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Abstract: We study the problem of communicating over a discrete memoryless two-way channel
using non-adaptive schemes, under a zero probability of error criterion. We derive single-letter inner
and outer bounds for the zero-error capacity region, based on random coding, linear programming,
linear codes, and the asymptotic spectrum of graphs. Among others, we provide a single-letter outer
bound based on a combination of Shannon’s vanishing-error capacity region and a two-way analogue
of the linear programming bound for point-to-point channels, which, in contrast to the one-way
case, is generally better than both. Moreover, we establish an outer bound for the zero-error capacity
region of a two-way channel via the asymptotic spectrum of graphs, and show that this bound can
be achieved in certain cases.

Keywords: zero-error capacity; two-way channel; Shannon capacity of a graph

1. Introduction

The problem of reliable communication over a discrete memoryless two-way channel (DM-
TWC) was originally introduced and investigated by Shannon [1] in a seminal paper that has
marked the inception of multi-user information theory. A DM-TWC is characterized by a
quadruple of finite input and output alphabets X1, X2, Y1, Y2, and a conditional probability
distribution PY1,Y2|X1,X2

(y1, y2|x1, x2), where x1 ∈ X1, x2 ∈ X2, y1 ∈ Y1, y2 ∈ Y2. The
channel is memoryless in the sense that channel uses are independent, that is, for any i,

PY1i ,Y2i |Xi
1,Xi

2,Yi−1
1 ,Yi−1

2
(y1i, y2i|xi

1, xi
2, yi−1

1 , yi−1
2 ) = PY1,Y2|X1,X2

(y1i, y2i|x1i, x2i).

In [1], Shannon provided inner and outer bounds for the vanishing-error capacity
region of the DM-TWC, in the general setting where the users are allowed to adapt their
transmissions on the fly based on past observations. We note that Shannon’s inner bound is
tight for non-adaptive schemes, namely when the users map their messages to codewords
in advance. The non-adaptive DM-TWC is also sometimes called the restricted DM-TWC [2].
Shannon’s inner and outer bounds have later been improved by utilizing auxiliary random
variable techniques [3–5], and sufficient conditions under which his bounds coincide have
been obtained [6,7]. However, despite much effort, the capacity region of a general DM-
TWC under the vanishing-error criterion remains elusive. In fact, a strong indicator for the
inherent difficulty of the problem can be observed in Blackwell’s binary multiplying chan-
nel, a simple, deterministic, common-output channel whose capacity remains unknown
hitherto [4,5,8–10].

In yet another seminal work, Shannon proposed and studied the zero-error capacity
of the point-to-point discrete memoryless channel [2], also known as the Shannon capacity
of a graph. This problem has been extensively studied by others, most notably in [11,12],
yet remains generally unsolved. In this paper, we consider the problem of zero-error
communication over a DM-TWC. We limit our discussion to the case of non-adaptive
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schemes, for which the capacity region is known in the vanishing-error case [1]. Despite
the obvious difficulty of the problem (the point-to-point zero-error capacity is a special
case), its two-way nature adds a new combinatorial dimension that renders it interesting to
study. To the best of our knowledge, this problem has not been addressed before, except
in the special case of the binary multiplying channel, where upper and lower bounds on
non-adaptive zero-error sum capacity have been obtained [13–15]. Our bounds are partially
based on generalizations of these ideas and an earlier short version [16].

The problem of non-adaptive communication over a DM-TWC can be formulated as
follows. Alice and Bob would like to simultaneously convey messages m1 ∈ [2nR1 ] and
m2 ∈ [2nR2 ] respectively to each other, over n uses of the DM-TWC PY1,Y2|X1,X2

. To that
end, Alice maps her message to an input sequence (codeword) xn

1 ∈ X n
1 using an encoding

function f1 : [2nR1 ]→ X n
1 , and Bob maps his message into an input sequence (codeword)

xn
2 ∈ X n

2 using an encoding function f2 : [2nR2 ] → X n
2 . We call the pair of codeword

collections ( f1([2nR1 ]), f2([2nR2 ])) a codebook pair. Note that the encoding functions depend
only on the messages, and not on the observed outputs during the transmission, hence
the name non-adaptive. When transmissions end, Alice and Bob observe the resulting
(random) channel outputs Yn

1 ∈ Yn
1 and Yn

2 ∈ Yn
2 respectively, and attempt to decode the

message sent by their counterpart, without error. When this is possible, that is, when there
exist decoding functions φ1 : [2nR1 ] × Yn

1 → [2nR2 ] and φ2 : [2nR2 ] × Yn
2 → [2nR1 ] such

that m2 = φ1(m1, Yn
1 ) and m1 = φ2(m2, Yn

2 ), for all m1, m2, with probability one, then the
codebook pair (or the encoding functions) is called (n, R1, R2) uniquely decodable. A rate pair
(R1, R2) is achievable for the DM-TWC if an (n, R1, R2) uniquely decodable code exists for
some n. The non-adaptive zero-error capacity region of a DM-TWC PY1,Y2|X1,X2

is the closure of
the set of all achievable rate pairs, and is denoted here by Cze(PY1,Y2|X1,X2

). Moreover, the
non-adaptive zero-error sum-capacity of a DM-TWC PY1,Y2|X1,X2

, denoted by C sum
ze (PY1,Y2|X1,X2

),
is the supremum of the sum-rate R1 + R2 taken over all achievable rate pairs.

The main objective of this paper is to provide several single-letter outer and inner
bounds on the non-adaptive zero-error capacity region of the DM-TWC. The remainder of
this paper is organized as follows. In Section 2, we provide some necessary mathematical
preliminaries, discussing in particular the characterization of zero-error DM-TWC capacity
via confusion graphs, behavior under graph homomorphisms, and one-shot zero-error
communication. Section 3 is devoted to three general outer bounds of the zero-error
capacity region of DM-TWC, which are based on Shannon’s vanishing-error non-adaptive
capacity region, a two-way analogue of the linear programming bound for point-to-point
channels, and the Shannon capacity of a graph. In Section 4, we provide two general
inner bounds using random coding and random linear codes respectively. In Section 5, we
establish outer bounds for certain types of DM-TWC via the asymptotic spectra of graphs,
and also explicitly construct the uniquely decodable codebook pairs achieving the outer
bound. Some concluding remarks appear in Section 6.

2. Preliminaries
2.1. Shannon Capacity of a Graph

Let G = (V, E) be a graph with vertex set V and edge set E. Two vertices v1, v2 are
adjacent, denoted as v1 ∼ v2, if there is an edge between v1 and v2, that is, {v1, v2} ∈ E. An
independent set in G is a subset of pairwise non-adjacent vertices. A maximum independent
set is an independent set with the largest possible number of vertices. The size of a
maximum independent set in G is called the independence number of G, denoted by α(G).
The complement of a graph G, denoted by G, is a graph with the same vertex set, where two
distinct vertices of G are adjacent if and only if they are not adjacent in G. We write Kn and
Kn for the complete graph (containing all possible edges) and the empty graph (containing
no edges) over n vertices, respectively.

Let G = (V(G), E(G)) and H = (V(H), E(H)) be two graphs. The strong product (or
normal product) G� H of the graphs G and H is a graph such that

(1) the vertex set of G� H is the Cartesian product V(G)×V(H);
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(2) two vertices (u, u′) and (v, v′) are adjacent if and only if one of the followings holds:
(a) u = v and u′ ∼ v′; (b) u ∼ v and u′ = v′; (c) u ∼ v and u′ ∼ v′.

The n-fold strong product of graph G with itself is denoted as Gn. The Shannon capacity of
graph G was defined in [2] to be:

Θ(G) , sup
n

1
n

log α(Gn) = lim
n→∞

1
n

log α(Gn),

where the limit exists by Fekete’s lemma. We note that throughout the paper all logarithms
are taken to base 2.

The disjoint union G t H of the graphs G and H is a graph such that V(G t H) =
V(G) tV(H) and E(G t H) = E(G) t E(H). A graph homomorphism from G to H, denoted
by G → H, is a mapping ϕ : V(G)→ V(H) such that if g1 ∼ g2 in G, then ϕ(g1) ∼ ϕ(g2)
in H. We write G 4 H if there exists a graph homomorphism G → H from the complement
of G to the complement of H.

In [17], Zuiddam introduced the asymptotic spectrum of graphs notion, and provided
a dual characterisation of the Shannon capacity of a graph by applying Strassen’s theory
of asymptotic spectra, which includes the Lovász theta number [12], the fractional clique
cover number, the complement of the fractional orthogonal rank [18], and the fractional
Haemers’ bound over any field [11,19,20] as specific elements of the asymptotic spectrum
(also called spectral points).

Theorem 1 ([17]). Let G be a collection of graphs that is closed under the disjoint union t and
the strong product �, and also contains the graph with a single vertex K1. Define the asymptotic
spectrum ∆(G) as the set of all mappings η : G → R≥0 such that for all G, H ∈ G:

(1) if G 4 H, then η(G) ≤ η(H);
(2) η(G t H) = η(G) + η(H);
(3) η(G� H) = η(G)η(H);
(4) η(K1) = 1.

Then, Θ(G) = inf
η∈∆(G)

log η(G). In other words, inf
η∈∆(G)

η(G) = 2Θ(G) and α(G) ≤ inf
η∈∆(G)

η(G).

As remarked in [17], 2Θ(G) is in general not an element of ∆(G). In fact, 2Θ(G) is not
additive under t by a result of Alon [21], and also not multiplicative under� by a result of
Haemers [11]. In Section 3.3, to derive an outer bound for zero-error capacity of a DM-TWC,
we will employ the multiplicativity of η(G) for η ∈ ∆(G) under the � operation.

2.2. Confusion Graphs of Channels

In this subsection, we characterize the zero-error capacity of a discrete memoryless
point-to-point channel, as well as the zero-error capacity region of a DM-TWC, in terms of
suitably defined graphs. The point-to-point characterization is well known and goes back
to Shannon [2], and the DM-TWC case is a natural generalization thereof.

A discrete memoryless point-to-point channel consists of a finite input alphabet X , a
finite output alphabet Y , and a conditional probability distribution PY|X(y|x), where x ∈ X ,
y ∈ Y . The channel is memoryless in the sense that PYi |Xi ,Yi−1(yi|xi, yi−1) = PY|X(yi|xi) for
the ith channel use. Suppose that a transmitter would like to convey a message m ∈ [2nR]
to a receiver over the channel. To that end, the transmitter sends an input sequence
xn ∈ X n using an encoding function f : [2nR]→ X n, and the receiver, after observing the
corresponding channel outputs yn ∈ Yn, guesses the message using a decoding function
φ : Yn → [2nR]. This pair ( f , φ) is called an (n, R) code, and such a code is called uniquely
decodable if m = φ(yn) holds for any m ∈ [2nR] and any correspondingly possible yn. A rate
R is called achievable if an (n, R) uniquely decodable code exists for some n. The zero-error
capacity of the channel is defined as the supremum of all achievable rates.
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A channel PY|X is associated with a confusion graph G, whose vertex set is the input
alphabet X , and two vertices x, x′ ∈ X are adjacent, denoted as x ∼ x′, if and only if
there exists y ∈ Y that is possible under both of them, that is, such that PY|X(y|x) > 0
and PY|X(y|x′) > 0. It is easy to verify that C is an (n, R) uniquely decodable code if and
only if C is an independent set of the graph Gn, the n-fold strong product of graph G.
Consequently, the zero-error capacity of a point-to-point channel is equal to the Shannon
capacity of its confusion graph G. Note that there are infinitely many distinct channels
with the same confusion graph, and all of these channels have the same zero-error capacity.

We now proceed to similarly associate a DM-TWC with a collection of confusion
graphs, which would then be shown to characterize its zero-error capacity region. To that
end, note that when Alice sends a letter x1 ∈ X1, the resulting channel from Bob back
to Alice at that same instant is the point-to-point channel PY1|X1=x1,X2

. This channel is
associated with a confusion graph Gx1 , whose vertex set is X2 and where two vertices
x2, x′2 ∈ X2 are adjacent, denoted in this case by x2

x1∼ x′2, if and only if there exists some
y1 ∈ Y1 such that both

PY1|X1,X2
(y1|x1, x2) > 0, PY1|X1,X2

(y1|x1, x′2) > 0,

where
PY1|X1,X2

(y1|x1, x2) , ∑
y2∈Y2

PY1,Y2|X1,X2
(y1, y2|x1, x2).

Symmetrically, when Bob sends a letter x2 ∈ X2, the resulting channel from Alice to Bob
at that same instant is associated with a confusion graph Hx2 , whose vertex set is X1, and
where two vertices x1, x′1 ∈ X1 are adjacent, denoted in this case by x1

x2∼ x′1, if and only if
there exists some y2 ∈ Y2 such that both:

PY2|X1,X2
(y2|x1, x2) > 0, PY2|X1,X2

(y2|x′1, x2) > 0,

where
PY2|X1,X2

(y2|x1, x2) , ∑
y1∈Y1

PY1,Y2|X1,X2
(y1, y2|x1, x2).

Based on the foregoing discussion, a DM-TWC PY1,Y2|X1,X2
can be decomposed into a

collection of discrete memoryless point-to-point channels, and hence is associated with
a corresponding collection of confusion graphs, denoted by [G1, . . . , G|X1|; H1, . . . , H|X2|],
where V(G1) = · · · = V(G|X1|) = X2 and V(H1) = · · · = V(H|X2|) = X1. The following
useful observation is immediate, and in particular shows that the zero-error capacity region
of a DM-TWC is a function of its confusion graphs only. Thus, from here and on, we will
sometimes identify the channel with its collection of confusion graphs.

Proposition 1. Consider a DM-TWC PY1,Y2|X1,X2
, associated with the collection of confusion

graphs [G1, . . . , G|X1|; H1, . . . , H|X2|]. A codebook pair (A,B) is uniquely decodable for PY1,Y2|X1,X2
if and only if for any an = (a1, . . . , an) ∈ A and bn = (b1, . . . , bn) ∈ B, it holds that B is an
independent set of Ga1 � · · ·� Gan , and A is an independent set of Hb1 � · · ·� Hbn .

In particular, we see that the capacity region Cze(PY1,Y2|X1,X2
) depends only on the

corresponding confusion graphs [G1, . . . , G|X1|; H1, . . . , H|X2|]. Hence, in the sequel, we
will write Cze([G1, . . . , G|X1|; H1, . . . , H|X2|]) and C sum

ze ([G1, . . . , G|X1|; H1, . . . , H|X2|]) to rep-
resent Cze(PY1,Y2|X1,X2

) and C sum
ze (PY1,Y2|X1,X2

), respectively. We will also often identify the
channel with its confusion graphs, and refer to it as [{Gi}; {Hj}], when it is clear from
the context. This also leads to the following immediate observation, analogues to the
point-to-point case.

Proposition 2. If PY1,Y2|X1,X2
and QY1,Y2|X1,X2

have the same confusion graphs up to some relabel-
ing on input symbols, then Cze(PY1,Y2|X1,X2

) = Cze(QY1,Y2|X1,X2
).
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This further immediately implies:

Proposition 3. Cze(PY1,Y2|X1,X2
) depends only on the conditional marginal distributions PY1|X1,X2

and PY2|X1,X2
.

The strong product of two DM-TWCs [G1, . . . , G|X1|; H1, . . . , H|X2|] and [G′1, . . . , G′|X ′1|
;

H′1, . . . , H′|X ′2|
], denoted by [{Gi}; {Hj}]� [{G′i}; {H′j}], refers to a DM-TWC having input

alphabets X1 ×X ′1 and X2 ×X ′2, as well as confusion graphs

[{Gi � G′i′ : i ∈ X1, i′ ∈ X ′1}; {Hj � H′j′ : j ∈ X2, j′ ∈ X ′2}].

Considering the zero-error sum-capacity with respect to the strong product, we have the
lemma below.

Lemma 1.

C sum
ze

(
[{Gi}; {Hj}]� [{G′i}; {H′j}]

)
≥ C sum

ze
(
[{Gi}; {Hj}]

)
+ C sum

ze
(
[{G′i}; {H′j}]

)
.

Proof. To prove this lemma, it is sufficient to prove that, for any (n, R1, R2) (resp. (n, R′1,
R′2)) uniquely decodable codebook pair (A,B) (resp. (A′,B′)) for channel [{Gi}; {Hj}]
(resp. [{G′i}; {H′j}]), there exists an (n, R1 + R′1, R2 + R′2) uniquely decodable codebook
pair for the associated product channel [{Gi}; {Hj}]� [{G′i}; {H′j}]. To that end, let

A∗ = {((a1, a′1), . . . , (an, a′n)) : an ∈ A, a′n ∈ A′},
B∗ = {((b1, b′1), . . . , (bn, b′n)) : bn ∈ B, b′n ∈ B′}.

It is easy to verify that (A∗,B∗) is uniquely decodable for the product channel. Moreover,
|A∗| = |A||A′| = 2n(R1+R′1) and |B∗| = |B||B′| = 2n(R2+R′2). The lemma follows.

2.3. Dual Graph Homomorphisms

In this subsection we study the behavior of the zero-error capacity region of a DM-
TWC under graph homomorphisms, generalizing a similar analysis from the point-to-point
channel case [2]. Let [{Gi}; {Hj}] and [{G′i}; {H′j}] be two collections of confusion graphs
corresponding to two DM-TWCs such that V(Gi) = V(G), V(Hj) = V(H), V(G′i) = V(G′)
and V(H′j) = V(H′). A dual graph homomorphism from [{Gi}; {Hj}] to [{G′i}; {H′j}], denoted
by [{Gi}; {Hj}] → [{G′i}; {H′j}], is a pair of mappings (ϕ, ψ), where ϕ : V(H) → V(H′)
and ψ : V(G)→ V(G′), such that

(1) if v1 ∼ v2 in Gi, then ψ(v1) ∼ ψ(v2) in G′
ϕ(i); and

(2) if u1 ∼ u2 in Hj, then ϕ(u1) ∼ ϕ(u2) in H′
ψ(j).

It is easy to see that the dual graph homomorphism is a natural generalization of the
standard graph homomorphism of two graphs, in the sense that they are both adjacency
preserving. We write [{Gi}; {Hj}] � [{G′i}; {H′j}] if there exists a dual graph homomor-

phism from [{Gi}; {H j}] to [{G′i}; {H′j}]. Then:

Lemma 2. If [{Gi}; {Hj}] � [{G′i}; {H′j}], and Gi and H j do not have self-loops, then

Cze([{Gi}; {Hj}]) ⊆ Cze([{G′i}; {H′j}]).

Proof. Suppose (ϕ, ψ) : [{Gi}; {H j}]→ [{G′i}; {H′j}] and (A,B) is a uniquely decodable
codebook pair of length n for the DM-TWC [{Gi}; {Hj}]. Let

Φ(A) = {ϕ(an) = (ϕ(a1), . . . , ϕ(an)) : an ∈ A},
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Ψ(B) = {ψ(bn) = (ψ(b1), . . . , ψ(bn)) : bn ∈ B}.

We now show that (Φ(A), Ψ(B)) is a uniquely decodable codebook pair for the DM-TWC
[{G′i}; {H′j}]. To that end, it suffices to show that for any distinct an, ãn ∈ A and bn, b̃n ∈ B,
we have

ϕ(an) � ϕ(ãn) in Hψ(b1)
� · · ·� Hψ(bn),

ψ(bn) � ψ(b̃n) in Gϕ(a1)
� · · ·� Gϕ(an).

(1)

Indeed, since (A,B) is a uniquely decodable codebook pair, there exist coordinates i, j ∈ [n]
such that ai � ãi in Hbi

and bj � b̃j in Gaj . By the definition of (ϕ, ψ), we have that

ϕ(ai) � ϕ(ãi) in Hψ(bi)
and ψ(bj) � ψ(b̃j) in Gϕ(aj)

, implying (1). It is also evident that
|Φ(A)| = |A| and |Ψ(B)| = |B|. The lemma now follows by taking the union over all
uniquely decodable codebook pairs (A,B) for [{Gi}; {Hj}].

2.4. One-Shot Zero-Error Communication

In this subsection, we consider the problem of zero-error communication over a
DM-TWC with only a single channel use by the two parties (i.e., n = 1). We refer to
the associated set of achievable rate pairs as the one-shot zero-error capacity region, and the
associated sum-rate as the one-shot zero-error sum-capacity. Recall that the one-shot zero-error
capacity of a point-to-point channel is simply the logarithm of the independence number
of its confusion graph; this quantity yields a lower bound on the zero-error capacity of the
channel, and also provides an infinite-letter expression for the capacity when evaluated
over the product graph. It is therefore interesting to study the analogue of the independence
number in the two-way case, which in particular would yield an inner bound on the zero-
error capacity region of the DM-TWC. For simplicity of exposition, we will focus here on
the one-shot zero-error sum-capacity only.

For convenience we define some notions first. Let [{Gi}; {Hj}] be a DM-TWC such
that V(Gi) = X2 and V(Hj) = X1. A pair (S, T) of subsets S ⊆ X1 and T ⊆ X2 is called a

dual clique pair of the DM-TWC if t s∼ t′ and s t∼ s′ for any distinct s, s′ ∈ S and distinct
t, t′ ∈ T, that is, S is a clique in each Ht for t ∈ T, and T is a clique in each Gs for s ∈ S. A
pair (S, T) of subsets S ⊆ X1 and T ⊆ X2 is called a dual independent pair of the DM-TWC if
T is an independent set of the graph Gs for each s ∈ S, and S is an independent set of the
graph Ht for each t ∈ T. A maximum dual independent pair is a dual independent pair (S, T)
with the largest possible product of sizes |S||T|. This product is called the independence
product of [{Gi}; {Hj}], denoted by π({Gi}; {Hj}). According to the definition, the one-shot
zero-error sum-capacity of the DM-TWC is log π({Gi}; {Hj}). It is also readily seen that
if two channels have the same confusion graphs up to some relabeling of input symbols,
then they have the same collections of dual clique pairs and dual independent pairs, and
hence the same one-shot zero-error sum-capacity.

For two graphs G1 and G2, let G1 ∪ G2 be the union of G1 and G2 such that V(G1 ∪
G2) = V(G1) ∪ V(G2) and E(G1 ∪ G2) = E(G1) ∪ E(G2). Notice that the graph disjoint
union t in Section 2.1 is a special case of the union ∪, when the vertex sets of G1 and G2
are disjoint. For notation convenience, in the rest of this subsection we let |X1| = m1 and
|X2| = m2. The following simple observations are now in order.

Proposition 4. Suppose (S, T) is a dual independent pair of [G1, . . . , Gm1 ; H1, . . . , Hm2 ]. Then:

(1) If |S| = 1, then |T| ≤ max
1≤i≤m1

α(Gi). The equality holds by taking S = {s} and T be a

maximum independent set of Gs, where s ∈ arg max1≤i≤m1 α(Gi).
(2) |S| ≤ min

t∈T
α(Ht).

(3) S is an independent set of
⋃

t∈T Ht.
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Proof. The results follow directly from the definition of dual independent pairs.

Lemma 3. Let [G1, . . . , Gm1 ; H1, . . . , Hm2 ] be a DM-TWC and G, H be graphs such that V(G) =
X2, V(H) = X1. Then:

(1) max
{

max
1≤i≤m1

α(Gi), max
1≤j≤m2

α(Hj)
}
≤ π(G1, . . . , Gm1 ; H1, . . . , Hm2) ≤ max

1≤i≤m1
α(Gi) ·

max
1≤j≤m2

α(Hj).

(2) π(G, . . . , G; H, . . . , H) = α(G)α(H).
(3) π(Km2 , G, . . . , G; Km1 , H, . . . , H) = max{α(G)α(H), m1, m2}.
(4) π(G1, . . . , Gm1 ; Km1 , . . . , Km1) = max

1≤i≤m1
α(Gi).

Proof. (1) The lower bound follows from Proposition 4 (1) and the symmetry of S and T.
From Proposition 4 (2), we have

|S| ≤ min
t∈T

α(Ht) ≤ max
1≤j≤m2

α(Hj),

|T| ≤ min
s∈S

α(Gs) ≤ max
1≤i≤m1

α(Gi),

yielding the upper bound.
(2) From claim (1) above, we have π(G, . . . , G; H, . . . , H) ≤ α(G)α(H). The equality

holds by taking S and T as the maximum independent sets of H and G respectively.
(3) From claims (1) and (2) above, we have

π(Km2 , G, . . . , G; Km1 , H, . . . , H) ≥ max{α(G)α(H), m1, m2}.

On the other hand, suppose (S, T) is a dual independent pair. We have the following three
cases: (i) If |S| = 1 then by Proposition 4, claim (1), we have |S||T| ≤ m2. (ii) If |T| = 1,
similar to case (i), we have |S||T| ≤ m1. (iii) If |S| ≥ 2 and |T| ≥ 2, then by Proposi-
tion 4, claim (2), we obtain |S||T| ≤ α(G)α(H). Thus π(Km2 , G, . . . , G; Km1 , H, . . . , H) ≤
max{α(G)α(H), m1, m2}.

(4) is a direct consequence of claim (1) above. The lemma follows.

By graph homomorphisms we immediately have:

Proposition 5. If [{Gi}; {Hj}] � [{G′i}; {H′j}], then

π({Gi}; {Hj}) ≤ π({G′i}; {H′j}).

Next, we shall provide an upper bound for π({Gi}; {Hj}) via a generalization of the
Lovász theta number [12]. Let Γ be an arbitrary (m1 + m2) × (m1 + m2) positive semi-
definite matrix (i.e., Γ � 0), and Γi,j be its (i, j)th entry. Let J be an m1 ×m2 all-one matrix,
and In be an n× n identity matrix. For any matrices A and B, denote 〈A, B〉 = trace(AB)
and denote AT as the transpose of matrix A. Now define ρ({Gi}, {Hj}) as

maximize 〈
(

0 J
JT 0

)
, Γ〉

subject to 〈
(

Im1 0
0 0

)
, Γ〉 = 1,

〈
(

0 0
0 Im2

)
, Γ〉 = 1, (2)

Γi,j+m1 · Γi,k+m1 = 0, ∀ i ∈ X1, j, k ∈ X2, j 6= k, j ∼ k in Gi

Γi+m1,j · Γi+m1,k = 0, ∀ i ∈ X2, j, k ∈ X1, j 6= k, j ∼ k in Hi

Γi,k+m1 · Γj,k+m1 = 0, ∀ i, j ∈ X1, k ∈ X2, i 6= j, i ∼ j in Hk
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Γi+m1,k · Γj+m1,k = 0, ∀ i, j ∈ X2, k ∈ X1, i 6= j, i ∼ j in Gk

Γ � 0.

Lemma 4. π({Gi}, {Hj}) ≤
( 1

2 ρ({Gi}, {Hj})
)2.

Proof. Suppose (S, T) with S ⊆ X1, T ⊆ X2 is a maximum dual independent pair such
that |S||T| = π({Gi}, {Hj}). For a number m and a set S, denote m + S = {m + s : s ∈ S}.
Let Γ be an (m1 + m2)× (m1 + m2) matrix such that

Γi,j =



1
|S| , if i ∈ S, j ∈ S

1√
|S||T|

, if i ∈ S, j ∈ m1 + T, or i ∈ m1 + T, j ∈ S
1
|T| , if i ∈ m1 + T, j ∈ m1 + T

0, otherwise.

Notice that for any vector xm1+m2 = (x1, . . . , xm1+m2) we have

xm1+m2 · Γ · (xm1+m2)T =

(
1√
|S| ∑i∈S

xi +
1√
|T| ∑

j∈T
xm1+j

)2

≥ 0.

This shows that Γ is a positive semi-definite matrix satisfying the equality constraints in (2).
Accordingly, Γ is a feasible solution for program (2) and

ρ({Gi}, {Hj}) ≥ 〈
(

0 J
JT 0

)
, Γ〉

= 2
√
|S||T|

= 2
√

π({Gi}, {Hj}),

implying the result. This completes the proof.

2.5. Information-Theoretic Notations

We recall some standard information-theoretic quantities that will be used in the
sequel. Let X, Y be two discrete random variables taking values from sets X ,Y ac-
cording to a joint probability distribution PXY. Let PX denote the marginal probability
distribution for X, where PX(x) = ∑y∈Y PXY(x, y), and PY be the marginal probabil-
ity distribution for Y similarly. The Shannon entropy of X is denoted by H(X) where
H(X) = −∑x∈X PX(x) log PX(x). In particular, the binary entropy function is written as
h(x) = −x log x− (1− x) log(1− x), where 0 ≤ x ≤ 1. The conditional entropy of X given
Y is written as H(X|Y) where H(X|Y) = −PXY(x, y) log PXY(x,y)

PY(y)
. The mutual information

between X and Y is I(X; Y) = H(X)− H(X|Y). The conditional mutual information of X, Y
given another random variable Z is I(X; Y|Z) = H(X|Z)−H(X|Y, Z). The following basic
properties will be used in the arguments afterwards.

Proposition 6. (1) H(X) ≥ 0, I(X; Y) ≥ 0. (Non-negativity)
(2) H(X|Y) ≤ H(X), I(X; Y|Z) ≤ I(X; Y). (Conditioning reduces entropy)
(3) H(X1, X2, . . . , Xn) = ∑n

i=1 H(Xi|X1, . . . , Xi−1). (Entropy chain rule)

3. Outer Bounds

In this section, we provide single-letter outer bounds for the non-adaptive zero-error
capacity region of the DM-TWC. First in Section 3.1, we present two simple outer bounds,
one based on Shannon’s vanishing-error non-adaptive capacity region and the other on a
two-way analogue of the linear programming bound for point-to-point channels. Next in
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Section 3.2, we combine the two bounds given in Section 3.1 and obtain an outer bound
that is generally better than both. Finally, in Section 3.3 we derive another single-letter
outer bound via the asymptotic spectra of graphs.

3.1. Simple Bounds

It is trivial to see that Shannon’s vanishing-error non-adaptive capacity region of the
DM-TWC ([1], Theorem 3) contains its zero-error counterpart. First recall Shannon’s bound
in [1].

Lemma 5 ([1]). The vanishing-error non-adaptive capacity region of a DM-TWC PY1,Y2|X1,X2
is

the convex hull of the set:⋃
PX1 ,PX2

{(R1, R2) : R1 ≥ 0, R2 ≥ 0, R1 = I(X1; Y2|X2), R2 = I(X2; Y1|X1)}

where the union is taken over all product input probability distributions PX1 × PX2 .

Together with Proposition 2, this immediately yields the following outer bound.

Lemma 6. Cze(PY1,Y2|X1,X2
) is contained in

⋂
QY1,Y2 |X1,X2

⋂
0≤λ≤1

{(R1,R2) : R1 ≥ 0, R2 ≥ 0, λR1 + (1− λ)R2 ≤ max
PX1 ,PX2

ε(λ)},
(3)

where
ε(λ) , λI(X1; Y2|X2) + (1− λ)I(X2; Y1|X1). (4)

The first intersection is taken over all DM-TWCs QY1,Y2|X1,X2
with the same adjacency as PY1,Y2|X1,X2

,
and the maximum is taken over all product input probability distributions PX1 × PX2 .

Remark 1. The bound (3) can also be written in the standard form⋂
QY1,Y2 |X1,X2

⋃
PX1 ,PX2

{
(R1, R2) : R1 ≥ 0, R2 ≥ 0,

R1 ≤ I(X1; Y2|X2),

R2 ≤ I(X2; Y1|X1)
}

.

Here we prefer however to use the form (3), for ease of comparison with forthcoming
bounds.

We now proceed to obtain a combinatorial outer bound. Recall that a dual clique pair

of a DM-TWC is a pair (S, T) of subsets S ⊆ X1 and T ⊆ X2 such that t s∼ t′ and s t∼ s′

for any distinct s, s′ ∈ S and distinct t, t′ ∈ T. In the sequel, we adopt the convention that
00 = 1.

Lemma 7. Cze(PY1,Y2|X1,X2
) is contained in:

⋂
0≤λ≤1

{(R1, R2) : R1 ≥ 0, R2 ≥ 0, λR1 + (1− λ)R2 ≤ max
PX1 ,PX2

− log l(λ)}, (5)

where

l(λ) , max
S,T

(
∑

x1∈S
PX1(x1)

)λ(
∑

x2∈T
PX2(x2)

)1−λ

(6)

and the maximum in (5) is taken over all the input probability distributions PX1 and PX2 , and the
maximum in (6) is taken over all the dual clique pairs (S, T) of PY1,Y2|X1,X2

.
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Proof. Let (A,B) be a uniquely decodable codebook pair of length n. We will show that:

|A|λ|B|1−λ ≤ κ ·
( 1

l(λ)
)n (7)

by induction on n, where κ is a constant independent of n.
Indeed, for the base case n = 1, one could take subsets A ⊆ X1, B ⊆ X2 such that

for any distinct a, a′ ∈ A and distinct b, b′ ∈ B, we have a b� a′ and b a� b′. Clearly,
|A||B| ≤ |X1||X2| and (7) follows by taking κ sufficiently large.

Assume that (7) holds for every length n′ ≤ n− 1, and let us proceed to prove for
length n. Suppose (A,B) ⊆ X n

1 ×X n
2 is a uniquely decodable codebook pair of length n.

For a vector xn, let xn\i , (x1, . . . , xi−1, xi+1, . . . , xn) be its projection over all coordinates
not equal to i. For each coordinate 1 ≤ i ≤ n and each x1 ∈ X1, x2 ∈ X2, let

Ai(x1) , {an\i : an ∈ A, ai = x1},

Bi(x2) , {bn\i : bn ∈ B, bi = x2}
(8)

be the projections of each codebook obtained by fixing the ith coordinate. Define the
distributions induced by these projections over X1 and X2 respectively to be

Pi
X1
(x1) ,

|Ai(x1)|
|A| , Pi

X2
(x2) ,

|Bi(x2)|
|B| . (9)

Furthermore, for any two subsets S ⊆ X1 and T ⊆ X2, define the codebooks induced by
the unions over S and T of the respective projected codebooks, to be

Ai(S) ,
⋃

x1∈S
Ai(x1), Bi(T) ,

⋃
x2∈T
Bi(x2). (10)

Note that if (S, T) is a dual clique pair such that Ai(S) 6= ∅ and Bi(T) 6= ∅, then the
unions in (10) are disjoint, as otherwise this would contradict the assumption that (A,B) is
uniquely decodable. Hence

|Ai(S)| = ∑
x1∈S
|Ai(x1)|, |Bi(T)| = ∑

x2∈T
|Bi(x2)|, (11)

and also, for any i ∈ [n] it must hold that (Ai(S),Bi(T)) is a uniquely decodable codebook
pair of length n− 1. Combining (8), (9) and (11) gives

|A|λ|B|1−λ =

(
|Ai(S)|

∑s∈S Pi
X1
(s)

)λ

·
(
|Bi(T)|

∑t∈T Pi
X2
(t)

)

)1−λ

. (12)

By the inductive hypothesis, we obtain

|A|λ|B|1−λ ≤
κ ·
( 1

l(λ)

)n−1(
∑s∈S Pi

X1
(s)
)λ ·

(
∑t∈T Pi

X2
(t)
)1−λ

≤
κ ·
( 1

l(λ)

)n−1

l(λ)
= κ ·

( 1
l(λ)

)n,

where the second inequality follows from the definition of l(λ) in (6). This completes the
proof.

The following is a trivial corollary of Lemmas 6 and 7.
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Corollary 1. Cze(PY1,Y2|X1,X2
) is contained in

⋂
QY1,Y2 |X1,X2

⋂
0≤λ≤1

{(R1,R2) : R1 ≥ 0, R2 ≥ 0, λR1 + (1− λ)R2 ≤ t(λ)},
(13)

where
t(λ) , min

{
max

PX1 ,PX2

ε(λ), max
PX1 ,PX2

− log l(λ)
}

. (14)

3.2. An Improved Bound

We now provide a single-letter outer bound, in which the order of the minimum
and the maximum in (14) is swapped. This generally yields a tighter outer bound due
to the max–min inequality. In fact, our bound can be seen as a generalization of the one
obtained by Holzman and Körner for the binary multiplying channel [13], in which case
the max–min is indeed strictly tighter than the min–max.

Theorem 2. Cze(PY1,Y2|X1,X2
) is contained in

⋂
QY1,Y2 |X1,X2

⋂
0≤λ≤1

{(R1,R2) : R1 ≥ 0, R2 ≥ 0, λR1 + (1− λ)R2 ≤ θ(λ)},
(15)

where
θ(λ) , max

PX1 ,PX2

min{ε(λ),− log l(λ)}. (16)

The first intersection is taken over all DM-TWCs QY1,Y2|X1,X2
with the same adjacency as PY1,Y2|X1,X2

,
and the maximum is taken over all product input probability distributions PX1 × PX2 .

Proof. The intersection over all QY1,Y2|X1,X2
follows from Proposition 2. Hence without

loss of generality, we prove that for PY1,Y2|X1,X2
, each achievable rate pair (R1, R2) satisfies

λR1 + (1− λ)R2 ≤ θ(λ), where 0 ≤ λ ≤ 1.
To that end, for each uniquely decodable codebook pair (A,B) of length n, we will

show that:
|A|λ|B|1−λ ≤ κ · 2nθ(λ) (17)

by induction on n, where κ is a constant independent of n. The base case of n = 1,
follows in the same way as in the proof of the base case in Lemma 7. Assume that (17)
holds for all length n′ ≤ n− 1, and let us prove it also holds for length n. Suppose that
(A,B) ⊆ X n

1 ×X n
2 is a uniquely decodable codebook pair of length n. Following the same

steps of (8)–(12) in the argument of Lemma 7, we also have:

|A|λ|B|1−λ =

(
|Ai(S)|

∑s∈S Pi
X1
(s)

)λ

·
(
|Bi(T)|

∑t∈T Pi
X2
(t)

)

)1−λ

. (18)

Now, if there exists a dual clique pair (S, T) and a coordinate 1 ≤ i ≤ n such that(
∑
s∈S

Pi
X1
(s)

)λ(
∑
t∈T

Pi
X2
(t)

)1−λ

≥ 2−θ(λ), (19)

then (18) implies

|A|λ|B|1−λ ≤ κ2(n−1)θ(λ)

2−θ(λ)
= κ2nθ(λ),

where the inequality follows from the inductive hypothesis and (19). Therefore, we con-
clude that (17) holds under condition (19).
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Assume now that condition (19) is not satisfied, that is,

max
i∈[n]

max
S,T

(
∑
s∈S

Pi
X1
(s)

)λ(
∑
t∈T

Pi
X2
(t)

)1−λ

< 2−θ(λ). (20)

Let An and Bn be codewords chosen from A and B respectively, uniformly at random, and
let Yn

1 , Yn
2 be the corresponding channel outputs. Since (A,B) is a uniquely decodable

codebook pair of length n, it must be that:

log |A| = I(Yn
2 ; An|Bn),

log |B| = I(Yn
1 ; Bn|An).

(21)

On the other hand, we have:

I(Yn
1 ; Bn|An) = H(Yn

1 |An)− H(Yn
1 |An, Bn) (22)

=
n

∑
i=1

H(Y1,i|Y1,1, . . . , Y1,i−1, An)−
n

∑
i=1

H(Y1,i|Ai, Bi) (23)

≤
n

∑
i=1

H(Y1,i|Ai)−
n

∑
i=1

H(Y1,i|Ai, Bi) (24)

=
n

∑
i=1

I(Y1,i; Bi|Ai), (25)

where (23) follows from the entropy chain rule and the memorylessness of the channel,
and (24) follows from the fact that conditioning reduces entropy. Similarly,

I(Yn
2 ; An|Bn) ≤

n

∑
i=1

I(Y2,i; Ai|Bi). (26)

Combining (20)–(26), we obtain

log |A|λ|B|1−λ

= λ log |A|+ (1− λ) log |B|

≤
n

∑
i=1

λI(Y2,i; Ai|Bi) + (1− λ)I(Y1,i; Bi|Ai)

≤ max
PX1

,PX2
,

l(λ)<2−θ(λ)

n[λI(Y2; X1|X2) + (1− λ)I(Y1; X2|X1)]

= max
PX1

,PX2
,

l(λ)<2−θ(λ)

n · ε(λ), (27)

where ε(λ) and l(λ) are defined in (4) and (6), respectively, and the maximum is taken over
all product input probability distributions PX1 × PX2 such that l(λ) < 2−θ(λ), following
condition (20).

By the definition of θ(λ), we have:

θ(λ) = max
PX1 ,PX2

min{ε(λ),− log l(λ)} (28)

≥ max
PX1

,PX2
,

l(λ)<2−θ(λ)

min{ε(λ),− log l(λ)}. (29)

Note that for any input distributions PX1 , PX2 such that l(λ) < 2−θ(λ), we have

− log l(λ) > θ(λ). (30)
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Combining (29) and (30), we obtain

max
PX1

,PX2
,

l(λ)<2−θ(λ)

ε(λ) ≤ θ(λ). (31)

Substituting (31) into (27), we have log |A|λ|B|1−λ ≤ nθ(λ), completing the proof.

We remark that Theorem 2 immediately implies, in particular, the following upper
bound on the zero-error capacity of the point-to-point discrete memoryless channel.

Corollary 2. The zero-error capacity of the discrete memoryless channel PY|X is upper bounded by

min
QY|X

max
PX

min
{

I(X; Y),− log max
C

∑
x∈C

PX(x)
}

.

The outer minimum is taken over all the QY|X having the same confusion graph as PY|X , the outer
maximum is taken over all the input distributions PX , and the inner maximum is taken over all the
cliques C of the confusion graph of the channel.

As it turns out, the upper bound in Corollary 2 coincides with the linear programming
bound on the zero-error capacity of a point-to-point discrete memoryless channel in [2].
Namely,

min
QY|X

max
PX

I(X; Y) = max
PX

{
− log max

C
∑
x∈C

PX(x)
}

for any point-to-point discrete memoryless channel PY|X. This fact was originally con-
jectured by Shannon [2] and later proved by Ahlswede [22]. In other words, this means
that in the point-to-point case, Corollary 1 yields exactly the same bound as Theorem 2.
However, this is not the case in general for the DM-TWC. For example, recall that Holzman
and Körner [13] derived the bound in Theorem 2 in the special case of the (deterministic)
binary multiplying channel (using λ = 0.5) and numerically showed that it is strictly better
than what can be obtained from Corollary 1. Next we give another example showing that
Theorem 2 outperforms Corollary 1 for a noisy (i.e., non-deterministic) DM-TWC as well.

Example 1. Let X1 = {0, 1, 2},X2 = Y1 = Y2 = {0, 1}, and the conditional probability
distribution PY1,Y2|X1,X2

be

y1y2
x1x2

00 01 10 11 20 21
00 1 1 0 0 0 0
01 0 0 0 0 1 0
10 0 0 δ 0 0 1
11 0 0 1− δ 1 0 0

where δ ∈ (0, 1). Corollary 1 gives the upper bound

R1 + R2 ≤ min
{

max
PX1 ,PX2

ε∗, max
PX1 ,PX2

− log l∗
}
≈ 1.2933,

where

ε∗ = I(X1; Y2|X2) + I(X2; Y1|X1)

= PX1(2) · h(PX2(0)) + PX2(0) · h(PX1(0) + δ · PX1(1))− PX1(1) · PX2(0) · h(δ)
+ PX2(1) · h(PX1(1)),

l∗ = max
S,T

(
∑

x1∈S
PX1(x1)

)(
∑

x2∈T
PX2(x2)

)
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= max
{

PX1(0), PX1(1), PX2(0) · (PX1(0) + PX1(1)), PX2(0) · (PX1(1) + PX1(2)),

PX2(1) · (PX1(0) + PX1(2))
}

,

and h(x) = −x log x − (1− x) log(1− x). In contrast, Theorem 2 yields a tighter upper
bound of

R1 + R2 ≤ max
PX1 ,PX2

min{ε∗,− log l∗} ≈ 1.2910.

3.3. An Outer Bound via Shannon Capacity of a Graph

Based on Lemma 3 and the Shannon capacity of a graph, we immediately have the
following bound.

Lemma 8.

C sum
ze ([G1, . . . , G|X1|; H1, . . . , H|X2|]) ≤ max

x1∈X1,x2∈X2
Θ(Gx1) + Θ(Hx2).

It is worth noting that the above bound could be optimal in the sense that when all
Gi = G and Hj = H, it is easily verified that C sum

ze ([G, . . . , G; H, . . . , H]) = Θ(G) + Θ(H).
However, the bound in Lemma 8 is not tight in general. Later in Section 5, we will
improve the bound in Lemma 8 for certain scenarios and show that the improved bound
(in Theorem 5) could outperform Theorem 2 (see Example 3), and be achieved in special
cases (see Theorem 7).

4. Inner Bounds

In this section, we present two inner bounds for the non-adaptive zero-error capacity
region of the DM-TWC, one based on random coding and the other on linear codes.

4.1. Random Coding

The random coding for DM-TWC is standard and generalizes a known bound by
Shannon for the one-way case [2]. To obtain the random coding inner bound, we need the
following lemma from [1].

Lemma 9 ([1]). Let X be a random variable taking values in [N], and { fi : [N]→ R+}i∈[d] be a
collection of nonnegative functions. Then there exists x ∈ [N] such that fi(x) ≤ d ·E[ fi(X)] for
all i ∈ [d].

Theorem 3. Cze(PY1,Y2|X1,X2
) contains the region:

⋃
PX1 ,PX2

{
(R1, R2) : R1 ≥ 0, R2 ≥ 0,

R1 ≤ −
1
2

log ∑
x1

x2∼ x′1 ∨ x1=x′1,

x1,x′1∈X1,x2∈X2

PX1(x1)PX1(x′1)PX2(x2),

R2 ≤ −
1
2

log ∑
x2

x1∼ x′2 ∨ x2=x′2,

x1∈X1,x2,x′2∈X2

PX1(x1)PX2(x2)PX2(x′2),
} (32)

where the union is taken over all input distributions PX1 , PX2 .

Proof. We randomly draw a codebook pair (A,B), such that A (resp.B) consists of M1
(resp. M2) statistically independent words, where each word is generated i.i.d. according
to a probability distribution PX1 (resp. PX2 ). A word an ∈ A is called bad, if there exist two
words, bn, b̃n ∈ B that are either equal or adjacent in Ga1 � · · ·� Gan . For any particular
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words an ∈ A, bn, b̃n ∈ B and coordinate i ∈ [n], the probability that bi ∼ b̃i in Gai is upper
bounded by:

∑
x2

x1∼ x′2 ∨ x2=x′2,

x1∈X1,x2,x′2∈X2

PX1(x1)PX2(x2)PX2(x′2).

Since all the coordinates are independent, the probability that bn ∼ b̃n in Ga1 � · · ·�Gan is
at most: (

∑
x2

x1∼ x′2 ∨ x2=x′2,

x1∈X1,x2,x′2∈X2

PX1(x1)PX2(x2)PX2(x′2)
)n

. (33)

Denote by Bad(an) the number of 2-subsets {bn, b̃n} ⊆ B such that bn ∼ b̃n in Ga1 � · · ·�
Gan . Then,

Pr{an is bad} = Pr{Bad(an) ≥ 1}
≤ E[Bad(an)]

≤
(

M2

2

)(
∑

x2
x1∼ x′2 ∨ x2=x′2,

x1∈X1,x2,x′2∈X2

PX1(x1)PX2(x2)PX2(x′2)
)n

,

where the first inequality is by Markov’s inequality, and the second inequality follows
from (33) and the linearity of expectation. Similarly, a word bn ∈ B is called bad, if there
exist two words an, ãn ∈ A that are equal or adjacent in Hb1 � · · ·� Hbn , and we have

Pr{bn is bad} ≤
(

M1

2

)(
∑

x1
x2∼ x′1 ∨ x1=x′1,

x1,x′1∈X1,x2∈X2

PX1(x1)PX1(x′1)PX2(x2)

)n

.

Let f1(A,B), f2(A,B) be the number of bad words in A and B respectively. Then, we
have:

E[ f1(A,B)] ≤ M1

(
M2

2

)(
∑

x2
x1∼ x′2 ∨ x2=x′2,

x1∈X1,x2,x′2∈X2

PX1(x1)PX2(x2)PX2(x′2)
)n

, (34)

E[ f2(A,B)] ≤ M2

(
M1

2

)(
∑

x1
x2∼ x′1 ∨ x1=x′1,

x1,x′1∈X1,x2∈X2

PX1(x1)PX1(x′1)PX2(x2)

)n

. (35)

By Lemma 9, there exists a pair (A∗,B∗) such that

f1(A∗,B∗) ≤ 2E[ f1(A,B)], f2(A∗,B∗) ≤ 2E[ f2(A,B)]. (36)

Remove all the bad words in A∗ and B∗ respectively, yielding a codebook pair (A′,B′)
such that:

|A′| = M1 − f1(A∗,B∗) and |B′| = M2 − f2(A∗,B∗). (37)

It is readily seen that (A′,B′) is a uniquely decodable codebook pair.
Now let

M1 = (1− ξ1)
n
2

(
∑

x1
x2∼ x′1 ∨ x1=x′1,

x1,x′1∈X1,x2∈X2

PX1(x1)PX1(x′1)PX2(x2)

)− n
2

, (38)
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M2 = (1− ξ2)
n
2

(
∑

x2
x1∼ x′2 ∨ x2=x′2,

x1∈X1,x2,x′2∈X2

PX1(x1)PX2(x2)PX2(x′2)
)− n

2

, (39)

where ξ1, ξ2 are arbitrarily small positive numbers. Combining (34)–(39), we obtain:

|A′| ≥ (1− (1− ξ2)
n)(1− ξ1)

n
2

(
∑

x1
x2∼ x′1 ∨ x1=x′1,

x1,x′1∈X1,x2∈X2

PX1(x1)PX1(x′1)PX2(x2)

)− n
2

,

|B′| ≥ (1− (1− ξ1)
n)(1− ξ2)

n
2

(
∑

x2
x1∼ x′2 ∨ x2=x′2,

x1∈X1,x2,x′2∈X2

PX1(x1)PX2(x2)PX2(x′2)
)− n

2

.

Since ξ1, ξ2 are arbitrarily small, by taking n as sufficiently large, we can find an (n, R1, R2)
uniquely decodable codebook pair arbitrarily close to (32), as desired.

4.2. Linear Codes

In this subsection, we present a construction of uniquely decodable codes via linear
codes, which generalizes a known result for the binary multiplying channel [15]. Let us
introduce some notations first. Suppose D is a set of letters, xn and yn are vectors of length
n, and C is a collection of vectors of length n. Let:

indD(xn) , {1 ≤ i ≤ n : xi ∈ D} (40)

denote the collection of indices where xi ∈ D. For I ⊆ [n] let yn|I denote the vector
obtained from yn by projecting onto the coordinates in I, and denote

C|I , {cn|I : cn ∈ C}.

Let PY1,Y2|X1,X2
be a DM-TWC. We say that x1 ∈ X1 is a detecting symbol, if x2

x1
6∼ x′2 for

any distinct x2, x′2 ∈ X2. A detecting symbol x2 ∈ X2 is defined analogously. Let D1 ⊆ X1
and D2 ⊆ X2 denote the sets of all detecting symbols in X1 and X2, respectively. A vector
an ∈ X n

1 is called a detecting vector for B ⊆ X n
2 if∣∣∣B|indD1 (an)

∣∣∣ = |B|. (41)

Similarly, a vector bn ∈ X n
2 is a detecting vector for A ⊆ X n

1 if

|A|indD2 (b
n)| = |A|. (42)

The following claim is immediate.

Proposition 7. Let A ⊆ X n
1 , B ⊆ X n

2 . If each an ∈ A is a detecting vector for B and each
bn ∈ B is a detecting vector for A, then (A,B) is a uniquely decodable codebook pair.

Proposition 7 provides a sufficient condition for a uniquely decodable code, which is
not always necessary (see Example 2). Nevertheless, this sufficient condition furnishes us
with a way of constructing uniquely decodable codes by employing linear codes.

Example 2. Suppose that X1 = {a0, a1, a2}, X2 = {b0, b1} such that D1 = {a0, a1, a2},
D2 = {b1}, and a0

b0∼ a1, a0
b0∼ a2, a1

b0� a2. Let A = {a0a0a0, a1a1a1, a0a1a2} and B =
{b0b1b0}. It is easy to verify that (A,B) is a uniquely decodable codebook pair. However,
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indD2(b0b1b0) = {2} and |A|{2}| = |{a0, a1}| = 2 < |A| = 3, implying that b0b1b0 is not a
detecting vector for A.

Assume that |X1| = q1 and |X2| = q2, where q1, q2 are prime powers, and let us think
of the alphabets as Fq1 and Fq2 , respectively. The following theorem gives an inner bound
on the capacity region, which is a generalization of the Tolhuizen’s construction for the
Blackwell’s multiplying channel [15].

Theorem 4. Let PY1,Y2|X1,X2
be a DM-TWC with input alphabet sizes |X1| = q1, |X2| = q2,

where q1, q2 are prime powers. If X1 and X2 contain τ1 and τ2 detecting symbols respectively, then
Cze(PY1,Y2|X1,X2

) contains the region

⋃
0≤α,β≤1

{
(R1, R2) : R1 ≥ 0, R2 ≥ 0,

R1 ≤ h(α) + α log τ2 + (1− α) log(q2 − τ2)− (1− β) log q2,

R2 ≤ h(β) + β log τ1 + (1− β) log(q1 − τ1)− (1− α) log q1
}

,

(43)

where h(x) , −x log x− (1− x) log(1− x) is the binary entropy function.

To prove this theorem, we need the following lemma. The case that q1 = q2 = 2 and
τ = 1 was proved in ([15], Theorem 3). Lemma 10 follows from similar argument.

Lemma 10. Let q, q′ be prime powers, n, k be positive integers such that 1 ≤ k ≤ n, and D ⊆ Fq′

with cardinality |D| = τ. Then there exists a pair (C, Υ(C)) satisfying that:

(1) C is a q-ary [n, k] linear code;
(2) Υ(C) ⊆ Fn

q′ such that

|Υ(C)| ≥
(

n
k

)
τk(q′ − τ)n−k

∞

∏
i=1

(1− q−i);

(3) for each xn ∈ Υ(C), we have |indD(xn)| = k and
∣∣∣C|indD(xn)

∣∣∣ = |C|.
Proof. Let A be a k× n matrix of full rank over Fq, then C(A) , {yk A : yk ∈ Fk

q} is a q-ary
[n, k] linear code generated by A. Recall that for every xn ∈ Fn

q′ , indD(xn) = {i ∈ [n] : xi ∈
D} as in (40). Denote:

Υ(C(A)) ,
{

xn ∈ Fn
q′ : |indD(xn)| = k, |C|indD(xn)| = |C|

}
.

Let A|indD(xn) denote the k× |indD(xn)| submatrix of A with columns indexed by indD(xn).
It is easy to see that |C|indD(xn)| = |C| is equivalent to rank(A|indD(xn)) = k. Denote:

P ,
{
(A, xn) : A ∈ Fk×n

q , xn ∈ Fn
q′ , |indD(xn)| = k, rank(A|indD(xn)) = k

}
, (44)

and let us proceed by double counting the cardinality of P .
On the one hand, the number of vectors xn ∈ Fn

q′ such that |indD(xn)| = k is (n
k)τ

k(q′−
τ)n−k. For each such xn, there are qk(n−k) Iq(k) corresponding k× n matrices A ∈ Fk×n

q such
that rank(A|indD(xn)) = k, where Iq(k) = ∏k−1

i=0 (q
k − qi) is the number of k× k invertible

matrices over Fq, see ([15], Lemma 3). Hence, we have:

|P| =
(

n
k

)
τk(q′ − τ)n−kqk(n−k) Iq(k).
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On the other hand, the number of matrices A ∈ Fk×n
q is qnk. By (44) and the pigeonhole

principle, there exist a matrix A∗ ∈ Fk×n
q and a corresponding code C(A∗) such that

|Υ(C(A))| ≥ |P|/qnk. Letting C = C(A∗), the lemma follows.

Proof of Theorem 4. For i = 1, 2, let us identify Xi with Fqi , and let the respective sets of
all detecting symbols be Di ⊆ Fqi with |Di| = τi.

To prove the existence of a uniquely decodable codebook pair based on Proposition 7,
we first use Lemma 10 to find two “one-sided” uniquely decodable linear codebook pairs,
and then combine them to the desired codebook pair by employing their cosets in Fn

q1
and

Fn
q2

.
First, letting q = q1, q′ = q2, G = D2 and τ = τ2 in Lemma 10, we have a pair

(C1, Υ(C1)) satisfying that C1 is a q1-ary [n, k1] linear code and Υ(C1) ⊆ Fn
q2

such that

|Υ(C1)| ≥
(

n
k1

)
τ2

k1(q2 − τ2)
n−k1

∞

∏
i=1

(1− q−i
1 ). (45)

Similarly, letting q = q2, q′ = q1, G = D1 and τ = τ1 in Lemma 10, we have a pair
(C2, Υ(C2)) satisfying that C2 is a q2-ary [n, k2] linear code and Υ(C2) ⊆ Fn

q1
such that

|Υ(C2)| ≥
(

n
k2

)
τ1

k2(q1 − τ1)
n−k2

∞

∏
i=1

(1− q−i
2 ). (46)

The property (3) in Lemma 10 implies that each xn ∈ Υ(Ci) is a detecting vector for Ci for
i = 1, 2. Note that if Ξ(Ci) ⊆ Fn

qi
is a coset of Ci, then each xn ∈ Υ(Ci) is also a detecting

vector for Ξ(Ci).
Now we are going to combine the two pairs (C1, Υ(C1)) and (C2, Υ(C2)). Since Ci has

qn−ki
i cosets, then by the pigeonhole principle there exists coset Ξ(Ci) of Ci such that:

A , Υ(C1) ∩ Ξ(C2), |A| ≥ |Υ(C1)|
qn−k2

2

,

B , Υ(C2) ∩ Ξ(C1), |B| ≥ |Υ(C2)|
qn−k1

1

.
(47)

We now notice that each vector in A (resp.B) is a detecting vector for B (resp.A),
hence by Proposition 7 (A,B) is a uniquely decodable codebook pair. Moreover, for fixed
q1, q2, we have:

log |A|
n

≥ h(
k1

n
) + (

k1

n
) log τ2 + (1− k1

n
) log(q2 − τ2)− (1− k2

n
) log q2 − O(

1
n
),

log |B|
n

≥ h(
k2

n
) + (

k2

n
) log τ1 + (1− k2

n
) log(q1 − τ1)− (1− k1

n
) log q1 − O(

1
n
),

which follows from (45)–(47). Letting α = k1/n ∈ [0, 1], β = k2/n ∈ [0, 1], we obtain:

R1 = lim
n→∞

log |A|
n

≥ h(α) + α log τ2 + (1− α) log(q2 − τ2)− (1− β) log q2,

R2 = lim
n→∞

log |B|
n

≥ h(β) + β log τ1 + (1− β) log(q1 − τ1)− (1− α) log q1.

Therefore, (43) follows, as desired.

We note that for any DM-TWC, one could only exploit part of input symbols X ′1 ⊆ X1,
X ′2 ⊆ X2 to meet the requirements in Theorem 4. Hence we in fact have the following more
general bound.
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Corollary 3. Let PY1,Y2|X1,X2
be a DM-TWC with input alphabets X1, X2. Then Cze(PY1,Y2|X1,X2

)
contains the region:⋃
X ′1⊆X1,

X ′2⊆X2

⋃
0≤α,β≤1

{
(R1, R2) : R1 ≥ 0, R2 ≥ 0,

R1 ≤ h(α) + α log τ′2 + (1− α) log(q′2 − τ′2)− (1− β) log q′2,

R2 ≤ h(β) + β log τ′1 + (1− β) log(q′1 − τ′1)− (1− α) log q′1
}

,

where the first union is taken over all X ′1 ⊆ X1, X ′2 ⊆ X2 such that |X ′1| and |X ′2| are prime
powers, and contain τ′1 and τ′2 detecting symbols, respectively.

Notice that the region (43) relies on the number q1, q2 of symbols being used and the
corresponding numbers τ1, τ2 of detecting symbols. It is thus possible that using only a
smaller subset of channel inputs would yield higher achievable rates (when using our linear
coding strategy) than those obtained by using larger subsets. For Example 1, Corollary 3
shows that a lower bound on the maximum sum-rate R1 + R2 is 1.17, which is better than
the random coding lower bound 1.0907.

5. Certain Types of DM-TWC

In this section, we consider the DM-TWC in the scenario that the communication in
one direction is stable (in particular, noiseless). First we briefly review the probabilistic
refinement of the Shannon capacity of a graph in Section 5.1. Then in Section 5.2, we
provide an outer bound on the zero-error capacity region via the asymptotic spectrum of
graphs. In Section 5.3, we present explicit constructions that attain our outer bound in
certain special cases.

5.1. Probabilistic Refinement of the Shannon Capacity of a Graph

We first recall some basic notions and results from the method-of-types. Let xn ∈ X n

be a sequence and N(a|xn) be the number of times that a ∈ X appears in sequence xn.
The type Pxn of xn is the relative proportion of each symbol in X , that is, Pxn(a) , N(a|xn)

n
for all a ∈ X . Let Pn denote the collection of all possible types of sequences of length
n. For every P ∈ Pn, the type class Tn(P) of P is the set of sequences of type P, that is,
Tn(P) , {xn : Pxn = P}. The ε-typical set of P is

Tn
ε (P) , {xn ∈ X n : |Pxn(a)− P(a)| < ε, ∀ a ∈ X}.

The joint type Pxn ,yn of a pair of sequences (xn, yn) is the relative proportion of occurrences

of each pair of symbols of X × Y , that is, Pxn ,yn , N(a,b|xn ,yn)
n for all a ∈ X and b ∈ Y . By

the Bayes’ rule, the conditional type Pxn |yn is defined as:

Pxn |yn(a, b) ,
N(a, b|xn, yn)

N(b|yn)
=

Pxn ,yn(a, b)
Pyn(b)

.

Lemma 11 ([23]). |Pn| ≤ (n + 1)|X |.

Lemma 12 ([23]). ∀ P ∈ Pn, we have 2nH(X)

(n+1)|X |
≤ |Tn(P)| ≤ 2nH(X).

In [24], Csiszár and Körner introduced the probabilistic refinement of the Shannon
capacity of a graph, imposing that the independent set consists of sequences of the (asymp-
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totically) same type. Let Gn
ε [P] denote the subgraph of Gn induced by Tn

ε (P). The Shannon
capacity of graph G relative to P is defined as

Θ(G, P) , lim
ε→0

lim sup
n→∞

1
n

log α(Gn
ε [P]).

Let Gn[P] denote the subgraph of Gn induced by Tn(P). Then, it is readily seen that:

lim sup
n→∞

1
n

log α(Gn[P]) ≤ Θ(G, P).

For each η ∈ ∆(G), define

η̂(G, P) , lim
ε→0

lim sup
n→∞

1
n

log η(Gn
ε [P]). (48)

If G = Kn, then according to Lemma 12, we have

η̂(Kn, P) = H(X) (49)

for any η ∈ ∆(G). Very recently, Vrana [25] proved the following results on η̂(G, P).

Lemma 13 ([25]). The limit in (48) exists and

(1) Θ(G, P) = min
η∈∆(G)

η̂(G, P);

(2) log η(G) = max
P

η̂(G, P) for η ∈ ∆(G).

According to Lemma 11, it is easily seen that:

Θ(G) = max
P

Θ(G, P).

Here, we would like to mention that the probabilistic refinement of the Lovász theta number
was introduced and investigated by Marton in [26] via a non-asymptotic formula, and the
probabilistic refinement of the fractional clique cover number was studied in relation to the
graph entropy in [27].

5.2. An Outer Bound via the Asymptotic Spectrum of Graphs

In this subsection, we derive an outer bound for the case when all {Hj} are the same,
namely, Hj = H for all j ∈ X2.

Theorem 5. Cze([G1, . . . , G|X1|; H, . . . , H]) is contained in the region{
(R1, R2) : R1 ≥ 0, R2 ≥ 0, R1 + R2 ≤ max

PX1
∑

x1∈X1

PX1(x1)Θ(Gx1) + Θ(H, PX1)
}

.

Proof. Suppose that (A,B) ⊆ X n
1 ×X n

2 is a uniquely decodable codebook pair of length n.
For any an ∈ A and bn ∈ B, let Pan ,bn denote the joint type of the pair (an, bn) and

Jn(PX1,X2) , {(an, bn) : an ∈ A, bn ∈ B, Pan ,bn = PX1,X2}.

By Lemma 11, there are at most (n + 1)|X1||X2| different joint types over (A,B). Thus by
the pigeonhole principle, there exists one joint type P∗X1,X2

such that:

|Jn(P∗X1,X2
)| ≥ |A||B|

(n + 1)|X1||X2|
. (50)
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Notice that for each (an, bn) ∈ Jn(P∗X1,X2
), we have:

Pan = P∗X1
= ∑

x2∈X2

P∗X1,X2=x2
,

Pbn = P∗X2
= ∑

x1∈X1

P∗X1=x1,X2
.

Now we are going to upper bound the cardinality of Jn(P∗X1,X2
). Let A∗ (resp. B∗)

denote the collection of an ∈ A (resp. bn ∈ B) that appears in Jn(P∗X1,X2
), that is, there exists

bn ∈ B (resp. an ∈ A) such that Pan ,bn = P∗X1,X2
. Then we immediately have

|Jn(P∗X1,X2
)| ≤ |A∗||B∗|. (51)

Let us now turn to upper bound the cardinalities of A∗ and B∗. Since (A,B) is uniquely
decodable, by Proposition 1, for any an ∈ A∗ it must hold that B∗ is an independent set of
Ga1 � Ga2 � · · ·� Gan . Accordingly,

|B∗| ≤ α
(

G
nP∗X1

(1)

1 � G
nP∗X1

(2)
2 � · · ·� G

nP∗X1
(|X1|)

|X1|

)
. (52)

Also, for bn ∈ B∗, we notice that A∗ is an independent set of Hn with type P∗X1
. To be

precise, we have:

|A∗| ≤ α
(

Hn[P∗X1
]
)

. (53)

Therefore we have:

lim sup
n→∞

1
n

log |A||B|

≤ lim sup
n→∞

1
n

log
(
(n + 1)|X1||X2||Jn(P∗X1,X2

)|
)

(54)

= lim sup
n→∞

1
n

log |Jn(P∗X1,X2
)| (55)

≤ lim sup
n→∞

1
n

log |A∗||B∗| (56)

≤ lim sup
n→∞

1
n

[
log
(

α
(
G

nP∗X1
(1)

1 � · · ·� G
nP∗X1

(|X1|)
|X1|

))
+ log

(
α
(

Hn[P∗X1
]
))]

(57)

≤ lim sup
n→∞

min
η,η′∈∆(G)

1
n

[
log
(

η
(
G

nP∗X1
(1)

1 � · · ·� G
nP∗X1

(|X1|)
|X1|

))
+ log

(
η′
(

Hn[P∗X1
]
))]

(58)

≤ lim sup
n→∞

min
η,η′∈∆(G)

1
n

[
∑

x1∈X1

nP∗X1
(x1) log

(
η
(
Gx1

))
+ log

(
η′
(

Hn[P∗X1
]
))]

(59)

≤ max
PX1

∑
x1∈X1

PX1(x1)Θ(Gx1) + Θ(H, PX1), (60)

where (54) follows from (50); (55) follows from the fact that |X1|, |X2| are fixed when n
tends to infinity; (56) follows from (51); (57) follows from (52) and (53); (58) follows from
Theorem 1 that α(G) ≤ minη∈∆(G) η(G) for any graph G; (59) follows from Theorem 1 that
each η ∈ ∆(G) is multiplicative with respect to the strong product; and (60) follows from
Theorem 1 and Lemma 13.

This completes the proof.

In particular, considering the DM-TWC such that |X1| = 2, H = K2, G1 = K|X2| and
G2 = G is a general graph, we have the following result.



Entropy 2021, 23, 1518 22 of 25

Theorem 6. Cze([K|X2|, G; K2, . . . , K2]) is contained in the region{
(R1, R2) : R1 ≥ 0, R2 ≥ 0, R1 + R2 ≤ log

(
|X2|+ 2Θ(G)

)}
.

Proof. Recall that: Θ(Kn) = log(n) and Θ(Kn, P) = H(X). According to Theorem 5, we
have:

R1 + R2 ≤ max
PX1

∑
x1∈X1

PX1(x1)Θ(Gx1) + Θ(K2, PX1)

= max
PX1

{
PX1(1) · log |X2|+ PX1(2) ·Θ(G) + H(X1)

}
= log

(
|X2|+ 2Θ(G)

)
,

where the last equality is achieved by taking PX1(1) =
|X2|

|X2|+2Θ(G) and PX1(2) =
2Θ(G)

|X2|+2Θ(G) .

We remark that Theorem 6 (hence also Theorem 5) could outperform Theorem 2, see
the following example.

Example 3. Consider the channel [K5, C5; K2, . . . , K2] where C5 is the Pentagon graph. It is
well known from [2,12] that Θ(C5) =

1
2 log 5. Then by Theorem 6 we have an upper bound

on the sum-rate R1 + R2 ≤ log(5 +
√

5) ≈ 2.8552, while Theorem 2 only gives an upper
bound R1 + R2 ≤ 2.9069.

5.3. Explicit Constructions

In this subsection, we present explicit constructions of uniquely decodable codebook
pairs which could attain the outer bound of Theorem 6 in certain special cases.

Theorem 7. Let m be a prime power, |X2| = q = ms and G = Km t · · · t Km be a disjoint union

of s cliques. Then C sum
ze

(
[Kq, G; K2, . . . , K2]

)
= log(q + s).

Proof. First by Theorem 6, we have an upper bound on the sum-capacity given by

C sum
ze

(
[Kq, G; K2, . . . , K2]

)
≤ log

(
|X2|+ 2Θ(G)

)
= log(q + s). (61)

Next, we consider the lower bound. Notice that G = Km � Ks. We can reformulate the
channel accordingly as:

[Kq, G; K2, . . . , K2] = [Km, Km; K2, . . . , K2]� [Ks; K1, . . . , K1],

where the first [Km, Km; K2, . . . , K2] corresponds to a channel with input alphabets X (1)
1 =

{1, 2} and X (1)
2 = {1, . . . , m}; and the second [Ks; K1, . . . , K1] is with input alphabets

X (2)
1 = {1} and X (2)

2 = {1, . . . , s}. Together with Lemma 1, we have:

C sum
ze

(
[Kq, G; K2, . . . , K2]

)
≥ C sum

ze

(
[Km, Km; K2, . . . , K2]

)
+ C sum

ze

(
[Ks; K1, . . . , K1]

)
. (62)

On the one hand, it is easy to see that:

C sum
ze

(
[Ks; K1, . . . , K1]

)
= log s (63)
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since this is a clean channel and Alice and Bob could always communicate without error.
On the other hand, by Lemma 10, we obtain:

C sum
ze

(
[Km, Km; K2, . . . , K2]

)
≥ log(m + 1). (64)

In fact, letting q = m, q′ = 2 and τ = 1 in Lemma 10, we have a pair (C, Υ(C)) satisfying
that C is an m-ary [n, k] linear code and Υ(C) ⊆ Fn

2 such that

|Υ(C)| ≥
(

n
k

) ∞

∏
i=1

(1−m−i). (65)

Now let A = Υ(C) and B = C, then it is easy to see that (A,B) is a uniquely decodable
codebook pair with respect to the channel [Km, Km; K2, . . . , K2]. The corresponding sum-
rate is

lim
n→∞

1
n

log |A||B| = lim
n→∞

1
n

(
log mk + log

(
n
k

) ∞

∏
i=1

(1−m−i)

)
= lim

n→∞

k
n

log m + h
( k

n

)
.

Taking k/n = m/(m + 1), we obtain a lower bound log(m + 1) on the best possible sum-
rate, that is, (64).

Combining (62)–(64), we have C sum
ze

(
[Kq, G; K2, . . . , K2]

)
≥ log(m + 1) + log s =

log(q + s), which also implies an explicit uniquely decodable codebook pair for the channel
[Kq, G; K2, . . . , K2] based on the argument of Lemma 1. Then, together with (61), the proof
is complete.

6. Concluding Remarks

In this paper, we investigated the non-adaptive zero-error capacity region of the DM-
TWC and provided several single-letter inner and outer bounds, some of which coincide in
certain special cases. Determining the exact zero-error capacity region of a general DM-
TWC remains an open problem, and clearly a difficult one, since it includes the notorious
Shannon capacity of a graph as a special case. Despite this inherent difficulty, the problem
is richer than the graph capacity setting, and we believe it deserves further study in order
to obtain tighter bounds and smarter constructions.

One appealing direction is to extend the Lovász’s semi-definite relaxation approach in
order to obtain tighter outer bounds, mimicking the graph capacity case. This, however,
does not seem to be a simple task. In particular, one may ask whether the natural quantity
ρ({Gi}, {Hj}) defined in (2), which upper-bounds the one-shot zero-error sum-capacity, is
sub-multiplicative with respect to the graph strong product, in which case it would also
serve as an upper bound for the zero-error sum-capacity. This is however not evident,
in part since the problem (2) is not a semi-definite program. We have also considered
other variations of the program (2). In particular, we have attempted to modify the
non-linear constraints 〈Ei,j, Γ〉〈Ei,m, Γ〉 = 0 to be of a linear form 〈A, Γ〉 = 0 for some
suitable symmetric matrix A. We have also looked at some variants of the orthonormal
representation. For example, we considered the case where each graph vertex a is labelled

by a unit vector va, and if two vertices a and a′ are nonadjacent a b� a′ if and only if b ∈ F
for some set F, then the vector projections of va and va′ onto the subspace spanned by the
vectors in F are orthogonal. However, proving sub-multiplicativity in any of these settings
has so far resisted our best efforts.

It would be also of much interest to consider the adaptive zero-error capacity of
the DM-TWC. Allowing Alice and Bob to adapt their transmissions on the fly can in
general enlarge the zero-error capacity region. As a simple example, note that a point-to-
point channel with noiseless feedback is a special case of the DM-TWC (where Bob has
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no information to send). In [2], Shannon explicitly derived the zero-error capacity with
feedback for the point-to-point channel, and pointed out that for the channel corresponding
to Pentagon graph this capacity is given by log(5/2) ≈ 1.32. This is strictly larger than the
zero-error capacity without feedback (log 5)/2 ≈ 1.16, which can be thought of in this case
as the non-adaptive zero-error capacity of the channel. Exploring the differences between
the adaptive and non-adaptive zero-error capacity regions of a general DM-TWC remains
a challenging future work.
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