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Abstract: The purpose of this paper is to propose a new Pythagorean fuzzy entropy for Pythagorean
fuzzy sets, which is a continuation of the Pythagorean fuzzy entropy of intuitionistic sets. The
Pythagorean fuzzy set continues the intuitionistic fuzzy set with the additional advantage that it is
well equipped to overcome its imperfections. Its entropy determines the quantity of information in the
Pythagorean fuzzy set. Thus, the proposed entropy provides a new flexible tool that is particularly
useful in complex multi-criteria problems where uncertain data and inaccurate information are
considered. The performance of the introduced method is illustrated in a real-life case study, including
a multi-criteria company selection problem. In this example, we provide a numerical illustration
to distinguish the entropy measure proposed from some existing entropies used for Pythagorean
fuzzy sets and intuitionistic fuzzy sets. Statistical illustrations show that the proposed entropy
measures are reliable for demonstrating the degree of fuzziness of both Pythagorean fuzzy set (PFS)
and intuitionistic fuzzy sets (IFS). In addition, a multi-criteria decision-making method complex
proportional assessment (COPRAS) was also proposed with weights calculated based on the proposed
new entropy measure. Finally, to validate the reliability of the results obtained using the proposed
entropy, a comparative analysis was performed with a set of carefully selected reference methods
containing other generally used entropy measurement methods. The illustrated numerical example
proves that the calculation results of the proposed new method are similar to those of several other
up-to-date methods.

Keywords: Pythagorean fuzzy sets; entropy measures; Pythagorean fuzzy entropy; multi-criteria
decision analysis; MCDA; COPRAS method

1. Introduction

Entropy is a measure of uncertainty occurring in information in which a higher
value implies more information in the process being analyzed. In multi-criteria decision
analysis (MCDA) methods, entropy is used to determine the objective weights of the criteria
based on the data in the decision matrix. The entropy of a Pythagorean fuzzy set is a novel
approach that measures the uncertainty associated with a PFS that represents the properties
of fuzzy sets well. The entropy designed for fuzzy sets measures fuzziness appearing
among fuzzy sets [1]. Multi-criteria decision-making processes are often fraught with
uncertainty due to constraints of knowledge regarding the choice of criteria for the decision
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model and its structure, inaccuracies present in the input data, and limited stakeholders’
competence [2]. Pythagorean fuzzy entropy is a novel, flexible tool for handling inaccurate
information in multi-criteria decision problems incorporating uncertainty [3]. Several
extensions of fuzzy set theory are present in the literature and are utilized in the domain of
decision making. A Pythagorean fuzzy set is a generalization of an intuitionistic fuzzy set.
Atanassov proposed intuitionistic fuzzy sets in 1983. An intuitionistic fuzzy set must hold
for 0 ≤ µ + ϑ ≤ 1 where µ → [0, 1] and ϑ → [0, 1]. For example, for the values µ = 0.8,
ϑ = 0.3 the intuitionistic fuzzy set condition fails, so for such scenario, Pythagorean fuzzy
sets are used; they were proposed by Yager in 2013 [4] and have membership and non-
membership grade such that it should satisfy the condition 0 ≤ µ2 + ϑ2 ≤ 1, where values
lie in the interval [0, 1]. Pythagorean fuzzy sets are an extension of intuitionistic fuzzy
sets introduced previously by Atanassov [5,6]. Pythagorean fuzzy sets and intuitionistic
fuzzy sets are closely related. With their application, experts have more flexibility to make
judgments considering uncertainties and ambiguities in the risk assessment problem [4].
The correlation coefficient plays a significant role in decision making, analyzing data, etc. [7].
Furthermore, Tadeusz Gerstenkorn and Jacek Manko coined a correlation coefficient in
intuitionistic fuzzy sets [8]. First, in 2016, Garg gave the concept of correlation coefficient in
Pythagorean fuzzy sets. From a statistical point of view, the correlation coefficient is defined
as the power of the linear correlation between two random variables [8]. Again, from a
statistical point of view, the domain of the correlation coefficient is [−1, 1]. However, the
research that Xuan Thao and other studies put forward concluded that a more appropriate
domain value for the correlation coefficient is [0, 1]. Zhang and Xu introduced the concept
of a Pythagorean fuzzy number [9]. In decision making, the Pythagorean fuzzy model has
more application range than the intuitionistic fuzzy model. In various real-life aspects,
Pythagorean fuzzy sets are used. For example, Pythagorean fuzzy entropy is used in mine
factories for the assessment of life safety risk [10]. Fuzzy and probability theories are
related, but the critical difference between probability and fuzzy theories is that we deal
with random events that may occur or not in probability theory. However, fuzzy logic
deals with truth values only. Various researchers have put forward different multi-criteria
decision making (MCDM). For example, a student may need to consider various university
parameters before taking admission. Companies or individuals do not depend on one
criterion for their decision. They choose multiple criteria for their decision. There exist
various decision problems such as sorting problems or ranking problems. Sometimes,
decision making becomes very complex. It is applied in many fields such as the financial
sector, education sector, etc. The COPRAS method was introduced by Zavadskas in
1994 [11]. In the COPRAS method, there exist m alternatives and n criteria; first we find
entropies equal to the criteria, then we calculate the weight criteria. In step 3, we create
a decision matrix and all the steps are explained in detail in this paper in the example
section. There are various other multi-criteria decision-making methods. In early 2010,
Balezentis proposed one in [12]. The focus of this article was on sustainable development
in the European Union. In this research paper, we will work on the complex proportional
assessment (COPRAS) MCDM method. Different researchers have put forward different
entropies in different fields. In this paper, we put forward an entropy with the complex
proportional assessment (COPRAS) method.

The rest of the paper is organized as follows. Section 2 provides a review of the
literature focused on Pythagorean fuzzy sets, Pythagorean fuzzy entropy and the CO-
PRAS method. In Section 3, basic concepts and assumptions of intuitionistic fuzzy sets
and Pythagorean fuzzy sets are included. Section 4 gives the fundamentals of the novel
Pythagorean fuzzy entropy measure. In Section 5, Pythagorean fuzzy multi-criteria deci-
sion making based on COPRAS is explained in subsequent stages. Section 6 provides a
comparison of entropies proposed in this paper. In Section 7, the case study is introduced,
and results are presented and discussed. Finally, in Section 8 conclusions are drawn.
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2. Literature Review

Multi-criteria decision analysis (MCDA) methods have been developed to support
decision making that requires consideration of multiple, often conflicting, criteria. Unfortu-
nately, humans have limited capabilities to process information containing large amounts
of data. Therefore, decision making based on intuition with a selective consideration of
criteria is usually insufficient. MCDA algorithms allow structuring the decision problem
by handling all data and criteria and each criterion’s importance. Many MCDA methods
based on different algorithms are available, each of which considers and structures the
data differently [13].

MCDA methods are developed within two main streams, the American school and the
European school. The methods of the American school are based on the functional strategy,
represented by the utility function. These methods take into account indifference and pref-
erence between the evaluated alternatives and do not consider their incomparability [14].
This group of methods includes analytic hierarchy process (AHP), technique for order of
preference by similarity to ideal solution (TOPSIS), Vise Kriterijumska Optimizacija I Kom-
promisno Resenje (VIKOR), multi-attribute utility theory (MAUT), simple multi-attribute
rating technique (SMART), measuring attractiveness by a categorical based evaluation
technique (MACBETH), and complex proportional assessment (COPRAS). Furthermore,
methods coming from the American school usually do not consider uncertainties and
inaccuracies that occur in the data under evaluation several times. Instead, this group of
methods strongly incorporates a strategy using a single synthesized criterion [15].

Methods from the European school use a relational model that considers indifference,
weak or strong preference, and incomparability. These methods aggregate preferences us-
ing a ranking relation that is not transitive between pairs of alternatives. The most popular
methods from the European school are the elimination and choice expressing the reality
(ELECTRE) family, preference ranking organization method for enrichment evaluations
(PROMETHEE), novel approach to imprecise assessment and decision environments (NA-
IADE), and treatment of the alternatives according to the importance of criteria (TACTIC).
Besides the two main streams described above, there is a group of mixed and rule-based
methods. Mixed methods integrate the approaches of the American and European schools,
such as the EVAMIX method, which makes it possible to take into account the quanti-
tative and qualitative types of the criteria considered, using two different measures of
dominance [16]. The rule-based method that is the characteristic objects method (COMET)
works on the triangular fuzzy numbers provided for each criterion, which determine the
degree to which the alternatives belong to the given linguistic values defining the criteria
under consideration. The generated characteristic objects are then compared pairwise [17].
Together with the aggregated ranking values, the alternatives create a fuzzy rule base that
is activated in evaluating the alternatives [18].

The lack of consideration of volatility, inaccuracy, and uncertainty in expert assess-
ments is the main reason for criticism of methods from the American school by researchers
representing the European school of MCDA [14]. In an effort to eliminate the limitations
mentioned above, the methods from the American school are being developed. It started
from the resignation of the simple aggregation, through their developments, including
fuzzy versions and fuzzy sets. As a result, these methods give more reliable results in
solving problems where inaccuracies and uncertainties are present. In this work, the au-
thors propose an extension of the COPRAS method derived from the American school
with Pythagorean entropy used to determine the significance of the criteria considered in
evaluating alternatives expressed in terms of weights. This approach makes it possible
to adequately account for the uncertainties and imprecisions present in most decision
problems and thus obtain more robust final results.

2.1. The COPRAS Method

The complex proportional assessment (COPRAS) method was developed by Zavad-
skas and Kaklauskas in 1994 [19]. This method belongs to the American MCDA school,
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similar to TOPSIS, VIKOR, and AHP. The significance of the alternatives investigated is
proportionally dependent on the weights of the criteria that define them [15]. The COPRAS
algorithm uses a staged ranking and evaluation of alternatives concerning the importance
and grade of the utility expressed in the criteria weights [20]. This method is used to
evaluate the advantage of one alternative over another and to benchmark alternatives.
Data normalization techniques are used in this methodology, which can produce very dif-
ferent results [21]. The COPRAS algorithm is helpful for both maximizing and minimizing
criteria, provided that at least two different criteria are considered [22]. The concept of
the COPRAS algorithm is similar to that of the simple additive weighing (SAW) method
for maximizing criteria. However, for minimizing criteria, COPRAS uses its proprietary
transformation of the method [23]. A particular advantage of COPRAS is the accuracy
of the provided rankings of alternatives due to the separate evaluation of profit and cost
criteria [24]. Thus, the final COPRAS score is derived from the positive ideal solution and
the negative ideal solution, and the best alternative should have the highest value for the
positive ideal solution and the lowest value for the negative ideal solution [25,26].

Recent literature review shows that the COPRAS method is readily and widely used
to solve multi-criteria decision problems. For example, COPRAS was used to assess the
safety of regions with COVID-19 [22], for evaluation of energy sectors sustainability [11],
for supplier selection in the oil and gas industry with uncertainty, utility functions, and
criteria representing performance [27]. In another study, COPRAS was combined with
AHP and applied to the construction industry to assess the performance of the variant
design of a timber–concrete composite (TCC) floor system [28]. The AHP method was
used in that paper to determine the significance of the criteria. In turn, COPRAS was
combined with the criteria importance through inter-criteria correlation (CRITIC) weighting
technique in [29] dedicated to assessing the performance of companies in aspects of
intelligent and sustainable industrial technologies. The same combination was applied
to the electric motorcycle evaluation in [30]. Fuzzy COPRAS was used for multi-criteria
selection of optimum material to improve braking system in the automotive industry, to
ensure maximum safety and failure-free performance [31]. The authors of [32] presented
the application of the COPRAS method in combination with the objective entropy technique
to determine criteria weights in the problem of selecting conveying equipment in the
industry sector. The references presented above prove the usefulness of the COPRAS
method in multi-criteria problems in various domains, including those in which uncertainty
occurs and in engineering problems in which the appropriate decision has an impact on
safety and a lack of emergency performance. The incorporated COPRAS approach based on
Pythagorean fuzzy sets visibly demonstrates the ability to determine the optimal solution
and provides more accurate information than other approaches [3].

2.2. Intuitionistic Fuzzy Sets

The attempt to adapt and develop methods for multi-criteria decision making in a
fuzzy environment became the motivation for Atanassov to introduce intuitionistic fuzzy
sets (IFSs) [33], which represent fuzzy properties of objects in an easy-to-understand way.
IFSs represent an extension of fuzzy sets (FSs) [34]. An IFS satisfies the requirement that the
sum of the degrees of membership and non-membership is equal to 1 [35]. IFSs allow for
easy modeling of both symmetrical and asymmetrical linguistic values and more accurate
expression of information [36]. IFSs find wide application in real-world risk evaluation
procedures with ambiguity and uncertainty. IFSs can be combined with MCDA methods
such as AHP, COMET and potentially all pairwise rankings of all possible alternatives
(PAPRIKA) method [36,37]. However, the ability to model uncertainty and imprecision
provided by IFS theory is constrained. Therefore, Pythagorean fuzzy sets can catch and
model more uncertain information for complex problems occurring in the real world [6].
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2.3. Pythagorean Fuzzy Sets

The idea of Pythagorean fuzzy sets demonstrates a superiority over well-established
fuzzy sets like intuitionistic and interval-valued ones when problems with uncertainty and
ambiguity need to be solved [6]. Pythagorean fuzzy sets (PFS) are beneficial in compound,
real-world situations because they can model more uncertain and subjective information
not handled by intuitionistic fuzzy sets. Due to their valuable properties, PFS is often
used in conjunction with MCDA methods to solve decision problems with uncertainty. In
addition, computer systems based on fuzzy sets are often used in several domains, such
as risk assessment, to cope with accurate danger estimation. For example, the authors
of [4] used the VIKOR method extended by Pythagorean fuzzy sets to define hazards and
risks in constructing a natural gas pipeline. The authors of [6] presented an application of
Pythagorean fuzzy information in combination with VIKOR as well. In another work, the
PF and PROMETHEE II based approach was used in the construction industry to solve
the problem of selecting bridge construction methods under complex uncertainty [38].
TOPSIS has been combined with PFS in green supplier selection for green supply chain
management in sustainable development in [39]. With PFS’s thoughtful consideration
of uncertainty, it is possible to accurately frame this problem as a complex process that
includes installation, supply, procurement, deliveries, production, and waste management.

PFS with Pythagorean membership degrees fulfills the requirement that the square
sum of the membership degree and the non-membership degree is equal to or less than 1 [40].
Furthermore, the approach uses uncertain information expressed by Pythagorean fuzzy
values and creates the terms such as generalized distance measure and distance indices.
Pythagorean fuzziness theory contributed to the growing popularity of PFSs after the
introduction of the mathematical representation of PFS by Zhang and Xu in 2014 [9].

2.4. Pythagorean Fuzzy Entropy

In MCDA problems, weights are essential since their values assigned to the criteria
determine the final result of the evaluation of alternatives. However, the relevance of the
criteria is not known for every problem. Such a situation occurs when the decision-maker
does not sufficiently know the problem being solved to prioritize the criteria. Therefore, it
is necessary to use objective weighting methods based on mathematical algorithms and
formulas and determine weights based on the information contained in the input data.
For entirely unknown information about the weights in the MCDA problem, entropy is
recommended [41].

Entropy is a measure of uncertain or fuzzy information. Pythagorean fuzzy entropy
(PFE) is used to express fuzziness and uncertainty occurring in PFS. The PFE includes
the part represented by the similarity between the PFS and its supplement and from the
hesitancy part [1,10]. Higher entropy indicates more information in the process. Decision
making incorporating a measure of entropy is beneficial because a high entropy value
represents low uncertainty [42]. Fuzzy entropy was primarily introduced by Zadeh [43].
The axiomatic construction of fuzzy set entropy was introduced by De Luca and Termini
regarding Shannon’s probability entropy [44]. Hung and Yang extended this idea to the
idea of fuzzy set entropy in IFSs [45]. The development of IFS was a motivation for further
research in the entropy domain. In 1996, Burille and Bustince proposed an axiomatically
defined entropy for IFS [46]. Szmidt and Kacprzyk introduced entropy for intuitionistic
fuzzy sets in 2001 using a geometric interpretation of IFS, specifically the ratio of the
distances among them [47]. In 2016, Zhu and Li presented new axioms for the entropy
measure in IFSs [48]. It can be observed that entropy for intuitionistic fuzzy sets and
Pythagorean fuzzy sets finds application in the practical solution of problems affected by
uncertainty from various domains. For example, a new entropy measure using Pythagorean
fuzzy sets integrated with the COPRAS method was applied to solve the problem of
component supplier selection for fuel cell combined with hydrogen technology [3]. On the
other hand, the Pythagorean fuzzy analytical hierarchical process (PFAHP) method, along
with information entropy, has been applied to evaluate the significance of the weights of
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the criteria defining security in software defined network (SDN), in the SDN architecture
risk assessment problem [49].

However, this concept has limitations when applied to Pythagorean fuzzy sets (PFSs),
because in several instances, they do not satisfy the required, acceptable performance.
Therefore, for PFSs, Pythagorean fuzzy entropy is appropriate, which extends the axioms
in Hung and Yang’s idea of fuzzy entropy [50]. This measure is simple, close to statistical
relevance, and adequately represents fuzzy attributes [51].

Pythagorean fuzzy set theory reflects the fuzziness of the objective world more ef-
fectively than IFS theory. Thus, many researchers are focused on PFE investigations. In
2018, Yang and Hussain introduced four measures of Pythagorean Entropy founded on
probability, distance, Pythagorean index, and a minimum-maximum technique [1]. Xue
et al. proposed a new entropy measure for PFSs based on similarity and hesitancy [10].
Wan et al. introduced an entropy measure for PFSs founded on the axiomatic definition of
Szmidt and Kacprzyk [52]. Peng et al. [53] proposed 12 entropies for PFSs, relying on the
axiomatic definition of Burille and Bustince.

3. Fundamental Concepts
3.1. Intuitionistic Fuzzy Set

Definition 1 ([54]). An intuitionistic fuzzy set ξ in a finite universe Φ is an object that the
following notation can characterize:

ξ =
{
〈y, µξ(y), νξ(y)|y ∈ Φ

}
(1)

where the functions µξ(y) ∈ Φ→ [0, 1] and νξ(y) ∈ Φ→ [0, 1] express the membership degree
and non-membership degree of y to ξ in Φ, respectively. Given any element y in Φ, the following is
accomplished:

0 ≤ µξ(y) + νξ(y) ≤ 1 (2)

The function λξ(y), denominated as the hesitation degree, which expresses insufficient infor-
mation concerning whether y belongs to ξ in, :

λξ(y) = 1− µξ(y)− vξ(y) (3)

3.2. Pythagorean Fuzzy Set

Definition 2 ([4]). A Pythagorean fuzzy set ξ in a finite universe Φ is an object that the following
notation can characterize:

ξ =
{
〈y, µξ(y), νξ(y)|y ∈ Φ

}
(4)

where the functions µξ(y) ∈ Φ→ [0, 1] and νξ(y) ∈ Φ→ [0, 1] express the membership degree
and non-membership degree of y to ξ in Φ, respectively. Given any element y in Φ, the following is
accomplished:

0 ≤ µ2
ξ(y) + ν2

ξ (y) ≤ 1 (5)

The function λξ(y), denominated as the hesitation degree, which expresses insufficient infor-
mation concerning whether y belongs to ξ in, is expressed as follows:

λξ(y) =
[
1−

(
µξ(y)

)2 −
(
vξ(y)

)2
] 1

2 (6)

For computational suitability Zhang and Xu [9] defined (µξ(y), νξ(y)) as a Pythagorean
fuzzy number and denoted it by ξ = (µξ , νξ).

The basic operations of Pythagorean fuzzy numbers are defined by Zhang and Xu [9]
as follows:
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Definition 3 ([9]). Let ξ = (µξ(y), νξ(y)) and ψ = (µψ(y), νψ(y)) be two Pythagorean fuzzy
numbers and λ > 0, then their basic operations are as follows:

• ξ ⊂ ψ if ∀y ∈ Φ, µξ(y) ≤ µψ(y) and νξ(y) ≥ νψ(y);
• ξc = ξ̄ =

{〈
y, vξ(y), µξ(y)

〉
| y ∈ Φ

}
• ξ = ψ if ξ ⊂ ψ and ψ ⊂ ξ
• ξ ∩ ψ =

{
〈y, min

(
µξ(y), µψ(y)

)
, max

(
νξ(y), νψ(y)

)
〉|y ∈ Φ

}
;

• ξ ∪ ψ =
{
〈y, max

(
µξ(y), µψ(y)

)
, min

(
νξ(y), νψ(y)

)
〉|y ∈ Φ

}
;

• ξ ⊕ ψ =
{
〈y,
√

µ2
ξ(y) + µ2

ψ(y)− µ2
ξ(y)µ

2
ψ(y), νξ(y)νψ(y)〉|y ∈ Φ

}
;

• ξ ⊗ ψ =
{
〈y, µξ(y)νψ(y),

√
ν2

ξ (y) + ν2
ψ(y)− ν2

ξ (y)ν
2
ψ(y), 〉|y ∈ Φ

}
;

• λξ =
{

y,
(√

1− (1− µ2
ξ(y))

λ, νξ(y))λ
)
|y ∈ Φ

}
;

• ξλ =
{

y,
(
(µξ(y))λ,

√
1− (1− ν2

ξ (y))
λ
)
|y ∈ Φ

}
.

4. Novel Pythagorean Fuzzy Entropy Measure

The proposed entropy, as opposed to the method proposed for Pythagorean fuzzy sets
by Xue, Xu, Zhang, and Tian [10], gives different results, which are presented in Section 6.
These results contribute to different weight values in multi-criteria decision making with
uncertain data. An aspect of this would need to be considered more extensively in future
research for more complex problems. Our innovation is also applying a flexibility secant
function to the entropy, adapted to give more nonlinear responses. The use of such solutions
is favorable to the present trends related to the development of tools that are adapted to
handle nonlinearity, e.g., in multi-criteria decision analysis [55,56]. An innovative entropy
measure for a PFS is determined by the notion of Wang and Wang [57] in the context of
intuitionistic fuzzy sets as follows:

Definition 4. For the Pythagorean fuzzy set ξ =
{
〈y, µξ(y), νξ(y)|y ∈ Φ

}
, the Pythagorean

fuzzy entropy of ξ is defined as follows:

E(ξ) =
1
n

n

∑
i=1

sec

π

3
−

∣∣∣µ2
ξ(y)− ν2

ξ (y)
∣∣∣

3
π

− 1

 (7)

Properties for Pythagorean Fuzzy Entropy Measure

Definition 5. The mapping E : PFS(Φ) → [0, 1] is stated as a Pythagorean fuzzy entropy if it
satisfies:

1. E(ξ) = 0 if and only if ξ is a crisp set;

2. E(ξ) = 1 if and only if µξ(y) = νξ(y) = 3
√

3
9 , ∀y ∈ Φ;

3. E(ψ) ≤ E(ξ) if ψ is less fuzzy than ξ, i.e., , µψ(y) ≤ µξ(y) and νξ(y) ≤ νψ(y) for
µξ(y) ≤ νξ(y) or µψ(y) ≥ µξ(y) and νξ(y) ≥ νψ(y) for µξ(y) ≥ νξ(y), ∀y ∈ Φ;

4. E(ξ) = E(ξc), ∀ξ ∈ PFS(Φ).

Theorem 1. E(ξ) is a Pythagorean fuzzy entropy.
Proof: First, we should prove 0 ≤ E(ξ) ≤ 1. Since 0 ≤ µ2

ξ(y), ν2
ξ (y) ≤ 1 and 0 ≤ µ2

ξ(y) +

ν2
ξ (y) ≤ 1,

∣∣∣µ2
ξ(y)− ν2

ξ (y)
∣∣∣ = ∣∣(µξ(y) + νξ(y))× (µξ(y)− νξ(y))

∣∣.
Then, π

3

∣∣∣µ2
ξ(y)− ν2

ξ (y)
∣∣∣ ≤ π

3 . Thus, 0 ≤ E(ξ) ≤ 1.
Next, E(ξ) meets the four properties of Pythagorean fuzzy entropy, which are proved as follows:

1. If E(ξ) = 0, then π
3

∣∣∣µ2
ξ(y)− ν2

ξ (y)
∣∣∣ = π

3 . We have µξ(y) = 0, νξ(y) = 1, πξ(y) = 0 or
µξ(y) = 1, νξ(y) = 0, πξ(y) = 0. Hence ξ is a crisp set. If ξ is a crisp set, then E(ξ) = 0.

2. If E(ξ) = 1, then π
3

∣∣∣µ2
ξ(y)− ν2

ξ (y)
∣∣∣ = 0. We have µξ(y) − νξ(y) = 0, namely,

µξ(y) = νξ(y).
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If µξ(y) = νξ(y), then E(ξ) = 1.

3. Construct a function, f (α, β) = sec
(

π
3 −
|α2−β2|

3 π

)
− 1, where α, β ∈ [0, 1].

Case 1: when α ≤ β, then f1(α, β) = sec
(

π
3 −
|β2−α2|

3 π

)
− 1.

We need to prove that f1(α, β) increases with α and decreases with β

Now, ∂ f1(α,β)
∂α = 2απ

3

[
sec
(

π
3 −
|β2−α2|

3 π

)
tan
(

π
3 −
|β2−α2|

3 π

)]
and

∂ f1(α,β)
∂β = − 2βπ

3

[
sec
(

π
3 −
|β2−α2|

3 π

)
tan
(

π
3 −
|β2−α2|

3 π

)]
.

When α ≤ β, ∂ f1(α,β)
∂α ≥ 0 and ∂ f1(α,β)

∂β ≤ 0, then we can say that f1(α, β) increases with α

and decreases with β, then µψ(y) ≤ νψ(y) and µξ(y) ≤ µψ(y), νξ(y) ≥ νψ(y) are satisfied.
Thus, we have f (µξ(y), νξ(y)) ≤ f (µψ(y), νψ(y)).

Case 2: When α ≥ β, then f2(α, β) = sec
(

π
3 −
|α2−β2|

3 π

)
− 1.

We need to prove that f2(α, β) decreases with α and increases with β.

Now, ∂ f2(α,β)
∂α = − 2απ

3

[
sec
(

π
3 −
|α2−β2|

3 π

)
tan
(

π
3 −
|α2−β2|

3 π

)]
and

∂ f2(α,β)
∂β = 2βπ

3

[
sec
(

π
3 −
|α2−β2|

3 π

)
tan
(

π
3 −
|α2−β2|

3 π

)]
.

When α ≥ β, ∂ f2(α,β)
∂α ≤ 0 and ∂ f2(α,β)

∂β ≥ 0, then we can say that f2(α, β) decreases with α

and increases with β, then µψ(y) ≥ νψ(y) and µξ(y) ≥ µψ(y), νξ(y) ≤ νψ(y) are satisfied.
Thus, we have f (µξ(y), νξ(y)) ≤ f (µψ(y), νψ(y)).
Hence ξ ≤ ψ, then we can say that E(ξ) ≤ E(ψ).

4. E(ξ) = 1
n ∑n

i=1

[
sec

(
π
3 −

∣∣∣µ2
ξ (y)−ν2

ξ (y)
∣∣∣

3 π

)
− 1

]
;

5. E(ξc) = 1
n ∑n

i=1

[
sec

(
π
3 −

∣∣∣ν2
ξ (y)−µ2

ξ (y)
∣∣∣

3 π

)
− 1

]
.

5. Pythagorean Fuzzy Multi-Criteria Decision Making Based on COPRAS

The COPRAS technique, initiated by Zavadskas and Kaklauskas in 1994 [19], is a
fast developed method to deal with real problems and multi-criteria decision making.
We suggest the complex proportional assessment (COPRAS) method for multiple criteria
decision-making problems in this section. It is based on the proposed innovative entropy
measure. Let A = {A1, A2, . . . , Am} be a set of alternatives. We must aim at the best
selection based on the set of criteria C = {C1, C2, . . . , Cn}. Given the Pythagorean fuzzy
decision matrix D =

[
dij
]

m×n, where dij =
(
µij, νij

)
is a Pythagorean number displaying

the performance of value of alternative Ai on the criterion Cj. The algorithm of the COPRAS
method is represented in Figure 1. On the other hand, the structure of the whole study can
be shown in the following steps [51]:

Step 1. Compute the entropy on Pythagorean fuzzy sets ej of the criterion Cj (j = 1, 2, . . . , n).
Step 2. Calculate the weight wj of the criterion Cj (j = 1, 2, . . . , n) by using the expression:

wj =
1− ej

∑n
j=1
(
1− ej

) , (j = 1, 2, . . . , n) (8)

Step 3. Determine the weighted decision matrix R =
[
rij
]

m×n by Equation (9).

rij = wjdij =
√

1− (1− µ2
ij)

wj , ν2
ij, (j = 1, 2, . . . , n) (9)

Step 4. Calculate the score function s
(
rij
)

for all (i = 1, 2, . . . , m) and (j = 1, 2, . . . , n).

s(p) = µ2 − ν2 (10)
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Step 5. Determine the maximizing s(Pi) and minimizing s(Ri) index as follows:

s(Pi) =
1
|B| ∑

j∈B
s(rij) (11)

s(Ri) =
1
|NB| ∑

j∈NB
s(rij) (12)

where B is the set of benefit criteria and NB is the set of all non-benefit criteria, for
all (i = 1, 2, . . . , m).

Step 6. Calculate the relative weight of each alternative Qi(i = 1, 2, . . . , m).

Qi = s(Pi) +
∑n

i=1 es(Ri)

s(Pi)∑n
i=1

1
es(Ri)

(13)

Step 7. Determine the priority order Pri (i = 1, 2, . . . , m).

Pri =
Qi

maxQi
× 100 (14)

Step 8. Rank the alternatives Ai > Ak if Pri ≥ Prk for all (i, k = 1, 2, . . . , m).

6. Comparison with Proposed Entropies

When introducing newly developed methods, it is essential to conduct a comprehen-
sive benchmarking analysis with a set of carefully selected reference methods. For this
purpose, it is necessary to select an appropriate number of well-established benchmark
methods that have been used for many years in global research. In this case, the role of
reference methods is fulfilled by other typologies of entropy such as intuitionistic fuzzy
entropies and Pythagorean fuzzy entropies proposed and adopted in other research [3,49].
The analysis performed serves to validate the results and reliability of new methods. It is
critical to assess whether the results given by the newly proposed method are comparable to
those provided by the reference methods and whether there are no significant outliers [15].
An objective measure of the consistency of the results provided by the compared methods
is to measure the correlation between them. In this case, the Pearson correlation coefficient
was used for this purpose. Due to mentioned facts, we first review various proposed
entropies and draw a comparison example.

1. The IF entropy proposed by Zhang and Jiang [58].

E1 =
−1
n

n

∑
i=1

[
µA(xi) + 1− ϑA(xi)

2
log
(

µA(xi) + 1− ϑA(xi)

2

)
+

ϑA(xi) + 1− µA(xi)

2
log
(

ϑA(xi) + 1− µA(xi)

2

)]
.

(15)

2. The Pythagorean fuzzy entropy introduced by Xue, Xu, Zhang, and Tian in 2017 [10].

E2 =
1
n

n

∑
i=1

[
1−

(
µ2

A (xi) + ϑ2
A(xi)

) ∣∣∣µ2
A(xi)− ϑ2

A(xi)
∣∣∣]. (16)

This entropy is used for deciding the investment in railway projects. This entropy is
based on the linear programming technique for multi-dimensional analysis for preference
(linmap) method.

3. Ye put forward two intuitionistic fuzzy entropy, which was further simplified by
Wei et al. [59].
The entropy proposed by Wei et al. [59] is:

E3 =
1
n

n

∑
i=1

[(√
2cos

µA(xi)− ϑA(xi)

4
π − 1

)
× 1√

2− 1

]
. (17)
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4. The following entropy was put forward by Manseng Liu and Haiping Ren [60]:

E4 =
1
n

n

∑
i=1

cot
(

π

4
+
| µA(xi)− ϑA(xi)| × (1− πA(xi))

4
π

)
. (18)

5. The following entropy was developed by Wang and Wang [57]:

E5 =
1
n

n

∑
i=1

cot
(

π

4
+
|µA(xi)− ϑA(xi)|

4(1 + πA(xi))
π

)
. (19)

Create Intuitionistic Fuzzy Decision Matrix

Obtain Criteria Weights 

(for unknown/known weights)

Create a Weighted Decision Matrix
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Calculate the score function   

Evaluation Compute Maximizing and Minimizing Index
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Figure 1. Subsequent stages of COPRAS method.

In order to compare entropies between each other, we decided to use Pearson’s
correlation coefficient. The Pearson correlation coefficient compares two data sets using
covariance and standard deviation [61]. Its value ranges from −1 to 1. The smaller the
Pearson correlation coefficient value, the less correlation between the data, while the more
significant the value, the greater the correlation. Formula (20) can represent it.

r(x, y) = ∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2

√
∑n

i=1(yi − ȳ)2
(20)
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7. Practical Case Studies

This section provides and discusses two illustrative examples of using Pythagorean
fuzzy entropy. The first example deals with determining entropy values for Pythagorean
fuzzy sets according to 6 methods. The second example shows the practical application of
the proposed entropy in obtaining weights in a multi-criteria problem.

Example 1. Firstly, we will draw a table in which we will compare various entropies proposed
by other researchers. Further, we will propose an example of the complex proportional assessment
(COPRAS) method used for problems of multi-criteria decision making. This method is based on
the new entropy proposed (new fuzzy entropy on Pythagorean fuzzy sets). This study used the
uncertain decisions library available at https://gitlab.com/kiziub/uncertain-decisions (accessed on
10 November 2021 ).

Suppose M = (xi, µM(xi), ϑM(xi)| xiεX, where X is the universal set be a Pythagorean
fuzzy set for every real number [62].

Let M1 =< 0.5, 0.5 >, M2 =< 0.1, 0.9 > and M3 =< 0.7, 0.3 >.
From Table 1, we conclude that whenever µ = ϑ, the entropy reaches a maximum. The entropy

attains a maximum value at M1.

Table 1. Comparison of the degree of fuzziness with different entropy measures.

Entropy E1 E2 E3 E4 E5 E

M1 0.3010 1 1 1 1 1
M2 0.1411 0.344 0.3479 0.1583 0.1583 0.0223
M3 0.2652 0.768 0.8328 0.5095 0.5095 0.2360

Example 2. Assume that we have to choose one express company out of four express companies
{x1, x2, x3, x4}. After successful evaluation, the four alternatives with reference to four criteria
are being decided. The decided criteria are y1 for convince, y2 for safety, y3 for reliability, y4 for
tangibility where {y1, y2, y3} are the benefit criteria and {y4} is non-benefit criteria [15].

We consider this problem with the proposed COPRAS method. The various steps are as follows:
Step 1. Consider the criteria Yj(j = 1, 2, 3, 4) is the Pythagorean fuzzy set on the alternatives
of set X = {x1, x2, x3, x4} presented by Table 2. With the help of Equation (7), find entropy
e1 = 0.4846, e2 = 0.2226, e3 = 0.3623, e4 = 0.6815.
Step 2. With the help of Equation (8), find the weights of all criteria ω1 = 0.2292,
ω2 = 0.3457, ω3 = 0.2835, ω4 = 0.1416, where ej is calculated using the selected Pythagorean
fuzzy entropy.
Step 3. Compute the decision matrix Z =

[
zi j
]

m×n where zi j = (µij, ϑij) which is represented by
Table 3.
Step 4. With the help of Equation (2), find the score function s(aij) ∀ i, j = 1, 2, 3, 4. The function
values obtained are shown in Table 4.
Step 5. Find S(Pi) and S(Ri)∀ i = 1, 2, 3, 4 with help of Equations (11) and (12).
Step 6. Determine the relative weight for every alternative Qi where i = 1, 2, 3, 4.
Step 7. Calculate the priority order Pri where i = 1, 2, 3, 4, using Equation (14).
Step 8. Provide the ranking of alternatives with reference to the priority order.

Table 2. The Pythagorean fuzzy matrix given by contractor.

Z Y1 Y2 Y3 Y4

x1 0.2, 0.4 0.7, 0.2 0.8, 0.1 0.5, 0.5
x2 0.8, 0.5 0.6, 0.3 0.1, 0.5 0.8, 0.2
x3 0.3, 0.1 0.8, 0.05 0.7, 0.6 0.7, 0.6
x4 0.1, 0.6 0.3, 0.7 0.4, 0.7 0.4, 0.4

https://gitlab.com/kiziub/uncertain-decisions
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Table 3. The weighted Pythagorean fuzzy matrix given by contractor.

Z Y1 Y2 Y3 Y4

x1 0.0965, 0.8105 0.4557, 0.5732 0.5014, 0.5206 0.1998, 0.9065
x2 0.4569, 0.8531 0.3781, 0.6595 0.0533, 0.8216 0.3670, 0.7962
x3 0.1462, 0.5899 0.5455, 0.3550 0.4169, 0.8651 0.3016, 0.9302
x4 0.0480, 0.8895 0.1791, 0.8840 0.2196, 0.9038 0.1562, 0.8783

Table 4. The score functions and ranking of alternatives.

S Y1 Y2 Y3 Y4 PI Ri Qi
100QI

max Qi
Rank

x1 −0.6477 −0.1210 −0.0196 −0.7818 −0.2628 −0.7818 0.2758 94.70 2
x2 −0.5190 −0.2920 −0.6722 −0.4992 −0.4944 −0.4992 −0.0884 −30.35 3
x3 −0.3266 0.1715 −0.5748 −0.7743 −0.2433 −0.7743 0.2913 100 1
x4 −0.7889 −0.7494 −0.7687 −0.7470 −0.7690 −0.7470 −0.2488 −85.42 4

The rankings of the alternatives obtained by the COPRAS method using each entropy method
are displayed in Table 5. The obtained weights with the proposed entropy method gave the same
ranking of the alternatives in the COPRAS method as the entropy method of Xue, Wang, Liu, and
Zhang. However, the obtained weights for Wei’s entropy method resulted in a different ranking than
the proposed method.

Table 5. The comparison with some other methods.

xi
Proposed Xue, Xu, Wang and Liu and Zhang and Wei
entropy and Zhang [10] Wang [57] Ren [60] Jiang [58] [59]

x1 2 2 2 2 2 1
x2 3 3 3 3 3 3
x3 1 1 1 1 1 2
x4 4 4 4 4 4 4

The weights of the entropy methods for each criterion are visualized in Figure 2. By most of the
methods, the least weight was assigned to criterion four. However, the entropy method proposed by
Xue assigned the least weight to criterion one. Criterion two turned out to be the most significant
criterion for all methods of selecting weights using entropy. The least varied weight values were
obtained by Zhang’s entropy-based weight selection method.

Figure 3 displays the for each entropy method used to select the weights. All the considered
methods have a high correlation with each other. However, the proposed method has the highest
correlation with the Wang (1.00) and Liu (0.99) methods. On the other hand, it has the lowest
correlation with the Xue method (0.90). Xue’s method has the highest correlation with Zhang’s
method and Wei’s method, where the Pearson correlation coefficient value for this comparison was
1.00. One of the lower Pearson correlation values was achieved for Wang’s method and Xue’s method
and was 0.91.

New Xue Wang Liu Zhang Wei
Weights

0.0

0.2

0.4

0.6

0.8

1.0
C1 C2 C3 C4

Figure 2. Weights determined by entropy methods for each criterion.
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Entropy weights

N
ew

Xu
e

W
an

g
Li

u
Zh

an
g

W
ei

1.00 0.90 1.00 0.99 0.93 0.93

0.90 1.00 0.91 0.96 1.00 1.00

1.00 0.91 1.00 0.99 0.94 0.94

0.99 0.96 0.99 1.00 0.97 0.98

0.93 1.00 0.94 0.97 1.00 1.00

0.93 1.00 0.94 0.98 1.00 1.00

Correlation: Pearson

0.92

0.94

0.96

0.98

1.00

Figure 3. Pearson correlation heat maps for different entropy weights methods.

8. Conclusions

This paper introduces the concept of the fuzzy entropy of Pythagorean fuzzy sets,
which extends the concept of the fuzzy entropy of the intuitionistic fuzzy sets. As indicated
in the article, this extension is necessary. It exploited the concept of probability for determin-
ing the fuzzy entropy of Pythagorean fuzzy sets. We gave some numerical illustrations to
analyze our proposed entropy measure compared to some current entropies of Pythagorean
fuzzy sets. The numerical illustrations show that the proposed entropy measures seem
to be more reliable for exhibiting the degree of fuzziness of a PFS. We also proposed a
COPRAS multi-criteria decision-making method with weights calculated based on the
proposed new entropy measure. The illustrated numerical example demonstrates that the
calculated results according to the proposed new method are similar to the calculation
results according to some other existing methods.

The innovative integrated approach proposed by the authors, combining Pythagorean
fuzzy entropy for Pythagorean fuzzy sets with the COPRAS method for multi-criteria
evaluation of a problem with uncertain data, enables one to deal with the limitations that
occur when using methods that are subjective or that do not take into account uncertainties
in the data, which could make the final results inaccurate. The most significant positive
outcomes of the approach presented in this article are:

• Adopting a fuzzy number environment that reflects well the uncertainty in the prob-
lems being solved;

• Resistance to uncertainties and inaccuracies appearing in the evaluated problem;
• High accuracy of delivered results confirmed by outcomes provided by reference methods.

However, further research with other complex data sets and problems is required to
identify potential disadvantages and shortcomings of the proposed method and to identify
possible needed further directions to improve or extend this approach. The proposed
approach could be applied to problems associated with determining the risk of systems
prior to implementation, such as the one presented in [49].
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AHP Analytic hierarchy process
COMET Characteristic objects method
COPRAS Complex proportional assessment
CRITIC Criteria importance through inter-criteria correlation
ELECTRE Elimination and choice expressing the reality
FS Fuzzy set
IFS Intuitionistic fuzzy sets
MACBETH Measuring attractiveness by a categorical based evaluation technique
MAUT Multi-attribute utility theory
MCDA Multi-criteria decision analysis
MCDM Multi-criteria decision making
NAIADE Novel approach to imprecise assessment and decision environments
PAPRIKA Potentially all pairwise rankings of all possible alternatives
PFE Pythagorean fuzzy entropy
PFS Pythagorean fuzzy set
PROMETHEE Preference ranking organization method for enrichment evaluations
SMART Simple multi-attribute rating technique
TACTIC Treatment of the alternatives according to the importance of criteria
TOPSIS Technique for order of preference by similarity to ideal solution
VIKOR Vise kriterijumska optimizacija i kompromisno resenje
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