given Hamiltonian.

In Section 3, we show that the Gaussian approximation is the first-order term in the
expansion of the density of states in a perturbation theory series in a small parameter
εmax. In the case of the planar lattice (d = 2), εmax ≈ 0.7, and this value is not sufficiently
small. When the lattice dimension d increases, the value of εmax decreases quickly, and the
Gaussian approximation works very well.

In Section 4, we present in detail our results obtained with the aid of Gaussian approx-
imation of the density of states. The mean and the variance of the Gaussian distribution
that we use coincide with the first and the second moments of the density of states of the
given system. We define the boundaries of the method applicability and obtain analytical
expressions for the critical characteristics of the system. In particular, they are the critical
value of the inverse temperature and the jump of the heat capacity. Our analytical results
match quite accurately with the results of computer simulations. We find out that the
higher the dimension of the lattice, the better our estimates; when d ≥ 5, the relative error
is of the order of the tenth or the hundredth percent.

In Section 5, we check whether the account of the second-order terms of the pertur-
bation theory improves our results for the critical temperature. Here, we approximate
the density of states with a distribution whose first three moments coincide with the mo-
ments of the state distribution of the system. (To do this a more advanced knowledge
of the mathematical statistics is necessary [24,25].) We find that, while the role of second
order parameters is negligible, we can achieve almost perfect agreement with computer
simulations by introducing an adjustable parameter.

In Section 6, we present a detailed comparison of the theoretical results and computer
simulations for the Ising model on the cubic lattice (d = 3). For such a lattice, we examine
the role of the long-range interaction; in particular, we discuss the interactions with the
next-nearest neighbors and the next-next-nearest neighbors.

Finally, in Section 7, we sum up the strengths and weaknesses of the m-vicinity method.
The details of the calculations are in the Appendix A.

2. Main Approximation of m-Vicinity Method

Let us examine the Ising model on a multidimensional cubic lattice, which is a system
of N spins si = {±1}, i = 1, 2, . . . N situated at the nods of a hypercubic lattice. In what
follows, we assume the periodic boundary conditions.

The Hamiltonian of the system is

EH = E−mH, E = − 1
2N

N

∑
i,j=1

Jijsisj, m =
1
N

N

∑
i=1

si,

where J =
(

Jij
)N

1 is a connection matrix, H is a magnetic field, and m is a magnetization of
the state s = (s1, s2, . . . , sN). The partition function of the system is

Z = ∑
E

D(E) exp(−NβEH),
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where β is the inverse temperature, the summation is carried out over all the values of the
energy E, and D(E) is the density of states (the degeneracy of the energy states).

In the general case, we do not know the energy distribution D(E). It seems that we
can define it with the aid of the central limit theorem. Indeed, the value of E is the sum of
N(N − 1)/2 weakly connected random variables, and the Gaussian distribution

2N

√
N

2πσ0
exp

(
−1

2
N

E2

σ2
0

)
, where σ2

0 =
1

2N

N

∑
i,j=1

J2
ij, (1)

describes correctly the central part of the distribution D(E). However, Equation (1) is not
applicable at the tails of the true distribution, while the tails provide the main contribution
to the formation of the phase transition. Many authors mentioned this fact (see [15]). The
m-vicinity method allows us to overcome this difficulty. The essence of the method is
as follows. We divide the set of 2N configurations into N + 1 subsets Ωm, which will be
called the m-vicinities. The m-vicinity Ωm contains all the configurations s with the same
magnetization m. These configurations s differ from the configuration of the ground state
s0 = (1, 1, . . . , 1) by opposite signs of n spins, where n = N(1−m)/2 and the number of

such configurations is equal to
(

N
n

)
.

The density D(E, m) is the energy distribution for a given m-vicinity, and the partition
function of the system is

Z =
N

∑
n=0

∑
E

D(E, m) exp[−Nβ(E−mH)]. (2)

In the general case, we do not know the true distribution D(E, m). However, we
do know the exact values of its mean energy Em and its variance, which we denote as
N−1σ2

m (see Appendix A or [26–28]). In the case of the Ising model on the hypercube, these
expressions in the limit N → ∞ are sufficiently simple,

Em = E0m2, N−1σ2
m = N−1σ2

0 · (1−m2)
2
, E0 = − 1

2N

N

∑
i,j=1

Jij, (3)

where E0 = E(s0) is the energy of the ground state s0 of the Ising Hamiltonian.
Let us explain the purpose of dividing the whole set of configurations into m-vicinities.

In the vicinity Ωm, the energy E behaves as a random value and due to the central limit the-
orem, we can approximate accurately the central part of D(E, m) by Gaussian distribution
with the mean Em and the variance N−1σ2

m:

D(E, m) =

√
N√

2πσm

(
N
n

)
exp

[
−1

2
N
(

E− Em

σm

)2
]

, n = N(1−m)/2. (4)

It is evident that the sum ∑m D(E, m) differs from the Gaussian distribution (1) and it
better describes the tails of the true distribution.

Let us note here that in the limit σm → 0 , we can replace the exponent in Equation (4)
by a delta function δ(E− Em). Then Equation (2) takes the classical form known from the
mean field theory, which provides the Bragg–Williams results [29]. However, the value of
σm differs from zero for all the types of the connection matrices (an exclusion is the case of
the complete graph when all the matrix elements are equal—see Equation (A4)) and the
replacement of the Gaussian (4) by the delta function is not correct. It is the account for the
value σm 6= 0 that leads to a much better agreement of theoretical estimates and results of
simulations. Of course, the distribution D(E, m) is not purely Gaussian since its higher odd
moments are not equal to zero (see Appendix A); however, their contribution is sufficiently
small. In what follows, we analyze when the Gaussian approximation (4) is applicable and
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how a deviation of the density of states D(E, m) from Equation (4) influences the results.
In the next section, we show that expression (4) is the first-order term of the perturbation
theory in a small parameter (2q)−1/2, where q is an effective number of neighbors (see
Equation (16)).

3. Small Parameter in m-Vicinity Method

The basis of the m-vicinity method is the abovementioned approximate description of
the density of states. To analyze the approximation, we briefly repeat the calculations of
the paper [30]. The starting point is as follows. We do not know a true energy distribution
D(E, m) but we do know the first moments of this distribution. In particular, we know the
mean and the variance (3). Let us define the small parameter allowing us to expand the
function D(E, m) in a perturbation theory series.

We present D(E, m) in the form

D(E, m) =

(
N
n

)
exp[−Nϕ(m, E)],

where ϕ = ϕ(m, E) is an unknown function and use the Stirling formula to replace the
summation in (2) by integration. Then, up to an insignificant constant, we obtain the
partition function of the form

Z ∼
1∫

0

dm
∞∫
−∞

dE e−NF(m,E), (5)

where
F(m, E) = S(m) + β(E−mH) + ϕ(m, E),
S(m) = − ln 2 + 1

2 [(1 + m) ln(1 + m) + (1−m) ln(1−m)].
(6)

Let us estimate the integral (5) using the saddle point method. The equations for the
saddle point are

∂F
∂m

=
1
2

ln
(

1 + m
1−m

)
+

∂ϕ

∂m
− βH = 0,

∂F
∂E

=
∂ϕ

∂E
+ β = 0. (7)

The solutions of these equations m = M and E = U are the spontaneous magnetization
and the internal energy, respectively. Substituting these values in Equation (6), we obtain
the free energy f (β) = F(M, U).

Now, we turn to defining the small parameter of the m-vicinity method. Since the
magnetic field H does not influence the distribution D(E, m), we set here H = 0. We write
the function ϕ(m, E) as a perturbation theory series in the vicinity of point E = Em:

ϕ =
1
2

ε2 +
1
3!

κ3ε3 +
1
4!

κ4ε4 + . . ., where ε =
E− Em

σm
. (8)

The quantities κk up to a sign coincide with the semi-invariants of the distribution
D(E, m) (see Appendix A).

The main idea of the m-vicinity method is the possibility to restrict ourselves by
accounting for just a few first terms of the series (8). We can do this only if |ε| << 1 and
in this case the m-vicinity method is sufficiently accurate. Let us clarify that we are not
interested in the values of ε = ε(m, E) over the whole region of definition of the parameters
m and E. We have to know the expansion (8) only in a small vicinity of the saddle point,
which is close to the values m = M and E = U. Consequently, the small parameter we are
looking for is

ε0 =
U − E0M2

σ0(1−M2)
.
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The smallness of the parameter ε0 is the condition for applicability of the m-vicinity method.
In [30], there is a detailed analysis of the values of this parameter for different models.

Here, we restrict ourselves with an estimate of ε0 by means of the reverse-reasoning method.
Suppose the parameter ε0 is small and it is sufficient to use only the first term of the series (8)
and set ϕ = ε2/2. Then the second of the Equation (7) takes a simple form ε = −βσm and
we can rewrite the first of the Equation (7) as follows:

ε

(
ε− E0

σ0

)
= −1−m2

4m
ln
(

1 + m
1−m

)
. (9)

We are interested in the behavior of the quantity ε = ε0, where ε0 is the root of
Equation (9). The value of |ε0| reaches its maximum at the critical point β = βc (see [30]).
In the limit m→ 0 ( β→ βc ), Equation (9) takes the form

ε2 − ε
E0

σ0
+

1
2
= 0.

The solution of this equation is

εmax = −|E0|
2σ0

+
1
2

√
E2

0
σ2

0
− 2, (10)

and max|ε0| = |εmax|. Consequently, the m-vicinity method is applicable when the small
parameter |ε0| ≤ |εmax|. According to Equation (10), it is necessary that E2

0/σ2
0 ≥ 2 or

|εmax| ≤ 2−1/2.
A detailed analysis shows (see [27]) that a stricter inequality E2

0/σ2
0 ≥ 8/3 or |εmax| ≤ 6−1/2

defines the framework of the m-vicinity method. In another case, we obtain a jump of the
spontaneous magnetization at the critical point, and this contradicts the known results.

We would like to mention here that when analyzing the dependence of our results
on the lattice dimension d, we see that the ratio E2

0/σ2
0 depends on the effective number

of the neighbors q introduced below in Equation (16). This parameter defines the number
of interactions that we take into account. We can rewrite Equation (10) in terms of q; then
εmax =

√
q
(
−1 +

√
1− 4/q

)
/2
√

2. From this equation, it follows that when q >> 1 the
value of

∣∣εmax
∣∣∼ 1/

√
2q . Consequently, when q increases, the value of the small parameter

|εmax| decreases quite rapidly and the accuracy of the m-vicinity method increases.
In Figure 1, we show the dependence of |εmax| on d when we account for the nearest

neighbors only (in this case E2
0/σ2

0 = d). For a planar lattice, |εmax| ≈ 0.7. Obviously, it is
problematic to use it as a small parameter. Moreover, for a planar lattice, the inequality
E2

0/σ2
0 ≥ 8/3 is not satisfied. Next, for a cubic lattice, the last inequality is satisfied and the

value of |εmax| ≈ 0.36 is more appropriate as a small parameter. Again, when d increases,
the value of |εmax| decreases, and the accuracy of the method increases accordingly.

Summing up, we can say that the Gaussian approximation is the first order of the
perturbation theory in the small parameter |εmax|.
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4. First Order of Perturbation Theory: Gaussian Approximation

In this section, we use the Gaussian approximation (4) for the distribution D(E, m). If
in Equations (6)–(8) we set ϕ = ε2/2, Equation (6) becomes

F(m, E) = S(m) + β(E−mH) +
1
2

(
E− Em

σm

)2
; (11)

the equations for the saddle point (7) are

1
2

ln
(

1 + m
1−m

)
= 2mβ(|E0|+ εσ0) + βH, ε = −βσ0(1−m2). (12)

Eliminating the variable ε from these equations, we obtain an equation of state

1
2

ln
(

1 + m
1−m

)
= 2mβ

[
|E0| − βσ2

0 (1−m2)
]
+ βH. (13)

This equation differs from the well-known equation of Bragg and Williams [29] by
a term proportional to β2. After a transformation of Equation (11), with the account for
Equations (12) and (13), we obtain the expression for the free energy:

f (β) =
1
2

ln
(

1−m2

4

)
+ β|E0|m2 − 1

2
β2σ2

0 (1−m2)(1 + 3m2) (14)

that defines f as a function of β and m. In Equation (14), the spontaneous magnetization
m = m(β; H) is the solution of Equation (13). Again, by setting σ2

0 = 0, we recover the
known result from the mean field theory.

We would like to point out that the equality E2
0/σ2

0 = d is true only when we account
for the interaction with the nearest neighbors. Then the inequality E2

0/σ2
0 ≥ 8/3 excludes

the one- and two-dimensional Ising models from the consideration. Consequently, in this
case, we can use the m-vicinity method only for the spatial dimensions d ≥ 3.
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4.1. Critical Point

In this subsection, we set H = 0 and define the critical temperature under this
assumption. For this purpose, we rewrite Equation (13) as

1
2m

ln
(

1 + m
1−m

)
= qb

[
1− b(1−m2)

]
. (15)

where we introduce dimensionless characteristics

b = β
σ2

0
|E0|

, q =
2E2

0
σ2

0
=

(
N
∑

i,j=1
Jij

)2

N
N
∑

i,j=1
J2
ij

. (16)

The defined variables (16) are convenient since in Equation (15), the only parameter
that depends on the type of the lattice is q.

When m→ 0 ( β→ βc ), Equation (15) takes the form

1
q
= b(1− b). (17)

Now, with the account of Equation (16), we obtain the expression for the critical temperature

βc = bc
|E0|
σ2

0
, where bc =

1
2

(
1−

√
1− 4

q

)
. (18)

The critical value of bc depends only on the number q, and this parameter depends
on the mean and the variance of the elements of the connection matrix. Since q is a
characteristic of the interactions that we take into account, we regard it as an effective
number of the neighbors. In particular, if we account for an isotropic interaction with the
nearest neighbors only, βc = bc, q = 2d, and d is the dimension of the lattice. Note that
in this case, q is exactly equal to the number of spins with which the given spin interacts.
Then Equation (18) describes pretty well the results of computer simulations for all the
dimensions, which we examined (see Figure 2 and Table 1).
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Figure 2. Critical temperature βc vs. d and account for interactions with nearest neighbors only:
solid line corresponds to Equation (18); circles are simulations [9,21,23]; dashed line is result of mean
field theory.
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Table 1. Critical temperatures and relative errors for the lattice dimensions 3 ≤ d ≤ 7. Results of mean field theory are also
shown.

Critical Temperature βc

d = 3 d = 4 d = 5 d = 6 d = 7

Best numerical results [9,21,23] 0.22166 0.14970 0.11392 0.09230 0.07771

Account for third moment, Equation (40), k = −0.8 0.22155 0.14894 0.11372 0.09227 0.07772

Gaussian approximation (18) 0.21132 0.14645 0.11270 0.09175 0.07742

Account for third moment, Equation (40), k = 1 0.20196 0.14366 0.11151 0.09113 0.07706

Mean field theory 0.16667 0.12500 0.10000 0.08333 0.07143

Relative error Err

Account for third moment, Equation (40), k = −0.8 0.02% 0.25% 0.09% 0.02% 0.01%

Gaussian approximation (18) 2.39% 1.10% 0.54% 0.30% 0.18%

Account for third moment, Equation (40), k = 1 4.65% 2.06% 1.07% 0.64% 0.42%

Mean field theory 14.16% 8.99% 6.50% 5.10% 4.21%

4.2. Analytical Expressions

Let us list the basic thermodynamic characteristics that we obtained from Equations (11)–(14).
(1) The interval β < βc. When β < βc and m = 0, from the above-mentioned equations,

we obtain that the free energy, the internal energy, and the heat capacity are

f = − ln 2− 1
2

β2σ2
0 , U = −βσ2

0 , and C = β2σ2
0 , (19)

respectively.
(2) The interval β ≥ βc. To obtain the analytical expressions for the values f , U, and C,

we solve Equation (15) for b:

b =
1

2(1−m2)

[
1−

√
1− 2(1−m2)

qm
ln
(

1 + m
1−m

) ]
(20)

and transform Expressions (12) and (14) to the forms

f = S(m)− 1
2

qbm2 − 1
4

qb2
(

1−m2
)2

, (21)

U = E0

[
m2 + b

(
1−m2

)2
]

, (22)

σ2
E = σ2

0

(
1−m2

)2
+ 4E2

0
m2(1−m2)[1− 2b

(
1−m2)]2

1− qb(1−m2)[1− b(1− 3m2)]
. (23)

Here, σ2
E = −d2 f /dβ2 is the energy variance that is related to the heat capacity via

C = β2σ2
E. The expression (23) is a result of differentiating the second of Equation (12) with

respect to variable β.
If we regard the magnetization as an independent variable m ∈ [0, 1] and consider

the values of f , U, and σ2
E as functions of m, then Equations (20)–(23) define implicitly the

dependence of f , U, and σ2
E on the inverse temperature β = b|E0|/σ2

0 at the interval β ≥ βc.
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4.3. Critical Parameters

To examine the behavior of the thermodynamic characteristics near the critical point,
we introduce a relative inverse temperature

t =
β− βc

βc
.

Omitting intermediate calculations, we only present the most important critical dependences.
(1) From Equations (19)–(23), it follows that at β = βc the free energy and the internal

energy are continuous functions, and the heat capacity has a jump. Indeed, when β > βc
Equation (23) holds, and in the limit m→ 0 ( β→ βc ) we obtain

σ2
E = σ2

0 + 6E2
0
(1− 2bc)

2

1− 3qb2
c

, (24)

where bc is defined by Equation (18). Comparing this expression with Equation (19), we
see that at β = βc the energy variance has a jump and consequently the heat capacity also
has a jump:

∆C =
3
2

q2b2
c
(1− 2bc)

2

1− 3qb2
c

. (25)

For the lattice dimensions d = 5, 6, and 7, the authors of [23] used computer simulations
to estimate the jumps of the heat capacity. The comparison of their results with the values
following from Equation (25) shows:

d = 5, ∆C(exp) = 1.8703, ∆C(theor) = 1.8469
d = 6, ∆C(exp) = 1.7403, ∆C(theor) = 1.7394
d = 7, ∆C(exp) = 1.6860, ∆C(theor) = 1.6824.

.
We see that Equation (25) provides very good agreement with the computer simula-

tions; the larger d is, the better this agreement.
(2) When β > βc, the value of the spontaneous magnetization near the critical point

( t→ 0) obtained from Equation (15) is

M = A
√

t, A =

(
1− qb2

c
1
3 − qb2

c

) 1
2

. (26)

This expression differs from the dependence M ∼ t
1
8 that is valid for the two-

dimensional Ising model (q = 4); however, it qualitatively coincides with the expressions
M = 2

√
t and M =

√
3 t obtained in the framework of the van der Waals theory [13] and

the mean field theory, respectively. Note that our result tends to the result of the mean field
theory in the limit q >> 1. It is also worthwhile to note that Equation (26) predicts a larger
magnetization than the mean field theory, A >

√
3 for any q ≥ 4. If q ≤ 11 (A > 2), the van

der Waals magnetization is less than the value (26) and when q > 11 (A < 2), it is larger
than the value (26).

(3) From Equation (13), it follows that at the critical point, the susceptibility has a jump

χ−1 =


−q t

√
1− 4/q , t < 0

2q t
√

1− 4/q , t > 0.
(27)

Comparing with the analogous expression of the mean field theory, we see that an
extra factor

√
1− 4/q appears in Equation (27), and it tends to 1 when q >> 1. As

opposed to the mean field theory [13], in Equation (27), q is the effective number of the
neighbors (16).
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(4) It is easy to see that our model satisfies the similarity hypothesis. Indeed, when
we expand expression (13) in small parameters, m and t, we obtain the dependence
H = H(m, t) that can be rewritten in the classical form βcH = m|m|δ−1hs(tm−2) with
the critical exponent δ = 3 and the scaling function

hs(x) =
(

1
3
− qb2

c

)
− x
(

1− qb2
c

)
. (28)

4.4. Magnetization Distribution

The integral

P(m) = Z−1
|E0|∫
E0

D(E, m)dE (29)

defines the probability of finding the system in a state with the magnetization m. In the
Gaussian approximation we use here, D(E, m) is defined by Equation (4). We estimate
this integral with the aid of the saddle point method. The value of P(m) is accurate to a
normalization constant P0

P(m) = P0 e−NΦ(m), where Φ(m) = S(m) + βEm −
1
2

β2σ2
m. (30)

In Figure 3a, we show the typical behavior of the curves (30). As we might expect,
after crossing the critical point, the bimodal distribution replaces the unimodal distribution.
We can use Equation (30) when analyzing the Binder cumulant Q = 1−

〈
m4〉/3

〈
m2〉2

(see [31]). In Figure 3b, we show the curves Q = Q(B) for cubic lattices whose linear
sizes are L = 8, 10, and 12. We are interested in the value of the cumulant Qc = Q(βc)
at the critical point. To calculate Qc we use the Taylor expansion of the function Φ(m) in
Equation (30):

Φ(m) ≈ −1
2

β2σ2
0 +

1
2!

a2m2 +
1
2!

a4m4, (31)

where

a2 =
d2Φ
dm2

∣∣∣∣
m=0

= 1 + 2βE0 + 2β2σ2
0 , a4 =

d4Φ
dm4

∣∣∣∣
m=0

= 1− 12β2σ2
0 .

This expansion is useful when β ≤ βc +O
(

N−1/2
)

and the value of P(m) is noticeably
nonzero only when m << 1. In this case, the distribution (30) takes the form

P(m) = P0 exp
[
− 1

2!
Na2m2 − 1

4!
Na4m4

]
which allows us to calculate the normalization constant P0 easily as well as the mean
values

〈
m2〉 and

〈
m4〉. It is not difficult to see that when |β− βc| > O

(
N−1/2

)
, we can

consider the distribution P(m) as purely Gaussian in full agreement with the results of [31].
However, when β→ βc we have a2 → 0 and at the critical point, the distribution takes
the form P(m) = P0 exp

[
−Na4m4/4!

]
. Using this expression to calculate the critical value

of the Binder cumulant [31] in the limit N → ∞ we obtain

Qc = 1− Γ(5/4) · Γ(1/4)

3Γ(3/4)2 ≈ 0.2705. (32)
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lattices with L = 8, 10, and 12. Markers show values of β where bimodal distribution replaces unimodal.

It is interesting that in the limit N → ∞ the value Qc does not depend on any parame-
ters of the model (the lattice type, the character of the long-range interaction, and so on).
Although we obtained this result in the framework of the Gaussian approximation (4), it
has a general character. Indeed, let D(E, m) be an unknown function, and integration (29)
results in expression (30) where Φ(m) is also an unknown function. By a symmetry ar-
gument, it follows that only even powers of m are present in the Taylor expansion of
this function. At the critical point, the second derivative of function Φ(m) equals to zero
(the bimodal distribution replaces the unimodal) and the Taylor series starts from the
term ∼ m4. We assume that the function Φ(m) has no singularities and its derivatives are
finite. Then, we can leave only the term ∼ m4 in the exponent of the distribution P(m).
The reason is that when integrating over m the account for the terms of the higher orders
leads to corrections of the order N−1/2. In other words, we can present the magnetization
distribution as P(m) = P0 exp

[
−Na4m4/4!

]
where a4 is an unknown, which is canceled

out in the calculation of Qc and does not influence the final form of expression (32).

4.5. Density of States

In Section 4.2, we derived Equations (19)–(23), which allowed us to obtain implicitly
the logarithmic density of states

Ψ(E) = βE− f (β); E = d f /dβ

using the Legendre relations. When β changes from 0 to ∞, the value of E changes from
0 to E0 and for each β we obtain a pair of values E and Ψ(E). In such a way, we generate
the function Ψ(E), which we suppose to be symmetric: Ψ(−E) = Ψ(E). In Figure 4a, we
present the comparison of our results with computer simulations.
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Let us determine an explicit form of the dependence Ψ = Ψ(E). The integral

D(E) =
1∫
−1

D(E, m)dm ≈ c1 ·
1∫
−1

e−NΛ(m,E)dm = c2eNΨ(E)

defines the density of states or, in other words, the number of states with the energy E.
Here Λ(m, E) = S(m) + (E− Em)

2/2σ2
m; c1 and c2 are non-essential constants. Therefore,

the logarithmic density of states is Ψ(E) = Λ(mE, E), where mE = mE(E) is the saddle
point, which is a solution of the equation ∂Λ(m, E)/∂m = 0. After some transformations,
we can write this equation as(

1−m2
E
)3

2mE
ln
(

1 + mE
1−mE

)
= q

(
1− E

E0

)(
E
E0
−m2

E

)
. (33)

From this equation, it follows that

Ψ(E) =


ln 2− E2

2σ2
0

, when E ≥ E0bc

−S(mE)− 1
2σ2

0

(
E−E0m2

E
1−m2

E

)2
, when E < E0bc,

. (34)

where bc is defined by Equation (18) and

m2
E ≈ 1− 2r · cos ϕE, r =

√
q
3

(
1− E

E0

)
, and ϕE =

1
3

[
π + arccos

(
9r
2q

)]
. (35)

Equation (35) is an approximate result obtained taking into account that the left-hand
side of Equation (33) contributes significantly to the solution of this equation only when
mE << 1. Under this condition ln[(1 + mE)/(1−mE)]/2mE ≈ 1 Equation (33) reduces
to a cubic equation for the quantity (1−m2

E). The solution of this equation has the form
(35). The approximate solution (34) differs by fractions of a percent from the exact solution
obtained by means of the Legendre relations (see Figure 4b).

5. Second Order of Perturbation Theory: Account for Third Moment

In this section, we analyze what happens if, when approximating the distribution
D(m, E), we account for the third moment. We examine only the simplest case, supposing



Entropy 2021, 23, 1665 13 of 25

that all the nonzero elements of the connection matrix are equal (Jij = J). Otherwise, the
obtained expressions are too cumbersome, and it is very difficult to analyze them. We
restrict ourselves only by first two terms of the series expansion (8) and set

ϕ =
1
2

ε2 +
1
3!

κ3ε3, where ε =
E− Em

σm
. (36)

We define the coefficient κ3 from the following considerations. It is necessary that
the third moment of our approximation exp[−N · ϕ(m, E)] coincides with the third mo-
ment of the true distribution D(m, E):

∫
(E− Em)

3 exp[−N · ϕ(m, E)]dE = µ3(m). In the
Appendix A, we show that for this, it is necessary that the coefficient κ3 is equal to the
third semi-invariant of the distribution D(m, E): κ3 = −µ3(m)/σ3

m. In the Appendix A,
we also obtain the expression for the third moment of the distribution D(m, E), which is
equal to µ3(m) = −2qm2(1−m2)2. Here q is the effective number of the neighbors (see
Equation (16)).

Then

κ3 =
2qm2

σ3
0 (1−m2)

,

and expression (6) for the function F(m, E) takes the form (H = 0):

F(m, E) = S(m) + βE +
1
2

ε2 +
1
3!

κ3ε3.

We recall that Em = E0m2, σm = σ0(1−m2), E0 = −q/2, and σ0 =
√

q/2.
The system of equations that define the saddle point has the form

∂F
∂E = β + ε+κ3ε2/2

σm
= 0,

∂F
∂m = 1

2 ln 1+m
1−m +

(
ε + 1

2 κ3ε2
) .

ε +
.
κ3
3! ε3 = 0,

(37)

where
.
ε = ∂ε/∂m. The first of the equations of (37) provides the relation

ε + κ3
ε2

2
= −βσm. (38)

Moreover, by direct calculations, we obtain

.
ε =

2m
1−m2

(
ε +
|E0|
σ0

)
,

.
κ3 =

4qm
σ0σ2

m
,

and substituting these equalities in the second Equation (37), we finally have

1
2m

ln
1 + m
1−m

= 2β(εσ0 + |E0|)−
2q

3σ0σ2
m

ε3. (39)

Generally speaking, for deriving an equation relating m and β it is necessary to solve
Equation (38) and to determine ε = ε(m) and substitute it into Equation (39). Analyzing
this equation, it would be possible to define the region of applicability of the m-vicinity
approximation with account for the third moment and to obtain an expression for the
critical temperature. It is rather difficult to solve this problem analytically. This is the
reason why we restrict ourselves by analyzing the influence of the third moment µ3(m) on
the value of the critical temperature defined by Equation (39) when m = 0.

When m→ 0 , from Equation (38) it follows that ε→ −βσ0 . Then the second term in
the right-hand side of Equation (39) tends to −2qβ3/3 and this equation itself takes the
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form 1 = 2β
(
−βσ2

0 + |E0|
)
+ 2qβ3/3. By virtue of the expressions for E0 and σ0 we obtain

the equation for the critical value of the inverse temperature βc:

1
q
= β− β2 +

2k
3

β3, where k = 1. (40)

If in this equation we set k = 0, we obtain Equation (17) that corresponds to the
above-discussed case of the Gaussian approximation. We introduce the parameter k since
in what follows, we will use it as a fitting parameter.

Solving Equation (40) for d ∈ [3, 7] numerically, we see the worse agreement of
the obtained results with the computer simulations (see Table 1). Previously (see [24],
Section 17.6) it was mentioned that an account for higher moments does not always lead
to an increase in the quality of an approximation. You can expect such a result only for
a narrow class of distributions. This question was under analysis when studying the
Gram–Charlier and the Edgeworth series expansions [24,25]. In particular, it turned out
that when we omit the higher order terms of the infinite series (8), the error is of the order
of the first omitted term. To compensate this error, we use the fitting parameter k. The
author of [24] (s.17.6) suggests using this receipt if the optimal value of k gives a better
agreement with all the numerical values. The questions of convergence of an infinite series
are of secondary importance when solving a specific problem.

With those arguments in mind, we found that an agreement with the best numerical
results is better when k < 0. In this case, the solution of Equation (40) takes the form

βc = B cos φ− 1
2|k| , (41)

where

B =

√
1 + 2|k|
|k| , φ =

1
3
(2π − arccosR), R = − 1

(1 + 2|k|)3/2

(
1 + 3|k|+ 6k2

q

)
.

For d = 3, the best agreement is reached when k = −0.8. It turned out that this value
of k is optimal for all examined dimensions: the solutions of Equation (41) with the same
fitting parameter provide a very good agreement with the computational data for the
lattices of all the dimensions 3 ≤ d ≤ 7 (q = 2d). As we see from Table 1, accounting for the
third moment and introduction of the fitting parameter k = −0.8 reduce the relative error

Err = 100% ·
(

β
(exp)
c − β

(theor)
c

β
(exp)
c + β

(theor)
c

)

by 1 to 2 orders of magnitude, and it becomes comparable with the computational error.
When we account for the interactions with the second and third neighbors, the introduc-
tion of the third moment also improves the agreement with the computer simulations
significantly (see the next section).

6. Comparison with Computer Simulations: Three-Dimensional Ising Model

To estimate the accuracy and the correctness of the obtained equations, we performed
computer simulations using the Metropolis algorithm and the algorithm of Wang and
Landau [11]. We restricted ourselves to the examination of the three-dimensional Ising
model supposing that for lattices of higher dimensions (d ≥ 4), the agreement with the
numerical results would be only better. In the course of our simulations, we explored the
functions f = f (β), U = U(β), and C = C(β). This allowed us to define the dependence
of the critical temperature βc = βc(q) on q, to calculate the logarithmic density of states
Ψ(E), and to analyze how the magnetization distribution changed when the inverse
temperature increased.
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Recently, there is a strong interest in an account for interactions with the second and
the third neighbors (see, for example, [32,33]). However, we do not know any analyti-
cal estimates for the critical temperatures. Our Equation (18) is quite accurate for such
problems too.

We use the Metropolis algorithm to examine the three-dimensional lattices of the linear
sizes L = 20, 32, and 64 with periodic boundary conditions. We look for the dependences
of the critical parameters on the effective number of neighbors q. We suppose that all the
interaction constants with the 6 nearest neighbors are equal to one (JNN = 1). We start with
varying the value of the constant of interaction with the 12 next-nearest neighbors JNN from
0 to 1, and this means that q changes from 6 to 18. Then we fix the value JNNN = 1 and vary
the interaction constant with the 8 next-next-nearest neighbors JNNNN from 0 to 1 so that q
changes from 18 to 26. The initial state of the system is random. To bring the system to a
state close to equilibrium for a given temperature, at the first 104 · L3 Monte Carlo steps, we
do not accumulate the statistical data. We flip spins according to the Metropolis algorithm
in the order of their sequence in the lattice. After each flip, we measure the values of the
energy and the magnetization. The total number of the Monte Carlo steps is 4 · 105 · L3. We
vary the inverse temperature with the step size ∆β ≈ 1.8 · 10−4 for L = 20, with the step
size ∆β ≈ 7.5 · 10−6 for L = 32, and with the step size ∆β ≈ 10−4 for L = 64. We define the
critical point as the point of maximum of the energy variance σ2

E = σ2
E(β). At this point

we fix the values of Umax = U(βmax), σ2
max = σ2

E(βmax) as well as other values. We also
use the Metropolis algorithm to calculate the energy and magnetization moments near the
critical temperatures. In Table 2, we present the numerical data for L = 64.

Table 2. Values measured at β = βmax.

JNNN JNNNN q βmax σ2
max |〈E〉| 〈E2〉 〈E4〉 |〈m〉| 〈m2〉 〈m4〉 Qmax

0.0000 0 6.00 0.22208 71.02 1.0247 1.0502 1.1041 0.06448 0.04742 0.00258 0.6173

0.0042 0 6.10 0.21978 74.45 1.0270 1.0550 1.1143 0.10751 0.04862 0.00271 0.6173

0.0410 0 7.00 0.20058 92.80 1.0423 1.0866 1.1823 0.11810 0.05241 0.00310 0.6243

0.0811 0 8.00 0.18328 107.06 1.0517 1.1065 1.2260 0.14503 0.04908 0.00273 0.6223

0.1213 0 9.00 0.16888 132.16 1.0623 1.1290 1.2770 0.08342 0.04356 0.00223 0.6084

0.1623 0 10.00 0.15648 129.91 1.0834 1.1743 1.3813 0.17143 0.04511 0.00229 0.6252

0.2048 0 11.00 0.14548 154.83 1.1020 1.2151 1.4792 0.15042 0.04237 0.00206 0.6184

0.2500 0 12.00 0.13548 189.87 1.1300 1.2776 1.6360 0.10335 0.04287 0.00212 0.6154

0.2991 0 13.00 0.12608 199.76 1.1546 1.3339 1.7833 0.01969 0.03976 0.00183 0.6145

0.3543 0 14.00 0.11709 243.49 1.1972 1.4342 2.0623 0.07870 0.04215 0.00203 0.6194

0.4189 0 15.00 0.10799 287.88 1.2179 1.4844 2.2101 0.06442 0.03106 0.00123 0.5765

0.5000 0 16.00 0.09869 325.40 1.3223 1.7497 3.0701 0.08284 0.04788 0.00249 0.6373

0.6169 0 17.00 0.08769 426.66 1.4011 1.9647 3.8730 0.03163 0.03256 0.00142 0.5536

0.7106 0 17.50 0.08059 482.31 1.4871 2.2134 4.9152 0.12453 0.04236 0.00200 0.6290

0.8566 0 17.90 0.07149 586.79 1.5548 2.4198 5.8771 0.02487 0.02444 0.00080 0.5519

0.8958 0 17.95 0.06949 600.78 1.6359 2.6783 7.1979 0.03046 0.03645 0.00151 0.6216

0.9324 0 17.98 0.06769 655.33 1.6793 2.8225 7.9946 0.03795 0.03277 0.00129 0.5992

1.0000 0.0000 18.00 0.06448 736.77 1.6900 2.8587 8.2047 0.01656 0.02573 0.00087 0.5643

1 0.0063 18.10 0.06429 768.80 1.6916 2.8644 8.2385 0.06596 0.03199 0.00123 0.5993
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Table 2. Cont.

JNNN JNNNN q βmax σ2
max |〈E〉| 〈E2〉 〈E4〉 |〈m〉| 〈m2〉 〈m4〉 Qmax

1 0.0637 19.00 0.06248 770.88 1.7294 2.9938 8.9982 0.07366 0.03418 0.00136 0.6133

1 0.1307 20.00 0.06049 848.33 1.7475 3.0569 9.3844 0.03053 0.03480 0.00140 0.6135

1 0.2023 21.00 0.05848 904.70 1.7442 3.0458 9.3187 0.08452 0.03413 0.00135 0.6132

1 0.2806 22.00 0.05649 926.04 1.7881 3.2008 10.2901 0.18149 0.03500 0.00150 0.5918

1 0.3693 23.00 0.05439 989.95 1.8190 3.3125 11.0228 0.08570 0.04307 0.00201 0.6390

1 0.4755 24.00 0.05199 1060.91 1.7446 3.0478 9.3385 0.00448 0.02501 0.00080 0.5762

1 0.6177 25.00 0.04919 1157.27 1.7578 3.0944 9.6306 0.01029 0.02170 0.00063 0.5537

1 0.7225 25.50 0.04739 1324.75 1.8598 3.4641 12.0698 0.03932 0.03389 0.00131 0.6203

1 0.8707 25.90 0.04499 1418.32 1.8758 3.5239 12.4942 0.09043 0.02928 0.00101 0.6080

1 0.9076 25.95 0.04449 1414.33 1.9694 3.8839 15.1680 0.20027 0.04111 0.00182 0.6402

1 0.9410 25.98 0.04399 1455.97 1.9562 3.8324 14.7722 0.15120 0.03737 0.00154 0.6334

1 1.0000 26.00 0.04309 1505.02 1.8808 3.5433 12.6366 0.01037 0.02359 0.00071 0.5765

This calculation had two goals. The first was to analyze the role of the next terms of
the expansion series (8). The second goal was to examine the influence of the account for
the next-nearest and the next-next-nearest neighbors on the character of the dependence
C = C(β) and find if the type of the singularity at the critical point changed to a finite jump.

6.1. Dependence βc = βc(q)

In Figure 5a, we show the dependence of βc on q. We compare the numerical values
(the upper solid line) with those that follow from Equation (18) for the Gaussian approxi-
mation (the lower solid line). As we see, the solid curves have similar shapes, and when we
scale the theoretical curve by a factor of ∼ 1.06, they practically merge. Such a coincidence
cannot be accidental. From Equation (18) it follows that in the Gaussian approximation,
the curve βc(q) has singularities at q = 18 and q = 26:

dβc

dq

∣∣∣∣
q→18−0

= − βc

6
√

18− q
and

dβc

dq

∣∣∣∣
q→26−0

= − βc

3
√

26 (26− q)
.

The curve obtained by means of computer simulations shows the same singularities.
In our simulations, we check this statement very accurately, changing q in the vicinities of
these points with a very small step size ( ∆q ∼ 10−3).

Agreement of the numerical results with our theory becomes much better when we
account for the third moment in Equation (36) and solve numerically the equation for
the saddle point (37) (accounting for Equations (A4) and (A11) of the Appendix A). In
this case, the relative error does not exceed a fraction of a percent. When we account for
interactions beyond the nearest neighbors, the expression for the third moment µ3(m)
becomes so cumbersome that it does not allow us to obtain analytical expressions for the
critical temperature analogous to Equations (40) and (41). On the other hand, we can use a
simple empirical formula

βc =
β
(0)
c

1 + 0.207 · (12JNNN + 8JNNNN)
, (42)

where β
(0)
c ≈ 0.22165 is the critical value given by formula (41), accounting for the near-

est neighbors only (JNNN = JNNNN = 0). Comparing the solid and dashed lines in
Figure 5b, we see that expression (42) describes the computer simulations much better than
formula (18)—in comparison with the Gaussian approximation, the relative error decreases
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by an order of magnitude; it decreases nearly by two orders of magnitude comparing with
the mean field theory.
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Figure 5. (a) Dependence of critical temperature βc = βc(q) on effective number of neighbors q for three-dimensional Ising
model: upper solid line presents computer simulation data for L = 64; dashed line that merges with upper solid line is
calculation with account for third moment (see Equation (42)); lower solid curve corresponds to Gaussian approximation
(see Equation (18)); dotted line is βc that follows from mean field theory. (b) Relative error: lower dashed line corresponds
to account for third moment (42); solid line corresponds to Gaussian approximation (18); upper dotted line corresponds to
mean field theory.

6.2. Dependence C = C(β, q)

Our analysis shows that in the case of a three-dimensional Ising model, our account
for the next-nearest and the next-next-nearest neighbors does not qualitatively change
the behavior of the heat capacity at the critical point. Next, when the number of spins
N increases, the peak of the curve C = C(β, q) only increases and the character of the
singularity remains the same for all 6 ≤ q ≤ 26.

The dependences of the heat capacity on the critical temperature calculated numeri-
cally differ significantly from the ones defined by Equations (19) and (23). This means that
we cannot use Equations (21)–(23) to describe the dependences C = C(β, q). Equation (25)
that defines the finite jump of the heat capacity and works well when d > 4 is not applicable
in the three-dimensional case.

In Figure 6, we show the dependences of the maximal energy variance σ2
max = σ2

max(q)
on the effective number of neighbors. From the figure it is obvious that, first, the energy
variance at the critical point increases when q increases. Second, we see that with an
increase in the lattice size L the differences between the computer simulations and the
theoretical curve grow quickly. Nevertheless, the dependences of σ2

max = σ2
max(q) on q

repeat qualitatively the theoretical curve (compare solid and dashed lines in Figure 6).
The situation with the lattices of larger dimensions d is quite the opposite. Let us

discuss it here shortly. The larger the dimension of the lattice, the better the theoretical
expressions (21)–(23) describe the numerical results for the heat capacity in the vicinity of
the critical point. When d ≥ 5, the agreement is good, both qualitatively and quantitatively.
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Figure 6. Dependence σ2
max vs. q: solid line—Equation (24); dashed lines—computer simulations for

L = 20, 32, 64 (bottom-to-top).

In Figure 7, the dashed lines are the theoretical curves C = C(β) (Equations (21)–(23));
the solid lines are the results of computer simulations. For d = 4, the value of L = 80
(see [21]), and for the dimensions d = 5, 6 and 7, we use the data from [23]. We see that our
formulas describe the numerical results pretty well. When d increases, the agreement of the
theory and the simulations improves notably; when d = 7 the theoretical and the numerical
curves almost merge. In the same figure, we also present the graph for d = 4; however, to
date, there is no real understanding of what happens in the four-dimensional case. We do
not know for sure if there is a jump of the heat capacity or an infinite singularity. In the
same figures, we show the curves obtained in the framework of the mean field theory. We
see that our approximation describes the results of the numerical experiments much better.
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Figure 7. Heat capacity C vs. β for d = 4, 5, 6, 7. Computer simulations—solid lines; theory (Equations (19) and (23))—dashed
lines. Data for d = 4 and L = 80 are from [21]; curves for d = 5, 6, and 7 are numerical results [23]. Dotted line in figures for
d = 5, 6, 7 represents mean field theory.
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6.3. Magnetization Distribution P(m) and Logarithmic Density of States

With the aid of the Metropolis algorithm, we calculated the magnetization distribution
near the critical temperature for the three-dimensional Ising model, taking into account
the nearest neighbors only (L = 8, 10, and 12). To increase the accuracy of the Monte Carlo
method, we performed 3 · 107 · L3 steps. To fix the inverse temperature where the bimodal
distribution replaces the unimodal, we used the step size ∆β = 10−3. For L = 12, we
present the curves of the magnetization distribution in Figure 3a. The obtained distributions
allow us to calculate the Binder cumulants Q(β) (see [10,31]). In Figure 3b, the curves
Q = Q(β) intersect at a point β = 0.222, Q = 0.488. This value of β defines the critical
temperature for the infinite lattice. At the curves in Figure 3b, the square markers are
the points where the bimodal distributions replace the unimodal. At these points, the
cumulants are approximately equal to 0.29, and this value is sufficiently close to the value
predicted by Equation (32). When L increases, these points shift to the point of the curves
intersection that corresponds to the critical value βc in the asymptotic limit L→ ∞ .

To obtain the density of states, we used the algorithm of Wang and Landau [11].
We performed the calculations for the cubic lattice of the size L = 40 without parallel
computing and only accounting for the interaction with the nearest neighbors. As a
criterion of the flatness of the histogram of visited states, we adopted the condition that
all the values of the histogram had to be larger than 80% of its mean value. When this
condition was satisfied, the algorithm reduced the modification factor according to the

formula f (mod)
i+1 =

√
f (mod)
i . The simulations stopped when the modification factor became

less than f (mod)
f inal = exp(10−10).

In Figure 4a, we present the graphs of the logarithmic density of states calculated
numerically as well as the ones based on the equations of Section 2. The density of states
calculated using Equations (19)–(23) and the Legendre relations was in a good agreement
with the numerical data. We see that the maximal obtained error, which is about 0.7%,
corresponds to the critical energy E = Uc. The results of the approximate formula (34) are
somewhat less accurate; however, in these calculations, the deviation from the numerical
results is also less than 0.8% (see Figure 4b).

7. Discussion

We used the m-vicinity method to investigate the Ising model on d-dimensional
hypercube lattices for 3 ≤ d ≤ 7. (We recall that this method is not applicable for the
lattices of lower dimensions.) The m-vicinity Ωm consists of all the configurations of the
same magnetization m. We based our method on the series expansion of the logarithm
density of states in the m-vicinities (Section 2). In the main part of the paper, we discuss the
interaction with the nearest neighbors. Only in Section 6, for a cubic lattice, we analyzed
both the short-range and long-range interactions.

When we account only for an isotropic interaction of the nearest neighbors, the
small parameter is |εmax| =

√
d
(
1−
√

1− 2/d
)
/2 (see Equation (10)). The value of this

parameter decreases from 0.366 when d = 3 to 0.159 when d = 7 (see Figure 1). Not
surprisingly, the agreement between the theoretical results and computer simulations
becomes better when the dimension of the lattice increases.

Summing up, we would like to list the main features of the m-vicinity method.
(1) The first order of the perturbation theory is equivalent to the Gaussian approxima-

tion of the true density of states in the m-vicinities supposing that the first two moments of
the density of states and its Gaussian approximation coincide.

In this case, we obtained the simple analytical expression (18) for the critical value
of the inverse temperature, which described quite accurately the results of computer
simulations for different lattices (see Figure 2). When d = 3, the relative error between
the theoretical estimate βc and the computer simulations is 2.39%. When d increases, the
relative error decreases to 0.18% for d = 7 (see Table 1).
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In the framework of the same approximation, we obtained analytical expressions (19)–(23)
that define implicitly the dependence of the free energy and its derivatives on the tempera-
ture. Based on these results, we calculated the dependence of the heat capacity C(β) on the
inverse temperature β. As it follows from Figure 7, for d ≥ 5, the obtained graphs match
the curves obtained numerically [23]. The values of the critical exponents that follow from
Equations (25)–(28) coincide with the known mean field results. For d ≥ 5, Equation (25)
predicts a finite jump of the heat capacity whose value is only 0.6% less than the value
obtained by computer simulations [23].

(2) The second order of the perturbation theory requires going beyond the Gaussian
approximation and accounting for the third moment in the expansion (36). We suppose that
the first three moments of the approximate and the true distributions coincide. However,
this does not automatically improve the agreement of the theoretical estimates of the
critical temperature and its numerical values. The reason is an irregular convergence of
the Gram–Charlier and the Edgeworth series expansions [24]. The agreement improves
significantly when we introduce the fitting parameter that is the same for all the dimensions
d (see Section 5). After that, the second order perturbation Formula (41) describes the
computer simulations within a fraction of the percent (see Table 1). From Figure 5, it
follows that the same is true when we also account for the interactions with the next-
nearest and the next-next-nearest neighbors.

(3) The results of our analysis show that when the dimension of the Ising model d ≥ 5,
the m-vicinity method describes the properties of the system pretty well, both qualitatively
and quantitatively. When d = 4, the type of the singularity of heat capacity still remains
unclear [20,22]. Consequently, the question about the applicability of the m-vicinity method
in this case remains open.

In the case d = 3, the approach discussed here is incorrect because it predicts a finite
jump of the heat capacity at the critical point and the classical values of critical exponents.
This result contradicts the widely accepted concept of the singularity at the critical point in
the modern phase-transitions theory. Nevertheless, this method allows one to calculate
the critical temperature quite accurately (see Table 1) as well as to describe its dependence
on the number of the neighbors (see Figure 5 and Equations (41) and (42)). We conclude
that when d = 3 our theory provides good results for the dependences of the free energy
and the logarithmic density of states but not for their derivatives. Indeed, when for d = 3
we use Equations (34) and (35) to calculate the logarithmic density of states, the result is
in a good agreement with the computer simulations data. From Figure 4 we see a notable
deviation from the numerical curve (∼ 0.7%) only in a narrow vicinity of the point E = Uc.

(4) Finally, we would like to note that a good agreement of the theoretical results for
the density of states Ψ = Ψ(E) with the data of computer simulations allows us to use the
obtained expressions as an initial approximation for the Wang-Landau algorithm. We hope
that our results will allow one to speed the algorithm up and to increase its accuracy.
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Appendix A. Calculation of the First Moments of Energy Distribution

Previously, we described in detail how to calculate the moments of the distribution of
the energy states belonging to the vicinity Ωm [26–28]. In these papers, we obtained the
exact expressions for the first two moments of the energy distribution that are the mean
Em and the variance σ2

m. For a finite system and a general connection matrix J =
(

Jij
)N

i,j=1,
we presented these expressions in finitely combinatorial forms. In the case of the Ising
connection matrix for a d-dimensional hypercube, we, in addition, found Em and σ2

m in
an asymptotic limit when the number of spins N tends to infinity. Next, we show how to
obtain the combinatorial and the asymptotic formulas for the third moment µ3.

Appendix A.1. Notations

In what follows, for the sake of simplicity when averaging over the m-vicinities Ωm,
we sometimes will omit the subscript m. For example, if a state s = (s1, s2, . . . , sN) belongs
to an m-vicinity Ωm and E(s) is the energy of the state s, we will write the first three
moments as

〈E〉 = N−1
m ∑

s∈Ωm

E(s),
〈

E2
〉
= N−1

m ∑
s∈Ωm

E2(s), and
〈

E3
〉
= N−1

m ∑
s∈Ωm

E3(s), where Nm =

(
N
n

)
.

We are interested in calculating the second and third central moments—the variance
σ2 and the semi-invariant µ3:

µ3 =
〈

E3
〉
− 3σ2〈E〉 − 〈E〉3, and σ2 =

〈
E2
〉
− 〈E〉2.

Usually, the energy E(s) = a · ∑N
i,j=1 Jijsisj of the state s includes a normalization

coefficient a. In what follows, we for simplicity omit this coefficient and write the energy as

E(s) = sJs+ ≡
N

∑
i,j=1

Jijsisj. (A1)

After obtaining the final expressions for the moments, we have to multiply 〈E〉, σ2, and µ3
by a, a2, and a3, respectively.

Appendix A.2. Connection Matrix of General Form

Suppose that the connection matrix has a general form and the configuration
s0 = (s01, s02, . . . , s0N) is the ground state whose energy is E0 = s0Js+0 .

To calculate the energy moments 〈Er〉, r = 1, 2, . . ., it is necessary to present Er as a
sum of terms which contain only the products of spin variables with non-repeating indices.
For example, we can write the expressions for E and E2 as

E =
N

∑
i=1

N

∑
j=1

Jijsisjχij

E2 = 2TrJ2 + 4
N

∑
i,j=1

(
J2
)

ij
sisjχij +

N

∑
i,j,k,r=1

Jij Jkrsisjsksrχijkr,

where χij and χijkr are tensors, whose components are nonzero and equal to one only if
they do not contain the repeating indices.

In the m-vicinity, we can present the variables si as si = s0i pi, where pi takes the value
pi = −1 with the probability of n/N and it takes the value pi = 1 with the probability
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(N − n)/N. (We remind that n = N(1− m)/2.) This allows us to easily perform the
averaging over the m-vicinities. For example:

〈E〉 = N−1
m ∑

Ωm

N

∑
i=1

N

∑
j=1

Jijs0is0j pi pjχij =
N

∑
i=1

N

∑
j=1

Jijs0is0j · N−1
m ∑

Ωm

pi pjχij = E0K2. (A2)

When writing Equation (A2), we used easily verifiable formulas N−1
m ∑Ωm pipjχij = K2χij,

N−1
m ∑Ωm pi pj pk prχijkr = K4χijkr, and N−1

m ∑Ωm pi pj pk pr pm pnχijkrmn = K6χijkrmn:

K2 = (N−2n)2−N
N(N−1) ,

K4 = (N−2n)4−2(N−2n)2(3N−4)+3N(N−2)
N(N−1)(N−2)(N−3) ,

K6 = 1− 4(N−n)·n·B
N(N−1)(N−2)(N−3)(N−4)(N−5) .

(A3)

In Equation (A3), the constant B in the numerator of the last expression is equal to

B = 3(N − 2n)4 + 6(N − 2n)3 · (2n− 5) + (N − 2n)2 · (28n2 − 120n + 125)+
+(N − 2n)(32n3 − 180n2 + 340n− 210) + 4(n− 1)(n− 2)(4n2 − 18n + 23).

The same as when calculating < E > in Equation (A2), we can obtain the second
and the third energy moments and show that the averaging over Ωm leads to the follow-
ing equalities:

Em = K2E0,
σ2

m = 2(1− 2K2 + K4) · Tr J2 + 4(K2 − K4) ·
(
s0J2s+0

)
− (K2

2 − K4)E2
0,

µ3(m) = 8(1− 3K2 + 3K4 − K6) · Tr J3 − 16(K4 − K6) ·
N
∑

i=1
s0ih3

0i−

−12E0
(
s0J2s+0

)
(K2

2 − K4 − K2K4 + K6) + 6E0Tr J2[K6 − K2K4 + 2(K2
2 − K4)

]
+

+E3
0
(
K6 − 3K2K4 + 2K3

2
)
+ 8(K2 − 2K4 + K6)

[
2
(

s0J(3)s+0
)
− 6

N
∑

i=1
s0ih0i ·

(
J2)

ii + 3
(
s0J3s+0

)]
,

(A4)

where h0i = ∑N
j=1 Jijs0j is a local field acting on the i-th spin belonging to state s0. The

matrix J(3) in the expression for the third moment is J(3) =
(

J3
ij

)
.

The expressions (A3) and (A4) provide us with the most general formulas for the
first, second, and third moments of the distribution of energies of the states from the m-
vicinity Ωm in terms of the elements of the connection matrix J. (If it is necessary to use the
normalized expression for the energy E(s), see the note after Equation (A1).)

Appendix A.3. Ising Model on Hypercube

In this subsection, we analyze the Ising model with the short-range interaction, when
only the nearest spins interact, and other elements of the connection matrix are equal
to zero. Let the nonzero matrix elements be equal to a constant J. We factor out this
constant in all our calculations. Then, there are q = 2d ones in each row of the matrix J,
all the other matrix elements are equal to zero, and the ground state is a configuration
s0 = (1, 1, 1, . . . , 1) ∈ RN.

It is easy to see that the following equations

E0 = qN, Tr J2 = qN, s0J2s+0 = q2N, Tr J3 = 0,
N
∑

i=1
s0ih0i ·

(
J2)

ii = q2N, s0J3s+0 = q3N,
N
∑

i=1
s0ih3

0i = q3N.

hold. Then the expressions (A4) take the form

Em = qN · K2
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σ2
m = qN ·

{
qN · (K4 − K2

2) + 2[1− 2K2 + K4 + 4q(K2 − K4)]
}

(A5)

µ3(m) = (qN)3(K6 − 3K2K4 + 2K3
2
)
+

+6 (qN)2[K2
2 − K4 + (1− 2q)

(
K2

2 − K4 + K6 − K2K4
)]
+

+8 (qN)
[
(K2 − K4)

(
2− 6q + 3q2)+ (K6 − K4)

(
2− 6q + 5q2)].

To obtain asymptotic expressions for the moments ( N → ∞ ), at first it is necessary to
obtain the asymptotic expressions for the coefficients K2, K4, and K6, expanding them with
respect to the small parameter δ = 1/N:

K2 ≈ m2 − δ · (1−m2)− δ2(1−m2),
K4 ≈ m4 − δ · 6m2(1−m2) + δ2(1−m2)(3− 25m2),
K6 ≈ m6 − δ · 15m4(1−m2) + δ25m2(1−m2)(9− 28m2).

here, m = (N − 2n)/N ∈ [−1,+1] is the magnetization of the state s ∈ Ωm.
Next, substituting the obtained expressions into Equation (A5) and leaving the leading

terms, we obtain the asymptotic expressions for the first three moments

Em = N · qm2,
σ2

m = N · 2q
(
1−m2)2,

µ3(m) = N · 16qm2(1−m2)2.
(A6)

The final answer we obtain after multiplying Em, σ2
m, and µ3(m) by a, a2, and a3,

respectively; here, a = −J/2N.

Appendix A.4. Asymptotic Form of Coefficient κ3

Starting from Equation (8), we use the series expansion of the unknown function
ϕ(m, E) in the variable ε = (E− Em)/σm:

ϕ =
1
2

ε2 +
1
3!

κ3ε3 +
1
4!

κ4ε4 + . . . (A7)

Since we do not know the function ϕ(m, E) itself, we also do not know the series expan-
sion coefficients κr, where r = 3, 4, . . . However, we do know the first three moments of the
energy distribution (A5) and this allows us to define the coefficient κ3 of the expansion (A7).
Indeed, Equations (A5) and (A6) define the general form of the third moment:

µ3(m) =
∫

(E− Em)
3 exp[−N · ϕ(m, E)]dE. (A8)

We restrict ourselves with the first two terms in the right-hand side of Equation (A7) and
substitute the expressions (A5)–(A7) into the integral in the right-hand side of Equation (A8). Then

µ3(m) = σ4
m

∫
exp

[
−N ·

(
1
2

ε2 +
1
3!

κ3ε3
)]

ε3dε (A9)

It is easy to see that the main contribution to the integral (A9) comes from the region
ε ∼ ±N−1/2, where the cubic term of the exponent of the integrand is negligible small
(Nε3 ∼ N−1/2). Then expanding the exponent, we have

µ3(m) = σ4
m

∫
exp

(
−1

2
Nε2

)
·
(

1− 1
3!

Nκ3ε3
)]

ε3dε (A10)
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After simple calculations, equating expression (A10) and the third of the expres-
sions (A6), we obtain, with an accuracy up to the terms of the order of O

(
N−1),

κ3 = −µ3(m)

σ3
m

=
2qm2

σ3
0 (1−m2)

. (A11)

In the same way, it is also possible to calculate the coefficients of the higher order.
However, even the expression for κ4 is so cumbersome that we do not present it here.
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