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Abstract: In practice, time series forecasting involves the creation of models that generalize data from
past values and produce future predictions. Moreover, regarding financial time series forecasting, it
can be assumed that the procedure involves phenomena partly shaped by the social environment.
Thus, the present work is concerned with the study of the use of sentiment analysis methods in
data extracted from social networks and their utilization in multivariate prediction architectures that
involve financial data. Through an extensive experimental process, 22 different input setups using
such extracted information were tested, over a total of 16 different datasets, under the schemes of
27 different algorithms. The comparisons were structured under two case studies. The first concerns
possible improvements in the performance of the forecasts in light of the use of sentiment analysis
systems in time series forecasting. The second, having as a framework all the possible versions
of the above configuration, concerns the selection of the methods that perform best. The results,
as presented by various illustrations, indicate, on the one hand, the conditional improvement of
predictability after the use of specific sentiment setups in long-term forecasts and, on the other, a
universal predominance of long short-term memory architectures.

Keywords: time series forecasting; machine learning; financial time series; sentiment analysis;
FinBERT; multivariate; multistep; regression; Twitter

1. Introduction

The observation of the evolution of various time-dependent phenomena, as well as
the decision-making based on structures predicting their future behavior have greatly
shaped the course of human history. The emergence of the need of the human species
for knowledge of the possible future outcomes of various events could only lead to the
development and use of methods aimed at extracting reliable predictions.Their success,
however, is not necessarily inferred from the emergence of need.The research field of
predicting sequential and time-dependent phenomena is called time series forecasting.

Specifically, time series forecasting is the process in which the future values of a vari-
able describing features of a phenomenon are predicted based on existing historical data
using a specific fit abstraction, i.e., a model. All such time-dependent features containing
past observations are represented as time series. The latter then constitute the input of each
forecasting procedure. Time series are sequences of time-dependent observations extracted
at specific time points used as their indexes. The sampling rate varies according to the
requirements and the nature of the problem. In addition, depending on the number of
attributes, i.e., the dependent variables describing observations recorded sequentially over
the predefined time steps, whose values are collected at any given time, a distinction is
made between univariate and multivariate time series [1]. Such methods find application
in a wide range of time-evolving problems. Some examples include rainfall forecasts [2],
gold [3] or stock price market predictions [4], as well as forecasting the evolution of epi-
demics such as the current COVID-19 pandemic [5,6]. The domain has flourished in recent
decades, as the demand for better and better models remains increasingly urgent, as their
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use can greatly contribute to the optimization of decision-making and thus lead to better
results in various areas of human interest.

In terms of forecasting procedures, during the first decades of development, methods
derived from statistics dominated the field. This was based on the reasonable assumption
that, given the nature of the problem, knowing the statistical characteristics of time series
is the key to understanding their structure, and therefore predicting their future behavior.
Currently, these methods—although still widely used—have been largely surpassed in
performance by methods derived from the field of machine learning. Numerous such
predictive schemes are based on regression models [7,8], while recently, deep-machine-
learning architectures such as long short-term memory (LSTM) [9,10] are gaining ground.
In addition, advances in natural language processing in conjunction with the fact that
many time-dependent phenomena are influenced by public opinion lead to the hypothesis
that the use of linguistic modeling containing information related to the phenomenon
in question could improve the performance of forecasting procedures. Data containing
relevant information is now easy to retrieve due to the rapid growth of the World Wide
Web initially and social networks in recent years, and it is therefore reasonable to examine
the utilization of such textual content in predictive schemes.

This work is a continuation of a previous comparative study of statistical methods for
univariate time series forecasting [11], which now focuses on methods belonging to the
category of machine learning. Comparisons involve results from an extended experimental
procedure regarding mainly a wide range of multivariate-time-series-forecasting setups,
which include sentiment scores, tested in the field of financial time series forecasting.
Below, the presentation of the results is grouped as follows: Two distinct case studies
were investigated, the first of which concerns the use of sentiment analysis in time series
forecasting, while the second contains the comparison of different time-series-prediction
methods, all of which were fit in datasets containing sentiment score representations. In
each of these two scenarios, the evaluation of the results was performed by calculating six
different metrics. Three forecast scenarios were implemented: single-day, seven-day, and
fourteen-day forecasts, for each of which the results are presented separately.

2. Related Work

The field of time series forecasting constitutes—as already mentioned—a very active
area of research. Growing demand for accurate forecasts has been consistently established
over the last few decades for many real-world tasks. Various organizations, from companies
and cooperatives to governments, frequently rely on the outcomes of forecasting models for
their decisions to reduce risk and improvement. A constant pursuit of increasing predictive
accuracy and robustness has led the scientific community in several different research
directions. In this context, and provided there is a strong correlation between the views
of individuals and the course of specific sequential and time-dependent phenomena, it
is both reasonable and expected to approach such problems by intersecting the field of
forecasting with that of opinion mining [12,13]. Thus, there are several approaches that
focus on trying to integrate information extracted using sentiment analysis techniques in
predictive scenarios. This section tracks the relevant literature, focusing on works that
investigate the aforementioned approach.

Time-series-forecasting problems can be reduced to two broad categories. The first
one consists of tasks in which the general future behavior of a time series must be predicted.
Such problems can be considered classification problems. On the other hand, when the
forecast outputs the specific future values that a time series is expected to take, then the
whole process can be reframed as a regression task. Regarding the first class of problems,
the relevant literature contains a number of quite interesting works. In [14], a novel method
that estimates social attention to stocks by sentiment analysis and influence modeling was
proposed to predict the movement of the financial market when the latter is formalized as
a classification problem. Five well-known classifiers in Chinese stock data were used to
test the efficiency of the method. For the same purpose, a traditional ARIMA model was
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used, together with information derived from the analysis of Twitter data [15], strongly
suggesting that the exploitation of public opinion enhances the possibility of correctly
predicting the rise or fall of stock markets. Similar results were achieved in [16], where the
application of text-mining technology to quantify the unstructured data containing social
media views on stock-related news into sentiment scores increased the performance of the
logistic regression algorithm. A more sophisticated approach that employs deep sentiment
analysis was used to improve the performance of an SVM-based method in [17], indicating
once again that sentiment features have a beneficial effect on the prediction.

Predicting the actual future values of a time series, on the other hand, is a task far
more difficult than predicting merely the direction of a time series. Therefore, there are a
significant number of studies directed towards this research area as well. In [18], different
text preprocessing strategies for correlating the sentiment scores from Twitter scraped
textual data with Bitcoin prices during the COVID-19 pandemic were compared, to identify
the optimum preprocessing strategy that would prompt machine learning prediction
models to achieve better accuracy. Twitter data were also used in [19] to predict the future
value of the SSECI (Shanghai Stock Exchange Composite Index) by applying a NARX time
series model combined with a weighted sentiment representation extracted from tweets.
In [20], given that the experimental procedure involved both data related only to a certain
stock, as well as a small number of compared algorithms, sentiment analysis of RSS news
feeds combined with the information of SENSEX points was used to improve the accuracy
of stock market prediction, indicating that the use of the sentiment polarity improves the
prediction.

As recent research work has indicated, given that there is a series of applications where
deep-learning methods tend to perform better than either the traditional statistical [21]
and the machine-learning-based ones [22], it is expected that such methods would also
be used along with sentiment analysis techniques to achieve even greater accuracy in
forecasting tasks. In [23], an improved LSTM model with an attention mechanism was
used on AAPL (NASDAQ ticker symbol for Apple Inc) stock data, after adopting empirical
modal decomposition (EMD) on complex sequences of stock price data, utilizing investors’
sentiment to forecast stocks, while in [24], the experimental procedure over six different
datasets indicated that the fusion of network public opinion and realistic transaction data
can significantly improve the performance of LSTMs. Both works demonstrated that the
use of sentiment modeling improves the performance of LSTMs, but the amount of data
used does not seem to be sufficient to substantiate a clear and general conclusion.

In addition, in several works [25,26] ensemble-based techniques have also been uti-
lized together with sentiment analysis for time series forecasting in order to exploit the
benefits of ensemble theory. In [27], an ensemble method, formed by combining LSTMs
and ARIMA models under a feedforward neural network scheme, was proposed in order
to predict future values of stock prices, utilizing sentiment analysis on data provided by
scraping news related to the stock from the Internet. Moreover, an ensemble scheme that
combines two well-known machine-learning algorithms, namely support vector machine
(SVM) and random forest, utilizing information related to the public’s opinion about certain
companies by incorporating sentiment analysis by the use of a trained word2vec model
was proposed in [28]. Despite the results taken from the experimental procedure indicating
that there were cases in which the ensemble model performed better than its constituents,
the overall performance of the model depended on both the volume and the nature of the
data available.

In terms of extended studies that focus on the extensive comparison of several different
methods, given that multiple sentiment analysis schemes are also incorporated to predict
the future values of time series, to our knowledge, only a relatively more limited number
of works seem to exist in the current literature. Some of them are listed below. Various
traditional ML algorithms, as well as LSTM architectures were tested over financial data by
exploiting the use of sentiment analysis on Twitter data in [29], while a survey of articles
that focused on methods that touch up the predictions of stock market time series using
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financial news from Twitter, along with a discussion regarding the improvement of their
performance by speeding up the computation, can be found in [30]. Given the above, the
present work aspires to constitute a credible insight into the subject, specifically regarding
the behavior of a large number of forecasting methods in light of their integration with
sentiment analysis techniques.

3. Experimental Procedure

In the extensive series of experiments performed, a total of 27 algorithms were tested
for their performance in relation to a corresponding multivariate dataset consisting, on
the one hand, of the time series containing the daily closing values of each stock as a fixed
input component and, on the other, of one of a plurality of 22 different sentiment score
setups. A total of 16 initial datasets of stocks containing such closing price values from
a period of three years, starting from 2 January 2018 to 24 December 2020, were used.
Three different sentiment analysis methods were utilized to generate sentiment scores
from linked textual data extracted from the Twitter microblogging platform. Moreover, a
seven-day rolling mean strategy was applied to the sentiment scores, leading to six distinct
time-dependent features. A number of 22 combinations, per algorithm, of distinct input
components, from the calculated sentiment scores together with the closing values, were
tested under the multivariate forecasting scheme. Thus, given the aforementioned number
of features and setups, a total of 16 datasets× 22 combinations× 27 algorithm× 3 shi f ts =
28,512 experiments were performed.

3.1. Datasets

As already mentioned, 16 different initial datasets containing the time series of the
closing values of sixteen well-known listed companies were used. All sets include data
from the aforementioned three-year period, meaning dates starting from 2 January 2018 to
24 December 2020. Table 1 shows the names and abbreviations of all the shares used.

Table 1. Stock datasets.

No Dataset Stocks

1 AAL American Airlines Group
2 AMD Advanced Micro Devices
3 AUY Yamana Gold Inc.
4 BABA Alibaba Group
5 BAC Bank of America Corp.
6 ET Energy Transfer L.P.
7 FCEL FuelCell Energy Inc.
8 GE General Electric
9 GM General Motors
10 INTC Intel Corporation
11 MRO Marathon Oil Corporation
12 MSFT Microsoft
13 OXY Occidental Petroleum Corporation
14 RYCEY Rolls-Royce Holdings
15 SQ Square
16 VZ Verizon Communications

However, each of the above time series containing the closing prices of the shares was
only one of the features of the final multivariate dataset. For each share, the final datasets
were composed by introducing features derived from a sentiment analysis process, which
was applied to an extended corpus of tweets related to each such stock. Figure 1 depicts a
representation of the whole process, from data collection to the creation of the final sets.
Below is a brief description of each stage of the final-dataset-construction process.
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Figure 1. Final datasets’ construction process.

3.1.1. Raw Textual Data

First, a large number of—per stock—related posts were collected from Twitter and
grouped per day. These text data include tweets written exclusively in English. Specifically,
the tweets were downloaded using the Twitter Intelligence Tool (TWINT) [31], an easy-
to-use Python-based Twitter scraper. TWINT is an advanced, standalone, yet relatively
straightforward tool for downloading data from user profiles. With this tool, a thorough
search for stock-related reports to be investigated—that is, tweets that were directly or
indirectly linked to the share under consideration—resulted in a rather extensive body
of text data, consisting of day-to-day views or attitudes towards stocks of interest. These
collections were then preprocessed and moved to the sentiment quantification extraction
modules.

3.1.2. Text Preprocessing

Next, the text-preprocessing step schematically presented in Figure 2 followed. Specif-
ically, after the initial removal of irrelevant hyperlinks and URLs, using the re Python
library [32], each tweet was converted to lowercase and split into words. A series of numer-
ical strings and terms of no interest taken from a manually created set was then removed.
Lastly, on the one hand—and after the necessary joins to bring each text to its initial
structure—each tweet was tokenized according to its sentences using the NLTK [33,34]
library, and on the other, using the string [35] module, targeted punctuation removal
was applied.
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Figure 2. Text-preprocessing scheme.

3.1.3. Sentiment Scores

The next step involved generating the sentiment scores from the collected tweets. In
this work, three distinct sentiment analysis methods, that is the sentiment modules from
TextBlob [36], the Vader [37] Sentiment Analysis tool, and FinBERT [38], a financial-based
fine-tuning of the BERT [39] language representation model, were used. For each of the
above, and given the day-to-day sentiment scores extracted with the use of each one of them,
a daily mean value formed the final collection of sequential and time-dependent instances
that constituted the sentiment-valued time series of every corresponding method. It should
be noted that, in addition to the three valuations extracted by the above procedures, a seven-
day moving average scheme was also utilized as applied to the sentiment-valued time
series. Thus, six distinct sentiment-valued time series were generated, the combinations of
which, along with the no-sentiment and the univariate case scenario, led to the 22 different
study cases. These, combined with the closing price data, constituted a single distinct
experimental procedure for every algorithm. Below is a rough description of the three
methods mentioned earlier:

• TextBlob: TextBlob is a Python-based framework for manipulating textual data. In
this work, using the sentiment property from the above library, the polarity score—that
is, a real number within the [−1, 1] interval—was generated for every downloaded
tweet. As has already been pointed out, a simple averaging scheme was then applied
to the numerical output of the algorithm to produce a single sentiment value that
represents the users’ attitude per day. The method, being a rule-based sentiment-
analysis algorithm, works by calculating the value attributed to the corresponding
sentiment score by simply applying a manually created set of rules. For example,
counting the number of times a particular term appears in a given section adjusts
the overall estimated sentiment score values in proportion to the way this term
is evaluated;

• Vader: Vader is also a simple rule-based method for general sentiment analysis re-
alization. The Vader Sentiment Analysis tool in practice works as follows: given a
string—in this work, the textual elements of each tweet—SentimentIntensityAnalyzer()
returns a dictionary, containing negative, neutral, and positive sentiment values, and
a compound score produced by a normalization of the three latter. Again, maintaining
only the “compound” value for each tweet, a normalized average of all such scores
was generated for each day, resulting in a final time series that had those—ranging
within the [−1, 1] interval—daily sentiment scores as its values;

• FinBERT: FinBERT is a sentiment analysis pre-trained natural-language-processing
(NLP) model that is produced by fine-tuning the BERT model over financial textual
data. BERT, standing for bidirectional encoder representations from transformers, is an
architecture for NLP problems based on the transformers. Multi-layer deep represen-
tations of linguistic data are trained under a bidirectional attention strategy from
unlabeled data in a way that the contexts of each token constitute the content of its
embedding. Moreover, targeting specific tasks, the model can be fine-tuned using just
another layer. In essence, it is a pre-trained representational model, according to the
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principles of transfer learning. Here, using the implementation contained in [40], and
especially the model trained on the PhraseBank presented in [41], the daily sentiment
scores were extracted, and—according to the same pattern as before—a daily average
was produced.

3.2. Algorithms

Now, regarding the algorithms used, it was already reported that 27 different methods
were compared. From this, it is easy to conclude that it is practically impossible to present
in detail such a number of algorithms in terms of their theoretical properties. Instead, a
simple reference is provided while encouraging the reader to consult the corresponding
citations for further information. Table 2 contains alphabetically all the algorithms used
during the experimental process.

Table 2. Algorithms.

No. Abbreviation Algorithm

1 ABR AdaBoost Regressor [42]
2 ARD Automatic Relevance Determination [43]
3 BiLSTM (LSTM_2) Bidirectional LSTM [44]
4 BiLSTM-LSTM (LSTM_3) Bidirectional LSTM and LSTM Stacked [44,45]
5 CBR CatBoost Regressor [46]
6 DTR Decision Tree Regressor [47]
7 ELN Elastic Net [48]
8 ET Extra Trees Regressor [49]
9 XGBoost Extreme Gradient Boosting [50]
10 GB Gradient Boosting Regressor [51]
11 HBR Huber Regressor [52]
12 KNR K-Neighbors Regressor [53]
13 KER Kernel Ridge [54]
14 LSTM LSTM [45]
15 LA-LAS Lasso Least Angle Regression [55]
16 LAS Lasso Regression [56]
17 LA Least Angle Regression [55]
18 LGBM Light Gradient Boosting Machine [57]
19 LNR Linear Regression [58]
20 MLP Multilevel Perceptron [59]
21 OMP Orthogonal Matching Pursuit [60]
22 PAR Passive Aggressive Regressor [61]
23 RF Random Forest Regressor [62]
24 RSC Random Sample Consensus [63]
25 RDG Ridge Regression [64]
26 SVR Support Vector Regression [65]
27 THS Theil–Sen Regressor [66]

Experiments were run in the Python programming language using the Keras [67] open-
source software library and PyCaret [68,69], an open-source, low-code machine-learning
framework. It should also be noted that the problem of predicting the future values of the
given time series was essentially addressed and consequently formalized as a regression
problem. The forecasts were exported under one single-step and two multi-step prediction
scenarios. Specifically, regarding multi-step forecasts, estimates were predicted for a seven-
day window, on the one hand, and a fourteen-day window, on the other. All algorithms
tested were utilized in a basic configuration with no optimization process taking place
whatsoever.
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3.3. Metrics

Moving on to the prediction performance estimates, given the comparative nature of
the present work, the forthcoming description of the evaluation metrics to be presented
is be a little more detailed. The following six metrics were used: MSE, RMSE, RMSLE,
MAE, MAPE, and R2. The abbreviations are defined within the following subsections.
Specifically, below is a presentation of these metrics, along with some insight regarding
their interpretation. In what follows, the actual values of the observations are denoted by
yai and the forecast values by ypi .

3.3.1. MSE

The mean squared error (MSE) is simply the average of the squares of the differences
between the actual values and the predicted values.

MSE =
1
n

n

∑
i=1

(
ypi − yai

)2 (1)

The square power ensures the absence of negative values while making small error in-
formation usable, i.e., minor deviations between the forecast and the actual values. It is
evident, of course, that the greater the deviation of the predicted value from the actual
one, the greater the penalty provided for under the MSE. A direct consequence of this is
that the metric is greatly affected by the existence of outliers. Conversely, when the differ-
ence between the forecast and the actual value is less than one, the above interpretation
works—in a sense—in reverse, resulting in an overestimation of the model’s predictive
capacities. Because it is differentiable and can easily be optimized, the MSE constitutes a
rather common forecast evaluation metric. It should be noted that the unit of measurement
of the MSE is the square of the unit of measurement of the variable to predict.

3.3.2. RMSE

The RMSE seems almost as an extension of the MSE. To compute it, one just calculates
the root of the above.

RMSE =

√
1
n

n

∑
i=1

(
ypi − yai

)2 (2)

That is, in our case, this is the quadratic mean (root mean square) of the differences between
forecasts and actual, previously observed values. The formalization gives a representation
of the average distance of the actual values from the predicted ones. The latter becomes
easier to understand if one ignores the denominator in the formula: we observe that the
formula is the same as that of the Euclidean distance, so dividing by the number n of
the observations results in the RMSE being considered as some normalized distance. As
with the MSE, the RMSE is affected by the existence of outliers. An essential role in the
interpretability and, consequently, in the use of the RMSE is played by the fact that it
is expressed in the same units with the target variable and not in its square, as in the
MSE. It should also be noted that this metric is scale-dependent and can only be used to
compare forecast errors of different models or model variations for a particular specific
given variable.

3.3.3. RMSLE

Below, in Equation (3), looking inside the square root, one notices that the RMSLE
metric is a modified version of the MSE, a modification that is preferred in cases where the
forecasts exhibit a significant deviation.

RMSLE =

√
1
n

n

∑
i=1

(
log(ypi + 1)− log(yai + 1)

)2 (3)
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As already mentioned, the MSE imposes a large “penalty” in cases where the forecast value
deviates significantly from the actual value, a fact that the RMSLE compensates. As a
result, this metric is resistant to the existence of both outliers, as well as noise. For this
purpose, it utilizes the logarithms of the actual and the forecast value. The value of one
is added to both the predicted and actual values in order to avoid cases where there is a
logarithm of zero. It is straightforward that the RMSLE cannot be used when there exist

negative values. Using the property: log(ypi + 1)− log(yai + 1) = log
( ypi+1

yai+1

)
, it becomes

clear that this metric actually works as the relative error between the actual value and the
predicted value. It is worth noting that the RMSLE attributes more weight in cases where
the predicted value is lower than the actual one than in cases where the forecast is higher
than the observation. It is, therefore, particularly useful in certain types of forecasts (e.g.,
sales, where lower forecasts may lead to stock shortages if there is more than the projected
demand).

3.3.4. MAE

The MAE is probably the most straightforward metric to calculate. It is the arithmetic
mean of the absolute errors (where the “error” is the difference between the predicted value
and the actual value), assuming that all of them have the same weight.

MAE =
1
n

n

∑
i=1

∣∣ypi − yai

∣∣ (4)

The result is expressed (as in the RMSE) in the unit of measurement of the target variable.
Regarding the existence of outliers, and given the absence of exponents in the formula, the
MAE metric displays quite good behavior. Lastly, this metric—as the RMSE—depends on
the scale of the observations. It can be used mainly to compare methods when predicting
the same specific variable rather than different ones.

3.3.5. MAPE

The MAPE stands for mean absolute percentage error. This metric is quite common for
calculating the accuracy of forecasts, as it represents a relative and not an absolute error
measure.

MAPE =
1
n

n

∑
i=1

∣∣ypi − yai

∣∣
|yai |

(5)

A percentage represents accuracy: In Equation (5), we observe that the MAPE is calculated
as the average of the absolute differences of the prediction from the actual value, divided
by the observation. A multiplication by 100 can then transform the output value as
a percentage. The MAPE cannot be calculated when the actual value is equal to zero.
Moreover, it should be noted that if the forecast values are much higher than the actual
ones, then the MAPE may exceed the 100% rate, while when both the prediction and the
observation are low, it may not even approach 100%, leading to the erroneous conclusion
that the predictive capacities of the model are limited, when in fact the error values may be
low (Although, in theory, the MAPE is a percentage of 100, in practice, it can take values in
[0, ∞)). The way it is calculated also tends to give more weight in cases where the predicted
value is higher than the observation, thus leading to more significant errors. Therefore,
there is a preference for using this metric in methods with low prediction values. Its main
advantage is that it is not scale-dependent, so it can be used to evaluate comparisons of
different time series, unlike the metrics presented above.
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3.3.6. R2

Lastly, the coefficient of determination R2 is the ratio of the variance of the estimated
values of the dependent variable to the fluctuation of the actual values of the dependent
variable.

R2 = 1− SSRES
SSTOT

= 1− ∑n
i=1
(
ypi − yai

)2(
ypi − y

)2 (6)

This metric is a measure of good fitting, as it attempts to quantify how well the regression
model fits the data. Therefore, it is essentially not a measure of the reliability of the model.
Typically, the values of R2 range from 0–1. The value of zero corresponds to the case where
the explanatory variables do not explain the variance of the dependent variable at all, while
the value of one corresponds to the case where the explanatory variables fully explain the
dependent variable. In other words, the closer the value of R2 is to one, the better the model
fits the observations (historical data), meaning the forecast values will be closer to the
actual ones. However, there are cases where the output of R2 goes beyond the above range
and takes negative values. In this case (which is one allowed by its calculation formula),
we conclude that our model has a worse performance (where “performance” means “data
fitting”) than the simple horizontal line; in other words, the model does not follow the
data trend. Concluding, values outside the above range—i.e., either greater than one or
less than zero—either suggest the unsuitability of the model or indicate other errors in its
implementation, such as the use of meaningless constraints.

4. Results and Discussion

Moving on to the results, as was already pointed out, the purpose of this work was
twofold. The aim was to investigate two separate case studies through an extensive
experimental procedure. Below are the results of the experiments categorized into these
two separate cases. The first section deals with the utilization of textual data in light of
sentiment analysis for the task of time series forecasting and the investigation of whether
or not and when their use has a beneficial effect on improving predictions. The second
involves comparing the performance of different forecast algorithms, aiming to fill the
corresponding gap in the literature, where although there is serious research effort, it
mainly concerns the comparison of a small number of methods. Table A1 presents the
22 sentiment score scenarios along with their respective abbreviations.

Apparently, the large number of experiments make any attempt to present numerical
results in their raw form, that is, in the form of individual exported numerical predictions,
impossible. It was therefore deemed necessary to use some performance measures that
are well known and, in some ways, established in similar comparisons and capture the
general behavior of each scenario. Moreover, it was already mentioned that the time series
forecasting problem can be considered a regression one, and we see that in the present
research—which presupposes a thorough study of the problem—six commonly accepted
metrics were used. The choice of a number of various metrics was considered a necessary
one, as each of them has advantages and disadvantages, presenting different aspects of the
results that form a diverse set of guides for their evaluation.

Regarding aggregate comparisons, the first way of monitoring results to draw valid
general conclusions was by the exploitation of the Friedman ranking test [70]. Thus, on
the one hand, the H0 hypothesis—that is, whether all 22 different scenarios produce
similar results—would have been tested, and on the other, it would have been made
possible to classify the methods based on their efficiency. The Friedman statistical test
is a non-parametric statistical test that checks whether the mean values of three or more
treatments—in our case, the results of the twenty-two scenarios—differ significantly. Of
the total six metrics used, five involved errors (MSE, RMSE, RMSLE, MAE, MAPE), which
means that in order for one approach to be considered better than another, it must have a
lower average. Therefore, the Friedman ranking error results follow an increasing order;
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the smaller the Friedman ranking score, the more efficient the method is. The opposite is
the case only with R2, where higher values indicate better performance.

After the Friedman test was performed, in case the null hypothesis was rejected—this
rejection means that there is even one method that behaves differently—then the Bonferroni–
Dunn post hoc test [71], also known as the Bonferroni inequality procedure, followed. This
test generally reveals which pairs of treatments differ in their mean values, acting as follows:
first the critical difference value is extracted, and then, for each pair of treatments, the
absolute value of the difference in their rankings is calculated. If the latter is greater than
or equal to the critical difference value, H0 is rejected, i.e., the corresponding treatments
differ. The most efficient way to present the results of the Bonferroni inequality procedure
is through CD-diagrams, where treatments whose performances do not differ are joined by
horizontal dark lines. Below are tables with the results of the Friedman tests, boxplots with
the error distributions, as well as CD-diagrams, which, due to the limited space available,
show the relations between the top-10 best approaches according to the Friedman rankings.

4.1. Case Study: Sentiment Scores’ Comparison

Let us initially give a summary of the case. First, the aim was to answer whether
and under what conditions the use of sentiment analysis in data derived from social
media has a positive effect on the prediction of future prices of financial time series. Here,
the combinations—seen in Table A1—of scores from three different sentiment analysis
methods together with their seven-day rolling means and the univariate case created a
total of twenty-two cases to compare. Tables A2–A4 present the final Friedman rankings in
terms of their corresponding single-day, seven-day and fourteen-day forecasts.

4.1.1. Single-Day Prediction

First, regarding the forecast for the next day only, Table A2 shows the general supe-
riority of the univariate case over the use of sentiment analysis. As for the boxplots and
CD-diagrams, the top-ten combinations of sentiment time series for each metric presented
are ranked with the same performance dominance of the univariate scenario (note that in
boxplots, the top-down layout is sorted by median).

One can also observe the statistical dependencies that emerged from the examination
of each pair of cases. These dependencies can be further analyzed by comparing Table A2
with the representations in Figure 3. For example, it was observed that the statistical
dependence of the univariate case with that of the additional use of TextBlob shown in
Figure 3 followed the ranking of the two versions extracted from the results in the Friedman
tables. Figure 4 shows the performance distributions for each sentiment setup, i.e., all the
values that resulted from applying a given setting to each dataset for each algorithm. Here,
the apparent similarity of the performances of the methods is, on the one hand, a matter of
the scale of the representation, while on the other, it reflects a possible uniformity. From all
three different representations of the results, there was a predominance of the univariate
version followed by the use of TextBlob and FinBERT.
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Figure 3. Sentiment setups’ CD-diagrams: single-day prediction.

Figure 4. Sentiment setups’ boxplots: single-day prediction.

4.1.2. One-Week Prediction

However, in the case of weekly forecasts, one can observe, from Table A3 and
Figures 5 and 6, that things do not remain the same. There was a noticeable decline in
the performance ranking of the univariate setup, with the simultaneous improvement of
configurations that utilize sentiment scores.
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Figure 5. Sentiment setups’ CD-diagrams: one-week prediction.

Figure 6. Sentiment setups’ boxplots: one-week prediction.

In particular, in four of the measurements used, FinBERT seemed to be superior, while
in the other two, the combination of FinBERT with TextBlob lied in the first place of the
ranking. Apart from that, Vader, Blob, and the combination of Vader and FinBERT seemed
to perform almost equal to the above, as the differences in their corresponding rankings
were minimal. In addition, regarding the use of rolling means, there seemed to be no
particular improvement under the current framework except—in rare cases—when applied
in combination with the use of a raw sentiment score. The only one of the representations of
the results where the univariate configuration is presented in high positions is via boxplots,
where the sorting of the layout is only based on the median of the values. In terms of
Friedman scores, at best, it ranked sixth.
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4.1.3. Two-Week Prediction

Results from the fourteen-day forecasts exhibited similar behavior as in the seven-day
prediction case, except for the performance of the averaging schemes, some of which
tended to move up to higher positions. Indeed, here, again, Friedman’s ranking in all
evaluations seemed to suggest that the use of information extracted from social networks
is beneficial under the current forecasting framework. In addition, there was an apparent
improvement in schemes exploiting rolling means. This becomes easily noticeable in both
Figures 7 and 8, showing the CD-diagrams and boxplots, respectively, and in Table A4.
One can observe the configuration of TextBlob that incorporates the weekly rolling mean to
be in the first place of the Friedman ranking in terms of three valuations, that is in terms of
the RMSE, MAE, and MAPE metrics. Thus, apart from the conclusions that can be drawn
from the study of the representations of the results and that constitute evaluations similar
in form to those of the above cases, something new seemed to emerge here: there was a
gradual increase in the performance of the combinations that use weighted information.
Moreover, this increase in performance seemed to be related to the long forecast period.

Figure 7. Sentiment setups’ CD-diagrams: two-week prediction.

Figure 8. Sentiment setups’ boxplots: two-week prediction.
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4.2. Case Study: Methods’ Comparison

We can now turn to the presentation of the results of the comparison of the algorithms.
The reader is first asked to refer to Table 2, containing the methods with their respective
abbreviations, as well as to Tables A5–A7, containing the Friedman rankings. The Friedman
rankings here are structured as a generalization derived from the performance of each
algorithm in terms of each dataset and under each of the 22 input schemes.

4.2.1. One-Day Prediction

Starting with the simple one-day prediction, from the results presented in Table A5
and in Figures 9 and 10, one can easily conclude an almost universal predominance of
LSTM methods.

Figure 9. Algorithms’ CD-diagrams: single-day prediction.

Figure 10. Algorithms’ boxplots: single-day prediction.

Regarding the three best-performing methods, the CD-diagrams show a statistical
dependence between the LSTM and Bi-LSTM methods, while the scheme incorporating
both the above algorithmic processes in a stacked configuration is presented as statistically
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independent of all. This supposed independence, and according to what has been reported
about how these diagrams are derived, can easily be identified in the differences in the
results of the Friedman table, where the deviations between the methods are significant.

The latter is eminent in the boxplots as well. Both the dispersion and the values
of the evaluations of the top-three methods stand out clearly from those of all the other
techniques.

4.2.2. One-Week Prediction

It can be observed that the same interpretation applies in the case of weekly forecasts.
Again, in all metrics, the top-three best-performing methods were the three LSTM variants
(Figure 11). Table A6 depicts both the latter and the distinctions presented on the CD-
diagrams of Figure 12. Essentially, however, a simple comparison of the representations of
the results showed that in all cases, the predominant methods were by far the LSTM and
Bi-LSTM procedures.

Figure 11. Algorithms’ boxplots: one-week prediction.

In the boxplots, despite the fact that the LSTM variants appear as if they tend to form
a group of similarly performing methods, the Friedman scores point to the independence—
in terms of the evaluation of numerical outputs—of only the top-two aforementioned
methods from all the others. Thus, based on these results, it is relatively easy to suggest a
clear choice of strategy in terms of methods.
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Figure 12. Algorithms’ CD-diagrams: one-week prediction.

4.2.3. Two-Week Prediction

Finally, regarding the case of the 14-day forecasts, the general remarks given in
the previous section can be extended here as well. The results can be found below, in
Figures 13 and 14, as well as in Table A7.

Figure 13. Algorithms’ CD-diagrams: two-week prediction.

Figure 14. Algorithms’ boxplots: two-week prediction.
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An additional final remark, however, should be the following: in the boxplots, in
the results of the R2, there seems to be a difference in the median ranking. This ranking,
however, was not found in the case of the Friedman scores.

4.3. Discussion

Having presented the results, below are some general remarks. Here, the following
discussion is structured according to the bilateral distinction of the case studies presented
and contains summarizing comments regarding elements that preceded:

• Sentiment setups: The main point that emerged from the above results has to do with the
fact that the use of sentiment analysis seemed to improve the models when used for long-
term predictions. Thus, while the use of the univariate configuration is seen as more efficient
in one-step predictions, when the predictions applied to the seven-day and fourteen-day
cases, the use of sentiment scores under a multivariate topology seemed to improve the
forecasts overall. Specifically, in the weekly forecasts, all three single-sentiment-score setups
outperformed the use of the univariate configuration, with FinBERT performing best in
terms of the MSE, RMSE, RMSLE, and R2, while the combination of Blob and FinBERT
outperformed the rest in the MAE and MAPE. When the prediction shift doubles to 14 days,
one notices that Blob and Rolling Mean 7 Blob dominated the other sentiment configurations,
followed by the combination of Blob and FinBERT, as well as FinBERT. Vader appeared to
rank lower in all metrics and was, therefore, weaker than in the previous two cases.
However, two general questions need to and can be answered by looking at the results.
These are not about choosing an algorithm, as one can assume that in a working scenario
where reliable predictions would be needed, one would have a number of methods at
one’s disposal. Thus, this is a query about a reliable methodology. Therefore, first of all,
one should evaluate whether the use of sentiment scores helps and, if so, in which cases.
Second, an answer must be provided as to what form the sentiment score time series
should have depending on the forecasting case. Regarding the first question, the answer
seems to be clear: multivariate configurations improve forecasts in non-trivial forecast
cases. As for the second one, it seems that, in cases of long-term forecasts, an argument
in favor of the use of rolling mean can be substantiated. Concluding, it should be noted
that when the forecast window grows, then even seemingly small improvements, such
as those seen through the use of sentiment analysis, can be of particular importance;

• Algorithms: As for the algorithms, the comparisons seemed to provide direct and clear
interpretations. From the results here, it is also possible to safely substantiate—at least—
a central conclusion. It is apparent that in all scenarios, the configurations exploiting
neural networks—that is, LSTM variations—were superior in terms of performance
to the classical regression algorithms. Among them, LSTM outperformed the BiLSTM
architecture in every single case, while the stacked combination of the two followed. In
addition, the aforementioned superiority of the two dominant methods was clear, with
their performance forming a threshold, below which—and at a considerable distance—
all the other methods examined were placed. Therefore, concluding, if one considers that
the neural network architectures used did not contain sophisticated configurations—in
terms of, for example, depth—then, on the basis that any additional computational costs
become negligible, the use of LSTMs constitutes the clear choice.

5. Conclusions

In this work, a study of the exploitation of sentiment scores in various multivariate
time-series-forecasting schemes regarding financial data was conducted. The overall
structure and results of an extensive experimental procedure were presented, in which
22 different input configurations were tested, utilizing information extracted from social
networks, in a total of 16 different datasets, using 27 different algorithms. The survey
consisted of two case studies, the first of which was to investigate the performance of
various multivariate time series forecasting schemes utilizing sentiment analysis and the
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second to compare the performance of a large number of machine-learning algorithms
using the aforementioned multivariate input setups.

From the results, and in relation to the first case study, that is, after the use of sentiment
analysis configurations, a conditional performance improvement can be safely deduced in
cases where the methods were applied to predict long-term time frames. Of all the senti-
ment score combinations tested, the TextBlob and FinBERT variations generally appeared
to perform best. In addition, there was a gradual improvement in the performance of
combinations containing rolling averages as the forecast window grew. This may imply
that a broader study of the use of different versions of the same time series in a range of
different multivariate configurations may reveal methodological strategies as to how to
exploit input data manipulations to increase accuracy.

Regarding the second case study, the results indicated a clear predominance of LSTM
variations. In particular, this superiority became even clearer in terms of its generalization
when the basic configurations of the architectures used in the neural networks under
consideration were taken into account, which means that any computational cost cannot
be a counterweight to the dominance of the LSTM methods.

Author Contributions: Conceptualization, S.K.; methodology, C.M.L.; software, C.M.L.; validation,
C.M.L. and A.K.; formal analysis, C.M.L. and A.K.; investigation, C.M.L. and A.K.; resources, A.K.
and S.K.; data curation, A.K.; writing—original draft preparation, C.M.L.; writing—review and
editing, C.M.L.; visualization, C.M.L., A.K.; supervision, S.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: URL of the full Friedman Ranking results: https://bit.ly/2XlBNvL
(accessed on 1 November 2021).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Friedman Rankings

Some of the results in the tables below are slightly truncated due to space limitations.
The full results of the Friedman rankings can be found at the following URL: https://bit.
ly/2XlBNvL (accessed on 1 November 2021).

Appendix A.1. Sentiments

Table A1. Sentiment score setups.

No. Abbreviation Sentiment Score Setup

1 NS No Sentiment
2 B TextBlob
3 V Vader
4 F FinBERT
5 B7 Rolling Mean 7 TextBlob
6 V7 Rolling Mean 7 Vader
7 F7 Rolling Mean 7 FinBERT
8 BV TextBlob and Vader
9 BF TextBlob and FinBERT
10 BB7 TextBlob and Rolling Mean 7 TextBlob
11 BV7 TextBlob and Rolling Mean 7 Vader
12 BF7 TextBlob and Rolling Mean 7 FinBERT
13 VF Vader and FinBERT
14 VB7 Vader and Rolling Mean 7 TextBlob
15 VV7 Vader and Rolling Mean 7 Vader
16 VF7 Vader and Rolling Mean 7 FinBERT
17 FB7 FinBERT and Rolling Mean 7 TextBlob
18 FV7 FinBERT and Rolling Mean 7 Vader
19 FF7 FinBERT and Rolling Mean 7 FinBERT
20 B7V7 Rolling Mean 7 TextBlob and Rolling Mean 7 Vader
21 B7F7 Rolling Mean 7 TextBlob and Rolling Mean 7 FinBERT
22 V7F7 Rolling Mean 7 Vader and Rolling Mean 7 FinBERT

https://bit.ly/2XlBNvL
https://bit.ly/2XlBNvL
https://bit.ly/2XlBNvL
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Table A2. Sentiment scenarios’ Friedman rankings (shift = 1).

MSE RMSE RMSLE

Setup F-Rank Setup F-Rank Setup F-Rank

1 NS 9.445601852 NS 9.440972222 NS 9.420138889
2 B 10.35763889 B 10.35763889 B 9.710648148
3 F 10.3576389 F 10.3576389 F 10.30092593
4 BB7 10.73263889 BB7 10.73032407 V 10.64351852
5 B7 10.74305556 B7 10.74537037 BB7 10.77546296
6 V 10.81018519 V 10.77546296 B7 10.81365741
7 BV 11.22569444 BV 11.19560185 BV 10.99768519
8 V7 11.35416667 V7 11.33564815 BF 11.28356481
9 BF 11.40740741 FB7 11.42013889 VF 11.44212963

10 FB7 11.42361111 BF 11.44444444 FB7 11.48842593
11 VB7 11.43634259 VB7 11.4525463 V7 11.50694444
12 VF 11.48148148 VF 11.50231481 VB7 11.57060185
13 VV7 11.66087963 VV7 11.66550926 F7 11.66782407
14 F7 11.76967593 F7 11.77199074 FF7 11.78125
15 FF7 11.84490741 FF7 11.83449074 VV7 11.92013889
16 BV7 12.01967593 BV7 11.97800926 BV7 12.18402778
17 BF7 12.15740741 BF7 12.2037037 BF7 12.18865741
18 VF7 12.28009259 VF7 12.2662037 VF7 12.21527778
19 FV7 12.46759259 FV7 12.51157407 B7V7 12.61689815
20 B7F7 12.78587963 B7F7 12.76967593 FV7 12.7337963
21 V7F7 12.85532407 B7V7 12.85763889 B7F7 12.78009259
22 B7V7 12.86689815 V7F7 12.86226852 V7F7 12.95833333

MAE MAPE R2

Setup F-Rank Setup F-Rank Setup F-Rank

1 NS 9.591435185 NS 9.503472222 NS 13.55208333
2 B 9.688657407 B 9.616898148 B 13.12615741
3 F 10.16782407 F 10.05671296 F 12.6400463
4 V 10.79050926 V 10.72337963 BB7 12.26736111
5 B7 10.82175926 B7 10.73842593 B7 12.25810185
6 BB7 10.85532407 BB7 10.78356481 V 12.19097222
7 BV 10.8599537 BV 10.79398148 BV 11.77430556
8 BF 11.21759259 BF 11.19907407 V7 11.64930556
9 V7 11.32986111 V7 11.36574074 BF 11.59259259

10 FB7 11.38773148 FB7 11.37615741 FB7 11.57638889
11 VF 11.48611111 VF 11.5 VB7 11.56365741
12 VB7 11.6400463 VB7 11.66898148 VF 11.51851852
13 F7 11.69791667 FF7 11.72569444 VV7 11.33680556
14 FF7 11.69791667 F7 11.80324074 F7 11.22916667
15 VV7 11.87847222 VV7 11.92476852 FF7 11.15625
16 BV7 12.11689815 BV7 12.1875 BV7 10.98032407
17 BF7 12.19212963 BF7 12.28240741 BF7 10.84259259
18 VF7 12.34027778 VF7 12.28240741 VF7 10.72106481
19 FV7 12.35648148 FV7 12.42013889 FV7 10.53240741
20 B7F7 12.72337963 B7F7 12.64699074 B7F7 10.21412037
21 V7F7 13.01041667 V7F7 13.09953704 V7F7 10.14467593
22 B7V7 13.14930556 B7V7 13.17592593 B7V7 10.13310185
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Table A3. Sentiment scenarios’ Friedman rankings (shift = 7).

MSE RMSE RMSLE

Setup F-Rank Setup F-Rank Setup F-Rank

1 F 10.45486111 F 10.46875 F 10.44444444
2 BF 10.5162037 BF 10.53009259 BF 10.46412037
3 V 10.64930556 V 10.62847222 V 10.75231481
4 VF 10.90509259 VF 10.91203704 VF 10.78356481
5 B 10.9224537 B 10.91782407 B 10.84953704
6 NS 11.06828704 NS 11.09375 NS 10.96064815
7 BV 11.19907407 BV 11.18518519 BV 11.14583333
8 B7 11.23263889 B7 11.23958333 B7 11.16087963
9 FV7 11.34143519 FV7 11.36689815 BF7 11.30902778

10 VV7 11.3900463 VV7 11.40162037 BB7 11.42476852
11 FF7 11.52199074 FF7 11.52083333 FF7 11.44444444
12 BF7 11.54398148 BF7 11.52314815 VB7 11.47685185
13 BB7 11.5625 BB7 11.54398148 FB7 11.52430556
14 FB7 11.6087963 FB7 11.62384259 VV7 11.67708333
15 BV7 11.71064815 BV7 11.69907407 VF7 11.72222222
16 VB7 11.73958333 VB7 11.73958333 FV7 11.74421296
17 V7 11.76967593 V7 11.7650463 BV7 11.89814815
18 VF7 11.87847222 VF7 11.85300926 F7 12.16782407
19 F7 12.1412037 F7 12.14583333 V7 12.23842593
20 B7V7 12.54861111 B7V7 12.55555556 B7V7 12.52546296
21 V7F7 12.64236111 V7F7 12.62847222 B7F7 12.56944444
22 B7F7 12.65277778 B7F7 12.65740741 V7F7 12.71643519

MAE MAPE R2

Setup F-Rank Setup F-Rank Setup F-Rank

1 BF 10.45949074 BF 10.38078704 F 12.54513889
2 B 10.67939815 B 10.67824074 BF 12.4849537
3 F 10.68634259 V 10.70023148 V 12.35069444
4 V 10.71064815 F 10.73958333 VF 12.09490741
5 B7 10.85532407 B7 10.85300926 B 12.0775463
6 BB7 10.87847222 BV 10.86921296 NS 11.93171296
7 BV 10.88310185 VF 10.90162037 BV 11.80092593
8 VF 10.9849537 BB7 10.92476852 B7 11.76736111
9 NS 11.02893519 NS 11.00925926 FV7 11.65972222

10 VB7 11.1875 VB7 11.03472222 VV7 11.6099537
11 FB7 11.42013889 FB7 11.42708333 FF7 11.47800926
12 BF7 11.62037037 BF7 11.52314815 BF7 11.4537037
13 VV7 11.74189815 VV7 11.7650463 BB7 11.43865741
14 FF7 11.77314815 FF7 11.78009259 FB7 11.3912037
15 FV7 11.85300926 VF7 11.90046296 BV7 11.28587963
16 VF7 11.90972222 FV7 12.0474537 VB7 11.26041667
17 BV7 11.91319444 BV7 12.08101852 V7 11.23032407
18 V7 12.17592593 V7 12.13078704 VF7 11.12152778
19 F7 12.26388889 F7 12.22685185 F7 10.8587963
20 B7F7 12.5 B7F7 12.53935185 B7V7 10.4525463
21 B7V7 12.63310185 B7V7 12.54166667 V7F7 10.3587963
22 V7F7 12.84143519 V7F7 12.94560185 B7F7 10.34722222
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Table A4. Sentiment scenarios’ Friedman rankings (shift = 14).

MSE RMSE RMSLE

Setup F-Rank Setup F-Rank Setup F-Rank

1 B 10.48726852 B7 10.50810185 BF 10.46527778
2 B7 10.50462963 B 10.52777778 B 10.53125
3 BF 10.56597222 BF 10.55208333 B7 10.60300926
4 F 10.70949074 F 10.71990741 F 10.66550926
5 V 10.75925926 V 10.74884259 BB7 10.70717593
6 BB7 10.7974537 BB7 10.80208333 V 10.92476852
7 NS 10.92592593 NS 10.89583333 FB7 10.92939815
8 FB7 11.10185185 FB7 11.09027778 NS 11.04976852
9 VB7 11.25694444 VB7 11.28240741 VB7 11.41319444

10 BV 11.3275463 BV 11.3275463 VF 11.45601852
11 VF 11.37615741 VF 11.37152778 FF7 11.46296296
12 VV7 11.52777778 VV7 11.52083333 BV 11.46990741
13 V7 11.70023148 V7 11.71064815 VV7 11.75578704
14 FF7 11.75925926 FF7 11.75231481 BF7 11.78240741
15 BV7 11.84722222 BV7 11.84143519 BV7 11.87268519
16 BF7 12.00115741 BF7 11.99652778 F7 11.92708333
17 B7F7 12.01851852 B7F7 12.02083333 V7 11.94560185
18 B7V7 12.05092593 FV7 12.05671296 FV7 12.12847222
19 FV7 12.0625 B7V7 12.06597222 B7F7 12.15509259
20 F7 12.30555556 F7 12.30671296 VF7 12.21180556
21 VF7 12.47106481 VF7 12.45486111 B7V7 12.27546296
22 V7F7 13.44328704 V7F7 13.44675926 V7F7 13.26736111

MAE MAPE R2

Setup F-Rank Setup F-Rank Setup F-Rank

1 B7 10.51157407 B7 10.50694444 B 12.50925926
2 B 10.53125 B 10.60532407 B7 12.49652778
3 BF 10.59490741 BB7 10.64351852 BF 12.43171296
4 BB7 10.62962963 BF 10.70601852 F 12.29166667
5 F 10.69328704 F 10.74189815 V 12.24074074
6 V 10.79513889 NS 10.88425926 BB7 12.20717593
7 NS 10.94907407 V 10.93634259 NS 12.07407407
8 FB7 10.99421296 FB7 11.03356481 FB7 11.89583333
9 BV 11.41087963 VV7 11.44212963 VB7 11.74305556

10 VV7 11.42824074 FF7 11.47337963 BV 11.6724537
11 V7 11.43055556 VB7 11.49537037 VF 11.62384259
12 VB7 11.44675926 V7 11.50925926 VV7 11.47222222
13 VF 11.59375 VF 11.66319444 V7 11.29976852
14 BV7 11.6400463 BV 11.68634259 FF7 11.23842593
15 FF7 11.67476852 FV7 11.80208333 BV7 11.15277778
16 FV7 11.80902778 BF7 11.81944444 BF7 11.00347222
17 BF7 12.00231481 BV7 11.86458333 B7F7 10.97916667
18 B7F7 12.17013889 B7F7 12.10763889 B7V7 10.94907407
19 F7 12.39351852 F7 12.14583333 FV7 10.9375
20 B7V7 12.46643519 VF7 12.36689815 F7 10.69560185
21 VF7 12.52662037 B7V7 12.53587963 VF7 10.52893519
22 V7F7 13.30787037 V7F7 13.03009259 V7F7 9.556712963
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Appendix A.2. Algorithms

Table A5. Methods’ Friedman rankings (shift = 1).

MSE RMSE RMSLE

Method F-Rank Method F-Rank Method F-Rank

1 LSTM 3.409090909 LSTM 3.184659091 LSTM 3.178977273
2 LSTM_2 3.954545455 LSTM_2 3.786931818 LSTM_2 3.801136364
3 LSTM_3 6.34375 LSTM_3 5.977272727 LSTM_3 6.065340909
4 GB 9.048295455 GB 9.076704545 GB 9.105113636
5 LGBM 9.923295455 LGBM 9.96875 LGBM 10.10511364
6 ET 10.17045455 ET 10.22443182 ET 10.625
7 RF 10.64488636 RF 10.6875 RF 10.87215909
8 MLP 11.13636364 MLP 11.17897727 MLP 10.95738636
9 CBR 11.23863636 CBR 11.25852273 CBR 11.47443182

10 XGBoost 12.26420455 XGBoost 12.30397727 XGBoost 12.63352273
11 ARD 13.11647727 ARD 13.16761364 ARD 13.5625
12 OMP 13.21164773 OMP 13.26846591 OMP 13.70596591
13 LA 13.66619318 LA 13.71164773 LA 14.18323864
14 RDG 13.77272727 RDG 13.81818182 RDG 14.21875
15 LNR 13.78267045 LNR 13.828125 LNR 14.29829545
16 ABR 14.68465909 ABR 14.71022727 ABR 15.11079545
17 DTR 15.34090909 DTR 15.36079545 DTR 15.64772727
18 KNR 16.19034091 KNR 16.21022727 KNR 15.99431818
19 RSC 16.31676136 RSC 16.35085227 RSC 16.50568182
20 HBR 16.91477273 HBR 16.96022727 HBR 17.30397727
21 SVR 17.85511364 SVR 17.86079545 THS 17.51704545
22 THS 18.11647727 LAS 18.13068182 SVR 17.63068182

MAE MAPE R2

Method F-Rank Method F-Rank Method F-Rank

1 LSTM 3.113636364 LSTM 2.960227273 LSTM 24.34375
2 LSTM_2 3.835227273 LSTM_2 3.747159091 LSTM_2 23.79545455
3 LSTM_3 6.423295455 LSTM_3 6.346590909 LSTM_3 21.36931818
4 GB 8.448863636 GB 8.360795455 GB 19.00568182
5 ET 9.889204545 ET 10.01988636 LGBM 18.15340909
6 LGBM 9.997159091 LGBM 10.21875 ET 17.84943182
7 RF 10.24431818 RF 10.34943182 RF 17.38636364
8 CBR 10.69318182 MLP 10.78409091 MLP 16.88636364
9 MLP 10.81818182 CBR 10.80681818 CBR 16.76988636

10 XGBoost 12.02840909 XGBoost 12.11079545 XGBoost 15.75568182
11 ARD 13.83522727 ARD 13.75568182 ARD 14.94602273
12 OMP 13.96164773 OMP 13.87642045 OMP 14.84517045
13 LA 14.20880682 LA 14.140625 LA 14.40198864
14 RDG 14.3125 RDG 14.28125 RDG 14.29545455
15 LNR 14.34943182 LNR 14.29119318 LNR 14.28551136
16 ABR 14.67613636 ABR 14.69318182 ABR 13.33806818
17 DTR 14.94034091 DTR 15.05113636 DTR 12.66477273
18 KNR 15.53693182 KNR 15.36931818 KNR 11.85227273
19 SVR 15.73579545 SVR 15.84375 RSC 11.73153409
20 RSC 16.81534091 RSC 16.77982955 HBR 11.13352273
21 HBR 17.45170455 HBR 17.44034091 SVR 10.17045455
22 THS 18.65340909 LAS 18.62215909 THS 9.909090909
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Table A6. Methods’ Friedman rankings (shift = 7).

MSE RMSE RMSLE

Method F-Rank Method F-Rank Method F-Rank

1 LSTM 4.940340909 LSTM 4.852272727 LSTM 4.491477273
2 LSTM_2 5.272727273 LSTM_2 5.235795455 LSTM_2 4.823863636
3 LSTM_3 8.241477273 LSTM_3 8.005681818 LSTM_3 7.696022727
4 OMP 10.31960227 OMP 10.33664773 MLP 9.9375
5 ARD 10.60511364 ARD 10.61931818 OMP 11.07528409
6 MLP 10.61931818 MLP 10.64488636 ARD 11.38068182
7 LA 10.96732955 LA 10.98153409 LA 11.63778409
8 LNR 11.26988636 LNR 11.28409091 LNR 11.98295455
9 RDG 11.34375 RDG 11.35795455 GB 11.98863636

10 GB 12.14772727 GB 12.17329545 RDG 12.05397727
11 LGBM 12.72443182 LGBM 12.75 LGBM 12.91193182
12 ET 13.65909091 ET 13.68181818 ABR 13.69034091
13 HBR 13.67613636 HBR 13.69318182 ET 13.88920455
14 CBR 13.90909091 CBR 13.90909091 CBR 13.89488636
15 ABR 14.25284091 ABR 14.27272727 RF 14.48295455
16 RF 14.38920455 RF 14.40056818 THS 14.59232955
17 THS 14.44886364 THS 14.46306818 HBR 14.70454545
18 RSC 14.94602273 RSC 14.97159091 LAS 15.48295455
19 LAS 16.10795455 LAS 16.13636364 RSC 15.56107955
20 KNR 16.19602273 KNR 16.21590909 KNR 16.00568182
21 XGBoost 16.25284091 XGBoost 16.26136364 XGBoost 16.63068182
22 DTR 17.75568182 DTR 17.76988636 SVR 17.07386364

MAE MAPE R2

Method F-Rank Method F-Rank Method F-Rank

1 LSTM 3.900568182 LSTM 4.022727273 LSTM 22.47443182
2 LSTM_2 4.340909091 LSTM_2 4.514204545 LSTM_2 22.20454545
3 LSTM_3 7.414772727 LSTM_3 7.400568182 LSTM_3 18.99715909
4 MLP 9.636363636 MLP 9.769886364 OMP 17.66903409
5 OMP 11.16619318 GB 11.14772727 MLP 17.59090909
6 GB 11.26136364 OMP 11.49857955 ARD 17.38636364
7 ARD 11.66761364 LGBM 11.84659091 LA 17.03267045
8 LA 11.88210227 ARD 11.94602273 LNR 16.73011364
9 LGBM 12.06818182 LA 12.14914773 RDG 16.65056818

10 LNR 12.25568182 LNR 12.53409091 GB 15.98579545
11 RDG 12.44602273 RDG 12.67045455 LGBM 15.40340909
12 CBR 12.99715909 CBR 12.95738636 ET 14.50568182
13 ET 13.21306818 ET 12.97159091 HBR 14.29545455
14 ABR 13.60795455 ABR 13.26704545 CBR 14.26704545
15 RF 13.73295455 RF 13.31534091 ABR 13.84943182
16 HBR 14.91477273 KNR 15.00852273 RF 13.82954545
17 KNR 15.39204545 HBR 15.18465909 THS 13.51136364
18 THS 15.39204545 XGBoost 15.34943182 RSC 13.13068182
19 XGBoost 15.57954545 THS 15.59090909 KNR 11.96590909
20 RSC 15.96875 SVR 16.13636364 XGBoost 11.94034091
21 SVR 16.26420455 RSC 16.21590909 LAS 11.90625
22 LAS 17.42613636 LAS 17.22727273 SVR 10.32102273
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Table A7. Methods’ Friedman rankings (shift = 14).

MSE RMSE RMSLE

Method F-Rank Method F-Rank Method F-Rank

1 LSTM 5.488636364 LSTM 5.363636364 LSTM 4.946022727
2 LSTM_2 5.721590909 LSTM_2 5.588068182 LSTM_2 5.113636364
3 OMP 8.673295455 LSTM_3 8.443181818 LSTM_3 8.048295455
4 LSTM_3 8.678977273 OMP 8.701704545 MLP 9.488636364
5 ARD 9.116477273 ARD 9.15625 OMP 9.53125
6 LA 10.06107955 LA 10.09232955 ARD 9.840909091
7 MLP 10.18465909 MLP 10.20170455 LA 10.64914773
8 LNR 10.20880682 LNR 10.24005682 LNR 10.890625
9 RDG 10.29829545 RDG 10.32954545 RDG 11.01988636

10 HBR 11.86363636 HBR 11.88920455 HBR 12.58522727
11 ABR 13.26420455 ABR 13.29829545 ABR 13.15909091
12 RSC 13.46306818 RSC 13.48579545 THS 13.72301136
13 THS 13.53693182 THS 13.55113636 LAS 13.75
14 GB 13.98011364 GB 13.99431818 RSC 13.78267045
15 LAS 14.42329545 LAS 14.47443182 GB 14.16761364
16 LGBM 15.03977273 LGBM 15.06534091 LGBM 15.36079545
17 RF 16.18465909 RF 16.20170455 ET 16.46022727
18 ET 16.20170455 CBR 16.21590909 CBR 16.54261364
19 CBR 16.20454545 ET 16.22443182 RF 16.5625
20 KNR 16.54545455 KNR 16.57102273 KNR 16.61079545
21 SVR 17.40340909 SVR 17.41761364 SVR 17.04829545
22 XGBoost 17.73011364 XGBoost 17.75 ELN 17.54261364

MAE MAPE R2

Method F-Rank Method F-Rank Method F-Rank

1 LSTM 5.539772727 LSTM 5.15625 LSTM 20.69318182
2 LSTM_2 5.732954545 LSTM_2 5.321022727 LSTM_2 20.46875
3 LSTM_3 8.784090909 LSTM_3 8.457386364 OMP 19.64204545
4 OMP 8.877840909 MLP 9.170454545 ARD 19.16193182
5 ARD 9.176136364 OMP 9.363636364 LA 18.21164773
6 MLP 9.295454545 ARD 9.653409091 LNR 18.06392045
7 LA 10.08664773 LA 10.43892045 MLP 18.04829545
8 LNR 10.27414773 LNR 10.640625 RDG 17.97159091
9 RDG 10.41761364 RDG 10.81818182 LSTM_3 17.69602273

10 HBR 11.94318182 HBR 12.39488636 HBR 16.48295455
11 ABR 13.18465909 ABR 12.83806818 ABR 14.87215909
12 THS 13.73863636 GB 13.61931818 RSC 14.76704545
13 GB 13.76988636 LGBM 14.16477273 THS 14.5
14 RSC 13.82102273 RSC 14.24431818 GB 14.24715909
15 LGBM 14.39204545 THS 14.28409091 LAS 13.97727273
16 CBR 15.61363636 CBR 15.29545455 LGBM 13.19034091
17 ET 15.76704545 ET 15.42613636 RF 12.11363636
18 RF 15.84090909 RF 15.44886364 ET 12.07670455
19 LAS 15.97159091 KNR 15.81534091 CBR 12.01704545
20 KNR 15.97443182 LAS 16.21875 KNR 11.71022727
21 SVR 16.46022727 SVR 16.35795455 SVR 10.80965909
22 XGBoost 17.72159091 XGBoost 17.42045455 XGBoost 10.55397727
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