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Abstract: Uncertainty quantification for complex deep learning models is increasingly important
as these techniques see growing use in high-stakes, real-world settings. Currently, the quality of a
model’s uncertainty is evaluated using point-prediction metrics, such as the negative log-likelihood
(NLL), expected calibration error (ECE) or the Brier score on held-out data. Marginal coverage of
prediction intervals or sets, a well-known concept in the statistical literature, is an intuitive alternative
to these metrics but has yet to be systematically studied for many popular uncertainty quantification
techniques for deep learning models. With marginal coverage and the complementary notion of the
width of a prediction interval, downstream users of deployed machine learning models can better
understand uncertainty quantification both on a global dataset level and on a per-sample basis. In
this study, we provide the first large-scale evaluation of the empirical frequentist coverage properties
of well-known uncertainty quantification techniques on a suite of regression and classification tasks.
We find that, in general, some methods do achieve desirable coverage properties on in distribution
samples, but that coverage is not maintained on out-of-distribution data. Our results demonstrate
the failings of current uncertainty quantification techniques as dataset shift increases and reinforce
coverage as an important metric in developing models for real-world applications.

Keywords: uncertainty quantification; coverage; Bayesian methods; dataset shift

1. Introduction

Predictive models based on deep learning have seen a dramatic improvement in recent
years [1], which has led to widespread adoption in many areas. For critical, high-stakes
domains, such as medicine or self-driving cars, it is imperative that mechanisms are in
place to ensure safe and reliable operation. Crucial to the notion of safe and reliable
deep learning is the effective quantification and communication of predictive uncertainty
to potential end-users of a system. In medicine, for instance, understanding predictive
uncertainty could lead to better decision-making through improved allocation of hospital
resources, detecting dataset shift in deployed algorithms, or helping machine learning
models abstain from making a prediction [2]. For medical classification problems involving
many possible labels (i.e., creating a differential diagnosis), methods that provide a set of
possible diagnoses when uncertain are natural to consider and align more closely with
the differential diagnosis procedure used by physicians. The prediction sets and intervals
we propose in this work are an intuitive way to quantify uncertainty in machine learning
models and provide interpretable metrics for downstream, nontechnical users.

Commonly used approaches to quantify uncertainty in deep learning generally fall
into two broad categories: ensembles and approximate Bayesian methods. Deep ensem-
bles [3] aggregate information from multiple individual models to provide a measure of
uncertainty that reflects the ensembles’ agreement about a given data point. Bayesian
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methods offer direct access to predictive uncertainty through the posterior predictive distri-
bution, which combines prior knowledge with the observed data. Although conceptually
elegant, calculating exact posteriors of even simple neural models is computationally
intractable [4,5], and many approximations have been developed [6–12]. Though approxi-
mate Bayesian methods scale to modern sized data and models, recent work has questioned
the quality of the uncertainty provided by these approximations [4,13,14].

Previous work assessing the quality of uncertainty estimates has focused on calibration
metrics and scoring rules, such as the negative log-likelihood (NLL), expected calibration
error (ECE), and Brier score. Here we provide an alternative perspective based on the
notion of empirical coverage, a well-established concept in the statistical literature [15] that
evaluates the quality of a predictive set or interval instead of a point prediction. Informally,
coverage asks the question: If a model produces a predictive uncertainty interval, how often
does that interval actually contain the observed value? Ideally, predictions on examples
for which a model is uncertain would produce larger intervals and thus be more likely to
cover the observed value.

In this work, we focus on marginal coverage over a dataset D′ for the canonical α value
of 0.05, i.e., 95% prediction intervals. For a machine learning model that produces a 95%
prediction interval Ĉn(xn) based on the training dataset D, we consider what fraction of
the points in the dataset D′ have their true label contained in Ĉn(xn+1) for xn+1 ∈ D′. To
measure the robustness of these intervals, we also consider cases when the generating
distributions for D and D′ are not the same (i.e., dataset shift).

Figure 1 provides a visual depiction of marginal coverage over a dataset for two
hypothetical regression models. Throughout this work, we refer to “marginal coverage
over a dataset” as “coverage”.

Figure 1. An example of the coverage properties for two methods of uncertainty quantification. In
this scenario, each model produces an uncertainty interval for each xi, which attempts to cover the
true yi, represented by the red points. Coverage is calculated as the fraction of true values contained
in these regions, while the width of these regions is reported in terms of multiples of the standard
deviation of the training set yi values.

For a machine learning model that produces predictive uncertainty estimates (i.e.,
approximate Bayesian methods and ensembling), coverage encompasses both the aleatoric
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and epistemic uncertainties [16] produced by these models. In a regression setting, the
predictions from these models can be written as:

ŷ = f (x) + ε (1)

where epistemic uncertainty is captured in the f (x) component, while aleatoric uncertainty
is considered in the ε term. Since coverage captures how often the predicted interval of ŷ
contains the true value, it captures the contributions from both types of uncertainty.

A complementary metric to coverage is width, which is the size of the prediction
interval or set. In regression problems, we typically measure width in terms of the standard
deviation of the true label in the training set. As an example, an uncertainty quantification
procedure could produce prediction intervals that have 90% marginal coverage with an
average width of two standard deviations. For classification problems, width is simply the
average size of a prediction set. Width can provide a relative ranking of different methods,
i.e., given two methods with the same level of coverage, we should prefer the method that
provides intervals with smaller widths.

Contributions: In this study, we investigate the empirical coverage properties of
prediction intervals constructed from a catalog of popular uncertainty quantification tech-
niques, such as ensembling, Monte Carlo dropout, Gaussian processes, and stochastic
variational inference. We assess the coverage properties of these methods on nine regres-
sion tasks and two classification tasks with and without dataset shift. These tasks help us
make the following contributions:

• We introduce coverage and width over a dataset as natural and interpretable metrics
for evaluating predictive uncertainty for deep learning models.

• A comprehensive set of coverage evaluations on a suite of popular uncertainty quan-
tification techniques.

• An examination of how dataset shift affects these coverage properties.

2. Background and Related Work
2.1. Frequentist Coverage and Conformal Inference

Given features xi ∈ Rd and a response yi ∈ R for some dataset D = {(xi, yi)}n
i=1,

Barber et al. [17] define distribution-free marginal coverage in terms of a set Ĉn(x) and a level
α ∈ [0, 1]. The set Ĉn(x) is said to have coverage at the 1− α level if for all distributions P
such that (x, y) ∈ Rd ×R and (x, y) ∼ P, the following inequality holds:

P{yn+1 ∈ Ĉn(xn+1)} ≥ 1− α (2)

For new samples beyond the first n samples in the training data, there is a 1− α
probability of the true label of the test point being contained in the set Ĉn(xn+1). This set
can be constructed using a variety of procedures. For example, in the case of simple linear
regression, a prediction interval for a new point xn+1 can be constructed using a simple,
closed-form solution [15].

Marginal coverage is typically considered in the limit of infinite samples. However,
here we focus on marginal coverage over a dataset D. We assess, for a given model and
test set D, the empirical coverage by assessing whether yn+1 ∈ Ĉn(xn+1) ∀xn+1 ∈ D.
Additionally, we consider how marginal coverage changes as there is data distribution
shift such that a new dataset D′ has a different data generating distribution. Despite the
lack of infinite samples, this work establishes the motivation of considering coverage in
critical, high-risk situations, such as medicine.

An important and often overlooked distinction is that of marginal and conditional
coverage. In conditional coverage, one considers:

P{yn+1 ∈ Ĉn(xn+1)|xn+1 = x} ≥ 1− α (3)
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The probability has been conditioned on specific features. This is potentially a more
useful version of coverage to consider because one could make claims for specific instances
rather than over the broader distribution P. However, it is impossible in general to have
conditional coverage guarantees [17].

Conformal inference [18,19] is one statistical framework that can provide marginal
coverage under a certain set of assumptions (e.g., exchangeable data) that we do not
assume here [20]. In this work, we specifically seek to measure the empirical coverage
of the existing approximate Bayesian and alternative uncertainty quantification methods
with and without dataset shift. These methods are extremely popular in practice, but
nobody has yet considered the empirical coverage of their 95% posteriors. Conformal
methods are not part of the approximate Bayesian methods that we set out to analyze
in this work. There has been recent work on Bayes-optimal prediction with frequentist
coverage control [21] and conformal inference under dataset shift [22,23]. However, adding
the conformal framework to approximate Bayesian methods post hoc and measuring their
coverage properties could be interesting future work. An additional distinction between
our work and the broader conformal inference literature is that we do not aim to provide
finite sample coverage guarantees.

Another important point to consider is that while the notion of a confidence interval
may seem natural to consider in our analysis, confidence intervals estimate global statistics
over repeated trials of data and generally come with guarantees about how often these
statistics lie in said intervals. In our study, this is not the case. Although we estimate
coverage across many datasets, we are not aiming to estimate an unknown statistic of
the data. We would like to understand the empirical coverage properties of machine
learning models.

2.2. Obtaining Predictive Uncertainty Estimates

Several lines of work focus on improving approximations of the posterior of a Bayesian
neural network [6–12]. Yao et al. [4] provide a comparison of many of these methods and
highlight issues with common metrics of comparison, such as test-set log-likelihood and
RMSE. Good scores on these metrics often indicate that the model posterior happens
to match the test data rather than the true posterior [4]. Maddox et al. [24] developed
a technique to sample the approximate posterior from the first moment of stochastic
gradient descent iterates. Wenzel et al. [13] demonstrated that despite advances in these
approximations, in practice, approximate methods for the Bayesian modeling of deep
networks do not perform as well as theory would suggest.

Alternative methods that do not rely on estimating a posterior over the weights of a
model can also be used to provide uncertainty estimates. Gal and Ghahramani [16], for
instance, demonstrated that Monte Carlo dropout is related to a variational approximation
to the Bayesian posterior implied by the dropout procedure. Lakshminarayanan et al. [3]
used an ensemble of several neural networks to obtain uncertainty estimates. Guo et al. [25]
established that temperature scaling provides well-calibrated predictions on an i.i.d test set.
More recently, van Amersfoort et al. [26] showed that the distance from the centroids in an
RBF neural network yields high-quality uncertainty estimates. Liu et al. [27] also leveraged
the notion of distance (in the form of an approximate Gaussian process covariance function)
to obtain uncertainty estimates with their Spectral-normalized Neural Gaussian Processes.

2.3. Assessments of Uncertainty Properties under Dataset Shift

Ovadia et al. [14] analyzed the effect of dataset shift on the accuracy and calibration
of a variety of deep learning methods. Their large-scale empirical study assessed these
methods on standard datasets, such as MNIST, CIFAR-10, ImageNet, and other non-image-
based datasets. Additionally, they used translations, rotations, and corruptions of these
datasets [28] to quantify performance under dataset shift. They found stochastic variational
inference (SVI) to be promising on simpler datasets, such as MNIST and CIFAR-10, but
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more difficult to train on larger datasets. Deep ensembles had the most robust response to
dataset shift.

3. Methods

For features xi ∈ Rd and a response yi ∈ R or yi ∈ Z (for regression and classification,
respectively) for some dataset D = {(xi, yi)}n

i=1, we consider the prediction intervals or
sets Ĉn(x) in regression and classification settings, respectively. Unlike in the definitions of
marginal and conditional coverage, we do not assume that (x, y) ∼ P always holds true.
Thus, we consider the marginal coverage on a dataset D′ for some new test sets that may
have undergone dataset shift from the generating distribution of the training set D.

In both the regression and classification settings, we analyzed the coverage properties
of prediction intervals and sets of five different approximate Bayesian and non-Bayesian
approaches for uncertainty quantification. These include dropout [16,29], ensembles [3],
Stochastic Variational Inference [7,8,11,12,30], and last layer approximations of SVI and
dropout [31]. Additionally, we considered prediction intervals from linear regression and
the 95% credible interval of a Gaussian process with the squared exponential kernel as
baselines in regression tasks. For classification, we also considered temperature scaling [25]
and the softmax output of vanilla deep networks [28]. For more detail on our modeling
choices, see Appendix B.

3.1. Regression Methods and Metrics

We evaluated the coverage properties of these methods on nine large real-world re-
gression datasets used as a benchmark in Hernández-Lobato and Adams [6] and later Gal
and Ghahramani [16]. We used the training, validation, and testing splits publicly available
from Gal and Ghahramani [16] and performed nested cross-validation to find hyperpa-
rameters. On the training sets, we did 100 trials of a random search over hyperparameter
space of a multi-layer-perceptron architecture with an Adam optimizer [32] and selected
hyperparameters based on RMSE on the validation set.

Each approach required slightly different ways to obtain a 95% prediction interval.
For an ensemble of neural networks, we trained N = 40 vanilla networks and used the
2.5% and 97.5% quantiles as the boundaries of the prediction interval. For dropout and
last layer dropout, we made 200 predictions per sample and similarly discarded the top
and bottom 2.5% quantiles. For SVI, last layer SVI (LL SVI), and Gaussian processes we
had approximate variances available for the posterior, which we used to calculate the
prediction interval. We calculated 95% prediction intervals from linear regression using the
closed-form solution.

Then we calculated two metrics:

• Coverage: A sample is considered covered if the true label is contained in this 95%
prediction interval. We average over all samples in a test set to estimate a method’s
marginal coverage on this dataset.

• Width: The width is the average over the test set of the ranges of the 95% prediction
intervals.

Coverage measures how often the true label is in the prediction region, while width
measures how specific that prediction region is. Ideally, we would have high levels of
coverage with low levels of width on in-distribution data. As data becomes increasingly
out of distribution, we would like coverage to remain high while width increases to indicate
model uncertainty.

3.2. Classification Methods and Metrics

Ovadia et al. [14] evaluated model uncertainty on a variety of datasets publicly
available. These predictions were made with the five approximate Bayesian methods
described above, plus vanilla neural networks, with and without temperature scaling. We
focus on the predictions from MNIST, CIFAR-10, CIFAR-10-C, ImageNet, and ImageNet-C
datasets. For MNIST, we calculated coverage and width of model prediction intervals on
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rotated and translated versions of the test set. For CIFAR-10, Ovadia et al. [14] measured
model predictions on translated and corrupted versions of the test set from CIFAR-10-C [28]
(see Figure 2). For ImageNet, we only considered the coverage and width of prediction
sets on the corrupted images of ImageNet-C [28]. Each of these transformations (rotation,
translation, or any of the 16 corruptions) has multiple levels of shift. Rotations range from
15 to 180 degrees in 15 degrees increments. Translations shift images every 2 and 4 pixels
for MNIST and CIFAR-10, respectively (see Figure 3). Corruptions have five increasing
levels of intensity. Figure 2 shows the effects of the 16 corruptions in CIFAR-10-C at the
first, third, and fifth levels of intensity.

Figure 2. An example of the corruptions in CIFAR-10-C from [28]. The 16 different corruptions have
5 discrete levels of shift, of which 3 are shown here. The same corruptions were applied to ImageNet
to form the ImageNet-C dataset.

Figure 3. Several examples of the “rolling” translation shift that moves an image across an axis.

Given α ∈ (0, 1) and predicted probabilities p(yc|xi) from a model for all K classes
c ∈ {1, ..., K}, the 1− α prediction set S for a sample xi is the minimum sized set of classes
such that:

∑
c∈S

p(yc|xi) ≥ 1− α (4)

This results in a set of size ki, which consists of the largest probabilities in the full
probability distribution over all classes p(yc|xi) such that 1− α probability has been accu-
mulated. This inherently assumes that the labels are unordered categorical classes such
that including classes 1 and K does not imply that all classes between are also included in
the set S . Then we can define:

• Coverage: For each example in a dataset, we calculate the 1− α prediction set of the
label probabilities, then coverage is what fraction of these prediction sets contain the
true label.

• Width: The width of a prediction set is simply the number of labels in the set, |S|. We
report the average width of prediction sets over a dataset in our figures.

Although both calibration [25] and coverage can involve a probability over a model’s
output, calibration only considers the most likely label, and its corresponding probability,
while coverage considers the top-ki probabilities. In the classification setting, coverage
is more robust to label errors as it does not penalize models for putting probability on
similar classes.
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4. Results
4.1. Regression

Figure 4 plots the mean test set coverage and width for the regression methods we
considered averaged over the nine regression datasets. Error bars demonstrate that for
low-performing methods, such as ensembling, dropout, and LL dropout, there is high
variability in coverage levels and widths across the datasets.

We observe that several methods perform well across the nine datasets. In particu-
lar, LL SVI, SVI, and GPs all exceed the 95% coverage threshold on average, and linear
regression comes within the statistical sampling error of this threshold. Over the regression
datasets, we considered, LL SVI had the lowest mean width while maintaining at least 95%
coverage. For specific values of coverage and width for methods on a particular dataset,
see Tables A1 and A2 in Appendix A.

Figure 4 also demonstrates an important point that will persist through our results.
Coverage and width are directly related. Although high coverage can and ideally does
occur when width is low, we typically observe that high levels of coverage occur in
conjunction with high levels of width.

(a) Coverage and width across datasets (b) Detailed view

Figure 4. The mean coverage and widths of models’ prediction intervals average over the nine regression datasets we
considered (panel a). Error bars indicate the standard deviation for both coverage and width across all experiments. In
general, one would desire a model with the highest coverage above some threshold (here 95%) with a minimum average
test set width. Models in the upper left have the best empirical coverage. In (panel b), we observe that the four methods
which maintained 95% coverage did so because they had appropriately wide prediction intervals. LL SVI had the lowest
average width while maintaining at least 95% coverage.

4.2. MNIST

In the classification setting, we begin by calculating coverage and width for predictions
from Ovadia et al. [14] on MNIST and shifted MNIST data. Ovadia et al. [14] used a LeNet
architecture, and we refer to their manuscript for more details on their implementation.

Figure 5 shows how coverage and width co-vary as dataset shift increases. The
elevated width for SVI on these dataset splits indicate that the posterior predictions of
label probabilities were the most diffuse to begin with among all models. In Figure 5, all
seven models have at least 95% coverage with a 15-degree rotation shift. Most models do
not see an appreciable increase in the average width of the 95% prediction set, except for
SVI. The average width for SVI jumps to over 2 at 15 degrees rotation. As the amount of
shift increases, coverage decreases across all methods in a comparable way. In the rotation
shifts, we observe that coverage increases and width decreases after about 120 degrees of
shift. This is likely due to some of the natural symmetry of several digits (i.e., 0 and 8 look
identical after 180 degrees of rotation).

SVI maintains higher levels of coverage but with a compensatory increase in width.
In fact, there is a Pearson correlation of 0.9 between the width of the SVI prediction set
and the distance from the maximum shift of 14 pixels. The maximum shift occurs when
the original center of the image is broken across the edge as the image rolls to the right.
Figure 3’s right-most example is a case of the maximum shift of 14 pixels on a MNIST
digit. This strong correlation between width and severity of shift for some methods makes
the width of a prediction set at a fixed α level a natural proxy to detect dataset shift. For
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this simple dataset, SVI outperforms other models with regards to coverage and width
properties. It is the only model that has an average width that corresponds to the amount
of shift observed and provides the highest level of average coverage.

Figure 5. The effect of rotation and translation on coverage and width, respectively, for MNIST.
0 degrees or 0 pixels of shift indicate results on the test set of MNIST.

4.3. CIFAR-10

Next, we consider a more complex image dataset, CIFAR-10. Ovadia et al. [14] trained
20-layer and 50-layer ResNets. Figure 6 shows how the width of the prediction sets
increases as the translation shift increases. This shift “rolls” the image pixel by pixel such
that the right-most column in the image becomes the left-most image. Temperature scaling
and ensemble, in particular, have at least 95% coverage for every translation, although
all methods have high levels of coverage on average (though not exceeding 95%). We
find that this high coverage comes with increases in width as shift increases. Figure 6
shows that temperature scaling has the highest average width across all models and shifts.
Ensembling has the lowest width for the methods that maintain coverage of at least 95%
across all shifts.

All models have the same encouraging pattern of width increasing as shift increases
up to 16 pixels, then decreasing. As CIFAR-10 images are 28 pixels in width and height,
this maximum width occurs when the original center of the image is rolled over to and
broken by the edge of the image. This likely breaks common features that the methods have
learned for classification onto both sides of the image, resulting in decreased classification
accuracy and higher levels of uncertainty.

Between the models which satisfy 95% coverage levels on all shifts, ensemble models
have lower width than temperature scaling models. Under translation shifts on CIFAR-10,
ensemble methods perform the best given their high coverage and lower width.

Additionally, we consider the coverage properties of models on 16 different corrup-
tions of CIFAR-10 from Hendrycks and Gimpel [28]. Figure 7 shows coverage vs. width
over varying levels of shift intensity. Models that have more dispersed points to the right
have higher widths for the same level of coverage. An ideal model would have a cluster of
points above the 95% coverage line and be far to the left portion of each facet. For models
that have similar levels of coverage, the superior method will have points further to the left.

Figure 7 demonstrates that at the lowest shift intensity, ensemble models, dropout,
temperature scaling, and SVI were able to generally provide high levels of coverage on
most corruption types. However, as the intensity of the shift increases, coverage decreases.
Ensembles and dropout models have, for at least half of their 80 model-corruption eval-
uations, at least 95% coverage up to the third intensity level. At higher levels of shift
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intensity, ensembles, dropout, and temperature scaling consistently have the highest levels
of coverage. Although these higher-performing methods have similar levels of coverage,
they have different widths.

We also present a way to quantify the relative strength of each method over a specific
level of corruption. In Figure 8, for instance, we plot only the coverage and widths of
methods at the third level of corruption and use the fraction of the points of a particular
method that lie above the regression line. Methods that are more effective are providing
higher coverage levels at lower widths and will have more points above this regression line.

For each of the five corruption levels, we calculated a regression line that modeled
coverage as a function of width. Figure 9 presents the fraction of marginal coverages on
various CIFAR-10-C datasets for each method that exceeded the linear regression prediction.
The larger the fraction, the better the marginal coverage of a method given a prediction
interval/set of a particular width. We observe that dropout and ensembles have a strong
relative performance to the other methods across all five levels of shift.

Figure 6. The effect of translation shifts on coverage and width in CIFAR-10 images. Coverage
remains robust across all pixel shifts while width increases. The shading of points indicates whether
95% coverage was maintained when translated. In general, models with every point shaded maintain
high levels of coverage. Therefore, the models with the best empirical coverage properties are the
lowest width models such that coverage is maintained.

Figure 7. The effect of corruption intensity on coverage levels vs. width in CIFAR-10-C. Each facet
panel represents a different corruption level, while points are the coverage of a model on one of
16 corruptions. Each facet has 80 points per method since 5 iterations were trained per method. For
methods with points at the same coverage level, the superior method is to the left as it has a lower
width. Please see Figures 8 and 9 for the additional synthesis of these results.
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Figure 8. The coverage and width of ensemble and non-ensemble methods at the fifth level out of five
levels of corruption in CIFAR-10-C. The black line is a simple linear regression of coverage against
width. We then can consider the fraction of points for a particular method (in this case, ensembling)
that are above the regression line (see Figures 9 and 10). The higher the fraction of these points above
the regression line, the better the method is at providing higher coverage at a relatively smaller width
than other methods.

Figure 9. The fraction of marginal coverage levels achieved on CIFAR-10-C corruptions by our
assessed methods that are above a regression line of coverage vs. width at a specific corruption level.
Methods that have better coverage levels at the same width will have a higher fraction of points
above the regression line (see Figure 8 for an example). At low levels of shift, dropout, ensemble, SVI,
and temperature scaling have strictly better relative performance. As shift increases, poor coverage
levels in general cause models to have more parity.

Finally, we compared the relative rank order of these methods across coverage, as
well as two common metrics in uncertainty quantification literature: Brier score and ECE.
Figure 11 shows that the rankings are similar across methods. In particular, coverage has a
nearly identical pattern to ECE, with changes only in the lower ranking methods.



Entropy 2021, 23, 1608 11 of 17

Figure 10. The fraction of marginal coverage levels achieved on ImageNet-C corruptions by our
assessed methods that are above a regression line of coverage vs. width at a specific corruption level.
Methods that have better coverage levels at the same width will have a higher fraction of points
above the regression line (see Figure 8 for an example). Ensembling produces the best coverage levels
given specific widths across all levels of corruption. However, at a higher level of dataset shift, there
is more parity between methods.

Figure 11. The ranks of each method’s performance with respect to each metric we consider on CIFAR-10-C. For Brier Score
and ECE, lower is better, while for coverage, higher is better. We observe that all three metrics have a generally consistent
ordering, with coverage closely corresponding to the rankings of ECE.

4.4. ImageNet

Finally, we analyze coverage and width on ImageNet and ImageNet-C from Hendrycks
and Gimpel [28]. Figure A1 shows similar coverage vs. width plots to Figure 7. We find that
over the 16 different corruptions at 5 levels, ensembles, temperature scaling, and dropout
models had consistently higher levels of coverage. Unsurprisingly, Figure A1 shows that
these methods have correspondingly higher widths. Figure 10 reports the relative perfor-
mance of each method across corruption levels. Ensembles had the highest fraction of
marginal coverage on ImageNet-C datasets above the regression lines at each corruption
level. Dropout, LL dropout, and temperature scaling all had similar performances, while
LL SVI had a much lower fraction of marginal coverage above the regression lines. None of
the methods have a commensurate increase in width to maintain the 95% coverage levels
seen on in-distribution test data as dataset shift increases.

5. Discussion

We have provided the first comprehensive empirical study of the frequentist-style
coverage properties of popular uncertainty quantification techniques for deep learning
models. In regression tasks, LL SVI, SVI, and Gaussian processes all had high levels
of coverage across nearly all benchmarks. LL SVI, in particular, had the lowest widths
amongst methods with high coverage. SVI also had excellent coverage properties across
most tasks with tighter intervals than GPs and linear regression. In contrast, the methods
based on ensembles and Monte Carlo dropout had significantly worse coverage due to
their overly confident and tight prediction intervals.
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In the classification setting, all methods showed very high coverage in the i.i.d setting
(i.e., no dataset shift), as coverage is reflective of top-1 accuracy in this scenario. On MNIST
data, SVI had the best performance, maintaining high levels of coverage under slight
dataset shift and scaling the width of its prediction intervals more appropriately as shift
increased relative to other methods. On CIFAR-10 data and ImageNet, ensemble models
were superior. They had the highest coverage relative to other methods, as demonstrated
in Figures 9 and 10.

An important consideration throughout this work is the choice of hyperparameters in
most all of the analyzed methods makes a significant impact on the uncertainty estimates.
We set hyperparameters and optimized model parameters according to community best
practices in an attempt to reflect what a “real-world” machine learning practitioner might
do: selecting hyperparameters based on minimizing validation loss over nested cross-
validation. Our work is a measurement of the empirical coverage properties of these
methods as one would typically utilize them, rather than an exploration of how pathological
hyperparameters can skew uncertainty estimates to 0 or to infinity, while this is an inherent
limitation in the applicability of our work to every context, our sensible choices will provide
a relevant benchmark for models in practice.

Of particular note is that the width of a prediction interval or set typically correlated
with the degree of dataset shift. For instance, when the translation shift is applied to MNIST,
both prediction set width and dataset shift is maximized at around 14 pixels. There is a 0.9
Pearson correlation between width and shift. Width can serve as a soft proxy of dataset
shift and potentially detect shift in real-world scenarios.

Simultaneously, the ranks of coverage, Brier score, and ECE are all generally con-
sistent. However, coverage is arguably the most interpretable to downstream users of
machine learning models. Clinicians, for instance, may not have the technical training
to have an intuition about what specific values of Brier score or ECE mean in practice,
while coverage and width are readily understandable. Manrai et al. [33] already demon-
strated clinicians’ general lack of intuition about the positive predictive value, and these
uncertainty quantification metrics are more difficult to internalize than PPV.

Moreover, proper scoring rules (e.g., Brier score and negative log-likelihood) can be
misleading under model misspecification [34]. Negative log-likelihood, specifically, suffers
from the potential impact of a few points with low probability. These points can contribute
near-infinite terms to NLL that distort interpretation. In contrast, marginal coverage over a
dataset is less sensitive to the impacts of outlying data.

In summary, we find that popular uncertainty quantification methods for deep learn-
ing models do not provide good coverage properties under moderate levels of dataset shift.
Although the width of prediction regions do increase under increasing amounts of shift,
these changes are not enough to maintain the levels of coverage seen on i.i.d data. We
conclude that the methods we evaluated for uncertainty quantification are likely insuffi-
cient for use in high-stakes, real-world applications, where dataset shift is likely to occur.
However, marginal coverage of a prediction interval or set is a natural and intuitive metric
to quantify uncertainty. The width of a prediction interval/set is an additional tool that
captures dataset shift and provides additional interpretable information to downstream
users of machine learning models.
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Appendix A. Additional Results

Appendix A.1. Regression Tables

Table A1. The average coverage of six methods across nine datasets with the standard error over 20 cross-validation folds
in parentheses.

Dataset | Method Linear Regression GP Ensemble Dropout LL Dropout SVI LL SVI

Boston Housing 9.461× 10−1

(5.61× 10−3)
9.765× 10−1

(5.05× 10−3)
5.912× 10−1

(1.43× 10−2)
6.02× 10−1

(1.64× 10−2)
1.902× 10−1

(2.01× 10−2)
9.434× 10−1

(6.04× 10−3)
9.3399× 10−1

(8.48× 10−3)

Concrete 9.437× 10−1

(2.68× 10−3)
9.67× 10−1

(3.02× 10−3)
5.854× 10−1

(1.04× 10−2)
7.2882× 10−1

(1.17× 10−2)
9.32× 10−2

(1.75× 10−2)
9.581× 10−1

(3.61× 10−3)
9.443× 10−1

(6.72× 10−3)

Energy 8.957× 10−1

(4.66× 10−3)
8.857× 10−1

(6.96× 10−3)
8.669× 10−1

(5.26× 10−3)
8.013× 10−1

(2.00× 10−2)
2.597× 10−1

(2.75× 10−2)
9.773× 10−1

(3.02× 10−3)
9.938× 10−1

(2.99× 10−3)

Kin8nm 9.514× 10−1

(1.20× 10−3)
9.705× 10−1

(1.53× 10−3)
6.706× 10−1

(4.43× 10−3)
8.037× 10−1

(8.15× 10−3)
1.984× 10−1

(1.36× 10−2)
9.618× 10−1

(2.63× 10−3)
9.633× 10−1

(1.36× 10−3)

Naval Propulsion Plant 9.373× 10−1

(1.59× 10−3)
9.994× 10−1

(2.12× 10−4)
8.036× 10−1

(5.99× 10−3)
9.212× 10−1

(6.76× 10−3)
2.683× 10−1

(2.51× 10−2)
9.797× 10−1

(1.88× 10−3)
9.941× 10−1

(1.25× 10−3)

Power Plant 9.646× 10−1

(1.14× 10−3)
9.614× 10−1

(1.26× 10−3)
4.008× 10−1

(1.12× 10−2)
4.32× 10−1

(1.47× 10−2)
1.138× 10−1

(1.41× 10−2)
9.626× 10−1

(1.13× 10−3)
9.623× 10−1

(1.60× 10−3)

Protein Tertiary Structure 9.619× 10−1

(4.71× 10−4)
9.59× 10−1

(4.72× 10−4)
4.125× 10−1

(2.98× 10−3)
3.846× 10−1

(1.36× 10−2)
1.182× 10−1

(1.35× 10−2)
9.609× 10−1

(2.27× 10−3)
9.559× 10−1

(1.72× 10−3)

Wine Quality Red 9.425× 10−1

(2.32× 10−3)
9.472× 10−1

(3.28× 10−3)
3.919× 10−1

(1.18× 10−2)
3.556× 10−1

(1.83× 10−2)
1.616× 10−1

(7.45× 10−3)
9.059× 10−1

(8.19× 10−3)
8.647× 10−1

(8.77× 10−3)

Yacht Hydrodynamics 9.449× 10−1

(7.86× 10−3)
9.726× 10−1

(6.73× 10−3)
9.161× 10−1

(7.38× 10−3)
3.871× 10−1

(2.82× 10−2)
2.081× 10−1

(2.54× 10−2)
9.807× 10−1

(6.97× 10−3)
9.899× 10−1

(6.03× 10−3)

Table A2. The average width of the posterior prediction interval of six methods across nine datasets with the standard error
over 20 cross-validation folds in parentheses. Width is reported in terms of standard deviations of the response variable in
the training set.

Dataset | Method Linear Regression GP Ensemble Dropout LL Dropout SVI LL SVI

Boston Housing 2.0424× 100

(6.87× 10−3)
1.8716× 100

(1.17× 10−2)
4.432× 10−1

(7.82× 10−3)
6.882× 10−1

(2.19× 10−2)
1.855× 10−1

(2.05× 10−2)
1.301× 100

(2.56× 10−2)
1.148× 100

(2.36× 10−2)

Concrete 2.4562× 100

(2.22× 10−3)
2× 100

(3.32× 10−3)
4.776× 10−1

(9.03× 10−3)
1.0342× 100

(1.79× 10−2)
1.028× 10−1

(2.04× 10−2)
1.5116× 100

(1.72× 10−2)
1.2293× 100

(1.41× 10−2)

Energy 1.144× 100

(2.29× 10−3)
1.0773× 100

(2.64× 10−3)
2.394× 10−1

(2.56× 10−3)
5.928× 10−1

(1.22× 10−2)
1.1417× 10−1

(1.61× 10−2)
8.426× 10−1

(1.73× 10−2)
7.974× 10−1

(1.95× 10−2)

Kin8nm 3.0039× 100

(9.76× 10−4)
2.3795× 100

(7.02× 10−3)
5.493× 10−1

(2.37× 10−3)
1.2355× 100

(1.37× 10−2)
2.024× 10−1

(1.22× 10−2)
1.6697× 100

(7.75× 10−3)
1.2624× 100

(2.99× 10−3)

Naval Propulsion Plant 1.5551× 100

(7.12× 10−4)
3.403× 10−1

(1.00× 10−2)
6.048× 10−1

(4.86× 10−3)
1.1593× 100

(6.45× 10−3)
2.281× 10−1

(1.83× 10−2)
1.3064× 100

(1.38× 10−1)
4.88× 10−1

(5.44× 10−3)

Power Plant 1.0475× 100

(7.09× 10−4)
9.768× 10−1

(9.63× 10−4)
2.494× 10−1

(6.72× 10−3)
3.385× 10−1

(1.69× 10−2)
9.18× 10−2

(9.06× 10−3)
1.0035× 100

(1.88× 10−3)
9.818× 10−1

(3.64× 10−3)

Protein Tertiary Structure 3.3182× 100

(3.21× 10−4)
3.2123× 100

(3.47× 10−3)
6.804× 10−1

(3.77× 10−3)
9.144× 10−1

(1.41× 10−2)
3.454× 10−1

(1.99× 10−2)
2.9535× 100

(3.82× 10−2)
2.6506× 100

(2.20× 10−2)

Wine Quality Red 3.1573× 100

(1.82× 10−3)
3.1629× 100

(4.07× 10−3)
7.763× 10−1

(1.31× 10−2)
7.841× 10−1

(2.91× 10−2)
3.481× 10−1

(1.61× 10−2)
2.7469× 100

(2.72× 10−2)
2.3597× 100

(2.70× 10−2)

Yacht Hydrodynamics 2.3636× 100

(2.89× 10−3)
1.6974× 100

(7.57× 10−3)
4.475× 10−1

(9.76× 10−3)
5.443× 10−1

(2.22× 10−2)
1.081× 10−1

(9.83× 10−3)
6.57× 10−1

(3.54× 10−2)
6.9× 10−1

(3.81× 10−2)

https://github.com/beamlab-hsph/coverage-quantification
https://github.com/beamlab-hsph/coverage-quantification
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Appendix A.2. Classification Results

Table A3. MNIST average coverage and width for the test set, rotation shift, and translation shift.

Method Mean Test Set
Coverage (SE)

Mean Test Set
Width (SE)

Mean Rotation Shift
Coverage (SE)

Mean Rotation
Shift Width (SE)

Mean Translation
Shift Coverage (SE)

Mean Translation
Shift Width (SE)

Dropout 9.987× 10−1

(6.32× 10−5)
1.06× 100

(1.38× 10−4)
5.519× 10−1

(2.91× 10−2)
2.3279× 100

(6.64× 10−2)
5.333× 10−1

(3.54× 10−2)
2.3527× 100

(6.34× 10−2)

Ensemble 9.9984× 10−1

(7.07× 10−5)
1.0424× 100

(2.07× 10−4)
5.157× 10−1

(3.11× 10−2)
2.0892× 100

(5.44× 10−2)
5.424× 10−1

(3.33× 10−2)
2.3276× 100

(6.66× 10−2)

LL Dropout 9.985× 10−1

(1.05× 10−4)
1.0561× 100

(1.89× 10−3)
5.52× 10−1

(2.93× 10−2)
2.3162× 100

(6.73× 10−2)
5.388× 10−1

(3.52× 10−2)
2.3658× 100

(6.66× 10−2)

LL SVI 9.984× 10−1

(1.14× 10−4)
1.0637× 100

(1.65× 10−3)
5.746× 10−1

(2.77× 10−2)
2.6324× 100

(8.41× 10−2)
5.35× 10−1

(3.51× 10−2)
2.3294× 100

(6.46× 10−2)

SVI 9.9997× 10−1

(7.35× 10−5)
1.5492× 100

(2.19× 10−2)
7.148× 10−1

(2.06× 10−2)
4.8549× 100

(1.44× 10−1)
7.54× 10−1

(1.96× 10−2)
5.6803× 100

(1.99× 10−1)

Temp scaling 9.986× 10−1

(1.36× 10−4)
1.0642× 100

(1.98× 10−3)
5.243× 10−1

(3.10× 10−2)
2.2683× 100

(6.17× 10−2)
5.375× 10−1

(3.33× 10−2)
2.347× 100

(6.21× 10−2)

Vanilla 9.972× 10−1

(1.16× 10−4)
1.032× 100

(9.06× 10−4)
4.715× 10−1

(3.28× 10−2)
1.7492× 100

(3.78× 10−2)
4.798× 10−1

(3.50× 10−2)
1.801× 100

(3.84× 10−2)

Table A4. CIFAR-10 average coverage and width for the test set and translation shift.

Method Mean Test Set
Coverage (SE)

Mean Test Set
Width (SE)

Mean Translation
Shift Coverage (SE)

Mean Translation
Shift Width (SE)

Dropout 9.8883× 10−1

(3.79× 10−4)
1.5778× 100

(2.68× 10−3)
9.696× 10−1

(2.48× 10−3)
2.0709× 100

(5.11× 10−2)

Ensemble 9.922× 10−1

(3.08× 10−4)
1.4925× 100

(1.52× 10−3)
9.806× 10−1

(1.65× 10−3)
1.9246× 100

(4.49× 10−2)

LL Dropout 9.628× 10−1

(1.40× 10−3)
1.3007× 100

(3.99× 10−3)
9.184× 10−1

(5.59× 10−3)
1.6678× 100

(4.16× 10−2)

LL SVI 9.677× 10−1

(1.10× 10−3)
1.2585× 100

(2.60× 10−3)
9.29× 10−1

(4.55× 10−3)
1.5044× 100

(2.61× 10−2)

SVI 9.789× 10−1

(6.41× 10−4)
1.5579× 100

(6.31× 10−3)
9.543× 10−1

(2.89× 10−3)
1.9286× 100

(3.69× 10−2)

Temp scaling 9.871× 10−1

(3.51× 10−4)
1.5987× 100

(1.19× 10−2)
9.707× 10−1

(1.97× 10−3)
2.1266× 100

(5.30× 10−2)

Vanilla 9.686× 10−1

(6.06× 10−4)
1.2611× 100

(3.90× 10−3)
9.296× 10−1

(4.36× 10−3)
1.5064× 100

(2.58× 10−2)

Table A5. The mean coverage and widths on the test set of CIFAR-10, as well as on the mean coverage and width averaged
over 16 corruptions and 5 intensities.

Method Mean Test Set
Coverage (SE)

Mean Test Set
Width (SE)

Mean Corruption
Coverage (SE)

Mean Corruption
Width (SE)

Dropout 9.87× 10−1

(3.72× 10−4)
1.578× 100

(2.68× 10−3)
8.86× 10−1

(6.34× 10−3)
2.313× 100

(3.03× 10−2)

Ensemble 9.92× 10−1

(9.70× 10−5)
1.492× 100

(1.52× 10−3)
9.11× 10−1

(5.16× 10−3)
2.425× 100

(3.69× 10−2)

LL Dropout 9.60× 10−1

(8.77× 10−4)
1.301× 100

(3.99× 10−3)
8.15× 10−1

(7.48× 10−3)
1.699× 100

(1.53× 10−2)

LL SVI 9.64× 10−1

(6.64× 10−4)
1.258× 100

(2.60× 10−3)
8.17× 10−1

(7.52× 10−3)
1.781× 100

(2.15× 10−2)

SVI 9.76× 10−1

(5.10× 10−4)
1.558× 100

(6.31× 10−3)
8.81× 10−1

(5.45× 10−3)
2.161× 100

(2.32× 10−2)

Temp Scaling 9.85× 10−1

(4.54× 10−4)
1.599× 100

(1.19× 10−2)
8.99× 10−1

(4.85× 10−3)
2.636× 100

(3.86× 10−2)

Vanilla 9.64× 10−1

(6.36× 10−4)
1.261× 100

(3.90× 10−3)
8.23× 10−1

(7.10× 10−3)
1.790× 100

(2.16× 10−2)
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Table A6. The mean coverage and widths on the test set of ImageNet, as well as on the mean coverage and width averaged
over 16 corruptions and 5 intensities.

Method Mean Test Set Coverage Mean Test Set Width Mean Corruption Coverage (SE) Mean Corruption Width (SE)

Dropout 9.613× 10−1 1.32699× 101 8.579× 10−1 (1.61× 10−2) 8.75784× 101 (7.80× 100)
Ensemble 9.701× 10−1 1.30613× 101 9.231× 10−1 (7.13× 10−3) 1.053608× 102 (8.57× 100)
LL Dropout 9.552× 10−1 1.07707× 101 8.688× 10−1 (1.18× 10−2) 8.80326× 101 (8.04× 100)
LL SVI 9.327× 10−1 1.05624× 101 7.77× 10−1 (1.76× 10−2) 6.59982× 101 (5.01× 100)
Temp Scaling 9.613× 10−1 1.54811× 101 8.829× 10−1 (1.10× 10−2) 1.051409× 102 (8.43× 100)
Vanilla 9.525× 10−1 1.10255× 101 8.529× 10−1 (1.27× 10−2) 8.0687× 101 (7.16× 100)

Figure A1. The effect of corruption intensity on coverage levels vs. width in ImageNet-C. Each facet
panel represents a different corruption level, while points are the coverage of a model on one of 16
corruptions. Each facet has 16 points per method, as only 1 iteration was trained per method. For
methods equal coverage, the superior method is to the left as it has a lower width.

Appendix B. Hyperparameter Search and Model Details

A brief summary of the models utilized in this work:

• Vanilla networks in the style of [1], which are feedforward networks that were simply
fully connected dense layers. Since there is no element of variability in the model’s
prediction for the same sample, we could not consider the coverage of vanilla networks
in regression tasks. They simply produce a single-point estimate given the same
sample.

• Temperature Scaling was considered in classification tasks. This is a post-training
calibration measure using a validation set as in [25].

• Dropout as in [16]. Feedforward networks had Monte Carlo dropout in between their
dense layers. At test time, dropout still applied. In our work, we sampled networks
200 times to obtain a distribution of predictions.

• Ensembles as found in [3]. We took the outputs from 40 independently-trained vanilla
networks, and these formed a predictive distribution.

• Stochastic Variational Inference (SVI) models, such as those of [7,8,11,30]. SVI mod-
els had difficult convergence properties in our experience and required the use of
empirical Bayes for prior standard deviations.

• Last layer methods We considered LL dropout and LL SVI where dropout and mean-
field stochastic variational inference were applied to only the last layer of an otherwise
vanilla network, respectively.

• Gaussian Processes We implement sparse Gaussian processes [35] for regression with
a RBF kernel and 10 inducing points.

• Linear regression We use the standard lm function in R to obtain prediction intervals
for linear regression.

All models were implemented in Keras, with the exception of GPs (GPy) and linear
regression (R). Hyperparameters were found for each model over 50 trials with a random
sampling of the values described below.
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Table A7. The hyperparameters considered in our search for vanilla, dropout, ensemble, SVI, and LL
models.

Hyperparameter Range Sampling Strategy
Dropout rate [0, 0.5] Uniform
Number of Hidden
Layers {1,2,3} Uniform
Layer Width {16, 32, 48, 64} Uniform
Learning Rate [1× 10−4, 1× 10−1] Log uniform
Batch Size 32 Fixed
Max Epochs 50 Fixed

We performed our hyperparameter search as part of K-fold cross validation. In
regression tasks, we had 20 folds. On the larger split of each fold, we split the data 80/20
to form train/val splits for hyperparameter evaluation. In classification tasks, we were
able to reuse the published predictions from these models from [14] for each sample in the
held-out test set.
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