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Abstract: The quantum search algorithm is one of the milestones of quantum algorithms. Compared
with classical algorithms, it shows quadratic speed-up when searching marked states in an unsorted
database. However, the success rates of quantum search algorithms are sensitive to the number of
marked states. In this paper, we study the relation between the success rate and the number of iterations
in a quantum search algorithm of given λ =

√
M/N, where M is the number of marked state and

N is the number of items in the dataset. We develop a robust quantum search algorithm based on
Grover–Long algorithm with some uncertainty in the number of marked states. The proposed algorithm
has the same query complexity O

(√
N
)

as the Grover’s algorithm, and shows high tolerance of the

uncertainty in the ratio M/N. In particular, for a database with an uncertainty in the ratio M±
√

M
N , our

algorithm will find the target states with a success rate no less than 96%.

Keywords: quantum algorithm; quantum computation; quantum information

1. Introduction

The quantum search algorithm is one of the most significant quantum algorithms [1].
Compared with classical search algorithms, quantum search algorithms exhibit quadratic
speedup [2,3]. This demonstrates the superiority of quantum computing over classical com-
puting. Grover proposed the first quantum search algorithm [1,4], which can find M
marked items from an unstructured database with N items by querying only O(

√
N/M)

times [5,6]. If the measurements are made after the optimal iterations, Grover’s algo-
rithm will have a success rate Pmax = sin2[(2jop + 1)β] to find the marked items, where
β = arcsin

√
M/N and jop = [(π/2− β)/(2β)] is the number of optimal Grover itera-

tions. If (2jop + 1)β ≈ π/2, the maximum probability approaches 1, which means that
the Grover’s algorithm usually has a high success rate if the dimension of the quantum
database is very large.

There have been several important developments in the Grover’s algorithm. In some
situations, such as structured search [7], where the success rate is the product of the success
rates of individual search, high success rate in each individual search is critical; especially,
when dimensions are not so large, the standard Grover’s algorithm will not perform well.
In order to solve this problem, some modified search algorithms have been proposed [8–12].
The Grover–Long algorithm [11], one of these improved algorithms, has been proved to be
the simplest and most optimal [13,14]. This algorithm achieves 100% success rate, whereas
Grover’s algorithm can only achieve 100% success rate when finding one out of four.

In both the original Grover and improved versions of Grover’s algorithm, one needs
to know the exact number of marked states in advance. Therefore, if the exact number is
not known, these algorithms can not determine when to stop [15]. Spatial search [16–18] is
one of the methods to solve this problem. Fixed-point search algorithm is another method
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to solve this problem. By constructing the recursively searching operator, the ratio of
marked state always amplifies after each search, the π/3 fixed-point search algorithm of
Grover [19], for example. In this algorithm, each search approaches the marked states
monotonously, but the cost of monotony is large in this algorithm, and the quadratic
speedup of standard Grover’s algorithm is lost.

The Yoder–Low–Chung algorithm [20] was proposed to improve the performance of
fixed-point algorithms on wide ranges of M/N. It retains the quadratic speedup advantage
of quantum search, and it achieves the fixed-point property at the same time. It also solves
overcooking problem, but the success rate of which is not monotonically increasing as
in the π/3 algorithm. The error is bounded by a tunable parameter δ ∈ [0, 1] over an
ever-widening range of M/N, but the phases in each search step need to be calculated by
solving a hype-trigonometric equation.

In this paper, we develop a robust quantum search algorithm, based on the Grover–
Long algorithm, which overcomes the problem of not knowing the exact ratio M/N in
advance. This algorithm has the advantage of easiness in constructing the search operators,
and also certain degrees of “fixed-point” properties. Namely, it enjoys a high success rate
over a wide range of the ratio of M/N. In our algorithm, we do not need to know the exact
number of marked states, but rather an approximate number in the range [λ0, λ0 + ∆] of
the ratio λ = M/N. The error of our algorithm is bounded by a parameter δ ∈ [0, 1] related
to the ∆/λ0. Specifically, searching operators in our algorithm are determined by the lower
bound λ0 . After J + 1− JD iterations, the probability of success is larger than 1− δ2, where
JD is denoted as

⌈(
1

2
√

λ0+∆ + 4
π

)
δ
⌉

.
This paper is organized as follows. First of all, the Grover–Long algorithm is sum-

marized. Secondly, the relationship between the success rate of Grover–Long algorithm
and iterative steps is studied, and the relation between iteration number and success rate
is given. Thirdly, we propose a robust search version of Grover–Long algorithm and
show its high tolerance to the ratio M/N. The comparison is then made with the Yoder–
Low–Chuang algorithm, standard Grover’s algorithm, and the Grover π/3 fixed-point
algorithm, respectively. Finally, we prove that our algorithm can find the target state with
a success rate of more than 96% from an database, with only an estimate of M, in the range
between {M −

√
M, M +

√
M}, which can be carried out using the quantum counting

algorithm [21,22].

2. Overview of Grover–Long Algorithm

The Grover–Long algorithm can extract M marked items from an unstructured
database with N items by querying O

(√
N/M

)
times. First, from the given ratio M/N,

parameter β can be calculated:

β = arcsin

√
M
N

, (1)

which is further used to determine the value of search steps jop =
⌊

π−2β
4β

⌋
. The square

brackets here represent the floor function. One can set the number of iteration as

J ≥ jop. (2)

Then, the phases in the search algorithm are calculated by

φ = 2 arcsin

(
sin π

4J+6

sin β

)
. (3)

Next, the oracle operator can be expressed as

Iτ = I +
(

eiφ − 1
)
|τ〉〈τ|, (4)
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where |τ〉 denotes as the superposition of M marked states, and the phase shifting operator
for the |0〉 state is

I0 = I +
(

eiφ − 1
)
|0〉〈0|. (5)

Finally, the Grover–Long operator in each iteration is

Q = −HI0HIτ , (6)

where H is the Hadamard gate. After J + 1 steps of iterations, one can obtain the marked
states with certainty by measurement. When φ = π, we recover the original Grover’s
algorithm, which usually does not find the marked states with certainly.

The quantum search algorithm can be described using the SO(3) picture [11,23] instead
of SU(2). In this picture, the quantum search operator in Equation (6) corresponds to a
rotation in three-dimensional space with the following matrix form

RQ =

 R11 R12 R13
R21 R22 R23
R31 R32 R33

, (7)

where the entries of the matrix RQ are calculated in [11]. The states are rotated along the
~l axis

~l =

 cos φ
2

sin φ
2

cos φ
2 tan β

, (8)

with an angle

α = 4 arcsin
[

sin
(

φ

2

)
sin β

]
=

2π

2J + 3
. (9)

In this picture, the state vector |ψ〉 = (a + bi)|τ〉+ (c + di)|τ̄〉 is represented as

~rψ = 〈ψ|~σ|ψ〉 =

 2(ac + bd)
2(−bc + ad)

a2 + b2 − c2 − d2

, (10)

where~σ = σx~i + σy~j + σz~k and~i,~j,~k are the unit vector along the x, y, z axis. The initial
state |ψi〉 and the marked state |τ〉 are represented by

~ri =

 sin(2β)
0

− cos(2β)

, ~r f =

 0
0
1

. (11)

Each search step is a rotation of~rψ toward~r f . The SO(3) description of the Grover–Long
algorithm is pictured as a circle in Figure 1.
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Figure 1. Geometrical description of Grover–Long searching algorithm. During each iteration, the
state vector OA rotates around~l with an angle α. After J + 1 times iteration, OA overlaps with OB,
the target state |τ〉. In this picture, the probability of finding the marked state is (zA + 1)/2 [11],
where zA is the Z component of point A.

3. Relationship between the Success Rate and Searching Iterations

During each search step of the Grover–Long algorithm, state~rψ = OA rotates toward
~r f = OB, which is described geometrically in Figure 1. In other words, this process is point
A moving to point B on the blue circle �r0. In this picture, the probability of finding the
marked state is (zA + 1)/2 [11], where zA is the Z component of point A. Thus, if one
wants to find a marked state with a probability greater than 1− δ2, point A of the segment

ro A must rotate into the arc
_

CD, where point C and point D are the intersections of the
circle �ro and the red error circle: x2 + y2 + (1− 2δ2)2 = 1. If we can calculate the arc

length
_

CD, then we obtain a reasonable number of iterations.
For this reason, we focus on the spherical cone, which consists of the unit sphere and

the red circle. It is shown in Figure 2. The segment BC in Figure 2 is a segment from point
B(0, 0, 1) to point C on the red error circle. In Figure 2, OD = 1− 2δ2, OC = 1, BD = 2δ2.
The following relationship holds:

CD =

√
OC2 −OD2

=
√

1− (1− 2δ2)2 =
√

4δ2 − 4δ4,
(12)

BC =

√
CD2

+ BD2

=
√

4δ2 − 4δ4 + 4δ4 = 2δ

(13)

The half length of arc
_

CD is approximated to BC = 2δ.

Figure 2. Error circle in a cone.
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Next, we find the radius of the blue circle �ro. As shown in Figure 3, point E is the
middle of the segment AB.

In Figure 3, ∠AOB = π − 2β, OA = 1, and ∠AroE = ∠Aro B
2 = J+1

2 α = (J+1)π
2J+3 . In

4AOE and4AEro :

AE = sin
∠AOB

2
= sin

π − 2β

2
= cosβ, (14)

Aro = AEcsc∠AroE = cosβ csc
( J + 1

2J + 3
π
)
. (15)

Thus, the number of iterations on the arc length
_
BC is

Jδ =


_
BC

Aro · α

 '
⌈

BC
Aro · α

⌉
(16)

=

⌈
(2J + 3)δ

π
secβsin

( J + 1
2J + 3

π
)⌉

'
⌈(

cscβ

2
+

4
π

)
δ

⌉
, (17)

where d e denotes ceil function. Therefore, after several iterations with a number in
[J + 1− Jδ, J + 1 + Jδ], the success rate in [1− δ2, 1] will be achieved.

Figure 3. Geometrical description of quantum searching algorithm. Based on Figure 1, connect points
A and B for segment AB, then take the midpoint E of AB, and connect points ro, E and E, o.

We show the relationship between 1/λ and the minimum number of queries for a
given success rate in Figure 4, which means that if the desired rate of success is not high,
the number of queries is correspondingly reduced.
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Figure 4. A comparison of Grover–Long algorithm with different success rates 1− δ2. The query
times versus the overlap λ = |〈τ|s〉|2 of the target state |τ〉 with the initial state |s〉. Grover–Long-
100% (blue) for the 100% success rate. Grover–Long-90% (orange) for δ2 = 0.1. Grover–Long-80%
(green) for δ2 = 0.2. Grover–Long-70% (red) for δ2 = 0.3. Grover–Long-60% (purple) for δ2 = 0.4.

4. Robust Quantum Search with Uncertain Number of Targets

Now, consider the situation where the ratio M/N is not known. Our goal is to find
the marked state with high success. Here, we propose a robust search version of the
Grover–Long algorithm. In our algorithm, the error is bounded by a parameter δ over
∆/λ0. In fact, our algorithm degenerates to the original Grover–Long algorithm if ∆ = 0.
We proceed our algorithm as follows. The initial state is prepared to the superposition
state |s〉. Then, we find out the target state |T〉 with success probability higher than 1− δ2,
in which the overlap 〈s|T〉 =

√
λeiξ is nonzero (ξ is the phase difference between |s〉 and

|T〉) and δ ∈ [0, 1]. We provide the oracle operator Iτ which will flip the ancilla qubit if
it matches the target state, that is, Iτ |T〉|a〉 = |T〉|a⊕ 1〉 for a = τ and Iτ |T̄〉|a〉 = |T̄〉|a〉
for a 6= τ, while |T〉 are orthogonal to |T̄〉. Next, we prove how to extract |T̄〉 by querying
J + 1− JD times with the successful probability higher than 1− δ2. This algorithm is shown
as follows.

Suppose there is a database without exact λ but, rather, its upper and lower bounds
are denoted as λ0 ≤ λ ≤ λ0 + ∆. If we plug the lower bound λ0 as the “overlap” into the
Grover–Long algorithm, we will obtain

β0 = arcsin
[√

λ0

]
≤ arcsin

[√
λ
]
= β, (18)

then

J = jop0 =

⌊
π − 2β0

4β0

⌋
≥
⌊

π − 2β

4β

⌋
= jop, (19)

which obeys Equation (2), that J ≥ jop. Thus, J + 1 can be chosen as the number of iterations
in Grover–Long algorithm, but when plugging J and β0 into Equation (3), we will not
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obtain the right matching phase. Thus, we will not obtain the right rotation angle α in
Equation (9) for each iteration along the axis~l in Equation (10). Instead, we will obtain

α0 = 4 arcsin
[

sin
(

φ0

2

)
sin β

]
= 4 arcsin

[
sin
(

π

4J + 6

)√
λ

λ0

]

≤ π

2J + 3
+ tan

(
π

4J + 6

)
∆

2λ0
.

(20)

The angle difference dα between α0 and α is

dα = α0 − α ≤ tan
(

π

4J + 6

)
∆

2λ0
. (21)

The total rotation angle difference is

Dα = (J + 1)dα (22)

≤ (J + 1) tan
(

π

4J + 6

)
∆

2λ0
. (23)

The angle Dα is the overcooked angle ∠CoB or arc
_

CB, shown in Figure 2. We define this
overcook as 2δ:

0 ≤ Dα ≤ (J + 1) tan
(

π

4J + 6

)
∆

2λ0
= 2δ. (24)

We then reduce the number of iterations in order to improve the success rate. The relation
between the number of iterations and the error is given by Equation (17). Thus, the reduced
number of iterations is

Jδ =

⌈(
csc β

2
+

4
π

)
δ

⌉
≥
⌈(

csc
(
arcsin

√
λ0 + ∆

)
2

+
4
π

)
δ

⌉ (25)

=

⌈(
1

2
√

λ0 + ∆
+

4
π

)
δ

⌉
= JD (26)

which drives the final state into the interval of arc
_

C′B instead of
_

CB, so the success rate of
the final search is greater than 1− δ2.

The flowchart of our Algorithm 1 is listed as follows:
Compared with other algorithms, our algorithm maintains quadratic speedup. As

shown in Figure 5, our algorithm and Yoder–Low–Chuang algorithm have the same query
complexity O

(√
1/λ

)
as the standard Grover’s algorithm. Under the condition of output

success rate greater than 1− δ2 = 0.96, our algorithm makes eight queries while the Yoder–
Low–Chuang algorithm makes 10 queries and the π/3-algorithm makes 160 queries for
1/λ0 = 100. For 1/λ0 = 4000, our algorithm makes 46 queries while the Yoder–Low–
Chuang algorithm makes 64 queries and the π/3-algorithm makes 6437 queries. For
1/λ0 = 10,000, our algorithm makes 72 queries while the Yoder–Low–Chuang algorithm
makes 100 queries and the π/3-algorithm makes 16,094 queries. Both our algorithm and the
Yoder–Low–Chuang algorithm have the same query complexity O

(√
1/λ

)
as the standard

Grover’s algorithm, while the query complexity of π/3-algorithm is scaled as 1/λ.
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Algorithm 1 Robust quantum search with uncertain number of targets.
for a given database, just know the lower bound λ0 and upper bound λ0 + ∆ of λ = M/N,
(λ0 ≤ λ ≤ λ0 + ∆).
Begin
1. Calculate β = arcsin(

√
λ0)

2. Calculate J = b[(π/2− β)/(2β))]c

3. Calculate φ = 2 arcsin

(
sin
(

π
4J+6

)
sin β

)
4. Calculate δ = (J + 1) tan

(
π

4J+6

)
∆

4λ0

5. Calculate JD =
⌈(

1
2
√

λ0+∆ + 4
π

)
δ
⌉

6. Obtain the search operator:
Iτ = I +

(
eiφ − 1

)
|τ〉〈τ|

I0 = I +
(
eiφ − 1

)
|0〉〈0|

Q = −HI0HIτ

7. Implement the search operator Q on the initial state |ψi〉 for J + 1− JD times.
8. Make measurement of the final state and one will find out the marked state with the

probability greater than 1− δ2.
End

0 2000 4000 6000 8000 10000

20

40

60

80

100

Figure 5. Query complexity versus 1/λ with δ2 = 0.04 for our algorithm (orange), Yoder–
Low–Chuang algorithm (green), the π/3-fixed-point algorithm (red), and the origin Grover’s
algorithm (blue).

5. Discussions

In our algorithm, the infimum bound of the success rate is described by Equation (24).
The infimum bound of the success rate is related to ∆/λ0. In Figure 6, we show the relationship
between the lower success rate and the overlap rate at different uncertainty ∆. When the
uncertainty is zero, 100% success rate will be achieved every time, and our algorithm degrades
to the standard Grover–Long algorithm. The curve increases sharply with the increase of λ,
and the success rate is above 80% when the uncertainty is double λ. When the uncertainty is
the same order as λ, one can still achieve a high success rate, as high as 95%.

Therefore, our algorithm has a high tolerance to the uncertainty of the ratio λ = M/N.
In order to see the performance of the robustness of our algorithm clearly, especially
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when the overlap λ is small, we provide Figure 7, which shows the relationship between
probability and 1/λ. By taking 1/λ0 to infinity, one can see that when ∆ equals zero, our
algorithm degrades to the original Grover–Long algorithm. For ∆ equals to 0.8λ0, the
success rate of our algorithm exceeds 97%, and our algorithm has a success rate of more
than 90% when ∆ equals 1.6λ0, and a 78% success rate when ∆ equals 2.4λ0. Even if ∆
equals 3.2λ0, our algorithm still has success rates above 60%.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 6. The horizontal coordinate of the figure is the proportion λ, and the ordinate is infimum
bound of the probability of success. In the figure, we use different colors to mark different deviations
of ∆. One can see that when the deviation is zero, the success rate is 100% each time, which
corresponds to the standard Grover–Long algorithm. For the same proportion λ, the smaller the
deviation, the higher the success rate.

2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7. This figure shows that our algorithm has the robustness for the uncertainty of λ through
the relationship between the deviation and the infimum bound of the optimal success rate, where
horizontal axis is 1/λ and vertical axis is success rate, with different color curves representing
different deviations.
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In the worst-case scenario, one knows nothing about the rate M/N. Then, one has
to run the quantum counting algorithm to estimate M, which will have an uncertainty√

M. Our algorithm works well in this case, with a success rate above 96% and keeping
the total O

(√
N
)

query complexity as in Grover’s algorithms. After running the quantum

counting algorithm, one obtains the ratio with uncertainty, that is
(

M±
√

M
)

/N. Thus,

∆ = λ0/
√

M ≤ λ0. Plugging this value into Equation (24), the result shows that the success
rate of this algorithm is higher than 96%.

Our algorithm can be used as a subroutine in any case where amplitude amplification [8]
or Grover search are used [24–27] .

In summary, we propose a robust quantum search algorithm with both the advantage
of simple search operators, and high success rate over a wide range of M/N values.
Therefore, it provides many potential applications [28–32] in future quantum computing.
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