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Abstract: The magnetocaloric response of the mixed spin-1/2 and spin-S (S > 1/2) Ising model on a
decorated square lattice is thoroughly examined in presence of the transverse magnetic field within
the generalized decoration-iteration transformation, which provides an exact mapping relation with
an effective spin-1/2 Ising model on a square lattice in a zero magnetic field. Temperature dependen-
cies of the entropy and isothermal entropy change exhibit an outstanding singular behavior in a close
neighborhood of temperature-driven continuous phase transitions, which can be additionally tuned
by the applied transverse magnetic field. While temperature variations of the entropy display in
proximity of the critical temperature Tc a striking energy-type singularity (T − Tc) log |T − Tc|, two
analogous weak singularities can be encountered in the temperature dependence of the isothermal
entropy change. The basic magnetocaloric measurement of the isothermal entropy change may
accordingly afford the smoking gun evidence of continuous phase transitions. It is shown that the
investigated model predominantly displays the conventional magnetocaloric effect with exception of
a small range of moderate temperatures, which contrarily promotes the inverse magnetocaloric effect.
It turns out that the temperature range inherent to the inverse magnetocaloric effect is gradually
suppressed upon increasing of the spin magnitude S.

Keywords: Ising model; transverse field; exact results; magnetocaloric effect; weak singularity

1. Introduction

The magnetocaloric effect (MCE) relates to an adiabatic temperature change of mag-
netic materials achieved in response to a varying external magnetic field. Although
this phenomenon was experimentally detected by Warburg more than a century ago [1],
the MCE still remains an active research field in its own right due to its wide applica-
tion potential in magnetic refrigeration technologies [2,3]. Under the isothermal condi-
tion, the raising of the external magnetic field results in the isothermal entropy change
∆Siso = S(T, H 6= 0)− S(T, H = 0), whose sign allows one to discern the conventional
MCE with−∆Siso > 0 from the inverse MCE with−∆Siso < 0 [4]. The magnetic substances
subject to the conventional MCE are heated up (cooled down) under the adiabatic mag-
netization (demagnetization), while the magnetic entropy is lowered (raised) under the
isothermal magnetization (demagnetization). The reverse is of course true for magnetic
materials being subject to the inverse MCE.

Most of magnetic materials regrettably show only a rather small magnetocaloric
response that considerably prevents their implementation in magnetic refrigeration tech-
nologies. From this point of view, spontaneously ordered magnetic materials are expected
to be most perspective coolants, because they often exhibit an enhanced MCE in a vicinity
of the critical temperature connected to a magnetic order-disorder phase transition be-
tween spontaneously ordered and disordered states [5]. It is worthwhile to remark that
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the spontaneous long-range order may eventually emerge just if the underlying magnetic
structure is at least two-dimensional and, hence, the rigorous study of MCE close to the
order-disorder phase transitions is beyond the scope of present knowledge due to the
incapability to treat the corresponding lattice-statistical spin model by exact means. In spite
of its conceptual simplicity, two-dimensional (2D) Ising models are generally not exactly
solvable in a nonzero external magnetic field [6].

Interestingly, there exist a few valuable examples of 2D Ising models at least partially
accounting for the effect of the external magnetic field, which may bear evidence of the
enhanced MCE near the order-disorder phase transition. Among these paradigmatic
examples, one could for instance mention Fisher’s superexchange antiferromagnet, which
refers to a spin-1/2 Ising model on a decorated square lattice with spatially modulated
ferromagnetic and antiferromagnetic interactions in a longitudinal magnetic field [7,8].
Exact solutions for several variants and extensions of the original Fisher’s superexchange
model have been found by considering higher spin values, crystal-field anisotropy or
different lattice geometries [9–14]. A few additional special cases of 2D Ising models
partially taking into consideration the longitudinal magnetic field were exactly solved by
making use of a precise mapping correspondence with free-fermion 16-vertex or 32-vertex
models [15–21]. One should bear in mind that in all aforementioned 2D Ising models the
longitudinal magnetic field was specifically applied only to decorating spins.

Another intriguing open question is whether the enhanced MCE emergent at the order-
disorder phase transition is reinforced or contrarily suppressed by quantum fluctuations.
This question could be addressed with the help of exactly solved 2D Ising models on a
honeycomb lattice [22–24] or a decorated square lattice [25–27], which take into account
a transverse magnetic field introducing into the respective Hamiltonian the transverse
component of spin operators that does not commute with the longitudinal one. In our
preceding brief report we have convincingly demonstrated that the spin-1/2 Ising model
on a decorated square lattice shows in the transverse magnetic field a remarkable crossover
between the conventional and inverse MCE [27]. The main focus of the present work is
to extend this study through a detailed examination of the entropy and the isothermal
entropy change of a mixed spin-1/2 and spin-S (S > 1/2) Ising model on a decorated
square lattice in the transverse magnetic field.

Before doing so, let us make a few comments concerned with an experimental motiva-
tion of the proposed theoretical model. At first sight, the considered mixed spin-(1/2, S)
Ising model on a decorated square lattice might seem to be an artificial toy model, because
the applied transverse magnetic field acts exclusively on decorating spins while leaving
nodal spins completely unaffected. Although this requirement is not so commonly met in
real magnetic materials, however, this peculiar feature may be encountered in magnetic
compounds involving magnetic ions with a highly anisotropic g-factor (e.g., Dy3+ or Co2+)
in combination with magnetic ions with a nearly isotropic g-factor (e.g., Cu2+ or Ni2+).
The former magnetic ions do not experience the effect of external magnetic field once it is
applied perpendicular to a quantization (Ising) axis in contrast with the latter magnetic
ions, which are basically influenced by the external magnetic field regardless of its spatial
orientation. In this regard, 3d-4f heterobimetallic molecular-based magnetic materials con-
sisting, for instance, from Dy3+ and Cu2+ magnetic ions afford the experimental realization
of lattice-statistical spin models with strongly modulated magnetic fields [28–33].

Furthermore, it is noteworthy that the magnetic structure of the decorated square
lattice can be found in four isostructural molecular magnets [M2+(pyrazole)4]2[Nb4+(CN)8]
· 4 H2O [34] to be further abbreviated as [M2Nb], which contain some of the following
divalent transition-metal ions M2+ = Ni2+, Co2+, Fe2+ or Mn2+. The former two members
of this series with either Ni2+ or Co2+ magnetic ions exhibit a spontaneous ferromagnetic
ordering in contrast to the latter two members either with Fe2+ or Mn2+ magnetic ions
that display a spontaneous ferrimagnetic ordering [34]. The molecular-based magnetic
materials [M2Nb] afford an excellent playground for an investigation of the role of a spin
magnitude on magnetic properties of the mixed spin-(1/2, S) decorated square lattice,
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which is composed from the spin-1/2 Nb4+ magnetic ions residing nodal sites of a square
lattice and the spin-S M2+ magnetic ions occupying decorating sites of a square lattice (see
Figure 1). A diversity of the available divalent M2+ magnetic ions allows one to tune spin
magnitude of the decorating magnetic ions among the spin-1 Ni2+ magnetic ions, the spin-
3/2 Co2+ magnetic ions, the spin-2 Fe2+ magnetic ions, or the spin-5/2 Mn2+ magnetic
ions [34]. It turns out that the choice of the spin size has significant effect upon the MCE,
which is the most intense for the manganese-based analog from this series with the highest
spin value [Mn2+(pyrazole)4]2 [Nb4+(CN)8] · 4 H2O [35]. Unfortunately, the molecular-
based magnetic materials [M2Nb] cannot be regarded as true experimental representatives
of a mixed spin-1/2 and spin-S (S > 1/2) Ising model on the decorated square lattice,
because the spin-1/2 Nb4+ magnetic ions from nodal lattice sites of a square lattice are
affected by longitudinal as well as transverse magnetic fields due to their almost isotropic
gyromagnetic g-factor [34,35]. In spite of this fact we hope that the results presented
in this article could stimulate a targeted design of structural analogs of the molecular-
based magnets [M2Nb], which would contain the Ising-like magnetic ions with the highly
anisotropic g-factor instead of the nearly isotropic spin-1/2 Nb4+ magnetic ions.

Si

mi,1
mi,2

W

J J mi=±1/2

S = -S, -S+  ,...,Si 1

Figure 1. A cross-section from the decorated square lattice. The purple (dark) circles denote lattice
positions of the nodal spin-1/2 magnetic ions and the green (light) circles schematically represent
lattice positions of the decorating spin-S (S > 1/2) magnetic ions. A rectangle delimits a three-spin
cluster described by the bond Hamiltonian (2).

In the present article we will examine basic magnetocaloric properties of a mixed
spin-1/2 and spin-S (S > 1/2) Ising model on the decorated square lattice in the presence
of the transverse magnetic field; more specifically, temperature variations of the magnetic
entropy, the isothermal entropy change driven by change of the transverse magnetic
field and the adiabatic temperature change induced by the transverse magnetic field. It
should be pointed out that the investigated mixed spin-1/2 and spin-S (S > 1/2) Ising
model on a decorated square lattice represents a prototypical example of an exactly solved
lattice-statistical spin model, which allows a detailed examination of MCE in a vicinity of
temperature-driven continuous phase transition additionally tunable by the transverse
magnetic field.

2. Model and Methods

In this part we will comprehensively examine magnetocaloric properties of the mixed
spin-1/2 and spin-S (S > 1/2) Ising model on a decorated square lattice in the presence
of a transverse magnetic field, which is schematically depicted in Figure 1 and defined
through the following Hamiltonian:

Ĥd = −J ∑
〈i,j〉

Ŝz
i µ̂z

j −Ω
2N

∑
i=1

Ŝx
i . (1)
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The Hamiltonian (1) is expressed in terms of the spin-1/2 operators µ̂z
j ascribed to the magnetic

ions from the nodal lattice sites shown in Figure 1 by purple (dark) circles and the spin-S
operators Ŝz

i and Ŝx
i ascribed to the magnetic ions from the decorating lattice sites shown in

Figure 1 by green (light) circles. The summation symbol 〈i, j〉 runs over the pairs of nearest-
neighbor spins and the first term entering into the Hamiltonian (1) thus taking into account
the nearest-neighbor interaction J between the spin-1/2 and spin-S magnetic ions placed
at the nodal and decorating lattice sites, respectively, while the second term Ω accounts for
the Zeeman’s magnetostatic energy of the decorating spin-S magnetic ions in a transverse
magnetic field. Finally, N denotes the total number of the nodal lattice sites occupied by
the spin-1/2 magnetic ions. It is worthwhile to note that the transverse magnetic field Ω
introduces into the otherwise classical mixed-spin Ising model given by Equation (1) local
quantum fluctuations, which are closely related to the noncommuting character of the spin
operators Ŝz

i and Ŝx
i emergent in the interaction and field terms, respectively.

It should be mentioned that the mixed spin-1/2 and spin-S (S > 1/2) Ising model
on a decorated square lattice in a transverse magnetic field has been exactly solved in
our previous works [25,26] and, therefore, we will recall just a few basic steps of this
exact calculation needed for a determination of magnetocaloric properties not dealt with
previously. First, it is useful to rewrite the total Hamiltonian (1) as a sum over the bond
Hamiltonians, i.e., Ĥd = ∑2N

i=1 Ĥi, where each bond Hamiltonian Ĥi involves all the
interaction terms related to the ith decorating spin Si (see Figure 1):

Ĥi = −JŜz
i (µ̂

z
i,1 + µ̂z

i,2)−ΩŜx
i . (2)

Owing to the commuting character of the bond Hamiltonians [Ĥi, Ĥj] = 0 the partition
function of the mixed spin-1/2 and spin-S Ising model on a decorated square lattice in a
transverse magnetic field can be partially factorized into the following useful form:

Zd = ∑
{σi}

2N

∏
i=1

Tri exp(−βĤi), (3)

where β = 1/(kBT), kB is Boltzmann’s constant, T is the absolute temperature, the symbol
∑{σi} denotes a summation over all available spin configurations of the nodal spin-1/2
magnetic ions and the symbol Tri stands for a trace over degrees of freedom of the ith
decorating spin-S magnetic ion. By employing a trace invariance the latter trace can be
obtained after a straightforward diagonalization of the bond Hamiltonian (2) achieved
through the canonical spin-rotation transformation:

Ŝx
i = Ŝx

i
′ cos φi + Ŝz

i
′ sin φi, Ŝz

i = −Ŝx
i
′ sin φi + Ŝz

i
′ cos φi, (4)

which brings the bond Hamiltonian (2) to the diagonal form when using a suitable choice
of the rotation angle φi = arctan[Ω/J(µz

i,1 + µz
i,2)]:

Ĥi = −Ŝz
i
′
√

J2(µz
i,1 + µz

i,2)
2 + Ω2. (5)

An explicit form of the Boltzmann weight, which is obtained after tracing out spin degrees
of freedom of the ith decorating spin-S magnetic ion, then reads as follows:

Tri exp(−βĤi) =
S

∑
Sz

i
′=−S

exp
[

βŜz
i
′
√

J2(µz
i,1 + µz

i,2)
2 + Ω2

]

=
S

∑
n=−S

cosh
[

βn
√

J2(µz
i,1 + µz

i,2)
2 + Ω2

]
, (6)

where n is the summation index running over 2S + 1 available states of the decorating
spin. Obviously, the effective Boltzmann’s weight (6) depends just on two nodal Ising spins
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(µz
i,1, µz

i,2) and consequently, this expression can be substituted through the generalized
decoration-iteration transformation [36–38]:

Tri exp(−βĤi) =
S

∑
n=−S

cosh
[

βn
√

J2(µz
i,1 + µz

i,2)
2 + Ω2

]
= A exp(βRµz

i,1µz
i,2). (7)

The physical meaning of the decoration-iteration transformation (7) lies in removing all
the interaction parameters associated with the ith decorating spin-S magnetic ion and
replacing them by a new unique effective interaction R between its two nearest-neighbor
nodal spin-1/2 magnetic ions µz

i,1 and µz
i,2. Both unknown mapping parameters A and R

are ’self-consistently’ given by the transformation formula (7), which should remain valid
for all four possible spin combinations of two nodal Ising spins µz

i,1 and µz
i,2 providing just

two independent equations from the mapping transformation (7). Owing to this fact, two
yet unknown mapping parameters A and R can be unambiguously determined by the
following formulas:

A = (V1V2)
1
2 , βR = 2 ln

(
V1

V2

)
, (8)

which are expressed in terms of two newly defined functions:

V1 =
S

∑
n=−S

cosh
(

βn
√

J2 + Ω2
)

, V2 =
S

∑
n=−S

cosh(βnΩ). (9)

At this stage, the decoration-iteration transformation (7) with the mapping parameters A and R
determined by Equations (8) and (9) can be substituted into the right-hand-side of Equation (3) in
order to obtain a mapping relation between the partition function Zd of the mixed spin-1/2
and spin-S Ising model on a decorated square lattice in a transverse magnetic field and,
respectively, the partition function Z0 of the spin-1/2 Ising model on a simple square lattice
in a zero magnetic field:

Zd(β, J, Ω) = A2NZ0(β, R). (10)

It is worth noticing that the partition function Z0 of the spin-1/2 Ising model on a square
lattice in a zero magnetic field is know from the famous Onsager’s exact solution [39]

1
N

lnZ0 = ln 2 +
1

2π2

π∫
0

π∫
0

ln
{

cosh2
(

βR
2

)
− sinh

(
βR
2

)
[cos θ + cos φ]

}
dθdφ. (11)

From this perspective, the rigorous mapping relationship (10) affords the relevant exact
result for the partition function Zd of the mixed spin-1/2 and spin-S Ising model on
a decorated square lattice in a transverse magnetic field. One of the most important
consequences of the Onsager’s exact solution for a spin-1/2 Ising model on a square
lattice [39] was rigorous confirmation of a phase transition, which is accompanied with a
singular behavior of magnetic and thermodynamic quantities in a vicinity of the critical
temperature βcR = R/(kBTc) = 2 ln(1 +

√
2). According to Equation (10), the essential

singularity in the partition function Z0 of the spin-1/2 Ising model on a square lattice
causes the analogous singularity in the partition function Z of the mixed spin-1/2 and
spin-S Ising model on a decorated square lattice in a transverse magnetic field. It should be
pointed out, however, that the nearest-neighbor interaction R of the effective spin-1/2 Ising
model on a square lattice is not constant, but it depends according to Equations (8) and (9)
on the temperature T, the coupling constant J, the transverse field Ω, as well as, the spin
size S. Consequently, the critical temperature of the mixed spin-1/2 and spin-S Ising model
on a decorated square lattice will depend on a relative size of the transverse magnetic
field Ω/J and the spin magnitude S. The critical temperature of the mixed spin-1/2 and
spin-S Ising model on a decorated square lattice can be thus simply obtained from a direct
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comparison of the effective coupling βR given by Equations (8) and (9) with its critical
value βcR = 2 ln(1 +

√
2), which affords the following critical condition:

S

∑
n=−S

cosh
(

βcn
√

J2 + Ω2
)
= (1 +

√
2)

S

∑
n=−S

cosh(βcnΩ). (12)

The numerical solution of the critical condition (12), e.g., by a bisection method, brings
insight into how a relative size of the transverse magnetic field Ω/J and the spin size S
influence a relative magnitude of the critical temperature kBTc/J.

In what follows, our attention will be focused on a detailed examination of basic
magnetocaloric characteristics of the mixed spin-1/2 and spin-S Ising model on a decorated
square lattice, which may exhibit especially pronounced features whenever temperature
and the transverse magnetic field drive the investigated spin system close enough to a
respective critical point. For this purpose, it is of particular importance to derive from the
mapping relation (10) exact expressions for basic thermodynamic quantities such as the
Gibbs free energy:

Gd = −kBT lnZ0 − 2NkBT ln A (13)

and the entropy:

Sd = kB lnZ0 +
2U0

RT

(√
J2 + Ω2K0 −ΩK1

)
+ 2NkB ln A− N

T

(√
J2 + Ω2K0 + ΩK1

)
. (14)

For the sake of completeness, let us quote the final expression also for the internal energy
U0 of the effective spin-1/2 Ising model on a square lattice derived by Onsager [39] in the
thermodynamic limit N → ∞:

U0

NR
= −1

4
coth

(
βR
2

){
1 +

2
π

[
2 tanh2

(
βR
2

)
− 1
]

K(z)
}

, (15)

where K(z) is the complete elliptic integral of the first kind with the modulus z:

K(z) =
π/2∫
0

1√
1− z2 sin2 θ

dθ, z =
2 sinh

(
βR
2

)
cosh2

(
βR
2

) , (16)

and temperature-dependent coefficients K0 and K1 emergent in Equation (14) are given by:

K0 =

S

∑
n=−S

n sinh(βn
√

J2 + Ω2)

S

∑
n=−S

cosh(βn
√

J2 + Ω2)

, K1 =

S

∑
n=−S

n sinh(βnΩ)

S

∑
n=−S

cosh(βnΩ)

. (17)

The derived exact analytical formulas (14)–(17) allow a straightforward computation of
the basic magnetocaloric properties as, for instance, the isothermal entropy change or
the adiabatic temperature change. The isothermal entropy change can be calculated as
a difference of the entropy at nonzero and zero magnetic fields ∆Siso = Sd(T, Ω 6= 0)−
Sd(T, Ω = 0) at the constant temperature, while the adiabatic change of temperature
can be traced back from contour lines of the density plot of the entropy (14) in the field-
temperature plane.

3. Results and Discussion

Before proceeding to a discussion of the most interesting results for the magnetocaloric
properties of the mixed spin-1/2 and spin-S Ising model on a decorated square lattice in a
transverse magnetic field defined through the Hamiltonian (1), it is worthwhile to remark
that the finite-temperature phase diagrams, the longitudinal and transverse magnetiza-
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tions, the specific heat and susceptibility were extensively examined in our two preceding
articles [25,26], to which readers interested in a more comprehensive understanding of
temperature behavior of these magnetic and thermodynamic quantities are referred to.
On the other hand, basic magnetocaloric characteristics of the mixed spin-1/2 and spin-S
Ising model on a decorated square lattice in a transverse magnetic field have not been
dealt with previously except the particular case with the spin value S = 1/2 [27]. Our
recent brief report concerned with this particular case has convincingly evidenced that
the spin-1/2 Ising model on a decorated square lattice displays an anomalous magne-
tocaloric response in vicinity of a continuous phase transition, which can be driven either
by temperature or the transverse magnetic field [27]. In the present article we will therefore
resort to a systematic investigation of the magnetocaloric properties of the mixed spin-1/2
and spin-S Ising model on a decorated square lattice in a transverse magnetic field when
comparing basic magnetocaloric features such as entropy, isothermal entropy change and
adiabatic temperature change for four selected spin values S = 1, 3/2, 2 and 5/2 of the
decorating atoms.

Let us begin with the finite-temperature phase diagrams of the mixed spin-1/2 and
spin-S (S > 1/2) Ising model on a decorated square lattice, which are depicted in Figure 2
for four selected values of the spin magnitude S in the form of plots the critical temperature
kBTc/|J| versus the transverse magnetic field Ω/|J|. It is worth mentioning that the critical
temperature was calculated according to the critical condition (12), which is invariant with
respect to a sign change of the coupling constant J → −J implying the identical critical
behavior of the ferromagnetic (J > 0) and ferrimagnetic (J < 0) model system. The lines
displayed in Figure 2 bring insight into the functional dependence of the dimensionless
critical temperature kBTc/|J| on a relative size of the transverse magnetic field Ω/|J|. Note
that the ferromagnetic (ferrimagnetic) ordering with a non-zero spontaneous magnetization
is realized below the depicted phase boundaries for J > 0 (J < 0), while above them the
disordered paramagnetic phase with zero spontaneous magnetization takes place. As one
can see from Figure 2, the critical temperature acquires its maximal value in the zero-field
limit from which it monotonously decreases upon strengthening of the transverse magnetic
field until it tends to zero in the asymptotic limit Ω/|J| → ∞. This statement holds true for
any spin value S, whereby the rise of spin magnitude merely shifts the critical temperature
to higher values. The monotonous decline of the critical temperature observable upon
increasing of the transverse magnetic field can be attributed to a strengthening of local
quantum fluctuations, because the transverse field exclusively acting on the decorating
spins promotes a quantum superposition of all their available spin states.

Typical temperature dependencies of the molar entropy of the mixed spin-1/2 and
spin-S (S > 1/2) Ising model on a decorated square lattice are shown in Figure 3 for a
few different values of the transverse magnetic field and four selected values of the spin
magnitude S. The entropy monotonously increases with the increasing of temperature,
whereby the largest increment of the entropy can be observed in the proximity of a con-
tinuous order-disorder phase transition that is accompanied with a weak singularity of
the type ∝ (T − Tc) log |T − Tc| visualized in Figure 3 by different filled symbols. To shed
light on a singular character of the respective critical points we have plotted in Figure 4 the
entropy against the temperature deviation (T − Tc) log |T − Tc| from its critical value for
two selected values of the spin magnitude and two different values of the transverse mag-
netic field. It is obvious from Figure 4 that the entropy generally displays in a close vicinity
of the critical temperature a linear dependence when it is plotted against the temperature
deviation (T − Tc) log |T − Tc|. This fact convincingly evidences that the entropy exhibits
close to the critical temperature the weak singularity of the type (T− Tc) log |T− Tc|, which
arises according to Equation (14) from the respective singularity of the internal energy U0
of the effective spin-1/2 Ising model on a square lattice (15).



Entropy 2021, 23, 1533 8 of 14

0 1 2 3 4 5 6 7 80 . 0

0 . 3

0 . 6

0 . 9

1 . 2

1
3 / 2

2

S  =  5 / 2

�  /  | J |

k B T
c /  |J|

 

 

Figure 2. Finite-temperature phase diagrams of the mixed spin-1/2 and spin-S Ising model on a
decorated square lattice in the form of plots the critical temperature kBTc/|J| versus the transverse
magnetic field Ω/|J| for four selected values of the spin magnitude S = 1, 3/2, 2 and 5/2.
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Figure 3. Temperature variations of the molar entropy of the mixed spin-1/2 and spin-S (S > 1/2) Ising model on a
decorated square lattice for a few different values of the transverse magnetic field and four selected values of the spin
magnitude: (a) S = 1; (b) S = 3/2; (c) S = 2; (d) S = 5/2. Filled symbols of different styles allocate singular points of the
type ∝ (T − Tc) log |T − Tc|.
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Figure 4. The molar entropy of the mixed spin-1/2 and spin-S (S > 1/2) Ising model on a decorated square lattice as
a function of the temperature deviation (T − Tc) log |T − Tc| from its critical value for two different values of the spin
magnitude and transverse magnetic fields: (a) S = 1, Ω/|J| = 0.0; (b) S = 1, Ω/|J| = 1.0; (c) S = 3/2, Ω/|J| = 0.0;
(d) S = 3/2, Ω/|J| = 1.0. Blue broken lines are linear fits of the respective dependencies, which prove a singular character
of the entropy that is in a close vicinity of the critical points (filled red circles) proportional to ∝ (T − Tc) log |T − Tc|.

Let us return back to a detailed analysis of temperature dependencies of the entropy
(Figure 3) from the perspective of the MCE. The temperatures, at which the entropy
dependencies calculated at non-zero transverse magnetic field (broken lines) cross zero-
field dependence of the entropy (solid line), represent crossover points determining a
change of the conventional MCE to the inverse MCE or vice versa. The mixed spin-1/2
and spin-S (S > 1/2) Ising model on a decorated square lattice predominantly exhibits
the conventional MCE, while the inverse MCE can be mostly detected at low enough
temperatures and sufficiently high transverse magnetic fields (e.g., Ω/|J| = 4.0) where
the entropy at non-zero transverse fields overwhelms over the zero-field entropy. It also
follows from comparison of Figure 3a–d that the parameter region pertinent to the inverse
MCE gradually diminishes upon increasing of the spin size. However, two crossover
temperatures observable in temperature dependencies of the entropy for relatively small
transverse magnetic field Ω/|J| = 0.5 allocate another rather narrow temperature range
inherent to the inverse MCE, whereby the lower crossover temperature occurs close to
a continuous phase transition for the given transverse magnetic field (e.g., Ω/|J| = 0.5)
and the upper one emerges near a continuous phase transition corresponding to the zero
field Ω/|J| = 0.0 [see Figure 3a–d]. It could be thus concluded that a relative strength of
the transverse magnetic field basically determines the number as well as position of the
crossover points between the conventional and inverse MCE, namely, one may for instance
detect for sufficiently large transverse magnetic field Ω/|J| = 4.0 only one crossover
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temperature for the spin magnitudes S = 1 and S = 3/2 [Figure 3a,b], two crossover
temperatures for S = 2 [Figure 3c], or any crossover temperature for S = 5/2 [Figure 3d].

Even more direct evidence of the crossover between the conventional and inverse MCE
can be gained from a detailed analysis of the isothermal entropy change −∆Siso(T, ∆Ω) =
Sd(T, Ω = 0) − Sd(T, Ω 6= 0), which characterizes a basic caloric response of the in-
vestigated spin system with respect to a variation of the transverse magnetic field as it
determines amount of the heat exchanged with an environment during the isothermal
process. Temperature dependencies of the isothermal entropy change of the mixed spin-
1/2 and spin-S Ising model on a decorated square lattice are depicted in Figure 5 for
three different values of the transverse-field change ∆Ω/|J| and four selected values of
the spin magnitude S. It is worthwhile to recall that a positive value of the isothermal
entropy change −∆Siso > 0 implies the conventional MCE, while the negative isothermal
entropy change −∆Siso < 0 indicates the inverse MCE. The temperature dependencies of
the isothermal entropy change plotted in Figure 5 thus serve in evidence that the mixed
spin-1/2 and spin-S Ising model on a decorated square lattice predominantly shows the
conventional MCE and the inverse MCE can be detected only in a rather limited range of
temperatures and magnetic fields. In general, the isothermal entropy change displays a
marked temperature dependence when it rises steadily in a low-temperature region from
zero value until it reaches a round local maximum, then it drops down to a more or less
shallow local minimum detectable at moderate temperatures before it finally shows another
round maximum in a high-temperature region. The outstanding and highly non-monotonic
temperature dependence of the isothermal entropy change additionally contains two weak
singularities of the type ∝ (T − Tc) log |T − Tc|, which are highlighted in Figure 5 by differ-
ent empty and filled symbols surrounding the local minimum. Finally, let us make a few
comments on an existence of the inverse MCE. The inverse MCE arises just in a rather narrow
range of temperatures kBT/|J| ∈ (0.517; 0.554) when considering the spin magnitude S = 1
and the relatively low magnetic-field change ∆Ω/|J| = 0.5, inside of which the isothermal
entropy change achieves its local minimum−∆Siso ≈ −0.190 J.K−1.mol−1 located in between
two weak singularities, see Figure 5a. It directly follows from Figure 5b–d that the inverse
MCE at the same magnetic-field change ∆Ω/|J| = 0.5 shifts to higher temperatures upon
increasing of the spin magnitude S and it is simultaneously limited to a narrower interval
of temperatures. Beside this, the inverse MCE can be detected at higher values of the
magnetic-field change as for instance corroborated by the dependence shown in Figure 5a
for the spin magnitude S = 1 and ∆Ω/|J| = 2.0.

The MCE of the mixed spin-1/2 and spin-S Ising model on a decorated square lattice
can be also studied through the adiabatic change of temperature induced upon variation
of the transverse magnetic field. To this end, the density plots of the molar entropy are
displayed in Figure 6 in the transverse magnetic field versus temperature plane, whereby
the relevant contour lines determine the adiabatic changes of temperature under the isoen-
tropic magnetization or demagnetization. The highest density of the isoentropy lines can
be observed independently of the spin size S around the phase boundaries (thick broken
lines), which determine continuous order-disorder phase transitions between the spon-
taneously ordered ferromagnetic (ferrimagnetic) state and the disordered paramagnetic
state. It is obvious from Figure 6a that the mixed spin-1/2 and spin-1 Ising model on a
decorated square lattice shows temperature rise upon lowering of the transverse field up to
Ω/|J| ≈ 1, which is successively followed by temperature lowering whenever the entropy
is sufficiently small Sd ≤ 1.0 J ·K ·mol−1. The qualitatively analogous behavior can be also
found for the mixed spin-1/2 and spin-S Ising model on a decorated square lattice with
other particular spin values S = 3/2, 2 and 5/2, which merely shift the relevant temperature
decline towards higher values of the transverse magnetic field. If a small enough entropy
Sd ≤ 1.0 J ·K ·mol−1 is considered, the temperature of the mixed spin-1/2 and spin-5/2 Ising
model on a decorated square lattice already starts to decrease at higher transverse magnetic
fields Ω/|J| . 2 under the adiabatic demagnetization, see Figure 6d. If the entropy is higher
than the value Sd ≥ 1.5 J ·K ·mol−1, then the temperature decreases upon lowering of the
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transverse field in a high-field regime, after which it shows a gentle rise in a vicinity of the
critical field, before it finally shows a gradual temperature decline in a low-field regime.
For completeness, it worthy to note that the temperature may monotonously decrease to
a certain finite value upon lowering of the transverse magnetic field provided that the
entropy exceeds the critical value corresponding to the order-disorder phase transition at
zero field.
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Figure 5. Temperature dependencies of the isothermal entropy change for three different values of the transverse-field
change ∆Ω/|J| = 0.5, 1.0 and 2.0 and four selected spin magnitude: (a) S = 1; (b) S = 3/2; (c) S = 2; (d) S = 5/2. Thin
dotted line at −∆Siso = 0 is only guide for eyes, which enables to distinguish the conventional and inverse MCE. Open
symbols denote weak singularities located at critical points of continuous phase transitions at the transverse magnetic fields
Ω/|J| = 0.5, 1.0 and 2.0, while filled symbols mark weak singularities of the zero-field entropy emergent at the critical
temperature: (a) kBT/|J| ≈ 0.554; (b) kBT/|J| ≈ 0.767; (c) kBT/|J| ≈ 0.970; (d) kBT/|J| ≈ 1.180.
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Figure 6. Density plots of the molar entropy of the mixed spin-1/2 and spin-S Ising model on a decorated square lattice in
the plane transverse magnetic field versus temperature for four selected values of the decorated spins: (a) S = 1; (b) S = 3/2;
(c) S = 2; (d) S = 5/2. Broken lines show dependence of the critical temperature on the transverse magnetic field.

4. Conclusions

In the present article we have investigated in detail the basic magnetocaloric properties
of the mixed spin-1/2 and spin-S (S > 1/2) Ising model on a decorated square lattice
in a transverse magnetic field, which was exactly solved through a rigorous mapping
correspondence with the zero-field Ising square lattice established with the help of general-
ized decoration-iteration transformation. Temperature dependencies of the entropy, the
isothermal entropy change and the adiabatic temperature change were comprehensively
explored depending on the transverse magnetic field and the spin magnitude S. It has
been demonstrated that the mixed spin-1/2 and spin-S Ising model on a decorated square
lattice predominantly exhibits the conventional MCE, while the inverse MCE contrarily
appears only rarely and it is further suppressed by increasing spin magnitude S. The
inverse MCE emerges either in a relatively narrow temperature range around the critical
temperature or under the specific combination of sufficiently low temperatures and high
enough transverse magnetic fields.

It should be mentioned that temperature dependencies of the entropy of the mixed
spin-1/2 and spin-S Ising model on a decorated square lattice display a peculiar weak
singularity (T−Tc) log |T−Tc|, which emerges at the critical temperature of the continuous
order-disorder phase transition. Similarly, temperature dependencies of the isothermal
entropy change contain two weak singularities of the same type (T − Tc) log |T − Tc|,
which delimit the temperature range involving a local minimum of the isothermal entropy
change. These two singularities appear at the critical temperatures, which correspond to
the initial and final transverse magnetic field determining the respective magnetic-field
change. Lastly, it has been demonstrated that the mixed spin-1/2 and spin-S Ising model on
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a decorated square lattice exhibits a monotonic decline of temperature during the adiabatic
demagnetization whenever the entropy is sufficiently high, while temperature first rises
and then decreases under the adiabatic demagnetization if the entropy is fixed at a low
enough value.
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31. Han, Y.; Kida, T.; Ikeda, M.; Hagiwara, M.; Strečka, J.; Honda, Z. High-field Magnetization of a Bimetallic Ferrimagnetic Chain

with Alternating Ising and Heisenberg Spins. J. Korean Phys. Soc. 2013, 62, 2050–2053. [CrossRef]
32. Bellucci, S.; Ohanyan, V.; Rojas, O. Magnetization non-rational quasi-plateau and spatially modulated spin order in the model of

the single-chain magnet, [(CuL)2DyMo(CN)8] · 2CH3CN · H2O. EPL 2014, 105, 47012. [CrossRef]
33. Rojas, M.; de Souza, S.M.; Rojas, O. Rise of pairwise thermal entanglement for an alternating Ising and Heisenberg spin chain in

an arbitrarily oriented magnetic field. Phys. Rev. E 2014, 89, 032336. [CrossRef]
34. Pinkowicz, D.; Pelka, R.; Drath, O.; Nitek, W.; Bal, M.; Majcher, A.M.; Poneti, G.; Sieklucka, B. Nature of Magnetic Interactions

in 3D {[MII(pyrazole)4]2[NbIV(CN)8]·4 H2O}n (M = Mn, Fe, Co, Ni) Molecular Magnets. Inorg. Chem. 2010, 49, 7565–7576.
[CrossRef]

35. Pelka, R.; Gajewski, M.; Miyazaki, Y.; Yamashita, S.; Nakazawa, Y.; Fitta, M.; Pinkowicz, D.; Sieklucka, B. Magnetocaloric effect in
Mn2-pyrazole-[Nb(CN)8] molecular magnet by relaxation calorimetry. J. Magn. Magn. Mater. 2016, 419, 435–441. [CrossRef]

36. Fisher, M.E. Transformations of Ising Models. Phys. Rev. 1959, 113, 969–981. [CrossRef]
37. Rojas, O.; Valverde, J.S.; de Souza, S.M. Generalized transformation for decorated spin models. Physica A 2009, 388, 1419–1430.

[CrossRef]
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