# Geometric Analysis of a System with Chemical Interactions

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

#### Notation

## 2. Results

#### 2.1. Geometric Representation of the Energy Manifold

#### 2.2. Geometry of an Isoaffine Submanifold

**Theorem**

**1.**

**Proof.**

## 3. Dependent and Independent Thermodynamic Variables on an Isoaffine Energy Manifold

**Theorem**

**2.**

**Proof.**

**Theorem**

**3.**

**Proof.**

## 4. Discussion

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Appendix A. Proofs of the Theorems

**Proof of Theorem 1.**

**Proof of Theorem 2.**

**Proof of Theorem 3.**

## References

- Gibbs, J.W. The Collected Works of J. Willard Gibbs in Two Volumes. Volume 1: Thermodynamics.; Longmans, Green and Co.: Harlow, UK, 1931. [Google Scholar]
- Kondepudi, D.; Prigogine, I. Modern Thermodynamics: From Heat Engines to Dissipative Structures; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Tisza, L. Generalized Thermodynamics; MIT Press: Cambridge, MA, USA, 1966; Volume 1. [Google Scholar]
- Münster, A. Chemical Thermodynamics; John Wiley & Sons: Hoboken, NJ, USA, 1970. [Google Scholar]
- Gromov, D.; Toikka, A. On an alternative formulation of the thermodynamic stability condition. J. Math. Chem.
**2020**, 58, 1219–1229. [Google Scholar] [CrossRef] - Gromov, D.; Toikka, A. Toward Formal Analysis of Thermodynamic Stability: Le Chatelier–Brown Principle. Entropy
**2020**, 22, 1113. [Google Scholar] [CrossRef] - Hermann, R. Geometry, Physics and Systems; M. Dekker: New York, NY, USA, 1973. [Google Scholar]
- Mrugała, R. Geometrical formulation of equilibrium phenomenological thermodynamics. Rep. Math. Phys.
**1978**, 14, 419–427. [Google Scholar] [CrossRef] - Mrugała, R.; Nulton, J.D.; Schön, J.C.; Salamon, P. Contact structure in thermodynamic theory. Rep. Math. Phys.
**1991**, 29, 109–121. [Google Scholar] [CrossRef] - Eberard, D.; Maschke, B.M.; van der Schaft, A.J. An extension of hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Rep. Math. Phys.
**2007**, 60, 175–198. [Google Scholar] [CrossRef][Green Version] - Delvenne, J.C.; Sandberg, H. Finite-time thermodynamics of port-Hamiltonian systems. Phys. D Nonlinear Phenom.
**2014**, 267, 123–132. [Google Scholar] [CrossRef][Green Version] - Gromov, D.; Caines, P.E. Stability of composite thermodynamic systems with interconnection constraints. IET Control Theory Appl.
**2015**, 9, 1629–1636. [Google Scholar] [CrossRef] - Gromov, D. Two Approaches to the Description of the Evolution of Thermodynamic Systems. In Proceedings of the 2nd IFAC Workshop on Thermodynamic Foundations for a Mathematical Systems Theory TFMST, Louvain-la-Neuve, Belgium, 3–5 July 2016; Volume 49, pp. 34–39. [Google Scholar] [CrossRef]
- van der Schaft, A.; Maschke, B. Geometry of thermodynamic processes. Entropy
**2018**, 20, 925. [Google Scholar] [CrossRef] [PubMed][Green Version] - Bravetti, A. Contact geometry and thermodynamics. Int. J. Geom. Methods Mod. Phys.
**2019**, 16, 1940003. [Google Scholar] [CrossRef] - Oster, G.F.; Perelson, A.S. Chemical reaction dynamics. Arch. Ration. Mech. Anal.
**1974**, 55, 230–274. [Google Scholar] [CrossRef] - van der Schaft, A.; Maschke, B. A port-Hamiltonian formulation of open chemical reaction networks. In Advances in the Theory of Control, Signals and Systems with Physical Modeling; Springer: Berlin/Heidelberg, Germany, 2010; pp. 339–348. [Google Scholar] [CrossRef]
- Angeli, D. A tutorial on Chemical Reaction Networks dynamics. In Proceedings of the IEEE 2009 European Control Conference (ECC), Budapest, Hungary, 23–26 August 2009; pp. 649–657. [Google Scholar] [CrossRef]
- van der Schaft, A.; Rao, S.; Jayawardhana, B. On the mathematical structure of balanced chemical reaction networks governed by mass action kinetics. SIAM J. Appl. Math.
**2013**, 73, 953–973. [Google Scholar] [CrossRef][Green Version] - Gromov, D.; Caines, P.E. Stability of interconnected thermodynamic systems. In Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, 12–15 December 2011; pp. 6730–6735. [Google Scholar] [CrossRef]
- Gitterman, M.; Steinberg, V. On the stability of chemical equilibrium. J. Chem. Phys.
**1976**, 65, 847–848. [Google Scholar] [CrossRef] - Gitterman, M.; Steinberg, V. Thermodynamic stability and phase transitions in systems with a chemical reaction. J. Chem. Phys.
**1978**, 69, 2763–2770. [Google Scholar] [CrossRef] - Prigogine, I.; Defay, R. Chemical Thermodynamics; Longmans, Green and Co.: Harlow, UK, 1954. [Google Scholar]
- Toikka, A.M. Stability of chemical and phase equilibrium: Alternative forms of equations for thermodynamic analysis. In Mathematical Chemistry; Hong, W.I., Ed.; Nova Science Publishers, Inc.: Singapore, 2010; pp. 509–537. [Google Scholar]
- Berman, A.; Laffey, T.J. Similarity classes and principal submatrices. Linear Algebra Its Appl.
**2005**, 401, 341–351. [Google Scholar] [CrossRef][Green Version] - Horn, R.A.; Johnson, C.R. Matrix Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gromov, D.; Toikka, A.
Geometric Analysis of a System with Chemical Interactions. *Entropy* **2021**, *23*, 1548.
https://doi.org/10.3390/e23111548

**AMA Style**

Gromov D, Toikka A.
Geometric Analysis of a System with Chemical Interactions. *Entropy*. 2021; 23(11):1548.
https://doi.org/10.3390/e23111548

**Chicago/Turabian Style**

Gromov, Dmitry, and Alexander Toikka.
2021. "Geometric Analysis of a System with Chemical Interactions" *Entropy* 23, no. 11: 1548.
https://doi.org/10.3390/e23111548