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Abstract: In the thermodynamic equilibrium of dipolar-coupled spin systems under the influence of
a Dzyaloshinskii–Moriya (D–M) interaction along the z-axis, the current study explores the quantum-
memory-assisted entropic uncertainty relation (QMA-EUR), entropy mixedness and the concurrence
two-spin entanglement. Quantum entanglement is reduced at increased temperature values, but
inflation uncertainty and mixedness are enhanced. The considered quantum effects are stabilized
to their stationary values at high temperatures. The two-spin entanglement is entirely repressed
if the D–M interaction is disregarded, and the entropic uncertainty and entropy mixedness reach
their maximum values for equal coupling rates. Rather than the concurrence, the entropy mixedness
can be a proper indicator of the nature of the entropic uncertainty. The effect of model parameters
(D–M coupling and dipole–dipole spin) on the quantum dynamic effects in thermal environment
temperature is explored. The results reveal that the model parameters cause significant variations in
the predicted QMA-EUR.

Keywords: quantum-memory-assisted entropic uncertainty; entanglement; mixedness; Dzyaloshinskii–
Moriya interaction; dipolar system

1. Introduction

The Heisenberg uncertainty relation [1] has been extensively explored experimen-
tally and theoretically because of its high ability to distinguish between the boundaries
of classical and quantum mechanics. According to Heisenberg’s uncertainty relation, it is
impossible to know a particle’s position and momentum with high precision at the same
moment [2]. Therefore, an entropic-uncertainty relation was proposed [3–5]. However,
the association between uncertainty relations and other essential qualitative features, entan-
glement and coherence was first discussed in the Einstein–Podolsky–Rosen (EPR) article [6],
but there were no quantitative useful criteria at that time. Uncertainty violations were
implemented as a signature of entanglement [7–9]. Recently, new entropic inequalities
for the different quantum systems using the phase-space probability representation of
quantum states have been reported [10].
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Using quantum memory, the uncertainty relations can be improved by substituting
standard deviations with a closer entropic uncertainty relationship, leading to entropic
uncertainty relations [11,12], which have been experimentally confirmed [13,14]. The rela-
tionships between entropic uncertainty in the presence of quantum memory were analyzed
using the effect of the entanglement [15] between the state of the observed system and
that of another quantum state (memory system) [16]. In the absence of entanglement, this
uncertainty relation leads to Deutsch’s outcome [3]. The relations of uncertainty can be
perceived as a game between Alice and Bob [17].

Over the last few years, several significant applications of QMA-EUR in the field
of quantum processing information, such as witness of entanglement [18,19], cryptogra-
phy [20,21], quantum-key distributions [22,23], quantum-speed limit [24,25], as well as
quantum metrology [26], have been discovered. The impacts of different noise forms in
nitrogen-vacancy centres in diamond on the dynamics of QMA-EUR were investigated
experimentally [19,27–29]. The strong association between uncertainty relations and
mixedness has been intensively analyzed [30,31]. The entanglement and the mixedness
have been studied to identify how they affect the deterministic uncertainty tightness and
the entropic uncertainty’s lowest bound [32,33]. The properties of the QMA-EUR in a
spin chain model were studied in a uniform and irregular magnetic field with (D–M)
interaction [34]. It was also explored in the Ising model under long range influence with an
arbitrary-magnetic field [35]. The effect of decoherence on the dynamics of QMA-EUR and
the quantum coherence of the system in the subject was reported [36,37].

Currently, quantum information theory is a branch of science that aims at charac-
terizing and quantifying quantum correlations, particularly entanglement, to use in the
modification, storage, and transmission of data [38]. By employing the quantitative nature
of many physical systems, quantum information theory seeks a higher level of prosperity
in its technological possibilities. Such systems are expected to be useful filters for usage
in many areas of physics such as solid-state spins with optically interfaced quantum tech-
nologies [39] and quantum annealing processor [40,41]. The spin dipolar system is one of
the promising prototypes of understanding the several phenomena in quantum systems,
due to its ability to produce a sufficient number of qubits, their coherence for a long time,
and the fine-tuning of their magnetic properties electronically. These aforementioned prop-
erties can be realized in many solid-state spin systems as quantum spin systems [42,43],
rotational- states of molecules [44] and nitrogen vacancy-centers in diamond [45,46]. It has
been demonstrated that, for dipolar spin interaction and 2-photon resonance between two
qubits and a coherent cavity field, the dipolar interaction could contribute to resilience
toward intrinsic decoherence and maintain a stronger correlations [47–51]. The dipole
acts as a noise source in many physical systems, which degrades the quantum system
properties [52–54]. Recently, the quantum dynamics of the two qubits have been studied
qualitatively and quantitatively in the presence of Dzyaloshinskii–Moriya and dipole–
dipole interactions [55], as well as external time-dependent magnetic fields [56].

To our knowledge, the exploration of the association between the quantum correla-
tion phenomenon of thermal equilibrium with the deterministic uncertainty correlation in
dipole–dipole spin systems and in the presence of the Dzyaloshinskii–Moriya interaction
is limited. Therefore, it is essential to comprehend QMA-EUR behaviour in spin-dipole
systems in a state of thermal equilibrium. In this paper, we will investigate the dynamical
characteristics of QMA-EUR and its lower bound, quantum correlation, mixedness and
tightness for a dipolar spin interaction between two qubits with the implications of D–M
interaction on Pauli’s two measurements, when Bob and Alice participate in the quantum
system for the quantum uncertainty game.

The paper is arranged, as follows: In Section 2, the model for dipolar coupled-spin sys-
tems containing D–M interaction is introduced, as well as the method for its solution. Some
essential descriptions are used to review the issue of the QMA-EUR, the entropic uncer-
tainty relation’s tightness, entanglement and mixedness in Section 3. Section 4 presents
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outcome discussions on the studied quantum measures. Section 5 is dedicated to the
conclusions.

2. Dipole–Dipole Two-Spin System

Here, the considered system Hamiltonian describes dipole–dipole and Dzyaloshinsky–
Moriya (D–M) interactions between two spins (identified by A and B). The dipole–dipole
interaction is due to the action of the magnetic field generated throughout the magnetic
moment of rotation on another spin at the nearest location [57,58]. Spin-orbit coupling
causes the Dzyaloshinsky–Moriya interaction. The Hamiltonian of the dipole two-spin
model is denoted by:

Ĥ = −1
3
~σ1 ·~Iσ2 ·~σt

2 + ∑
j=x,y,z

Dj(σ
j+1
A σ

j+2
B − σ

j+2
A σ

j+1
B ), (1)

where ~σk = {σx
k , σ

y
k , σz

k}(k = A, B) represents the usual k-spin Pauli operator vector,
~Iσ2 = {(∆− 3ε)σx

B, (∆ + 3ε)σ
y
B, (−2∆)σz

B}. ∆ and ε design the coupling constants of the
2-coupled dipole spins. The orientation of the spin depends on the sign of ∆. If the value ∆
is less than zero, the rotation is in the x–y dimension. Otherwise, the orientation of spin
is along the z-axis. Dj(j = x, y, z) represents the components of the D–M coupling vector.
Here, the study is limited to the state where the D–M coupling is represented individually
along the z-axis, i.e., Dx = Dy = 0. On the basis of B = {|00〉, |01〉, |10〉, |11〉}, we can
express the Hamiltonian (1) as:

Ĥ =
2
3
[(∆(|00〉〈00| − |01〉〈01| − |10〉〈10|+ |11〉〈11|) + 6ε(|00〉〈11|+ |11〉〈00|)

− (∆ + 3iDz)|10〉〈01| − (∆− 3iDz)|01〉〈10|] (2)

Using the condition of the eigenvalue-problem: Ĥ|Si〉 = Vi|Si〉(i = 1, 2, 3, 4), the eigen-
energy levels (the eigenvalues Vi of the two-spin Hamiltonian) can be written as

V1 =
2
3
(∆− 3ε), V2 =

2
3
(∆ + 3ε), (3)

V3 =
2
3
(−∆ +

√
∆2 + 9D2

z), V4 =
2
3
(−∆−

√
∆2 + 9D2

z) (4)

The corresponding eigenvectors are:

|S1〉 =
|1, 1〉 − |0, 0〉√

2
|S2〉 =

|1, 1〉+ |0, 0〉√
2

(5)

|S3〉 =
|1, 0〉 − |0, 1〉√

2
|S4〉 =

|1, 0〉+ |0, 1〉√
2

Therefore, it is simple to obtain the final density operator of a dipolar system at a ther-
mal equilibrium:

ρAB(T) =
1
Z

e−H/KβT =
1
Z

e−Vi/KβT |Si〉〈Si|

=
1
Z {e

− 1
3 (2β∆) cosh(2βε)[|00〉〈00|+ |11〉〈11|]− e−

1
3 (2β∆) sinh(2βε)

×[|00〉〈11|+ |11〉〈00|] + e
2β∆

3 cosh(
2
3

αβ)[|01〉〈01|+ |10〉〈10|]

+
1
α

e
2β∆

3 (∆− 3iDz) sinh(
2
3

αβ)|00〉〈11|+ h.c.}, (6)

where α =
√

∆2 + 9D2
z , the partition function of the systemZ = 2e−

1
3 (2β∆)(e

4β∆
3 cosh( 2αβ

3 )+

cosh(2βε)), and β = 1
KT .
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3. Quantum Preliminaries of Relations

The deterministic uncertainty relation can be obtained by using quantitative memory
of two incompatible measurements [11,16]

S(X|B) + S(R|B) ≥ S(A|B) + log2
1
c

(7)

where S(A | B) = S(ρAB)− S(ρB) is the conditional von Neumann entropy with S(ρAB) =
−Tr(ρAB log2 ρAB) = −∑j λj log2 λj, λj represent the system’s eigenvalues of ρAB. The pa-

rameter c on the right side of the inequality in Equation (7) is defined by c = maxij
∣∣〈φi | ϕj

〉∣∣2
with |φi〉 and |ϕi〉 are the observable’s eigenstates X and R. On the left side of the
inequality in Equation (7), we define S(Q | B) = S

(
ρQB

)
− S(ρB) with Q ∈ (X, R).

Next, the quantum operation A is estimated by Q, the post-measurement case converts
ρQB = ∑i(|φi〉〈φi| ⊗ I)ρAB(|φi〉〈φi| ⊗ I), where I is the identity operator. We use two
Pauli observables, σx and σz, as the measurement in this technique, with the eigenstates∣∣σx
±
〉
= (1 ± 1)T/

√
2,
∣∣σz

+

〉
= (1 0)T ,

∣∣σz
−
〉
= (0 1)T , respectively. Consequently, it is

straightforward to get c = 1/2. When Q and B are maximally entangled, it is possible to
determine the entanglement memory results with certainty, i.e., there is no uncertainty.

3.1. Entropic Uncertainty

We adopted the following expression to examine the features of the entropy uncer-
tainty rapport in accordance with the dipole interaction model, as follows.

The upper bounds of uncertainty relations (left-hand side (LHS)):

UL = S(X | B) + S(R | B), (8)

are used to determine the accuracy of entropy uncertainty, while the uncertainty rela-
tions’ lower bound (right-hand side (RHS)) are utilized to determine the accuracy of the
uncertainty in entropy from the relation:

UR = log2
1
c + H(A | B). (9)

3.2. Tightness

For convenience, the right and left sides of the uncertainty relation in Equation (7) are
denoted by UR and UL, respectively. Based on the proportion and disparity between the
left and right sides of the uncertainty, Ud and Vd could be used to determine the degree of
tightness of uncertain relationships:

Ud = S(X|B)+S(R|B)
(log2

1
c +S(A|B))

≥ 1,

Vd = S(X|B) + S(R|B)− log2
1
c − S(A|B).

(10)

3.3. Quantum Information Resources

• Entanglement
Here, the entanglement between the two dipole coupled spins is investigated using
the concurrence [59], which is presented by:

C(ρ) = 2 max{0, C1(ρ), C2(ρ)}, (11)

where

C1(ρ) =
√

ρ14ρ41 −
√

ρ22ρ33 , C2(ρ) =
√

ρ23ρ32 −
√

ρ11ρ44.

C = 1, for the extreme entangled states and C = 0, for the separable cases.
• Two-spin quantum coherence

Based on the two-spin density matrix ρAB(T) of Equation (6), the two-spin quantum
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coherence (mixedness) is investigated using the linear entropy [60], which can be
given as:

L =
d

d− 1
(1− Tr{ρAB(T)2}). (12)

where d is the dimension of state ρAB. If L = 0, the two-spin state is pure state.
Otherwise, it has partial or maximal mixedness.

4. Results and Discussion

This section analyzes the relationships and the characteristics of the QMA-EUR,
the tightness of uncertainty, the entanglement, and the mixedness for the dipolar spin
system in thermodynamical equilibrium under the effects of the dipole–dipole and the
Dzyaloshinsky–Moriya interactions.

Case Dz = 0
Figure 1 reveals the dependence of the entropy uncertainty relation, the entanglement,

and the quantum coherence on the normalized temperature KT, the dipolar coupling
constants (∆, ε) in the absence of D−−M interaction.
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Figure 1. Entropic uncertainty UL (red-dashed line), the lower bound UR (blue-solid line), tightness uncertainty (Vd
(magenta-dashed line), Ud (blue-dashed line)), the mixedness L (red dashed-dotted line) and concurrence (green-dotted
line) against KT with Dz = 0 for different ∆ and ε.

Figure 1a,b represent the uncertainty entropy, the linear entropy, the tightness of uncer-
tainty and the concurrence measure against the normalized parameter KT for small values
of the dipole coupling constant. It is clear that the behaviours of the entropic uncertainty
UL (red dashed line), the lower bound UR (blue solid line), and the linear entropy L (red
dashed-dotted line) vanish at low temperature (T → 0) as shown in Figure 1a for a small
amount of the coupling constant ε = 0.3. Meanwhile, the two spins are in a maximally
entangled state (see the green-dotted line). It is noticeable that the uncertainty rises to a
constant value with increasing temperature, and the left side is always higher than the right
side. In addition, as the temperature rises, the entanglement decreases to zero. After that,
the phenomenon of the sudden death entanglement appears [61,62]. Moreover, since the
mixedness reaches a fixed limit as the temperature rises, the increase of the mixedness
enhances the entropic uncertainty, particularly for small values of the dipole interaction
between the two spins. The mixedness is closely related to the uncertainty relation (UL



Entropy 2021, 23, 1595 6 of 14

and Ud), which presents an opposite behavior to the quantum entanglement. As a result,
mixedness, like entanglement, may be utilized to comprehend the properties of uncer-
tainty relations (UL, UR). Aside from that, the deterministic uncertainty in the situation of
convergent thermal equilibrium will be symmetrical at both low and high temperatures.
Otherwise, UL will be greater than UR. Based on UL and UR, we can investigate the effects
of the tightness of uncertain relationships for the difference between the inequality’s left
and right sides Vd (magenta-dashed line) as well as the ratio of the inequality’s left and
right sides Ud (blue-dashed line). The uncertainty relation UL = UR can be found for the
equilibrium state. This indicates that the uncertainty relationships’ tightness has ended.
However, when UL > UR, we observe a slight increase in the tightness Vd of the uncertainty
as it decreases to zero with the increase of the temperature. The function tightness Ud of
the uncertainty relation can be clearly defined by the ratio of the uncertainty of the two
quantities and the entropic uncertainty relation’s lower bound as in Equation (10). We can
see that the values of Ud decrease as the temperature rises. This means that the increase of
the temperature tightens the bounds of uncertain relationships.

Figure 1b depicts the deterministic uncertainty UL and its lower bound UR, the mixed-
ness entropy L, the function uncertainty tightness (Vd, Ud), and the concurrence for equiv-
alent values of the dipole coupling constants (∆ = ε = 1). It is clear that the functions
UL, UR and L have different initial values at relatively small temperatures (T ≈ 0) due to
the increase of the ε. The figure shows that the increase of the temperature leads to the
increase of the amplifications of the uncertainties, the lower bound as well as mixedness.
In this case, ∆ = ε = 1, the two-spin entanglement collapses for the equal values of the
dipole two-spin interaction at Dz = 0. The entropic uncertainty’s lower bound has a similar
variability tendency as the entropic uncertainty. The lower bound and the mixed entropy
have the same behaviours with different amplitudes and increase to their maximal value of
two and one, respectively, as the temperature gets hotter. Clearly, there is a significant con-
nection between mixedness and uncertainty in terms of behavior. The function tightness Ud
decreases inversely with the increase of the mixedness until both reach a constant level of
stability. However, the tightness Vd steadily decreases to zero as the temperature rises. This
indicates that, as the temperature goes up, the uncertain relationships and the tightness of
uncertainty become stronger. Meanwhile, we can observe that the concurrence evolution
has a structure that is diametrically opposed to that of the mixedness entropy. Furthermore,
the lower bound uncertainty has a well-established relationship with the tightness for an in-
creasing temperature. When the lower bound is strong at higher temperature, the tightness
is more tight. The given lower bound of the entropy uncertainty relationship is supported
by the memory. With the aid of memory, the quantitative concurrence will influence the
deterministic uncertainty relationship. The disappearance of the entanglement can cause
the entropic uncertainty relationship to tighten. In this case ∆ = ε = 1, the increase of
the mixedness improves the lower bound and the uncertainty tightness, which causes
disappearance of the entanglement.

Figure 1c shows the effect of higher dipole coupling model parameters ε = 5 for
∆ = 1 and Dz = 0. For the lower temperatures, we observe that the higher values of
the dipole coupling constants revive the quantum two-spin correlation. The green-dotted
line curve shows that the increase of the thermal environment enhances the entanglement
and delays its sudden death phenomenon. The entropic uncertainty (UL, UR) and the
two-spin mixedness L are enhanced by monotonically increasing the temperature. Fur-
thermore, the function tightness Vd starts to emerge from zero and ends when UL and
UR overlap, while the relative tightness Ud decreases monotonically as the mixedness in-
creases. Figure 1b,c asserts that the evolution of the mixedness is just completely opposite
the entanglement. Thus, the mixedness reflects the essence of the entropic uncertainty
relations, unlike the strong quantum entanglement destroys the inevitable relationship of
the uncertainty.

As a result, we anticipate that, in order to obtain a more accurate measurement
between sender Bob and receiver Alice, a quantitative correlation over long distances will
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be required. It can be determined by the recovery of quantum entanglement between
entangled particles under the control of the dipole coupling interactions high value. In
addition, the lower bound uncertainty can be used to assess the quality of an uncertain
relationship. The smaller the value of the lower bound, the better the quality of uncertainty.
Interestingly, the result of a measurement for R and Q can be better predicted if the lower
bound is equal to zero [32].

Figure 1d,f show the dependence of the quantitative memory quantifiers (the entropic
uncertainty, the uncertainty tightness, the entropy, and concurrence) on the increase of
the thermal environment and the dipole–dipole coupling ∆ at Dz = 0. The results of
the Figure 1a,d are very similar. We notice that an increase in the critical temperature,
when the uncertainty overlaps with all other lower limits, leads to a relative increase in
the quantum entanglement, and a relative contrast between the left and right side of the
deterministic uncertainty. Thus, the tightness is relatively greater compared to Figure 1a.
The mixedness increases from zero to the highest value, then it develops into a constant
value with temperature. For the large value of ∆ = 5, Figure 1 shows that the tightness,
the entropic uncertainty relation, and the mixedness can be affected by the increase of the
dipole–dipole coupling ∆. The critical temperature at which the quantum entanglement is
violated is lower, while the lower limit and the uncertainty have converged, resulting in
lower values of the tightness, the relative tightness as well as similar changes in mixedness
compared to Figure 1c.

Figure 1f displays the effects of the higher values of the dipole two-spin coupling
∆ = ε = 5 on the entropic uncertainty, the two-spin mixedness and the concurrence
under the increase of the temperature. We can deduce that the equal values of the dipole
two-spin couplings pairing coefficients suppress the two-spin entanglement completely;
see Figure 1b,f. For ∆ = ε = 5, the amplification of the uncertainty and mixedness entropy
can be increased clearly, where entropic uncertainty and mixedness grow monotonically
through the growth of KT. There are also variations in the relative tightness and the
tightness due to the amplification of the gap between the uncertainty due to the increase of
the dipole two-spin coupling. This confirms the relation between the correlations and the
memory-assisted entropic uncertainty connection. Accordingly, the higher values of the
temperature and the dipole–dipole spin system could induce the uncertainty amplification.

Figure 2 depicts the effects of the dipolar coupling ε on the evolution of the behaviours
of the entropic uncertainty. We plot the uncertainty of entropy, the various lower bounds
that occurred, the entropic uncertainty relation’s tightness, the mixedness, and the quantum
entanglement as a function of the dipolar coupling ε for various temperature values in the
nonexistence of D–M interaction.

It is clear that the entropic uncertainties, lower bounds, and mixedness increase with
|ε|. After that, when the maximum value arrives, they shrink monotonously and reach a
minimum at larger enough |ε| during fixed temperature states. The entropic uncertainty
corresponds to its lower limit at |ε| ≥ 4. UR and UL are more synchronized when <0 for
KT = 1. Meanwhile, we find that the quantum entanglement will vanish for the value
ε ≈ ±1 when it is equal to ∆. This means that, when ∆ and ε are equal, the entanglement
is completely destroyed for the system in the absence of D–M, as we explained earlier in
Figure 1b. This leads to a discrepancy between UR and UL, then entanglement increases to
a stable constant value with increasing strength |ε| as in Figure 2a.

In Figure 2b,c, when KT increases, we notice that there is no concurrence, as there are
death–birth sudden entanglement intervals around ε = 0, while the entropic uncertainty
relationship approaches its lower bounds and reaches its maximum value and tends to
zero with the increase of the coupling ε. It is more synchronized with the large coupling
force, which differs from its counterpart in Figure 2a. We can see that the strong dipolar
interaction decreases the entropic uncertainties, the lower bounds, and mixedness. These
quantifiers are highly anti-related to systematic quantum entanglement at low thermal
balance temperatures that allow performing accurate measurements.
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Figure 2. Entropic uncertainty UL (red-dashed line), the lower bound UR (blue-solid line), uncer-
tainty tightness (Vd (magenta-dashed line), Ud (blue-dashed line)), the mixedness L (red dashed-
dotted line) and concurrence (green-dotted line) as a function of ε with ∆ = 1 and Dz = 0 for
various temperatures.

Figure 3 analyzes the general impact of the dipolar coupling ∆ on memory-entropic
uncertainty, the tightness of the uncertainty, the mixedness, and the entanglement for
various thermal resonance temperatures. In this case, the results are qualitatively similar
as in Figure 2. For the case where the spins are oriented along the z-axis (∆ > 0), the am-
plitudes of the uncertainty and mixedness measures decrease to a minimum value, while
entanglement is more stable. In addition, the high temperatures work for the appearance
of the death–birth sudden entanglement interval around ∆ = 0. When the spins are di-
rected at the x− y level (∆ < 0), the memory-entropic uncertainty functions have identical
behaviour and non-zero values with the weak rotation of the coupling ∆. The amplitudes
of these functions can be enhanced by increasing temperature unlike the entanglement.
Figures 2 and 3 show that, when the values of ∆ of ε are small, the tightness Vd varies
slightly. Higher uniformity of the measuring uncertainty and the bound is reflected by
tighter tightness and vice versa. This is evident in the relative tightness Ud, which indicates,
as it approaches 1, that uncertainty and its thresholds are closely related.

Case Dz 6= 0
The following section addresses how Dz interaction influences the memory entropic

uncertainty, the tightness of uncertainty, the concurrence, and the entropy mixedness in the
background of spin systems for dipole–dipole interactions.

Figure 4 depicts the impact of Dz interaction on the output of correlations and uncer-
tainty relations, so we plotted the entropic measure of memory uncertainty, uncertainty
tightness, mixedness, and concurrence as a function of KT with different values of Dz of
the D–M interaction: Dz = 0.5, 3. It has depicted the developments in various magnitudes,
which are similar to those shown in Figure 1b,f. Figure 4 shows that the D–M interaction
leads to a revival of the quantum correlation and weakening of the tightness between
memory entropic uncertainty relations. Comparing Figures 1b and 4, we observe the
monotonously increasing behaviour of both memory entropic uncertainty scales with the
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temperature. It is clear that the quantitative entanglement can be enhanced due to the
increase of the D–M interaction coupling.
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Figure 3. Entropic uncertainty UL (red-dashed line), the lower bound UR (blue-solid line), uncertainty
tightness (Vd (magenta-dashed line), Ud (blue-dashed line)), the mixedness L (red dashed-dotted
line) and concurrence (green-dotted line) as a function of ∆, for various temperatures KT with ε = 1
and Dz = 0.
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(b) Dz = 3

Figure 4. Entropic uncertainty UL (red-dashed line), the lower bound UR (blue-solid line), uncertainty tightness (Vd
(magenta-dashed line), Ud (blue-dashed line)), the mixedness L (red dashed-dotted line) and concurrence (green-dotted
line) as a function of KT for ε = ∆ = 1 with different values of the parameter Dz.

Figure 5 shows the effects of the increase of the D–M interaction coupling on the
memory entropic uncertainty measures, the tightness of uncertainty, the entropy mixedness,
as well as the concurrence entanglement. We find that the entropic uncertainty relations,
the lower bound, the tightness of uncertainty, the mixedness, and the concurrence have sym-
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metric behaviour around Dz = 0. The entropic uncertainty relations and the entanglement
compatibility are highly sensitive to the effects of the D–M interaction coupling Dz.

Dz
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0
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(a) KT=1
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Ud

L

C

Dz
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0

0.5

1

1.5
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(b) KT=4

Figure 5. Eentropic uncertainty UL (red-dashed line), the lower bound UR (blue-solid line), uncertainty tightness (Vd
(magenta-dashed line), Ud (blue-dashed line)), the mixedness L (red dashed-dotted line) and concurrence (green-dotted
line) as a function of Dz for various values of KT with ε = ∆ = 1.

Figure 4 shows that the prosperity of the different quantities seems to be similar
to that of Figure 2 with the exception of Dz threshold values for different KT constant
ratios. This means that the dipole–dipole coupling has the same effects of Dz interaction
on the quantum memory-entropic uncertainty (UL, UR), mixedness L, tightness (Ud, Vd) of
uncertainty as well as the concurrence. Figure 4a,b reveals that the entropic uncertainty
relationships increase monotonically the highest value and then reduce to the lowest value
as the strength of |Dz| increases. However, the quantum entanglement that is enhanced
by increasing the D–M interaction coupling |Dz|. Furthermore, when |Dz| is sufficiently
strong, we can see that the uncertainty is significantly reduced. To explain, the entropic
uncertainty of quantum memory can be vanishing by reducing the critical values of |Dz|.
This may be significant to ensure that the measurement procedure is conducted correctly.
It will enable Bob to identify the effects of simultaneously calculating the observations σx
and σz. Furthermore, the temperatures reduce, the critical value of Dz and the dipole spins’
interactions decrease, and the uncertainties vanish.

Figure 6a,b clarifies that, when the dipole–dipole parameter ε increases, all measure-
ments begin to fluctuate between their maxima and minima until it stabilizes into its
stationary values. In Figure 6b, for ∆ = 1 and ε = 5, the entanglement and the memory
will strongly reduce the measurement results’ uncertainty and for this case the entropic
uncertainty is equal to its lower bound at |Dz|. In Figure 6c,d, the uncertainty and entan-
glement are plotted as a function of Dz for ∆ = (3, 4) with ε = 1 and KT = 1. We note
that the increase of ∆ enhances the quantum entanglement and the relative tightness as
well as strongly reducing the lower limit of the uncertainty of memory. The uncertainty of
memory vanishes when thermal state of the system is reduced.

Figure 6d demonstrates that D–M interaction and the dipole–dipole spin significantly
improve prediction of measurement accuracy when Bob and Alice jointly measure the
deterministic memory of a two-qubit state when the theoretical deterministic result is zero.
For ∆ > ε, the maximal entanglement achieves C = 1 compared to Figure 6a,b. As a result,
the inevitable uncertainty and its lower bound for all moments of the interaction evolves
closer to zero, i.e., UL = UR = 0, allowing Bob to precisely estimate the predictions of
Alice’s calculation.
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Figure 6. Entropic uncertainty UL (red-dashed line), the lower bound UR (blue-solid line), uncertainty tightness (Vd
(magenta-dashed line), Ud (blue-dashed line)), the mixedness L (red dashed-dotted line) and concurrence (green-dotted
line) as a function of Dz for various values ∆ and ε with KT = 1.

5. Conclusions

In this article, we have investigated different features of an entropic uncertainty rela-
tion for a dipolar coupled-spin system with D–M interaction in temperature equilibrium,
including quantum memory assistance, uncertainty tightening, entanglement, and mixed-
ness. We have analyzed the dipole–dipole spin coupling between two-qubits and the D–M
interaction effect on the behavior of entropic uncertainty as temperature rises. The quan-
tum entanglement is diminished at high temperatures, but the uncertainty and mixedness
are improved. These investigated quantum measures achieve their stationary values at
increasing temperature levels. According to the results, mixedness is closely connected to
the entropic uncertainty, and they behave similarly with different amplitudes. It is found
that, in the absence of D–M interaction, the sudden death entanglement phenomenon is
caused by equal dipolar two-spin interactions. Mixedness has a significant impact on the
relationships of uncertainty and tightness, as well as the accuracy of the measurement
between Alice and Bob. We discovered that the Dzyaloshinsky–Moriya interaction at a
specific temperature, as well as the dipole interaction coupling, can suppress uncertainty
relations and characterize the emergence of entanglement to the maximum extent possible.
In the absence of D–M interaction, it was observed that the sudden death entanglement
phenomenon appears due to being equal to the dipolar two-spin interactions. Bob can then
properly predict and acquire Alice’s result in this situation. Our research could open up a
new window into the dynamical evolution of entropic uncertainty relations in quantum
spin models of asymmetric dipole–dipole spin interaction, where a dipolar coupled-spin
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system of Alice and Bob is possible, for predicting measurement accuracy in quantum
information processing.
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