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Abstract: Multilevel thresholding segmentation of color images plays an important role in many
fields. The pivotal procedure of this technique is determining the specific threshold of the images.
In this paper, a hybrid preaching optimization algorithm (HPOA) for color image segmentation is
proposed. Firstly, the evolutionary state strategy is adopted to evaluate the evolutionary factors in
each iteration. With the introduction of the evolutionary state, the proposed algorithm has more
balanced exploration-exploitation compared with the original POA. Secondly, in order to prevent
premature convergence, a randomly occurring time-delay is introduced into HPOA in a distributed
manner. The expression of the time-delay is inspired by particle swarm optimization and reflects
the history of previous personal optimum and global optimum. To better verify the effectiveness
of the proposed method, eight well-known benchmark functions are employed to evaluate HPOA.
In the interim, seven state-of-the-art algorithms are utilized to compare with HPOA in the terms of
accuracy, convergence, and statistical analysis. On this basis, an excellent multilevel thresholding
image segmentation method is proposed in this paper. Finally, to further illustrate the potential,
experiments are respectively conducted on three different groups of Berkeley images. The quality
of a segmented image is evaluated by an array of metrics including feature similarity index (FSIM),
peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and Kapur entropy values. The
experimental results reveal that the proposed method significantly outperforms other algorithms and
has remarkable and promising performance for multilevel thresholding color image segmentation.

Keywords: heuristic algorithm; color image segmentation; Kapur entropy; preaching optimization
algorithm; distributed time-delay; evolutionary state

1. Introduction

Image segmentation is a vital processing stage in object location and pattern recogni-
tion [1]. It can be deemed as a technique that partitions the components of an image into
several disjoint categories concerning color, feature, texture, etc. More precisely, this work
can be divided into color image segmentation and gray image segmentation. Color images
provide more abundant information than gray images, such as hue and saturation [2].
Hence, color image segmentation has been widely applied in numerous domains such as
biological monitoring [3], automatic driving [4], and precision agriculture [5], which makes
color image segmentation a demanding task.

In the past few years, researchers have proffered a range of methods to achieve
image segmentation, which can be summarized as threshold-based method [6], edge-based
method [7], region-based method [8], clustering-based method [9], turbopixel/superpixel-
based methods [10,11], watershed-based methods [12,13], contour models-based [14,15],
and artificial neural network-based methods [16]. The threshold technique has become
the most in vogue method compared with other methods for its simple implementation
and high accuracy [17]. It consists of bi-level and multilevel segmentation depending
on the number of thresholds. Bi-level segmentation means that the given image should
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be segmented into two classes concerning a single threshold value, namely target and
background [18]. However, the effect of bi-level threshold segmentation is inadequate when
the image contains more objects or complex background. Considering these limitations,
multilevel segmentation can be adopted. It divides pixels into several regions and can be
efficaciously used for color image segmentation.

Numerous techniques based on respective criteria have been developed for getting ap-
propriate thresholds (by way of illustration, Otsu and information entropy). As a primary
and available method, Otsu has long been highly valued and applied [19]. In addition,
methods based on information entropy are extensively concerned due to captivating math-
ematical concepts, such as Shannon entropy [20], fuzzy entropy [21], Tsallis entropy [22],
Renyi entropy [23], and Kapur entropy [24]. Among them, Kapur entropy classifies an im-
age into multiple classes by comparing the entropy of the histogram. Ergo, Kapur entropy
is not sensitive to the size of the subregions and preserves the details better compared with
Otsu and other methods. It has been extensively used in multilevel image segmentation [6].

The essence of image segmentation can be regarded as an optimization problem. Still,
the computation complexity increases explosively with the number of thresholds increases.
For this reason, researchers combine heuristic algorithms with image segmentation meth-
ods creatively. In [24], an improved fundamental ant colony optimization with horizontal
and vertical crossover search was applied to image segmentation with a non-local means
2D histogram and Kapur entropy. The hybrid method obtained achieved better threshold
values with better stability than the original, but its complexity inevitably increased due
to the excessive mutation mechanism. In [25], an efficient methodology for multilevel
segmentation has been proposed using the Harris Hawks optimization algorithm and the
minimum cross-entropy as a fitness function. The experiments conducted in this approach
merely considered low-dimensional optimization problems and were only able to handle
gray images. In [26], an improved marine predators algorithm has been introduced for
COVID-19 images detection with Kapur entropy and outperformed all other algorithms for
a range of metrics. The approach outperforms comparative algorithms on high-dimension
segmentation, but it suffers from a low convergence rate, which makes it perform poorly in
the case of insufficient time. In [27] a crow search algorithm was used for maximizing the
Kapur method to tackle the problems of multi-thresholding. The suggested method has
fewer parameters to tune and achieved comparatively better results while tested on a set of
benchmark images using multiple threshold values. Despite success in this work, it suffers
from slow convergence. Additionally, there have been many intelligent optimization algo-
rithms applied to the field of threshold segmentation, such as the sine cosine algorithm [28],
sparrow search algorithm [29], particle swarm optimization [30], and multiverse optimiza-
tion algorithm [31]. To sum up, these studies combine heuristic algorithms with image
segmentation methods successfully. Nonetheless, there is still much room for improvement
in precision, since the results obtained by approximate optimization algorithms are often
not right on the mark enough.

The preaching optimization algorithm (POA) is a novel meta-heuristic algorithm pro-
posed in 2021, which simulates the behavior of preachers in religious communication [32].
Preachers spread successors to improve the search range and select the next generation
by the elite mechanism and weight consisted of fitness and location. As reported by
experiments in a series of benchmark functions and applications in grayscale images seg-
mentation, POA exhibits better performances than slap swarm algorithm (SSA) [33], grey
wolf optimizer (GWO) [34], improved fruit fly optimization algorithm (FFO) [35], dynamic
particle swarm optimization algorithm (PSO) [36], firefly algorithm (FL) [37], improved
bat algorithm (BA) [38], harris hawks optimization (HHO) [39], moth flame optimization
algorithm (MFO) [40], multiverse optimizer (MVO) [41], and whale optimization algorithm
(WOA) [42].

As the no free lunch (NFL) theorem for optimization is proposed [43], people realize
the openness of the research field of optimization algorithms: there is no ideal algorithm
for all problems. More precisely speaking, any heuristic algorithm has its limitations and
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should solve different domain problems through improvement and adjustment. One of
the most remarkable and general-purpose choices is the time-delay strategy. As a physical
phenomenon in dynamics, time-delay is of great significance for the algorithm to make full
use of its historical information. There have been many algorithms that achieved better
execution results by adding time delay (see e.g., [44–46]). According to the way in which it
occurs, time-delay can be categorized as time-varying, constant, discrete, and distributed
in [47]. Among them, distributed time-delay exhibits a distinct spatial nature that models
delays in signal propagation distributed through several parallel channels in a certain
period. Compared with others, distributed time-delay obtains more historical information
and shows more complex dynamic mechanisms, which have been well studied [45,47].

However, as with the above-mentioned heuristic algorithms, there are also some
drawbacks of the standard POA algorithm mentioned as follows: unbalanced exploration-
exploitation and easy to fall into local optimization. According to the above research of the
successful employment of distributed time-delay, a natural idea is to introduce it into POA
to enhance the performance to a certain extent. In [48], the mechanism of learning from
both individual and global optimal individuals in particle swarm optimization (PSO) is
used to express time-delay, which gives us another inspiration to improve POA efficiently,
namely hybridization. Simultaneously, how to properly deploy time-delay at each stage
is also considerable, and an inventive idea is to implement based on the evolutionary
state. The evolutionary state is determined by the evolutionary factor, and the position
equations are updated according to it. In the combination with time-delay, this procedure
can be understood that the evolutionary state determines which historical information the
individual learns more, the global optimal or the individual optimal [49]. Furthermore, for
the sake of balanced exploration and exploitation, the distributed time-delay ought to be
generated randomly based on a certain probability.

Motivated by the above discussions, the purpose of this paper is to propose an HPOA-
based segmentation algorithm for color images. The main contributions of this paper can
be summarized as follows:

(1) A novel HPOA algorithm is proposed where (a) the distributed time-delay con-
tributes to a substantial reduction of premature convergence; (b) the hybridizing with
PSO provides a thorough exploration of the entire search space; (c) the evolutionary state
supplies a significant balance between the local and global search abilities.

(2) An HPOA-based color image segmentation algorithm is obtained by combining
HPOA with the Kapur entropy algorithm. The proposed HPOA-based segmentation
algorithm searches for a more exact threshold thereby facilitating a better components
partition of the color image.

(3) The performances of HPOA and HPOA-based color image segmentation algorithm
are investigated in detail: (a) eight classical single-objective benchmark functions are
employed to assess the performance of HPOA on various types of problems. (b) A total
of 24 Berkeley color images are utilized to verify the effectiveness of the HPOA-based
segmentation algorithm on multiple complex images.

The remainder of this article is organized as follows: Section 2 gives an overview of
the POA algorithm. Section 3 describes the hybrid algorithm HPOA. Section 4 presents a
color image segmentation algorithm based on HPOA. Section 5 introduces the simulation
results of HPOA on the benchmark functions, Section 6 illustrates the experiment results
of the HPOA-based segmentation method. Section 7 puts forward the conclusion and
future work.

2. POA Algorithm

POA is a novel swarm intelligence algorithm proposed in 2021 [32]. The main inspira-
tion of the algorithm is the process of religious spread: communication, competition, and
development, which will be introduced at length in the following subsections.
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2.1. Religious Inheritance

When a preacher inherits the religious knowledge to his inheritors, the inheritors will
follow around him as follows:

loc′ = loc + randv(r/3) (1)

where loc and loc′ are the positions of preachers and inheritors; randv(r/3) represents a
vector following normal distribution with the mean of 1 and variance of r/3; r represents
the weighted and normalized fitness value.

2.2. Religious Competition

Cultural competition occurs between all the inheritors. The elite individuals with the
best fitness are selected directly to the next generation, and the remaining are considered
according to the comprehensive ranking of location distribution and fitness function:

w = distance× exp(
f − min + q

max − min + q
) (2)

where w represents the weight factors to sort individuals; distance is the normalized
Euclidean distance from each inheritor to the center of the individual; f represents the
fitness, max−min represent the difference between the maximum and minimum fitness
values; q is the precision of floating-point numbers.

2.3. Religious Development

The new preachers will develop their religion through study tours. The idea of the
Levy-flight and normal distribution are employed to implement the behaviors. If they get
a better position, then the original position will be updated.

loc′′ =
{

loc′ + 0.01× levy
loc′ + 0.01× randv

(3)

where loc′′ is the updated position; randv represents a vector following normal distribution;
and the position with higher fitness value will be chosen; levy represents the search step
size generated using a levy flight mechanism.

Although the POA algorithm outperforms various popular algorithms in solving
engineering problems, there are still some defects existing such as insufficient thorough
exploration for the entire search space and easy to fall into local optimum when facing
practical problems, thus it needs to be improved.

3. A Novel HPOA Algorithm

In this section, a novel HPOA algorithm is proposed to further strengthen the com-
petence of the traditional POA algorithm. The main innovation of this algorithm lies in
the introduction of the distributed time delay and the hybridization of the PSO algorithm.
In the interim, the evolutionary state strategy is utilized. More specifically, the proposed
HPOA algorithm enables the search agents to learn from historical personal or global
optimal depending on their evolutionary states. Compared with other algorithms, HPOA
pursues stronger capability, avoids being trapped by local optimum, and maintains a
balance between convergence and diversity.

3.1. Evolutionary State Estimation

The search process of heuristic algorithms is frequently phased. For example, agents
are more likely to explore promising areas in the early stage of the search, and more
inclined to exploit discovered solutions and potentially surrounding areas in the later
stage of optimization. According to [50,51], this kind of behavior should ensure that the
algorithm finally converges to the optimal solution in the entire search space. In [49], the
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evolutionary state of the population is creatively divided into the following four categories:
exploration, exploitation, convergence, and escape. It can be represented by State 1–4,
respectively, in this paper.

When a biota explores the search space, the distance between different individuals
can be used to measure the search state of the population as a whole part. To give an
illustration, when the individuals are scattered far away, it means that they are looking for
prey. When they gather closer, it’s besieging the excellent targets. The distance Di can be
calculated as follows:

Di =
1

Sa− 1

Sa

∑
j=1,j 6=i

√
(xi − xj)

2 (4)

where Sa represents the number of populations; xi indicates the position of the individual i.
Then the best individual is selected and its distance dbest can be normalized as Dn:

Dn =
dbest − dmin

dmax − dmin
(5)

where dmax and dmin represent the maximum and minimum values of distance.
Finally, the evolutionary state of the population is classified:

State =


1, 0.00 ≤ Dn < 0.25
2, 0.25 ≤ Dn < 0.50
3, 0.50 ≤ Dn < 0.75
4, 0.75 ≤ Dn < 1.00

(6)

The estimation of the evolutionary state enables individuals to evaluate their search
ability accurately. In the following part, adaptive search strategies will be added for
different individuals based on their evolutionary states.

3.2. Distributed Time-Delay Based on PSO Idea

In religious competition sessions, inheritors are comprehensively considered to decide
whether to become new preachers or not. The new preachers selected by this procedure
only consider the fitness and location of an individual in the current iteration. Still and all,
the procedure ignores the exchange of information with themselves and the population
experience. The search process can be more accurate and efficient if we can make better
use of the previous knowledge that individuals and other individuals have searched. As
a consequence, the randomly distributed time-delay is introduced into the search model.
This strategy enables preachers to enhance the use of the accumulated with better accuracy
and pursue a stronger capability of avoiding local trapping problems. Hence, the idea of
distributed time-delay based on the PSO algorithm is introduced to the location update
formula of POA.

loc(t + 1) = loc(t) + plr1

N

∑
τ=1

(locl(t− τ)− loc(t)) + pgr2

N

∑
τ=1

(locg(t− τ)− loc(t)) (7)

where t represents the number of iteration, r1 and r2 are random numbers, pl and pg are
weighting factors which control the search direction according to the state of evolution, τ
is the current delay iterations, and N is the upper bound number of time-delay.

3.3. Adaptive Orientation Adjustment Strategy Based on Evolutionary State

On the basis of the evolutionary state and distributed time-delay proposed above, this
paper proposes a new location update strategy for POA. The novel orientation adjustment
strategy consists of four different states, depending on different directions of historical
information. The advantage of the method is to make individuals with adaptive capabilities
more targeted to search and keep a proper balance between exploration and exploitation.
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3.3.1. State 1: Exploration

In the exploration state, preachers are expected to search the entire search space as
comprehensively as possible to get more optimal solutions. The historic global optimal
solution contains a wealth of information, which is distributed in different locations in
the search space. Therefore, the distribution time-delay which leads to randomly selected
global optimal solutions is added to preachers’ position update formula. Eventually, the
orientation adjustment factor is set as pl = 0 and pg = 0.01.

3.3.2. State 2: Exploitation

In the exploitation state, preachers should focus on the optimal solution which has
been found. They improve search efficiency by learning from the individual optimal solu-
tion quickly. The record of the preachers’ behavior in a valuable location is stored in the
individual optimal solution, which can improve the search efficiency of the new individual
greatly. Therefore, the distribution time-delay which leads to randomly selected individ-
ual optimal solutions is added to preachers’ position update formula. The orientation
adjustment factor is set as pl = 0.01 and pg = 0.

3.3.3. State 3: Convergence

In the convergence state, preachers are encouraged to gather around into the global
optimal region as soon as possible. To implement this procedure, they ought to reduce
the proximity of the other direction, which can be indicated by setting the orientation
adjustment factor in the other direction to zero. The orientation adjustment factor is set as
pl = 0 and pg = 0.

3.3.4. State 4: Escape

In the escape state, preachers are trying to escape from the region around the local
optimal. As a consequence, they learn from the entire history to make enough movement.
This procedure expresses by double approximation to the individual and global optimal.
The orientation adjustment factor is set as pl = 0.01 and pg = 0.01.

It is worth noting that since the proposed strategy ought to be combined with iteration-
based algorithms, it needs historical iteration messages of the individuals as the current
agents are guided by previous optimums. The mechanism is shown in Figure 1.
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3.4. The Framework of the HPOA

The implementation process of HPOA is as follows:

(1) Initialize the parameters including the population size, the max number of iterations,
the search dimension, the number of inheritors, and the number of elite individuals.
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(2) Initialize the population.
(3) Record global and local optimal historical information.
(4) Transmit the location information to inheritors using Equation (1).
(5) Select new preachers by the mechanism of religion competition using Equation (2).
(6) Estimating the evolutionary state of the new preachers using Equations (4)–(6).
(7) Adding distributed time-delay to the preachers based on their evolutionary state.
(8) Search for a new solution by the mechanism of religion development by Equation (3).
(9) Repeat Steps 3 to 5 till the algorithm meets the max number of iterations.
(10) Output the result.

4. HPOA-Based Segmentation Algorithm

In this section, the HPOA algorithm is utilized to optimize the basic Kapur entropy
algorithm to improve the defects. Firstly, we present a brief description of the multilevel
thresholding segmentation. Then, we describe the Kapur entropy and the fitness function.
In the end, we present the proposed HPOA-based color image segmentation method.

4.1. Multilevel Thresholding Image Segmentation

Multilevel thresholding segmentation utilizes a threshold group to divide the pixels
of each gray level into different categories. This method can not only distinguish the
foreground and background of the image but also achieve great results when the image
is complex and need to be extracted. In the interim, this method is also suitable for color
images. In this method, if the threshold group describe as [t1, t2, . . . , tn], then the grayscale
maps are given as follows:

f =



l0, 0 ≤ f ≤ t1
l1, t1 ≤ f ≤ t2
...

...
ln−1, tn−1 ≤ f ≤ tn
ln, tn ≤ f ≤ L− 1

(8)

where l0, l1, . . . , ln are the categories of the segmented image; L = 256.

4.2. Kapur Entropy

Kapur entropy is an automatic threshold selection technique based on the maximiza-
tion of entropy. It has clear mathematical meaning and can retain the small details excellent,
which makes it extensively applied in complex image segmentation. Assuming that n
thresholds are selected, then the objective function can be defined as:

H(t1, t2, . . . , tn) = H0 + H1 + . . . + Hn (9)

where:

H0 = −
t1−1
∑

j=0

pj
ω0

ln
pj
ω0

, ω0 =
t1−1
∑

j=0
pj

H1 = −
t2−1
∑

j=t1

pj
ω1

ln
pj
ω1

, ω1 =
t2−1
∑

j=t1

pj

Hn = −
L−1
∑

j=tn

pj
ωn

ln
pj
ωn

, ωn =
L−1
∑

j=tn

pj

(10)

where Hn denotes different categories entropy, ωn denotes the probability of each kind of
pixel and Pj denotes the probability of occurrence of pixels with gray value j. To select the
optimal threshold combination, the following formula is used to judge:

fkapur = argmax{H(t1, t2, . . . , tn)} (11)

The combination maximizing fkapur is the optimal threshold group.
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4.3. Implementation of the HPOA-Based Segmentation Algorithm

To obtain the segmentation threshold more quickly and accurately, the HPOA al-
gorithm is employed to optimize the Kapur entropy. The powerful capability of HPOA
obtains more accurate segmentation thresholds, with the segmentation accuracy improv-
ing. The flow chart of the proposed segmentation algorithm based on HPOA is shown in
Figure 2.
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5. Simulation and Discussion of the HPOA Algorithm
5.1. Selection of Benchmark Functions

To verify the performance of the proposed algorithm, eight well-known benchmark
functions are adopted. These functions are categorized into three groups: (1) multimodal,
(2) fixed dimension multimodal, and (3) unimodal problems.

In the test set, functions F1 to F3 are multimodal with a large number of local optima.
The multimodal problems are ordinarily employed to evaluate the exploration ability since
a large number of local optima increases the probability of stagnation; Functions F4 to
F6 are multimodal but with low dimensions. The fixed dimension multimodal problems
have fewer local optima as the dimension is less as compared to the multimodal problems.
These problems examine the balance between local and global search abilities; Functions F7
to F8 are unimodal, only one global optimum is present. The unimodal problems evaluate
the capability of exploitation. These functions have been used to evaluate algorithms
in [34,40,42,52,53]. The details of functions are shown in Table 1, and Figure 3 shows
the two-dimensional shapes of the functions, where the edge colors vary according to
the heights.

Table 1. Information of benchmark functions.

Functions Name Dimension Search Space

F1 Ackley Function d [−32.768, 32.768]
F2 Levy Function d [−10, 10]
F3 Rastrigin Function d [−5.12, 5.12]
F4 Cross-in-Tray Function 2 [−10, 10]
F5 Holder Table Function 2 [−10, 10]
F6 Shubert Function 2 [−5.12, 5.12]
F7 Dixon-Price Function d [−10, 10]
F8 Rosenbrock Function d [−5, 10]
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5.2. Experimental Setup

All of the algorithms are developed by using Matlab R2016b and implemented on
Windows 7 environment on a computer having Intel CPU @2.20 GHz and 12 GB memory.
The proposed HPOA is compared with several well-known heuristic algorithms. Each of
them contains different characteristics, including:

(1) Traditional POA algorithm [32].
(2) The state-of-the-art WOA algorithm, in which is flexible and requires fewer parame-

ters to be adjusted [42].
(3) The classical representative of swarm intelligence: PSO [30].
(4) A newly proposed algorithm named SCA, containing several adaptive variables to

ensure a balance between exploration and development [28].
(5) A novel natural heuristic algorithm: MVO, designed for engineering structure design [41].
(6) MFO, inspired by moth navigation which has advantages in solving unknown space

problems [40].
(7) An interesting algorithm, ALO, along with characteristics of few adjusting parameters

and high accuracy [53].

More precisely, the population size of all algorithms is set as 20, and the max number
of iterations is 1000. Each algorithm runs 10 times to avoid contingency.

5.3. Experimental Results of HPOA

As mentioned above, eight benchmark functions are used to evaluate the performance
of the proposed HPOA algorithm. In this paper, the comprehensive performance of the
algorithm ought to be analyzed by three kinds of criteria: (1) accuracy, (2) convergence,
and (3) statistical analysis.

The accuracy criterion of each algorithm is determined by average value and standard
deviation. Tables 2 and 3 present the performance of the HPOA algorithm with different
settings of the upper bound of the distributed time-delay N. As seen from the results, the
HPOA algorithm obtains the best comprehensive performance when N = 200.

The competitive results between HPOA and other algorithms are discussed as follows.
In terms of accuracy, a higher average value signifies better capability. It is found

that HPOA is outstanding to comparison algorithms from Tables 4 and 5. Specifically, the
average value of HPOA is normally lowest for each benchmark function, which indicates
the superior capability of HPOA. Simultaneously, a lower value of standard deviation
indicates better stability. For the functions F2, F3, F7, and F8, the standard deviation perfor-
mance of HPOA is also most remarkable. Therefore, the experiment results demonstrate
that the proposed algorithm has more accuracy and stability than other algorithms.
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Table 2. Mean performance of HPOA with different N.

Functions HPOA
(N = 25)

HPOA
(N = 50)

HPOA
(N = 75)

HPOA
(N = 100)

HPOA
(N = 125)

HPOA
(N = 150)

HPOA
(N = 175)

HPOA
(N = 200)

F1 0.52495 0.32073 0.30325 0.36599 0.33331 0.50970 0.39105 0.24924
F2 0.02400 0.02138 0.02263 0.02193 0.02115 0.01104 0.01482 0.01894
F3 0.00022 0.00870 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000
F4 −2.06261 −2.06261 −2.06261 −2.06261 −2.06261 −2.06261 −2.06261 −2.06261
F5 −19.20828 −19.20850 −19.20850 −19.20850 −19.20850 −19.20850 −19.20850 −19.20850
F6 −186.73068 −186.73083 −186.73032 −186.73089 −186.73090 −186.73090 −186.73068 −186.73088
F7 0.40187 0.86632 0.32475 0.66930 0.47461 0.54274 0.39958 0.62513
F8 4.32519 0.00000 0.00000 0.00000 3.45213 4.67038 3.22098 4.85049

Table 3. Standard deviation performance of HPOA with different N.

Functions HPOA
(N = 25)

HPOA
(N = 50)

HPOA
(N = 75)

HPOA
(N = 100)

HPOA
(N = 125)

HPOA
(N = 150)

HPOA
(N = 175)

HPOA
(N = 200)

F1 0.382 0.223 0.239 0.168 0.234 0.519 0.235 0.277
F2 0.02537 0.02506 0.02657 0.02342 0.02331 0.01878 0.02088 0.02141
F3 0.00055 0.02733 2.51 × 10−5 3.68 × 10−6 1.62 × 10−7 2.84 × 10−6 1.27 × 10−7 5.94 × 10−7

F4 7.95 × 10−11 3.49 × 10−11 9.26 × 10−10 9.82 × 10−10 7.64 × 10−11 5.05 × 10−11 1.31 × 10−9 2.43 × 10−10

F5 0.00070 4.43 × 10−8 3.28 × 10−7 4.60 × 10−7 4.14 × 10−7 7.69 × 10−7 1.12 × 10−6 6.78 × 10−7

F6 0.00036 0.00023 0.00182 1.89 × 10−5 1.99 × 10−5 1.32 × 10−5 0.00056 7.41 × 10−5

F7 0.315 0.971 0.237 0.859 0.362 0.379 0.316 0.394
F8 13.6 9.05 × 10−7 4.91 × 10−6 1.03 × 10−6 10.9 14.8 10.2 15.3

Table 4. Mean performance of algorithms.

Functions HPOA
(N = 25)

HPOA
(N = 50)

HPOA
(N = 75)

HPOA
(N = 100)

HPOA
(N = 125)

HPOA
(N = 150)

HPOA
(N = 175)

HPOA
(N = 200)

F1 0.24924 1.41404 4.16335 18.83677 13.55022 1.51994 20.97066 8.86645
F2 0.01894 19.21614 53.66761 76.44632 21.69743 20.91945 366.39623 288.52300
F3 3.46 × 10−7 73.46613 224.93067 377.08160 154.82146 229.48096 624.51340 145.85033
F4 −2.06261 −2.06260 −2.06261 −2.06261 −2.06261 −2.06261 −2.06261 −2.04456
F5 −19.20850 −19.17267 −19.20850 −19.08972 −19.20850 −19.20850 −17.96997 −10.38813
F6 −186.73088 −186.50028 −175.99883 −186.73091 −186.73091 −186.73091 −186.73091 −65.73965
F7 0.625 1.28 × 104 25.3 3.26 × 105 16.7 8.45 6.63 × 106 4.95 × 106

F8 4.85049 2512.80140 80.14614 392,657.86 130.60844 57.3 6.59 × 106 3.33 × 106

Table 5. Standard deviation performance of algorithms.

Functions HPOA
(N = 25)

HPOA
(N = 50)

HPOA
(N = 75)

HPOA
(N = 100)

HPOA
(N = 125)

HPOA
(N = 150)

HPOA
(N = 175)

HPOA
(N = 200)

F1 0.277 1.42 5.46 1.07 3.49 1.39 0.126 1.65
F2 0.02 14.24 15.49 28.14 7.03 14.08 91.95 15.54
F3 0.00 32.03 31.65 71.59 27.15 101.15 53.60 53.04
F4 2.43 × 10−10 1.99 × 10−5 6.83 × 10−9 4.68 × 10−16 6.34 × 10−15 3.99 × 10−15 4.68 × 10−16 0.04
F5 6.78 × 10−7 0.03 1.45 × 10−6 0.38 4.53 × 10−13 8.22 × 10−14 1.28 3.77
F6 7.41 × 10−5 0.327 33.94 1.64 × 10−14 4.88 × 10−11 1.24 × 10−13 0.00 29.97
F7 0.394 1.39 × 104 23.7 4.58 × 105 10.3 8.50 3.15 × 106 6.72 × 105

F8 15.3 2.43 × 103 50.23 272,823.47 74.38 14.51 1.76 × 106 484,632.28

In terms of convergence, it is observed that HPOA is also the most competitive from
Figure 4. For the functions F1, F2, F3, F7, F8, HPOA can converge to the best point most
quickly. However, the convergence speed of HPOA is not as fast as POA (for F4 and F6),
MVO (for F4), and PSO (for F5). The reason can be found from the fact that the accuracy
criterion that this comparison algorithm falls into the local optimal point, which leads to
premature convergence. Accordingly, it is demonstrated that the HPOA algorithm has the
most extraordinary convergence property.
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In terms of statistical analysis, we conduct statistical tests to verify whether the
improved algorithm is significantly better than the original algorithm, which is proposed
in [50]. And well-established non-parametric tests are applied, namely the Wilcoxon rand
sum test. As can be found in Table 6, the proposed new algorithm HPOA has statistical
diversity to the comparison algorithm in almost all problems, accounting for 96% of the total.
This promising result indicates that HPOA has an astonishing statistical improvement.

Table 6. Wilcoxon rank comparison of algorithms (h= 1 represents significant difference).

Functions
HPOA

vs. SCA
HPOA

vs. MVO
HPOA

vs. MFO
HPOA

vs. ALO
HPOA

vs. WOA
HPOA

vs. PSO
HPOA

vs. POA

p-Valve h p-Valve h p-Valve h p-Valve h p-Valve h p-Valve h p-Valve h

F1 0.037635 1 0.000183 1 0.000183 1 0.000183 1 0.011330 1 0.000183 1 0.000183 1
F2 0.000183 1 0.000183 1 0.000183 1 0.000183 1 0.000183 1 0.000183 1 0.000183 1
F3 0.000183 1 0.000183 1 0.000183 1 0.000183 1 0.000183 1 0.000183 1 0.000183 1
F4 0.000183 1 0.000246 1 0.000064 1 0.000504 1 0.000242 1 0.000064 1 0.000183 1
F5 0.000183 1 0.121225 0 0.002036 1 0.000183 1 0.000173 1 0.471171 0 0.000183 1
F6 0.000183 1 0.004586 1 0.000129 1 0.000769 1 0.000173 1 0.000141 1 0.000183 1
F7 0.000183 1 0.000183 1 0.000183 1 0.000183 1 0.000183 1 0.000183 1 0.000183 1

Based on above demonstration, HPOA achieves the best performance on N = 200,
which performs better than seven popular algorithms in various benchmark functions.
The experiment results observe that HPOA has better search accuracy, stability, and faster
convergence speed. On this basis, there is a significant difference between the proposed
algorithm and other methods. Thus, the proposed HPOA algorithm exhibits satisfactory
performance, which indicates the reliability of the HPOA-based segmentation algorithm.

6. Results and Discussion of the HPOA-Based Segmentation Algorithm

In this section, the HPOA-based segmentation algorithm is employed in color images.
The purpose of the experiments is to investigate whether the proposed method is competent
in producing high-quality segmented images.

6.1. Experimental Setup

We conduct the experiments on three groups of bench images in Table 7 (eight animal
images, eight human images, and eight architecture images) from the Berkley Segmen-
tation Dataset and Benchmark 500 (BSDS500). All experiments were performed on the
24 images with the following number of thresholds: 5, 10, 15. This setting enables a more
comprehensive comparison of the performance of the proposed algorithm under different
dimensions of the problem, which aims to attain more reliable results. Except that the
number of iterations is set as 300, the other comparison algorithms and parameter settings
are all the same as those in the previous section.

6.2. Image Evaluation Metric

The quality of the segmented images can be evaluated by the image evaluation metrics
as follows:

6.2.1. Feature Similarity Index (FSIM)

FSIM is an quality assessment (IQA) metrics to measure the image quality automat-
ically [54]. The basic concept for its application in segmentation is evaluating feature
similarity between the segmented image and the reference image-the ground truth. FSIM
can be calculated as follows:

FSIM =

∑
x∈X,y∈Y

SL(x, y)× PCm(x, y)

∑
x∈X,y∈Y

PCm(x, y)
(12)
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where SL(x, y) is used to evaluate the similarity of the image, PCm(x, y) represents phase
congruence of the reference and segmented images, and x ∈ X, y ∈ Y represents the pixel
domain of an image.

Table 7. Original benchmark images and the corresponding histograms.

Original Image Histogram Original Image Histogram

Animal
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6.2.2. Peak Signal to Noise Ratio (PSNR)

PSNR is a renowned image assessment index, which computes the peak signal-to-
noise ratio between two images [55]. This ratio is often used as a quality measurement
between the reference and segmented images [56,57], and can be calculated as follows:

PSNR = 20 log(
255

RMSE
) (dB) (13)
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RMSE =

√√√√√ H
∑

i=1

W
∑

j=1
(I(i, j)− I′(i, j))

H ×W
(14)

6.2.3. Structural Similarity Index (SSIM)

SSIM is an index to measure the similarity of two images, which takes into account
various factors such as brightness, contrast, and structural similarity [58]. It finds the
similarity between segmented image and the ground truth here:

SSIM = l(I, I′)× c(I, I′)× s(I, I′) (15)

c(I, I′) =
2σIσI′ + C2

σ2
I + σ2

I′ + C2
(16)

S(I, I′) =
σI I′ + C3

σIσI′ + C3
(17)

l(I, I′) =
2µIµI′ + C1

µ2
I + µ2

Y + C1
(18)

where µI and µI′ are the mean value of the reference image and the segmented image, σI
and σI′ represents the variance between the images, σI I′ represent the covariance between
the reference image and the segmented image, and C1 and C2 are constants employed to
guarantee the stability.

6.3. Experimental Result

To evaluate the result of the algorithms, the quality of the segmented images is quanti-
tatively analyzed by FSIM, PSNR, and SSIM. The proposed method provides segmented
results in RGB channels. Considering of these metrics require that the compared images
ought to have the same classes, the segmented images are grayed to match the ground
truths during the evaluation. The results of FSIM, PSNR, and SSIM of each algorithm are
presented in Tables 8–10. It can be observed that the proposed algorithm gives excellent
results, which are usually the best and the second-best value in three indicators. For
instance, in the case of various thresholds for 24 images:

(1) In the FSIM table, the proposed algorithm obtains the most competitive results
in almost all cases (66 out of 72 cases). These values indicate the performance of the
proposed algorithm is the most outstanding. It is observed that the images segmented
by the proposed method have higher similarity and lower distortion with the reference
images.

(2) In the PSNR table, although there are only small differences between the algorithms
in low dimensions (Dim = 5), HPOA still shows superiority over the others on nearly all the
images (21 out of 24 cases). With the number of thresholds increasing, the results become
diverse. As exhibited that HPOA can commonly provide the best results as well (Dim = 10,
15), and the PSNR values of HPOA significantly increase.

(3) In the SSIM table, it is perceived that the proposed method outperforms all the
other algorithms on various bench images, since the SSIM index obtains the highest values
for majority of cases (68 out of 72 cases). The result indicates that the images segmented by
IPOA are more similar to the human segmentation images in structural similarity.

Except for the image evaluation indicators, the value of the function fitness can also be
a significant index to evaluate the performance of algorithms. Table 11 exhibits the fitness
values obtained by each algorithm. It can be perceived that each algorithm can provide
a higher fitness value with the increasing of the number of thresholds. The proposed
algorithm generally attains better results than the comparison algorithm. The best value
and the second-best value achieved by the HPOA-based algorithm are 194 among the 216
problems, accounting for 89% of the total.
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Table 8. FSIM performance of algorithms.

Image Dim HPOA SCA MVO MFO ALO WOA PSO POA

P1-1
5 0.40 0.37 0.38 0.38 0.38 0.37 0.38 0.35

10 0.47 0.46 0.43 0.42 0.43 0.43 0.42 0.44
15 0.43 0.43 0.41 0.42 0.42 0.41 0.42 0.39

P1-2
5 0.50 0.47 0.49 0.50 0.49 0.48 0.48 0.37

10 0.55 0.52 0.53 0.53 0.52 0.52 0.53 0.50
15 0.48 0.42 0.46 0.48 0.40 0.42 0.47 0.43

P1-3
5 0.56 0.42 0.54 0.52 0.51 0.51 0.50 0.56

10 0.58 0.47 0.54 0.54 0.55 0.51 0.56 0.53
15 0.56 0.48 0.50 0.54 0.55 0.48 0.49 0.51

P1-4
5 0.48 0.47 0.46 0.44 0.46 0.41 0.42 0.42

10 0.47 0.41 0.43 0.44 0.41 0.46 0.47 0.46
15 0.53 0.52 0.50 0.52 0.48 0.50 0.50 0.49

P1-5
5 0.48 0.47 0.46 0.46 0.41 0.46 0.42 0.46

10 0.50 0.47 0.42 0.48 0.41 0.45 0.43 0.40
15 0.44 0.40 0.42 0.41 0.43 0.41 0.42 0.44

P1-6
5 0.49 0.47 0.43 0.45 0.48 0.48 0.47 0.40

10 0.55 0.53 0.55 0.53 0.52 0.54 0.54 0.54
15 0.60 0.60 0.55 0.57 0.57 0.60 0.53 0.54

P1-7
5 0.47 0.41 0.45 0.44 0.44 0.41 0.44 0.42

10 0.55 0.51 0.52 0.54 0.50 0.52 0.55 0.55
15 0.61 0.60 0.55 0.55 0.55 0.59 0.60 0.60

P1-8
5 0.45 0.41 0.40 0.41 0.44 0.45 0.42 0.45

10 0.56 0.54 0.56 0.56 0.56 0.56 0.55 0.50
15 0.61 0.54 0.60 0.56 0.55 0.59 0.60 0.58

P2-1
5 0.46 0.44 0.46 0.43 0.42 0.41 0.46 0.45

10 0.58 0.55 0.57 0.51 0.58 0.56 0.51 0.54
15 0.59 0.56 0.55 0.58 0.55 0.53 0.59 0.55

P2-2
5 0.57 0.42 0.55 0.54 0.51 0.57 0.50 0.50

10 0.58 0.50 0.53 0.54 0.58 0.56 0.55 0.53
15 0.61 0.60 0.58 0.61 0.59 0.56 0.57 0.54

P2-3
5 0.54 0.42 0.54 0.52 0.51 0.53 0.52 0.54

10 0.55 0.52 0.55 0.56 0.56 0.53 0.51 0.52
15 0.62 0.60 0.56 0.57 0.55 0.54 0.54 0.59

P2-4
5 0.56 0.55 0.49 0.50 0.49 0.50 0.48 0.55

10 0.58 0.52 0.53 0.51 0.50 0.57 0.51 0.51
15 0.61 0.57 0.61 0.60 0.59 0.60 0.58 0.60

P2-5
5 0.49 0.43 0.44 0.42 0.40 0.47 0.42 0.42

10 0.58 0.52 0.51 0.56 0.51 0.57 0.55 0.51
15 0.63 0.57 0.56 0.61 0.54 0.60 0.55 0.54

P2-6
5 0.46 0.46 0.42 0.45 0.46 0.45 0.45 0.40

10 0.57 0.58 0.58 0.57 0.56 0.51 0.55 0.53
15 0.62 0.60 0.55 0.59 0.58 0.61 0.60 0.59

P2-7
5 0.49 0.41 0.47 0.44 0.45 0.44 0.47 0.46

10 0.59 0.55 0.51 0.58 0.57 0.51 0.53 0.54
15 0.62 0.59 0.61 0.55 0.60 0.58 0.55 0.55

P2-8
5 0.49 0.46 0.42 0.47 0.43 0.47 0.41 0.43

10 0.58 0.57 0.58 0.57 0.56 0.51 0.53 0.54
15 0.61 0.58 0.61 0.54 0.57 0.59 0.60 0.57

P3-1
5 0.49 0.42 0.44 0.42 0.46 0.46 0.42 0.47

10 0.57 0.51 0.50 0.54 0.50 0.57 0.50 0.52
15 0.61 0.61 0.58 0.54 0.61 0.57 0.60 0.61

P3-2
5 0.53 0.51 0.52 0.49 0.51 0.52 0.46 0.49

10 0.59 0.58 0.54 0.57 0.59 0.54 0.53 0.55
15 0.62 0.62 0.60 0.55 0.57 0.63 0.57 0.61

P3-3
5 0.47 0.44 0.41 0.43 0.45 0.45 0.41 0.46

10 0.56 0.53 0.55 0.53 0.50 0.55 0.55 0.54
15 0.60 0.54 0.59 0.57 0.57 0.54 0.54 0.54
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Table 8. Cont.

Image Dim HPOA SCA MVO MFO ALO WOA PSO POA

P3-4
5 0.48 0.42 0.47 0.42 0.47 0.45 0.45 0.42

10 0.58 0.56 0.52 0.57 0.57 0.55 0.51 0.51
15 0.60 0.60 0.60 0.60 0.59 0.55 0.61 0.55

P3-5
5 0.48 0.43 0.40 0.42 0.44 0.41 0.46 0.44

10 0.55 0.51 0.57 0.53 0.53 0.52 0.56 0.57
15 0.60 0.55 0.61 0.55 0.59 0.57 0.58 0.56

P3-6
5 0.45 0.44 0.45 0.44 0.41 0.43 0.42 0.41

10 0.58 0.54 0.56 0.54 0.55 0.54 0.54 0.58
15 0.62 0.56 0.60 0.54 0.58 0.57 0.58 0.58

P3-7
5 0.46 0.46 0.40 0.46 0.44 0.45 0.42 0.41

10 0.58 0.52 0.51 0.54 0.50 0.57 0.57 0.50
15 0.62 0.60 0.56 0.58 0.60 0.56 0.56 0.57

P3-8
5 0.49 0.46 0.47 0.41 0.47 0.42 0.47 0.47

10 0.55 0.55 0.52 0.55 0.52 0.53 0.55 0.51
15 0.59 0.54 0.56 0.54 0.56 0.58 0.59 0.57

Table 9. PSNR performance of algorithms.

Image Dim HPOA SCA MVO MFO ALO WOA PSO POA

P1-1
5 12.87 12.85 12.31 12.72 12.57 12.12 12.34 12.20

10 13.86 13.33 13.29 13.36 13.57 13.35 13.49 13.86
15 14.55 13.81 13.77 14.23 13.92 14.55 14.42 14.26

P1-2
5 15.96 15.97 15.70 15.14 15.53 15.55 15.74 15.60

10 15.99 15.74 15.15 14.81 15.64 14.92 15.25 15.99
15 14.91 14.59 13.82 14.56 13.66 13.97 14.91 14.06

P1-3
5 16.05 15.61 16.03 16.06 15.80 14.74 15.90 14.62

10 15.78 14.87 14.41 13.64 13.60 14.39 15.40 15.76
15 16.49 15.16 15.36 14.27 15.99 14.92 15.40 16.47

P1-4
5 16.41 15.13 15.90 16.40 14.84 15.80 15.98 15.24

10 15.59 15.59 14.03 14.96 14.24 15.01 13.74 14.79
15 11.74 11.49 11.19 10.93 9.70 10.85 11.72 10.76

P1-5
5 18.55 15.32 15.80 15.93 15.37 15.71 16.02 15.90

10 15.53 15.52 14.09 15.05 15.38 13.73 13.83 15.26
15 12.18 11.37 10.53 9.28 10.96 11.67 10.37 10.24

P1-6
5 13.84 11.27 11.98 13.83 13.80 12.15 13.50 13.46

10 17.05 12.07 15.77 14.96 17.05 13.60 16.42 15.54
15 17.89 15.63 14.93 16.32 17.46 16.99 16.48 15.95

P1-7
5 13.97 12.06 13.97 11.18 12.57 11.39 12.42 11.07

10 16.43 15.45 16.43 11.56 12.95 12.95 15.46 14.95
15 17.13 17.13 16.55 16.21 15.87 16.68 16.69 14.23

P1-8
5 13.64 12.21 11.33 12.80 13.11 12.13 12.93 13.66

10 17.06 12.84 12.38 15.25 17.06 12.41 14.08 16.34
15 18.62 16.22 14.69 17.45 17.35 16.80 18.40 16.88

P2-1
5 15.58 13.96 14.20 15.58 14.45 15.44 15.27 14.50

10 17.61 15.46 17.72 18.18 16.65 17.03 16.79 15.64
15 19.31 17.05 16.59 19.10 16.77 17.33 19.30 16.78

P2-2
5 16.46 14.61 15.59 16.58 16.36 16.12 16.49 15.73

10 20.37 17.26 18.94 17.79 18.45 18.49 20.37 17.29
15 21.55 17.73 18.86 18.72 21.54 17.35 18.93 17.35

P2-3
5 14.88 13.59 14.28 13.14 14.88 14.65 14.29 13.44

10 16.57 15.23 16.13 14.92 17.58 16.60 16.03 15.15
15 20.57 18.72 15.88 15.92 20.56 17.13 16.31 15.92

P2-4
5 16.10 14.69 16.09 15.88 15.72 15.33 14.38 15.28

10 18.48 16.40 18.21 18.46 17.28 16.83 18.46 16.85
15 23.55 21.96 23.55 22.97 21.30 22.09 21.04 21.41
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Table 9. Cont.

Image Dim HPOA SCA MVO MFO ALO WOA PSO POA

P2-5
5 16.42 15.56 14.58 15.72 15.54 16.40 16.36 14.46

10 19.32 17.10 15.40 18.52 17.26 19.30 17.70 15.83
15 18.92 16.66 16.01 18.39 17.71 18.92 17.49 16.07

P3-1
5 15.52 15.39 15.51 15.37 14.56 14.02 14.81 13.66

10 19.54 19.54 17.88 18.55 15.58 16.60 16.31 15.79
15 22.03 21.89 22.03 21.26 21.48 20.63 21.40 20.72

P3-2
5 11.38 10.73 10.34 9.48 10.28 11.38 9.78 10.03

10 15.80 15.38 15.16 14.60 15.23 15.80 14.40 14.76
15 17.88 17.58 17.81 16.25 16.40 17.86 16.14 16.22

P3-3
5 18.55 14.32 14.57 16.40 15.52 16.23 15.74 14.37

10 19.85 17.01 17.97 19.85 18.97 17.52 19.73 17.24
15 22.95 21.14 20.74 22.79 22.59 22.42 22.95 20.95

P3-4
5 15.47 13.67 14.62 15.03 15.47 13.48 14.88 14.39

10 19.13 15.84 18.31 16.94 19.13 15.37 18.22 15.41
15 21.85 20.77 20.71 21.39 21.85 20.59 21.28 21.05

P3-5
5 12.18 11.06 10.10 10.04 11.46 9.71 9.72 9.50

10 16.56 16.56 14.27 14.80 15.53 14.09 13.85 14.29
15 18.17 18.03 16.18 17.70 18.17 16.66 16.48 16.31

P3-6
5 13.68 11.98 12.65 13.81 13.44 11.27 11.39 11.32

10 17.55 12.56 15.58 17.55 17.11 11.57 12.73 13.46
15 18.66 17.30 17.40 18.24 16.79 15.52 16.65 16.46

P3-7
5 12.91 12.61 12.98 11.93 11.30 11.53 12.76 11.99

10 16.45 13.16 14.00 13.11 14.78 13.78 16.04 12.11
15 18.00 17.43 15.54 14.49 17.06 16.13 17.16 14.14

P3-8
5 13.63 11.92 13.56 11.15 13.63 12.01 12.92 11.66

10 16.63 15.74 14.95 11.89 16.53 14.72 13.64 13.41
15 19.48 16.46 19.03 13.49 17.18 15.65 17.78 15.82

Table 10. SSIM performance of algorithms.

Image Dim HPOA SCA MVO MFO ALO WOA PSO POA

P1-1
5 0.39 0.30 0.33 0.26 0.34 0.29 0.33 0.33

10 0.37 0.30 0.34 0.28 0.30 0.29 0.34 0.28
15 0.35 0.31 0.32 0.26 0.27 0.25 0.28 0.35

P1-2
5 0.33 0.35 0.29 0.31 0.34 0.26 0.27 0.29

10 0.35 0.33 0.33 0.26 0.34 0.32 0.35 0.29
15 0.39 0.35 0.30 0.33 0.28 0.31 0.31 0.35

P1-3
5 0.35 0.28 0.27 0.32 0.35 0.34 0.30 0.25

10 0.38 0.35 0.26 0.27 0.25 0.33 0.25 0.32
15 0.35 0.33 0.26 0.33 0.28 0.29 0.27 0.26

P1-4
5 0.36 0.33 0.25 0.26 0.30 0.27 0.32 0.31

10 0.38 0.32 0.31 0.25 0.29 0.35 0.33 0.33
15 0.32 0.32 0.30 0.27 0.32 0.28 0.26 0.26

P1-5
5 0.38 0.26 0.34 0.27 0.33 0.33 0.32 0.28

10 0.38 0.27 0.30 0.31 0.29 0.28 0.34 0.31
15 0.38 0.27 0.26 0.26 0.31 0.33 0.27 0.34

P1-6
5 0.47 0.47 0.36 0.40 0.34 0.45 0.45 0.41

10 0.56 0.51 0.51 0.56 0.53 0.56 0.47 0.54
15 0.58 0.58 0.52 0.56 0.54 0.49 0.55 0.54

P1-7
5 0.48 0.44 0.47 0.45 0.38 0.38 0.44 0.42

10 0.59 0.44 0.43 0.56 0.46 0.54 0.59 0.52
15 0.57 0.51 0.55 0.56 0.52 0.54 0.46 0.50

P1-8
5 0.43 0.43 0.41 0.41 0.42 0.40 0.40 0.34

10 0.54 0.53 0.46 0.54 0.47 0.54 0.53 0.50
15 0.60 0.51 0.54 0.58 0.51 0.48 0.47 0.53

P2-1
5 0.40 0.34 0.29 0.29 0.32 0.29 0.35 0.28

10 0.44 0.36 0.41 0.38 0.44 0.44 0.35 0.42
15 0.52 0.41 0.47 0.46 0.49 0.47 0.48 0.48
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Table 10. Cont.

Image Dim HPOA SCA MVO MFO ALO WOA PSO POA

P2-2
5 0.34 0.34 0.29 0.26 0.27 0.27 0.31 0.28

10 0.45 0.45 0.44 0.41 0.36 0.40 0.36 0.37
15 0.50 0.50 0.44 0.48 0.40 0.49 0.42 0.48

P2-3
5 0.38 0.31 0.28 0.30 0.34 0.31 0.30 0.26

10 0.39 0.44 0.37 0.42 0.39 0.38 0.42 0.44
15 0.48 0.41 0.43 0.46 0.40 0.41 0.46 0.43

P2-4
5 0.38 0.29 0.28 0.26 0.33 0.26 0.30 0.27

10 0.45 0.35 0.44 0.45 0.36 0.36 0.42 0.42
15 0.53 0.47 0.41 0.50 0.48 0.47 0.47 0.47

P2-5
5 0.36 0.28 0.29 0.34 0.28 0.31 0.28 0.34

10 0.48 0.43 0.43 0.37 0.44 0.41 0.36 0.39
15 0.53 0.49 0.44 0.49 0.48 0.41 0.47 0.46

P2-6
5 0.51 0.46 0.36 0.38 0.46 0.36 0.49 0.42

10 0.54 0.49 0.51 0.56 0.47 0.51 0.48 0.47
15 0.60 0.52 0.54 0.57 0.59 0.51 0.47 0.55

P2-7
5 0.46 0.42 0.38 0.34 0.41 0.45 0.39 0.41

10 0.57 0.53 0.55 0.49 0.53 0.50 0.50 0.48
15 0.61 0.54 0.60 0.56 0.49 0.49 0.50 0.53

P2-8
5 0.48 0.40 0.42 0.37 0.43 0.44 0.46 0.35

10 0.56 0.49 0.53 0.55 0.46 0.53 0.49 0.52
15 0.61 0.59 0.55 0.53 0.48 0.54 0.48 0.48

P3-1
5 0.38 0.28 0.34 0.26 0.27 0.35 0.32 0.28

10 0.46 0.45 0.39 0.36 0.42 0.38 0.36 0.45
15 0.50 0.50 0.50 0.49 0.42 0.42 0.46 0.49

P3-2
5 0.37 0.29 0.28 0.34 0.29 0.32 0.34 0.31

10 0.45 0.37 0.43 0.38 0.39 0.45 0.44 0.40
15 0.47 0.47 0.44 0.47 0.43 0.41 0.45 0.42

P3-3
5 0.38 0.28 0.30 0.27 0.34 0.31 0.34 0.27

10 0.48 0.45 0.41 0.43 0.41 0.41 0.42 0.45
15 0.50 0.42 0.46 0.48 0.42 0.48 0.50 0.49

P3-4
5 0.37 0.26 0.33 0.29 0.28 0.34 0.28 0.30

10 0.43 0.43 0.38 0.38 0.45 0.39 0.35 0.43
15 0.47 0.46 0.48 0.45 0.41 0.45 0.46 0.49

P3-5
5 0.35 0.31 0.34 0.34 0.35 0.25 0.31 0.25

10 0.43 0.37 0.42 0.41 0.36 0.37 0.40 0.43
15 0.51 0.46 0.48 0.42 0.49 0.46 0.43 0.41

P3-6
5 0.46 0.32 0.34 0.47 0.45 0.37 0.43 0.41

10 0.56 0.56 0.46 0.46 0.52 0.46 0.55 0.50
15 0.57 0.48 0.54 0.56 0.52 0.54 0.49 0.52

P3-7
5 0.47 0.43 0.45 0.47 0.45 0.47 0.36 0.40

10 0.57 0.54 0.52 0.57 0.45 0.57 0.57 0.48
15 0.60 0.59 0.58 0.58 0.53 0.47 0.54 0.50

P3-8
5 0.52 0.34 0.50 0.46 0.40 0.44 0.45 0.44

10 0.56 0.51 0.56 0.50 0.50 0.51 0.54 0.45
15 0.63 0.53 0.56 0.49 0.61 0.63 0.60 0.57

Table 11. Fitness performance of algorithms.

Image Dim Channel HPOA SCA MVO MFO ALO WOA PSO POA

P1-1

5
R 21.54 21.47 21.54 21.54 21.54 21.53 21.54 20.54
G 21.44 21.10 21.38 21.38 21.38 21.38 21.38 21.28
B 21.27 21.04 21.27 21.27 21.27 21.27 21.27 20.57

10
R 33.29 32.33 33.34 33.35 33.35 32.58 33.35 31.17
G 32.93 31.33 32.98 32.99 32.98 32.97 32.75 29.94
B 32.92 31.87 32.89 32.91 32.92 32.66 32.41 31.02

15
R 43.11 40.68 43.11 42.46 43.10 42.17 42.31 40.11
G 42.81 39.63 42.54 41.57 42.49 41.77 42.27 38.44
B 42.47 39.75 42.15 42.13 42.38 42.02 42.27 37.66



Entropy 2021, 23, 1599 20 of 28

Table 11. Cont.

Image Dim Channel HPOA SCA MVO MFO ALO WOA PSO POA

P1-3

5
R 21.36 21.13 21.36 21.36 21.36 21.35 21.36 19.64
G 21.40 21.38 21.40 21.40 21.40 21.39 21.40 21.21
B 21.68 21.53 21.68 21.68 21.68 21.67 21.68 20.51

10
R 32.94 31.48 32.89 32.84 32.93 32.63 32.89 30.52
G 32.88 31.28 32.80 32.85 32.92 32.79 32.93 30.00
B 33.39 32.67 33.39 33.38 33.37 33.34 33.00 31.36

15
R 42.47 40.00 42.41 42.41 42.47 42.07 42.06 37.40
G 42.35 40.13 41.88 42.19 40.62 42.35 41.54 38.12

P1-6

5
R 20.16 19.65 20.08 19.91 20.08 19.90 19.92 17.69
G 19.75 19.48 19.71 19.71 19.71 19.50 19.60 17.99
B 19.54 19.35 19.26 19.48 19.48 19.47 19.48 18.65

10
R 31.10 29.18 30.78 31.09 31.10 30.15 30.65 25.70
G 30.71 27.96 30.70 30.53 30.65 29.53 30.71 26.61
B 30.04 28.16 29.95 30.04 29.58 29.59 29.87 24.43

15
R 39.88 36.47 38.61 38.63 39.83 39.17 39.16 33.31
G 39.50 36.82 39.48 39.16 39.21 38.45 38.51 32.47
B 38.31 33.55 38.02 36.84 38.22 35.98 36.34 28.17

P2-2

5
R 22.15 22.03 22.17 22.17 22.17 22.17 22.17 21.18
G 22.78 21.56 21.83 21.83 21.83 21.83 21.72 21.60
B 21.57 21.31 21.49 21.49 21.49 21.46 21.06 20.85

10
R 34.74 33.10 34.32 34.18 34.31 34.25 33.94 31.44
G 34.23 33.01 34.19 34.23 34.03 34.16 34.03 30.87
B 34.01 32.52 33.21 33.24 33.29 33.15 33.21 32.71

15
R 44.29 42.25 44.17 44.14 44.06 43.70 44.18 41.18
G 44.74 41.83 43.94 43.87 43.83 43.43 43.85 41.12
B 43.68 40.01 42.57 42.88 42.92 42.84 42.58 39.12

P2-4

5
R 22.07 21.19 21.23 21.23 21.23 21.23 21.23 20.63
G 21.55 20.97 21.16 21.16 21.16 21.15 21.16 20.58
B 22.36 22.11 22.20 22.20 22.20 22.20 22.20 20.98

10
R 33.94 32.92 33.40 33.42 33.42 33.34 33.28 29.80
G 33.45 32.61 33.14 33.19 33.11 33.20 33.17 30.12
B 34.68 33.62 34.54 34.54 34.53 34.52 34.53 33.13

15
R 43.80 41.08 43.38 43.53 43.36 43.08 43.31 40.55
G 43.65 41.45 43.47 42.85 43.27 42.54 43.15 40.85
B 44.94 42.41 44.48 44.45 44.54 44.29 44.44 40.14

P2-6

5
R 21.89 21.63 21.80 21.80 21.80 21.80 21.80 21.27
G 22.05 21.95 22.01 22.01 22.01 22.00 22.01 21.42
B 22.10 21.92 22.05 22.05 22.05 22.05 22.05 20.77

10
R 33.78 33.34 33.80 33.80 33.82 32.92 33.66 31.82
G 34.08 32.41 34.03 34.16 34.17 33.71 34.05 32.90
B 34.19 33.26 34.08 34.11 34.10 34.15 34.07 32.28

15
R 43.82 41.03 43.67 43.31 43.78 43.53 43.72 40.81
G 44.12 41.98 43.80 43.73 44.11 44.01 43.19 41.35
B 44.20 41.50 44.18 44.14 43.90 43.20 43.86 40.22

P3-1

5
R 20.06 19.75 19.81 19.81 19.81 19.81 19.81 19.11
G 19.92 19.42 19.50 19.50 19.50 19.50 19.50 18.85
B 20.60 20.41 20.51 20.51 20.51 20.51 20.48 19.53

10
R 32.81 31.33 32.15 32.10 32.15 32.05 31.61 29.85
G 32.03 30.23 31.44 31.52 31.62 31.58 31.62 28.03
B 33.78 31.06 32.87 32.84 32.84 32.78 32.91 30.86

15
R 41.91 38.44 41.49 41.75 41.57 41.81 41.91 38.95
G 41.89 38.60 41.14 41.24 41.41 39.05 41.23 37.60
B 43.06 40.22 42.95 42.81 43.06 42.15 43.02 40.57
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Table 11. Cont.

Image Dim Channel HPOA SCA MVO MFO ALO WOA PSO POA

P3-8

5
R 22.23 22.02 22.15 22.15 22.15 22.15 22.15 21.39
G 22.09 21.97 22.02 22.02 22.02 22.02 22.02 21.35
B 21.91 21.82 21.91 21.78 21.91 21.89 21.91 21.50

10
R 34.32 33.77 34.24 34.24 34.32 34.28 34.32 32.51
G 34.33 33.09 34.29 34.33 34.10 34.10 34.20 32.68
B 34.30 32.79 34.30 34.22 33.94 33.91 34.13 31.55

15
R 44.42 41.82 44.34 44.11 44.26 43.98 44.25 41.72
G 44.61 42.50 44.21 44.51 44.43 44.26 43.08 40.41
B 44.41 42.32 44.22 44.21 44.41 43.44 43.54 39.91

Based on the above demonstration, the competitive values of FSIM, PSNR, SSIM,
and fitness values prove the high accuracy of the HPOA-based color image segmentation
algorithm. Notably, the superiority of the proposed algorithm becomes more and more
remarkable as the number of thresholds increases compared to other algorithms. For
this reason, the HPOA-based segmentation algorithm can accomplish the complex tasks
of color image segmentation effectively, as well as provide a more precise technique for
multilevel segmentation. The segmentation images of the proposed algorithm are shown
in Figures 5–7.
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Figure 7. Architecture images segmented by proposed method at dim = 5, 10, 15. 

7. Conclusions 
This paper presents a hybrid preaching optimization algorithm based on Kapur en-

tropy for complex image segmentation problems. HPOA evaluates the evolutionary state 
of each population and adjusts the updating model adaptively. Even more noteworthy is 
that distributed time-delay containing historical information of previous personal and 
global best is introduced into HPOA. The expression of time-delay draws lessons from 
the PSO algorithm. Therefore, this strategy strengthens the diversity of the population 
and prevents premature convergence efficaciously. Eight classical test functions are em-
ployed to evaluate the comprehensive performance of HPOA. The validity and stability 
of the hybrid algorithm are verified by qualitative and quantitative methods. The experi-
ment results reveal that HPOA has better accuracy, stability, and a faster convergence 
speed than other algorithms. Simultaneously, it has a statistically significant improve-
ment. Eventually, combining HPOA with conventional Kapur entropy, an HPOA-based 
color image segmentation algorithm is proposed. All segmentation experiments are per-
formed on three categories of images from the Berkeley dataset [59], including eight ani-
mal images, eight human images, and eight architecture images. The quality of the seg-
mented images is verified by FSIM, PSNR, SSIM, and Kapur entropy values. These indi-
cators verify that the proposed method also exhibits excellent presentation on various im-
age segmentation problems with strong effectiveness. 

As future work, our goal is to further improve HPOA for the MRI image segmenta-
tion problem [60]. We also plan to apply the proposed HPOA method for artificial neural 
network optimization [61] and real-world engineering problems such as structural opti-
mization [62]. Due to the good performance of combing time-delay with the heuristic al-
gorithm, some other efficient methods could be implemented with it for global optimiza-
tion such as the marine predators algorithm [63] or Harris Hawks optimization algorithm 
[60]. In addition, considering that the strategy adopted in this paper is an unsupervised 
processing method, our future work will also focus on the combination with supervised 
learning mechanisms, such as mask R-CNN [1], including how to improve generalization 
ability. 
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7. Conclusions

This paper presents a hybrid preaching optimization algorithm based on Kapur
entropy for complex image segmentation problems. HPOA evaluates the evolutionary
state of each population and adjusts the updating model adaptively. Even more noteworthy
is that distributed time-delay containing historical information of previous personal and
global best is introduced into HPOA. The expression of time-delay draws lessons from the
PSO algorithm. Therefore, this strategy strengthens the diversity of the population and
prevents premature convergence efficaciously. Eight classical test functions are employed
to evaluate the comprehensive performance of HPOA. The validity and stability of the
hybrid algorithm are verified by qualitative and quantitative methods. The experiment
results reveal that HPOA has better accuracy, stability, and a faster convergence speed
than other algorithms. Simultaneously, it has a statistically significant improvement.
Eventually, combining HPOA with conventional Kapur entropy, an HPOA-based color
image segmentation algorithm is proposed. All segmentation experiments are performed
on three categories of images from the Berkeley dataset [59], including eight animal images,
eight human images, and eight architecture images. The quality of the segmented images
is verified by FSIM, PSNR, SSIM, and Kapur entropy values. These indicators verify that
the proposed method also exhibits excellent presentation on various image segmentation
problems with strong effectiveness.

As future work, our goal is to further improve HPOA for the MRI image segmen-
tation problem [60]. We also plan to apply the proposed HPOA method for artificial
neural network optimization [61] and real-world engineering problems such as struc-
tural optimization [62]. Due to the good performance of combing time-delay with the
heuristic algorithm, some other efficient methods could be implemented with it for global
optimization such as the marine predators algorithm [63] or Harris Hawks optimization
algorithm [60]. In addition, considering that the strategy adopted in this paper is an un-
supervised processing method, our future work will also focus on the combination with
supervised learning mechanisms, such as mask R-CNN [1], including how to improve
generalization ability.
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