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Abstract: We are concerned with the time series resulting from the computed local horizontal
geoelectric field, obtained with the aid of a 1-D layered Earth model based on local geomagnetic
field measurements, for the full solar magnetic cycle of 1996–2019, covering the two consecutive
solar activity cycles 23 and 24. To our best knowledge, for the first time, the roughness of severe
geomagnetic storms is considered by using a monofractal time series analysis of the Earth electric
field. We show that during severe geomagnetic storms the Katz fractal dimension of the geoelectric
field grows rapidly.

Keywords: fractal dimension; time series; space weather; geomagnetic storms; geoelectric field

1. Introduction
1.1. Motivation and Mathematical Basis

The pioneering work of B. Mandelbrot [1] was a starting point for a series of papers
devoted to elaborate algorithms aiming to estimate the fractal dimension (fd) of nonlinear
time series from records of measurements of various complex natural phenomena. The
existence of a multifractal structure in the fluctuations of the heliospheric magnetic field’s
strength, temperature and density was demonstrated in [2]. The paper by Potirakis et al.
with an expressive title “Sudden drop of fractal dimension of electromagnetic emissions
recorded prior to significant earthquake” [3] confirms once more the importance of the frac-
tal dimension in studying local or global properties of the nonlinear time series associated
with complex natural phenomena.

Our article is devoted to another natural phenomenon: the sudden increase of the
fractal dimension in time series associated with the horizontal geoelectric field during
geomagnetic storms. Therefore, we first give the necessary definitions of the Hausdorff
measure and dimension of a set in a metric space with various algorithms to estimate
this dimension, especially those connected with fractal time series. Among them, we
mention the box-counting and Katz’s algorithm. We show here that during each severe
geomagnetic storm the calculated Katz fractal dimension of geoelectric field, E, promptly
rises, precisely at the time of increase of the E value. The geoelectric field fractal dimension
based on the Katz approach demonstrates a change in the level of complexity of each severe
geomagnetic storm.
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1.2. Hausdorff Dimension

Consider the non-empty subset F in the Euclidean metric space Rn and the real number
δ > 0. A countable family of subsets Uk of diameter diam(Uk) ≤ δ such that F ⊂ ⋃

Uk, is
called a δ-cover. Given the real numbers s ∈ [0, ∞) and δ > 0, define

Hs
δ(F) = inf{

∞

∑
k=1

diam(Uk)
s : {Uk} ∞

k=1 is a δ− cover o f F}. (1)

As δ decreases, the class of δ-covers of the subset F is reduced, which in turn implies that
the infimum increases. The quantity

Hs(F) = lim
δ→0
Hs

δ(F) (2)

is said to be the s-dimensional Hausdorff measure of F and the critical value of the param-
eter s, i.e., the value of s for which inf{s ≥ 0 : Hs(F) = 0} = sup{s ≥ 0 : Hs(F) = ∞} is
called the Hausdorff dimension of F and is denoted by dimH F (see [4,5]). As it is men-
tioned in [4], in some cases the covering may be made by balls of diameter at most δ, or
by cubes of size at most δ. If one denotes the number of elements of such a covering by
Nδ(F) and if, in addition, this measurement follows a power law, say Nδ(F) ∼ cδ−s for all
s > 0 and some constant c > 0, then one obtains the following formula for the so called
box-counting dimension:

dimB F = lim
δ→0

log Nδ(F)
− log δ

, (3)

provided the limit exists. In general, dimB F ≤ dimH(F). Various box-counting-type
formulae for fractal dimensions are used when studying self-similar fractals, as, e.g., the
attractors of iterated function systems [6] with the middle third Cantor set, Sierpinski’s tri-
angle or Sierpinski’s carpet, as particular cases, as well as when dealing with experimental
data, such as time series, with some evidences of self-affinity.

1.3. Fractal Time Series

Given the stochastic process Xt with t ∈ I as time, either discrete or continuous,
let X(t), t ∈ I, be a path, or a time series, that realizes this process. Furthermore, let
rxx(τ) := E[x(t)x(t + τ)] denote the autocorrelation function. The process Xt, t ∈ I, is said
to possess short-range dependence, if rxx is integrable, i.e., if

∫ ∞
0 rxx(τ)dτ < ∞. Otherwise

one says that the process has a long-range dependence.
A typical form of a nonintegrable autocorrelation function is when rxx(τ) ∼ cτ−β

as τ → ∞, for some c > 0 and 0 < β < 1. This is characteristic for so-called fractal time
series: the heavy tail of the probabilistic mass function of X(t) makes rxx nonintegrable.
Moreover, it is possible that the mean, as well as the variance of X(t), is not definite,
so that for long-range dependent processes the concepts of mean and variance could be
inappropriate to describe the local and global properties of time series. Instead of that, the
fractal dimension and the Hurst parameter are used for this purpose.

As a measure of complexity of a time series, the fractal dimension illustrates how
serrated or jagged its waveform is. The fractal dimension also discloses the scale of the
randomness or of the unpredictability a process can exhibit. A fractal dimension close to 1.5
is an indicator of a Brownian time series. A fractal dimension between 1 and 1.5 indicates
persistent behaviour: an increase in values will most likely be followed by an increase in
the short term, and a decrease in values will most likely be followed by another decrease
in the short term. At the same time, a fractal dimension between 1.5 and 2 is a sign of the
antipersistent behaviour of the time series; an increase will most likely be followed by a
decrease or vice versa. In addition to the above-mentioned, it is worth noting that while
difference and differential equations are the main tools for studying classical stochastic
processes such as moving average model (MA), autoregressive model (AR), autoregressive
moving average (ARMA), autoregressive integrated moving average (ARIMA), etc. (see,
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e.g., [7,8]), fractal time series need a more sophisticated apparatus such as, e.g., fractional
differential calculus (see, e.g., [9,10]).

One of the applications of fractal theory is the examination of the changeability in
solar activity [11], magnetospheric chaos [12–15] or cosmic rays [16]. This fractal character
can be observed sometimes very clearly, as demonstrated by the galactic cosmic ray (GCR)
measurements in Figure 1. The lower panel displays the 24-hour diurnal variation which
is visible on the background of the 27-day GCR recurrence (middle panel), for which the
background is the 11-year variability (upper panel).
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Figure 1. Temporal changes of the galactic cosmic ray (GCR) counts rate from Oulu neutron monitor:
27-day averages of daily data in the period April 1964–April 2020 (upper panel), half-day averages of
1-minute data in April 2008–August 2008 (middle panel), hourly data of GCR in 13–17 September
2008 (lower panel). Short periods marked by the brown dashed line in the upper panels are plotted
with details in the lower panels displaying a self-similarity of the time series in various time-scales.

Burlaga and coauthors [2,17] noted that the heliospheric magnetic field strength and
components, treated as simple time series, have the features of fractal curves (see also [18]).

Multifractal properties of the geomagnetic storm were studied using various meth-
ods [19]. The generalized fractal dimension of the total magnetic field having peaks during
the main phase of magnetic disturbances was used in [20] noting that fractal dimension
changes demonstrate more details of solar activity in comparison to the Dst-index varia-
tions. Alberti et al. [21], using the multiscale generalized fractal dimensions in the SYM-H
geomagnetic index analysis, showed a more steady behaviour at the timescales related
to the solar wind changeability and to the nonlinear magnetospheric response to solar
wind variations. An analysis based on the scatter-box-counting fractal dimension of the
Dst-index exhibited fractal dimension reductions during magnetic storms [22], which was
in an agreement with previous results [23], where a progressive complexity decreased
during intense magnetic storms. As it was suggested in [12], based on power spectrum
and Kolmogorov entropy analyses, the state of the magnetospheric response described by
the AE-index was chaotic during the storm of January 1983. This result was confirmed
recently by [24], when four chaos quantifiers and the multifractality approach were used in
the analysis of the Dst-index data over the four solar cycles 20–23.

Here, we study the complexity of severe geomagnetic storms using a monofractal time
series analysis of the geoelectric field E; to our best knowledge, this approach has never
been used before.

Our aim in this article is twofold: (1) to show that the Katz fractal dimension is an
adequate indicator of changes in the level of internal complexity of the geomagnetic storm

articulated in the means of the local horizontal geoelectric field E (E =
√

E2
X + E2

Y, where
the E-W direction is denoted Y and the N-S direction X); (2) to underline that the effects of
geomagnetic storms might also be harmful to electrical systems of mid-latitude countries.
For that purpose, we use a computed local geoelectric field, since it is the best proxy for
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geomagnetically induced current (GIC). This is particularly important in light of what
has been shown in the matter of space weather events influence on the functioning of
electrical power networks for mid-latitude countries in Europe: the Czech Republic [25,26],
Poland [27–29], Italy [30,31], Greece [32], Spain [33] or Austria [34].

2. Data and Methods
2.1. Data

Solar activity varies from minima to minima, with maxima in between [35]. This activ-
ity affects all objects in the solar system. The links between solar activity and geomagnetic
changeability are well known [36].

The region of near-Earth space, where the dominant role is played by the Earth’s
magnetic field, is called the magnetosphere. Its shape and properties are formed by
the interaction with the solar wind—the pressure of the solar wind compresses the field
on the dayside of the Earth and stretches it into a long tail on the nightside [37]. The
variations of the solar wind can cause a temporary disturbance of the magnetosphere. Such
a phenomenon is called a geomagnetic storm [38]. The strongest geomagnetic storms are
associated with the solar coronal mass ejection (CME), where a large amount of plasma with
an embedded magnetic field interacts with the magnetosphere [39]. A similar response of
the magnetosphere is caused by corotating interaction regions with high-speed solar wind
streams originating in coronal holes [40]. Geomagnetic storms can last up to several days
and can strongly impact technical infrastructure [41–44]. During a geomagnetic storm, the
high energetic particles can penetrate the near-Earth space, causing satellites malfunction,
and even increase the radiation risk to flight crews and passengers. Severe storms can
also be responsible for damages to power lines and pipelines. Geomagnetically induced
currents can cause transformer overheating and increase material ageing [32,45] .

To estimate a semiquantitative level of geomagnetic activity, various geomagnetic
indices have been introduced. Those indices are based on ground magnetic observations.
The most frequently used indices are Kp, AE and Dst [46]. The geomagnetic indices are
generally calculated from ground observatories and have their particular purpose. The
Kp-index is designed to monitor global geomagnetic activity in a quasi-logarithmic scale,
from 0 to 9. The procedure of computation is quite complex. The Kp-index is the arithmetic
mean of the 3-hour standardized local K-indices of 11 northern and 2 southern stations
between 44° and 60° north and south, respectively, geomagnetic latitude. Each of the K-
indices is computed from the most distributed horizontal field components. The Kp-index
is updated twice a month by the GFZ in Potsdam [47]. The Kp-index is expressed in a scale
of thirds marked as: “o”, “+”, “−” and has 28 values, where “o”, “+”, “−” are represented
by the values: 0, 1/3, −1/3, respectively. This index serves as a base for one of the NOAA
Space Weather Scale of Geomagnetic Storms [48]. The scale provides information related to
the storm frequency, its impact on the Earth environment and technical infrastructure. The
scale starts with quiet conditions G0, through G1-Minor geomagnetic storms, with Kp = 5,
G2-Moderate, with Kp = 6, G3-Strong, with Kp = 7, G4-Severe, with Kp = 8, including a 9−
and finally, G5-Extreme, with Kp = 9. The severe geomagnetic storms, G4, which are the
subject of our study in this article, can cause, e.g., surface charging and tracking problems
in the case of spacecraft (even orbit correction may be needed) or low-frequency radio
navigation disruptions. In power systems, extensive voltage problems may appear and
protection system might be mistakenly activated. At that time, aurora can be visible even
at low latitudes, such as 45°.

During the famous geomagnetic storm of 13 March 1989, the minimum value of the
Dst-index was recorded being −589 nT [49] and the maximum value of 9 of the Kp-index
was reached and kept for many hours. Tsurutani et al. (2003) [50] investigated a unique
magnetic recordings from Bombay for the most powerful registered space weather event,
i.e., the Carrington storm on 1–2 September 1859, estimating a Dst ≈ −1760 nT.

Here we consider first the Kp-index 3-hour values during the full solar magnetic cycle
of 1996–2019, covering two solar cycles (SC), 23 and 24, extracting from this time series



Entropy 2021, 23, 1531 5 of 19

with more than seventy thousand data points the days when the maximal Kp-index was
from the set 8, 8+, 9−. We obtained 31 days fulfilling this condition. In the literature one
can find various categorizations of the storms, as well as substorms, e.g., [51–53].

In the next step, the local geomagnetic situation was described by changes of one-
minute data of two components of the geomagnetic field BX, BY measured in Belsk, the
Polish INTERMAGNET observatory. These components were used to determine the unique
time series, that is, the local geoelectric field with a one-minute time resolution. For a
detailed consideration, as examples, we have chosen six severe geomagnetic storms that
lasted at least two days. The initial data of BX , BY for these storms are presented in Figure 2.

Figure 2. Geomagnetic field components, BX , BY , during the selected severe geomagnetic storms; the
x-axis represents the day of year (Doy).

2.2. Geoelectric Field

In order to compute the geoelectric field E from the geomagnetic data B we applied a
1-D layered Earth model, [54,55], in the frame of which the conductivity changes with the
depth. More precisely, we considered N horizontal layers, each characterized by their own
conductivity σn and thickness ln (n = 1, . . . , N). Then, the layered transfer function K (in
the frequency domain f ) can be described by the following recursive formula [54,56]:

Kn = ηn
Kn+1(1 + e−2kn ln) + ηn(1− e−2kn ln)

Kn+1(1− e−2kn ln) + ηn(1 + e−2kn ln)
, (4)

where Kn denotes the ratio of E to B at the top surface of layer n from Kn+1 at the top surface
of the underlying layer n + 1, ηn = i2π f

kn
, kn =

√
i2π f µ0σn and µ0 = 4π10−7 Hm−1 [55].

The initial value in Equation (4) corresponds to the case when the layer n = N is a uniform

half-space and KN =
√

i2π f
µ0σN

. The final value K1 (n = 1) is the transfer function relating E
and B at the Earth’s surface [55,57].

It is worth underlining that real observations of the geoelectric field are unfortunately
rare, thus we are dependent on the data obtained as a result of mathematical modelling,
e.g., [58].

Here, to perform the analysis of 1-minute geomagnetic field data from the Belsk station,
we applied the Earth model number 45 [59], which is dedicated to the Poland region, and is
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used in a number of studies [27,60,61]. In model 45, we have four layers with, from the top
down, the following thicknesses and resistivities (1/σ): 6 km, 5 Ω·m; 105 km, 1000 Ω·m;
300 km, 100 Ω·m; above a half-space of 10 Ω· m. In the next step of the analysis, we
decomposed the geomagnetic field {BX , BY} into its frequency components {BX( f ), BY( f )}
and next multiplied by the corresponding transfer function values, namely EX( f ) =
K( f )BY( f ) and EY( f ) = −K( f )BX( f ), where EX( f ) and EY( f ) denote the geoelectric field
frequency components. Finally, we employed the inverse Fourier transform to obtain the
value of a geoelectric field in the time domain E(t) for both northward (EX) and eastward
(EY) components [54,62]. It is worth noting, that this 1-D model is fast and accurate at a
single location [58], which is the case of our studies.

2.3. Katz Fractal Dimension

In the literature, one can find various methods of fractal dimension estimation (e.g., [63–65]).
Here we apply the Katz fractal dimension method [66], in the frame of which the roughness
of the two-dimensional profile of a univariate time series is considered.

Let us consider a time series of real measurements (t, X(t)). For the particular subset F
the mean M and the sum L of the Euclidean distances between the successive points of the
subset F, as well as the diameter d of the subset F, which in this case coincides with the
maximum distance between the first point and any other point of F, are calculated. Katz’s
formula [66] for the fractal dimension of the subset F, considered as a waveform, looks as
follows:

f dK =
log(w)

log(w) + log( d
L )

, (5)

where w = int( L
M ) is the number of steps in the considered waveform describing the time

series (t, X(t)) (int(∗) denotes the integer part of ∗). Here, the normalisation w = L
M was

used to avoid an issue linked to the selection of the greatest distance, which would lead to
the fractal dimension being dependent on the units used in the measurements.

Katz’s estimator for the fractal dimension has been used in mechanical issues, such as
a crack identification in beam structures [67], as well as in signal pattern recognition [68] or
heart rate variability analysis [69]. In intracranial electroencephalogram data studies it was
shown [70] that the Katz approach revealed discriminating power.

Here, we took into account 1-minute data of computed geoelectric field E during the
whole week around a particular storm; thus, we had for each case a time series consisting
of 10,080 E data points. Time series of the computed geoelectric field presented rather
lognormal distributions.

In the next step, for each consecutive 60 min of the time series, we have computed the
Katz fractal dimension. Thus, for each storm we obtained temporal changes of the fractal
dimension with 1-hour resolution during the whole week.

Since in the literature there appear disclosures about underestimating the fractal
dimension using Katz’s method, e.g., [71], we consider also the estimation formula for the
fractal dimension for a planar curve, proposed by B. Mandelbrot [1]:

f d2 =
log(L)
log(d)

. (6)

Elementary manipulations show that f d2 < f dK, at least for positive logM. In the case of
logM < 0 the inequality reverses, which agrees with the claim of C. Sevcik that in case of a
high sample frequency, i.e., a large number of steps, the Katz formula underestimates the
Hausdorff dimension of the waveform [71,72].

3. Results and Discussion
3.1. Katz Fractal Dimension of Geoelectric Field

The basic time series subjected in our study to the fractal dimension analysis is the
local horizontal geoelectric field E, computed with the aid of the 1-D layered Earth model.
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Since there are no geoelectric field measurements in Poland, and, moreover, this kind of
measurement is rare, the need of modeling arises [58]. We have verified our computed
E against the available real measurements form Japan [73] and UK [58] and there is a
reasonable agreement between the measured and computed E values. Figure 3 presents
six examples from the 31 analysed cases of the calculated geoelectric field, E, during the
severe geomagnetic storms that took place during the last two solar cycles, 23 and 24.
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Figure 3. Geoelectric field, E, during the selected severe geomagnetic storms: (a) 6–7.04.2000,
(b) 11–13.04.2001, (c) 29–30.05.2003, (d) 7–10.11.2004, (e) 14–15.12.2006 and (f) 7–8.09.2017, on the
x–axis is marked the day of year (Doy).

We can observe that during the severe storm (data of the storm are given on the top of
each Figure 3a–f), the local geoelectric field grows rapidly, reaching even 200 mV · km−1,
as it was during the storm on 7–10 November 2004 (Figure 3d), while in Figure 3e) it is the
least intense (in the sense of the geoelectric response) during the geomagnetic storm of
14–15 December 2006. For comparison, we present also a temporal behaviour of the Earth’s
electric and magnetic field under undisturbed geomagnetic conditions (Figures 4 and 5).
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One can see in Figure 4 that during a quiet time, the value of the electric field is just around
12 mV · km−1, much lower than during the storm occurrence.
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Figure 4. Temporal changes of the geoelectric field during quiet days at the beginning of February
1999; the x-axis indicates the day of year (Doy).
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Figure 5. Temporal changes of the geomagnetic field components, BX , BY , during quiet days at the
beginning of February 1999; the x-axis indicates the day of year (Doy).

Figure 6 presents the fractal dimension values, f dK (Equation (5)) and f d2 (Equation (6)),
calculated for six examples (the same storms as for the computed E, see Figure 3) from all the
studied severe geomagnetic storms which took place during the last two solar cycles, 23 and
24. For all the analysed cases the increase of the fractal dimension much above 1 occurred
exactly at the time when E was rising. One can see, that the temporal behaviour of f dK
and f d2 has precisely the same character, although with values sometimes greater for f dK
than f d2.

It is worth noting, that the maximal value of the fractal dimension of E is not always
associated with the largest growth in the geoelectric field value. For instance, values of E
during the storms of 14–15 December 2006 (Figure 3e) and 7–8 September 2017 (Figure 3f)
are similar, being not greater than 50 mV · km−1. However, the fractal dimension of E
during the first mentioned storm was less than 1.4 (Figure 6e), while for the second one it
was above 1.6 (Figure 6f), which is comparable to the fractal dimension characterising the
7–10 November 2004 (Figure 6d) storm when the value of the geoelectrical field (Figure 3d)
was the highest among the presented examples. However, for the geomagnetic storm of
14–15 December 2006, E values are the lowest (below 45 mV · km−1) with the lowest fd
values (below 1.4), as well. It was also the case for the quiet time period (Figures 4 and 5).
The fractal dimension changeability suggests substantial differences in the level of storm
complexity. Comparable results were obtained recently by [24,74], showing that during
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major geomagnetic storms the strongest nonlinearity features occur. Moreover, there is no
unequivocal dependence of the fractal dimension extremes on the maximum value of the
Kp-index, as most of the storms shown in Figure 6a–f, were characterized by the maximum
value of Kp = 8+. Only the storm presented in Figure 6d had a maximum value of Kp = 8.
This demonstrates that during the storm the fluctuation’s structure changes and the Katz
fractal dimension may, somehow, describe its internal properties.
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Figure 6. Fractal dimension: f dK (blue straight line) and f d2 (red dashed line) of geoelectric field
during the selected severe geomagnetic storms: (a) 6–7.04.2000, (b) 11–13.04.2001, (c) 29–30.05.2003,
(d) 7–10.11.2004, (e) 14–15.12.2006 and (f) 7–8.09.2017, on the x–axis is marked the day of year (Doy).

We are aware that usually a few hundred data points are used for the fractal dimension
estimation and computations using only 60 data points might be treated as insufficient. For
that reason, we have performed computations with moving windows of various lengths.
Figure 7 presents the Katz fractal dimension values for the computed geoelectric field
during the September 2017 geomagnetic storm, with moving windows of the following
lengths: j = 60, 180, 300, 420 and 540 min. Figure 7 reveals that the overall behaviour is kept
for all the windows lengths with a clear distinction of the geomagnetic storm appearance.
Moreover, the results with j = 60 min reveal much more details (which is natural) than
for higher j. It has to be underlined that with longer windows, some local features will
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be lost, but the fractal dimension better describes the signal with a statistical significance,
over broader scales. Although, the fractal dimension in time series meets some kind of
self-affinity of the waveform, which in turn implies the analysis of large enough windows,
the estimation based on relatively short ones discloses the local properties of time series.
The latter corresponds to the main goal in our studies. Therefore, these analyses suggest
that j = 60 min is a reasonable compromise, if one intends to study very local effects.

For comparison, we present the fractal dimension computed for the geomagnetic
field components BX, BY for these storms—Figures 8 and 9, respectively. One can see
that during these severe geomagnetic storms the fractal dimension of the components
BX, BY of the geomagnetic field increases simultaneously with the extreme changes in
the values of BX, BY. It is worth noting that the fractal dimension of the primary BX, BY
geomagnetic component data is a bit higher than for the geoelectric field E. Thus, since
space weather also affects via GICs the functionality of the electrical power networks at
mid-latitudes [25,27,30,32–34], it is worth studying the properties of the local geoelectric
field, as it is treated as the best proxy for the geomagnetically induced currents.

Figure 10 shows that, when the geomagnetic conditions are peaceful, the fractal di-
mension of the electric field is around one, much lower in comparison with that during
the storm appearance. Moreover, the fractal dimension values obtained using both meth-
ods (Equations (5) and (6)), f dK and f d2, for a quiet interval are exactly the same, i.e.,
blue straight line and red dashed line cover. It is also the case for the geomagnetic field
components BX , BY fractal dimension computed for the same quiet period (Figure 11).

As already mentioned above, various geomagnetic indices are used in the literature
to describe the nature of individual storms, such as the Dst-index with the southwardly
directed Bz component of the heliospheric magnetic field [53], the SYM-H [75], the AE-
index [76], PC [77], and many others. The multitude and variety of these parameters make
the unambiguous characteristics of storms extremely complex. However, for us, it is also a
determinant of the direction of further research aimed at the best possible characterization
of the complexity of individual storms.
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Figure 7. Fractal dimension computed with the Katz approach, with moving windows of various
lengths j = 60, 180, 300, 420 and 540 min, for the September 2017 Storm; the x-axis indicates the day of
year (Doy).
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Figure 8. Fractal dimension: f dK (blue straight line) and f d2 (red dashed line) of geomagnetic BX

field component during the selected severe geomagnetic storms; the x-axis indicates the day of year
(Doy).
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Figure 9. Fractal dimension: f dK (blue straight line) and f d2 (red dashed line) of geomagnetic BY

field component during the selected severe geomagnetic storms; the x-axis indicates the day of year
(Doy).
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Figure 10. Temporal changes of the fractal dimension: f dK (blue straight line) and f d2 (red dashed
line) of the geoelectric field during quiet days at the beginning of February 1999; the x-axis indicates
the day of year (Doy).
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Figure 11. Temporal changes of the fractal dimension: f dK (blue straight line) and f d2 (red dashed
line) of the geomagnetic field components, BX (left panel), and BY (right panel) during quiet days at
the beginning of February 1999; the x-axis indicates the day of year (Doy).

3.2. Usefulness and Limitations of the Katz Fractal Dimension

In various medical studies, the usefulness of the Katz approach was shown [70,77].
This fractal dimension seems to emphasize the actual meaning of the considered fd type as
a characteristic of the roughness of the two-dimensional profile of a univariate time series.
Hence, the link between fractal dimension and anti-/persistence (generally expressed by
the Hurst exponent H) can be justified. The fractal dimensions for persistent, antipersistent
and Brownian dynamics then satisfy the expression f d + H = 2, which is accurate for
Gaussian processes, but generally wrong for heavy-tailed processes.

In many articles it was shown that the Katz fd is underestimating the fractal dimension
of synthetic, i.e., ideal data, and is sensitive to a change of the amplitude [78]. Bearing
this in mind for a fuller consideration of the fractal nature of data, we have applied two
additional approaches to fd estimation, namely, those proposed by T. Higuchi [79] and C.
Sevcik [80].

In Sevcik’s fd approach [72] the following normalisation was proposed: t∗i = ti/tmax
and x∗i = (xi − xmin)/(xmax − xmin), where tmax and xmax are the maximal values of ti and
xi, respectively, and xmin is the minimal value of xi. The following approximation of the
box-counting dimension was used [72]: f dS = 1 +

log 2L
log 2(N−1) . For this approach it was

shown in tests on the ideal, synthetic data that there were situations when it overestimated,
as well as underestimated, the theoretical fractal dimension [78] .
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Higuchi’s approach [79] is based on the construction of k (interval time) subseries,
with the initial time m: xkm : xm, xm+k, xm+2k, . . . , xm+int((N−m)/k)k, for m = 1, . . . , k. For

each subseries, its length estimator looks as follows: Lm(k) = 1
k [(∑

int((N−m)/k)
i=1 |xm+ik −

xm+(i−1)k|)] N−1
int((N−m)/k)k . It has to be underlined that the latter is not a length in Euclidean

sense, as it was in the Katz’s formula Equation (5). It is the normalized sum of the absolute
values of the differences in ordinates of couples of points, taken at a time interval equal to k.
L(k) is calculated as the average of k values of Lm(k). This average length is proportional
to k− f dH , and the slope f dH defines the Higuchi fractal dimension value. One can see
that the Higuchi fractal dimension allows the study of the behaviour of a characteristic
quantity over different scales (similarly to Hausdorff’s original concept, as well as classical
box-counting or generalized Rényi dimensions). On the other hand, in contrast to Katz
or Sevcik’s approach, the Higuchi algorithm requires to assume the kmax (the maximal
number of subseries) parameter value, which may disturb the fractal dimension we are
looking for.

Hence, these algorithms differ in terms of accuracy, sensitivity to the sampling fre-
quency and dependency of the estimation on the selected length of the time window. We
performed numerous tests of various fractal dimension approaches to verify our methodol-
ogy. Following Raghavendra and Dutt [78], we generated synthetic waveforms: Weierstrass,
Weierstrass–Mandelbrot, Takagi and Fractional Brownian motion. This analysis showed
that the best at reconstructing the original fractal dimension of ideal, synthetic data was
Higuchi’s method. As for Sevcik’s approach, there were situations when it overestimated,
as well as underestimated, the theoretical fractal dimension. It also demonstrated that
for synthetic data, Katz’s method was underestimating the fractal dimension of ideal
waveform, at least for large enough windows.

However, one has to always bear in mind that we are not working with ideal data,
and the nature of real data is very complicated. It could be the case that we are dealing
with data for which a more appropriate description is presented in [70] (Figure 2), where
the Katz fd works much better than Higuchi’s fd. Having all this in mind, we conducted a
series of tests for the recent September 2017 geomagnetic storm. An example of our tests
is represented in Figure 12. It shows that the Higuchi and Sevcik fds behave similarly,
being almost parallel, with values differing from each other and from the Katz fd values.
Moreover, the Higuchi and Sevcik fds manifest a diurnal wave, which is planned to be
studied more deeply in future work. Finally, Figure 12 displays that the Katz fd clearly
indicates the geomagnetic storm appearance. Although, there is some tendency in the
Higuchi and Sevcik fds to suffer a drop around the storm period. It might be compatible
with [81] results, based on the one-minute data of the SYM-H index, showing stronger
dynamical irregularities appearance during the quiet than during the storm time intervals.
This result was in an agreement with the previous [82] distinction between quiet and
disturbed time intervals, made on the base of the Dst-index investigation.

We are aware that for quiet times the Katz fractal dimension strongly underestimates
the fractal dimension of the time series. However, Figure 12 shows that during the storm
all the fractal dimensions have an inclination towards similar values, so it might be that
during the storm period the real fractal dimension is close to the value given by the Katz
fd. At the same time, the Katz fractal dimension seems to be much less sensitive to small
changes, in contrast with the Higuchi method, which can show up strong instability under
small perturbations of the time series by a small constant ε (0 < ε << 1), as it was shown
by Liehr and Massopust [83]. The advantage of Katz over Higuchi’s approach consists of
the fact that a kmax parameter [84] is superfluous. Yet, it has the downside of requiring a
longer time series to achieve significant results. This led us to the judgement that the Katz
algorithm is more efficient in detecting sharp/rapid signal changes typical of geomagnetic
storms than the smaller, slower, and more gradual changes in quiet periods. Hence, the
strong amplitude response of the Katz fd might be its advantage, as in our case, as well as
a disadvantage.



Entropy 2021, 23, 1531 15 of 19

247 248 249 250 251 252 253

Doy 2017

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

fd

7-8.09.2017

fd
K

fd
S

fd
H

Figure 12. Fractal dimension computed with the Katz f dK , Sevcik f dS and Higuchi f dH (with
kmax = 12) approach, for each 60 min, during the September 2017 geomagnetic storm; the x-axis
indicates the day of year (Doy).

4. Summary

We have computed the local geoelectric field, E, based on the Belsk magnetometer data,
with one-minute resolution during the full solar magnetic cycle of 1996–2019, covering
two solar activity cycles, 23 and 24. It served us as a unique time series being a base
of characterization of severe geomagnetic storms. We showed that during every severe
geomagnetic storm, the Katz fractal dimension of E grows rapidly, exactly at the same
time when the value of the geoelectric field is increasing. When we calculated the Katz
fractal characteristics of geomagnetic storms from the initial geomagnetic field components,
BX, BY, we observed in general similar temporal changes as those that occurred for E,
but with slightly higher values for the magnetic field case. A comparison of the results
for modelled (E) and real (B) data suggests that the fractal and complex nature of the
initial time series for the magnetic field is generally preserved, from the point of view of
Katz’s methodology, during the transition from B to E. It has to be underlined that real
observations of the geoelectric field are rare, as stated by, e.g., Beggan et al. (2021) [58]:
“The paucity of widespread measurements of the geoelectric field elsewhere means it must
instead be modelled”.

Summarizing, one can see that the calculated Katz fractal dimensions show a highly
changeable level of complexity for each severe geomagnetic storm. Nevertheless, the Katz
fractal dimension underestimates values for the quiet intervals; thus, it can be treated
more as a storm classifier rather than a fractal dimension real value estimator. On one
hand, the Katz fractal dimension appears to be far less sensitive to small changes, and
on the other hand, the Higuchi method can be strongly unstable for perturbed time
series; this may result in the Katz algorithm being more effective in detecting sharp signal
changes, which are characteristic of geomagnetic storms, than the smaller, slower, and more
gradual changes during quiet periods. We are convinced about the use of the Katz fractal
dimension as a fast, useful indicator of distinct states of the geoelectric field. On the other
hand, we underline that other methods should still be considered for a more appropriate
characterization of the fractal structure of the analysed data . It is worth adding that the
Katz fd adopted in the frame of our article was derived from a simple operation directly
on the signal and not on any phase space. The consideration of geoelectric field data from
dynamical system perspective states [21] is an idea worthy of further, systematic analysis.

Therefore, we plan to continue our analysis based on other approaches to the fractal
dimension properties, first for the extreme G5 storms and later for the G3-strong storms.
Moreover, we plan to consider more parameters in an attempt to study their relation with
the fractal dimension obtained for the geoelectric field. This will allow to better characterize
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and classify individual storms. Furthermore, we plan to extend our analysis on the stations
located at different latitudes.

In addition, we are aware that the 1-D layered Earth model has some limitations.
In particular, two-dimensional and three-dimensional Earth conductivity structure can
introduce some features not seen with 1-D models [85,86]. Therefore, in our future studies
we plan to extend our work to other Earth modelling assumptions.
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