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Abstract: In this research article, we motivate and introduce the concept of possibility belief interval-
valued N-soft sets. It has a great significance for enhancing the performance of decision-making
procedures in many theories of uncertainty. The N-soft set theory is arising as an effective mathemat-
ical tool for dealing with precision and uncertainties more than the soft set theory. In this regard, we
extend the concept of belief interval-valued soft set to possibility belief interval-valued N-soft set (by
accumulating possibility and belief interval with N-soft set), and we also explain its practical calcula-
tions. To this objective, we defined related theoretical notions, for example, belief interval-valued
N-soft set, possibility belief interval-valued N-soft set, their algebraic operations, and examined some
of their fundamental properties. Furthermore, we developed two algorithms by using max-AND
and min-OR operations of possibility belief interval-valued N-soft set for decision-making problems
and also justify its applicability with numerical examples.

Keywords: belief interval-valued soft set; belief interval-valued N-soft set; possibility belief interval-
valued N-soft set; algorithms and applications for decision-making

1. Introduction

In real life, the limitation of precise research is progressively being recognized in
various fields such as economics, social sciences, medical sciences, computer sciences,
physical sciences, environmental sciences, management sciences, and engineering. It is
familiar that the real world is full of vagueness, imprecision, and uncertainty, so research
on these areas is of great significance. The solutions to such problems engaged the use of
mathematical principles on the basis of imprecision and uncertainty. This article expands
the scope of applications of one of the theories that can be used to deal with these attributes
or characteristics, namely soft set theory.

In this unrealistic environment, there are many problems related to uncertainty [1-4].
However, the maximum mathematical tools that are in existence are crisp [5]. Numerous
theories have been introduced to explore uncertainty in an efficient way. For instance,
Bayesian network [6], evidence theory [7-9], fuzzy set theory [10,11], intuitionistic fuzzy
set (IFS) [12,13], and gray prediction model [14]. Meanwhile, numerous properties of
these theories have also been studied broadly [14]. In [15], Molodtsov indicates that there
is a difficulty in the fuzzy set and intuitionistic fuzzy set theory, that is, the level of the
membership defined by the individual regarded depends on the knowledge received by
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the individual, in consequence, vulnerable to subjective factors. Additionally, different
attributes in one problem need to be thought about in an integrated manner. A soft
set computing model was developed by Molodtsov [15] to address these restrictions. A
problem considering multiple attributes is a virtue of the soft set theory and it has very
good potential to solve problems and plays a very significant role in various fields [16,17].
Therefore, for soft set theory, many researchers are introducing methods and operations for
it. For instance, the fuzzy soft set theory is an extension of the soft set proposed by Xu [18].

By accumulating soft set theory with the fuzzy set theory, Maji [19] introduced the
notation of FSS (fuzzy soft set), and this theory was used to address decision-making
problems. Generalized fuzzy soft sets were proposed by Majumdar and Samanta [20];
their properties were studied and used to solve problems of uncertainty. Maji [21,22] also
introduced intuitionistic fuzzy soft sets by integrating IFS with the soft set. Dinda [23]
introduced the generalized intuitionistic fuzzy soft sets, belief interval-valued soft sets [24],
generalized belief interval-valued soft sets [25], interval-valued intuitionistic fuzzy soft
sets [26], interval-valued picture fuzzy soft sets [27], interval-valued neutrosophic soft
sets [28], and generalized picture fuzzy soft sets [29]. Further, there are many extension
models of the soft set theory rapidly developed; for instance, possibility fuzzy soft set [30],
possibility m-polar fuzzy soft sets [31], possibility Pythagorean fuzzy soft sets [32], possi-
bility neutrosophic soft sets [33], possibility multi-fuzzy soft sets [34], and possibility belief
interval-valued soft sets [35].

The belief theory was proposed by Dempster and Shafer [35,36]. This theory has
been applied in various fields. For instance, uncertainty modeling [37], uncertainty rea-
soning [14,38,39], decision-making [40,41], information fusion [42,43], and other fields [44].
Fatimah [45] extended the soft set model under a non-binary evaluation environment and
introduced the concept of N-soft set (NSS) and explained the significance of ordered grades
in the practical problems. Furthermore, they also developed decision-making procedures
for the N-soft set. Later on, Akram [46] proposed a novel hybrid model known as hesitant
N-soft set (HNSS) by accumulating hesitancy and N-soft set. Meanwhile, in [47], they also
introduced the concept of fuzzy N-soft set (FNSS) by accumulating a fuzzy set with an
N-soft set. Many problems related to decision-making are discussed by using different
kinds of environments in [48-58]. The developed model gives a more flexible decision-
making method for dealing with uncertainties referring to which specific level is allocated
to objects in the parameterizations by attributes.

In this article, we present the concept of a possibility belief interval-valued N-soft set,
which can be viewable as a possibility belief interval-valued N-soft model. In Section 2,
we review the basic idea concerning the Dempster—Shafer theory and in addition, soft set,
belief interval-valued soft set (BIVSS) and N-soft set are briefly reminded of with examples.
In Section 3, we propose the model of the belief interval-valued N-soft set (BIVNSS).
In Section 4, we discuss some algebraic operations (for instance, restricted intersection,
restricted union, extended intersection, extended union, complement, top complement,
bottom complement, max-AND, and min-OR) on the belief interval-valued N-soft set
and many fundamental properties of these operations are introduced. In Section 5, we
proposed the model of possibility belief interval-valued N-soft set (PBIVNSS). In Section 6,
we introduce many algebraic operations (for example, restricted intersection, restricted
union, extended intersection, extended union, complement, top complement, bottom
complement, max-AND, and min-OR) on possibility belief interval-valued N-soft set, and
various fundamental properties on these operations are also discussed. In Section 7, we
develop algorithms on max-AND and min-OR operations of possibility belief interval-
valued N-soft sets for decision making. Then in Section 8, we present the applications
on decision-making problems that yield the optimum solution. While in Section 9, we
conclude the article.
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2. Preliminaries

In this section, a short review of basic definitions and relevant theories are given, which
we used to develop the methods introduced in this paper. There are several problems
related to uncertainty in this real-life [59-61]. The Dempster-Shafer theory has been broadly
used in dealing with the uncertain problems [62,63]. The Dempster-Shafer theory is a
generalized scheme for demonstrating uncertainty. Dempster proposed a belief measure
theory that developed lower and upper probabilities of a system while Shafer provided a
thorough belief function explanation.

Definition 1. Let Y be a finite set of frame of discernment (hypotheses), 27 be the set of all
subsets of Y and 3 C Y. The belief structure of Dempster-Shafer is associated with a mapping
£ :2Y — [0,1] such that

E@)=0, Y ) =1,

Ye2y

is the basic probability assignment function, where £ (Y)) indicates the belief values of ). For which
subsets of Y mapping allot non-zero values are known as focal elements [24].

Basic probability assignment has various operations for instance divergence [64], entropy
function [65—67], and others [68].

Definition 2 ([35]). The measure of belief function associated with & is determined as a mapping
Bel : 2Y — [0,1] such that for any subset Z of ),

Bel(2) = 2 Ag(j;).
>£YCZ

Definition 3 ([35]). The measure of plausibility function associated with £ is determined as a
mapping Pl : 2Y — [0,1] such that for any subset Z of ),

PI(Z)= Y &)

InZ+£d
Obviously, Bel(Z) < PI(Z). The interval [Bel(Z), PI(Z)] is called belief interval (BI) [69].

Definition 4. Let U be the non-empty universal set of objects and E be the set of attributes, for any
non-empty set K C E. A pair (A, K) is called soft set over U if there is a mapping A : K — 2U
where 24 denotes the set of all subsets of U.

Thus, the soft set is a parametric family of the subsets of a universal set. For each k; € K,
we can interpret A(k;) as a subset of universal set U. We can also consider A(k;) as a mapping
A(k;) : U — {0,1} and then A(k;)(u;) = 1 equivalent to u; € A(k;), otherwise A(k;)(u;) =
0 [45]. Molodtsov considered many examples in [15] to illustrate the soft set.

Definition 5. Let U be the non-empty universal set of objects. Let BIY denote the collection of all
belief interval-valued subsets of U and E be the set of attributes, for any non-empty set K C E. A
pair (B, K) is called a belief interval-valued soft set over U (in short BIV'SS) if there is a mapping
B: K — BIY. It is represented as:

Uu; ) )

where BIB(kj)(u,») = [BelB(kj)(ui),PlB(kj)(u,»)],BelB(kj)(u,») € [O,l],PlB(kj)(ui) € [0,1], and
0< BelB(k]_)(u,-) < PlB(k]_)(ui) <1 forallu; € U.
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Example 1. Let U = {uq, up, u3, ug, us} be the set of universe, E = {ky,ky, k3, ks } be the set of
attributes, and K C E such that K = {ky,ka}. Then BIVSS over U is:

u u u u u u
Blk) = {[0.5,11.01' 04,07 02,04 } Blk2) = {[0.2,10.7}’ 01,08’ [03,09] }

Definition 6. Let U be the non-empty universal set of objects. Let 21 denote the set of all subsets
of Uandlet R = {0,1,2,...,N — 1} be a set of ordered grades where N € {2,3,4,...} and E are
the set of attributes, for any non-empty set K C E. A triple (C,K, N) is called N-soft set over U
if there is a mapping C : K — 2U%R with the property that for each kj € K there exists a unique
(i, rij) € (U x R) such that (u;,r;j) € C(k;), kj € K, u; € U and r;j € R, where 2"*R is the
collection of all soft sets over U x R [45].

Example 2. Let U = {uy,up, uz} be the set of students, E = {kq, ko, k3,ka,ks} be the set of
attributes evaluations of students by skills, and K C E such that

K = {ky = communication skills, ks = collaboration skills, ks = critical thinking} and
let R ={0,1,2,3,4,5} be the set of grade evaluation. Then, (C, K, 6) is the 6-soft set as follows:

Clky) = {(u1,4), (u2,2),(u3,3)}, Clks) = {(ul,Z),(uz,l), (u3,5)}, and C(ks) =

{(1,5), (,3), (13,0) }.
It can also be represented in tabular form as follows:

(C,K,6) kq ks ks
uq 4 2 5
U 2 1 3
U3 3 5 0

For illustration, the above table is of a 6-soft set (C, K, 6) established on communication
skills, collaboration skills, and critical thinking of the students. Where in the top left cell
4 is the ordered grade (r11) of the student 17 with respect to k; = communication skills.
Similarly, in the bottom right cell, 0 is the ordered grade (r35) of the student u3 with respect
to ks = critical thinking. Here, 0 is the lowest grade; it does not mean that there is no
evaluation or incomplete information. There are many examples to illustrate the N-soft set
in [45].

3. Belief Interval-Valued N-Soft Set (BIVNSS)

In this section, we derive some basic concepts of a new extended model of a belief
interval-valued N-soft set with examples from real practice.

Definition 7. Let U be the non-empty universal set of objects and E be the set of attributes, for any
non-empty set K C E and let BIY denote the collection of all belief interval-valued subsets of U and
R ={0,1,2,...,N — 1} be a set of ordered grades where N € {2,3,4,...}. A triple (A,K,N)
is called a belief interval valued N-soft set over U if there is a mapping A : K — BIY*R where
BIY*R js the collection of all belief interval-valued soft sets over U x R. It is represented as:

(ui, 7ij)
Alk) =4 —"97 _1(u;ri;) e (UxR) Yy, Vki e KCE,
(k;) {BIA@.)(ui,nj) | (wi7ip) € (UXR) ¢, VK

where,

BIA(kj)(ui/rij) = [BEZA(k/)(uirrij)rPlA(kj)(ui/ri]’)]/BEZA(kj)(ui/rij) c [0, 1]
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(AK,5) = { (kl, (

and

PlA(k]-) (ui, 1’1']‘) S [0, 1],0 < BEZA(k]_) (le‘, rij) < PlA(kj) (Ml‘, 1’1']') <1;Vu;eUand rij € R.

Example 3. Let U = {uq,up,uz} be the universe of gardens, R = {0,1,2,3,4} be the set of
grade evaluation, E = {k; = Rose, ky = Tulip, k3 = Jasmine, ky = Daf fodils} be the set of
attributes (evaluation of gardens by flowers), and K C E such that K = {ky, k3, ks }.

Thus, (A, K, 5) is the belief interval of 5—soft set as follow:

(up,0)  (u3,4) (u1,2)  (up,4)  (us,1) (u1,1)  (u2,3)  (u3,2)
(04,0.8] [0.12, 0.7 [0.5% 0.8] )) (k3’ ( [0.31,0.5] ’ [0.82, 09]" [0.231 0.4] )) (k4’ ( [0.71, 09] [0.32, 0.8] [0.43, 0.7] )) }

4. Operations on BIVNSS

In this section, we discussed some algebraic operations on belief interval-valued
N-soft set and their properties.

Definition 8. Let U be the non-empty universal set of objects. Given that (B, K, M) and (C,L,N)
are two BIVNSS on U, their restricted intersection is defined as:

(D,T,0) = (B,K, M) Ng (C,L,N),
where D = BNrC, T=KNL#*® and O = min(M,N),i.e., Vtpe TAu;=U,

(ui, 7ij)

e D(t) & 1y =min(rk,12),
Blp ;) (ui, 1ij) ! v vy

Blp () (i, 7ij) = [Belps;) (ui, rij), Plps;) (i, 7if)
where,
[BeZD(tj)(ui/rij)/PlD(tj)(uirrij)] = [min(BelD(tj)(ui,rl-lj),BelD(tj)(ui,rl-zj)),
min (PZD(tj) (u;, r}j), Plp () (u;, r%))} .

(ui/r,z]')

[BelD(t]-)(u,',r?j),PlD(t]_) (u,-,r].z].)]

(uirr;'l]‘)
[BelD(t]-)(HM}]-)'PIDU]-)(MM}]-)]
K and t]2- e L.

€ B(t}) and € C(12) with t] €

Definition 9. Let U be the non-empty universal set of objects. Given that (B, K, M) and (C,L,N)
are two BIVNSS on U, their restricted union is defined as:

(E,T,P) = (B,K, M) Ug (C,L,N),
where E=BUrC, T=KNL and P =max(M,N),i.e., Vti € Tand u; = U,

(ui, 7ij)
—— I cE(t) & 1 =max(r},17),
BIE(tj)(ui/ i) ! v vy

Blg(s,) (ui, rij) = [Belps) (i, ij), Ple ) (i, ij) ]
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where,
[BEZE(t],) (uir rij)/ PlE(t]') (ui/ 1’1‘]‘)} = {max (BEZE(tj) (Mj, 1’11]‘), BeZE(tf) (ui’ 712])) ’
max (PZE(t].) (ui, Vilj), PlE(t]-) (ui, V?,))} :
() € B(t!) and (i) € C(t) with tj €
[BEIE(tj) (i) Pl ()] ! [BCZE(tf)(”’"rlzf)’PlE('ﬂ ()] : :
K and t]z € L.

Definition 10. Let U be the non-empty universal set of objects. Given that (B, K, M) and (C,L,N)
are two BIVNSS on U, their extended intersection is defined as:

(F,S,P) = (B,K, M) Ng (C,L,N),

where F = BNgC, S = KUL and P = max(M,N),i.e., Vsj € S, u; = U with s} €
K, and sjz €,

B(s}) , if s;e K—1L,
F(sj) = C(sjg) , ifsieL-K,
B(s})ﬂRC(SJZ) , if sie KNL.

Definition 11. Let U be the non-empty universal set of objects. Given that (B, K, M) and (C, L, N)
are two BIVNSS on U, their extended union is defined as:

(H,S,P) = (B,K, M) Ug (C,L,N),

where H = BUgC, S = KUL and P = max(M,N),i.e., Vs; € S,u; = U with sjl- €
K and s]z €L,

B(s}) , if sie K—1L,
H(s;) = ¢ C(s7) , if s;e L-K,
B(sjl-) UR C(s]Z) , if sje LNK.

Example 4. Let U = {uq,uy,uz} be the set of Covid-19 patients, E = {ky = tiredness, ky =
skin rashes, k3 = dry cough, kq = shortness of breath} be the set of attributes and K,L C E
such that K = {ky, ks, ks}, L = {kyi,k3}. The BIVNSS are defined as follows:

(B,K,5) = {(k]’ ( [(u1,1) (12,4)  (u3,2) ))’ (k3, ( [(ul,?)) (up, 1) (u3,4) )>,

0.3,0.8]" [0.1,0.5] [0.8,0.9] 0.1,05]" [0.3,0.4]' [0.5,09]

2 4 ,3
(s (i o o)) |

_ (u1,0)  (u2,1) (u3,3) (11,2)  (u2,2)  (u3,0)
(G L4) = { (kl’ ( [0.31,0.7]’ [0.12,0‘4]’ [0.73, 0.8] )) (k3’ ( [0‘51,0.8]’ [0.42,0.9}’ [0,73, 0.8] )) }
Then their restricted intersection is:
. (u1,0)  (u,1)  (u3,2) (u1,2)  (up,1)  (u3,0)
(D,T,4) = { (kl' ( 03.07]' 01.04]' 07 08 )) <k3' ( 01.05]" 03.04]" 05.08] )) }
their restricted union is:

(u1,1)  (up,4)  (u3,3) (u1,3)  (u2,2)  (u3,4)
(E,T,5) = { (kl' ( 03.08]' 01.05]' 08,09 )) <k3' ( 05.08]" 04.05]' 07,.05] )) }




Entropy 2021, 23, 1498

7 of 37

their extended intersection is:

(u11,0)  (up,1)  (u3,2) (u1,2)  (up,1)  (u3,0)
(F,5,5) = { (k“ ( 03, 097]' o1 01.4} 07 02.8] )) (k3' ( 01 02.5]' 03, 01.4}' 05 00.8] ))

(k ((m,z) (12,4)  (u3,3) )>
#\[0.3,0.7]” [0.4,0.6]” [0.3,0.8] ‘
their extended union is:

_ (u1,1)  (up,4)  (u3,3) (u1,3)  (u2,2)  (us,4)
(H,$,5) = { (kl' ( 03.08]’ 01.05]’ 08.09] )) ("3' ( 05.08]’ 04.05]' 07,05] ))

(ko (s et o)) }

Definition 12. Let (A,K,N) be a BIVNSS on a non-empty universe U. Then a weak belief
interval-valued complement is denoted by( A<, K, N) where A°(k;) N A(k;) = ®; Vk; € Kand
A€ (k;) is defined as:

Ac(kj) = {(ul’rl])) (ul-,rl-]-) e U x R}.

BIAC(k]') (u,‘, Tij
where, BLac (k) (i, 1) = [1— Plag;) (ui, 7ij), 1 — Bel g i (i, 135)]

Definition 13. For any BIVNSS (A, K, N) on U. The bottom weak belief interval-valued com-
plement (A<, K, N) of (A, K, N) is defined as: (A<,K,N) = A(k;) =

(11,0)
[1_PZA(kj) (ui,rij),l—BelA(kj) (ui,rij)]

(Lli,Nfl) 1 =
, 1fr~ = 0.
[1_P1A(kj)(ui/rij)ll_BElA(k]')(ui’rij)] 1y

, if rij >0,

Definition 14. Forany BIVNSS (A, K, N) on U. The top weak belief interval-valued complement
(A7, K,N) of (A, K, N) is defined as: (A~,K,N) = A(kj) =

(i, N—1) , lf Tij < N-—-1,
[1*P1A(k]->(”izfij)/lfBelA(kj)(Mi/ij)}
(u,',O) P lf 7’1']' = N — 1

[1*P1A(k]-> (i rij) 1= Bel oy (uiri) |

Example 5. Consider (A,K,5) as described in Example 3 then its weak belief interval-valued
complement is:

c . (u1,3)  (up,0) us, 4 (u1,2)  (up,4) us, 1
(4% K,5) = { <k1' ( 02,06 [0.3,0.9]" [02,05] )) <k3' ( [05,07]’ [01,0.2]" [0.6,08] ))
(Ml, 1) (Mz, 3) u3,2
(k4’ ( [0.1,0.3]” [0.2,0.7] [0.3,0.6] )) }
its bottom weak belief interval valued complement is:

(A<.K.5) = {(kl,([wl,m ) 030))) (i, (W0 (00 630 ))

02,0.6]’ [0.3,0.9]" [02,0.5] [0.5,0.7]’ [0.1,0.2] [0.6,0.8

(o (s oy, s )
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its top weak belief interval-valued complement is:
> _ (ur,4)  (u2,4)  (u3,0) (u1,4)  (u2,0)  (u3,4)
(A7 K5) = {(kl' (0206 0309 0205 )) (ks' (05077 0t 02" 0608 ))
(u1,4)  (u2,4)  (us3,4)
<k4' ( [0.11,0.3] ’ [0.22, 0.7]’ [0.33, 0.6] )) }

Definition 15. Soft max-AND operation of two BIVNSS (B,K, M) and (C,L,N) (where B :
K — BIY*R gnd C : L — BIY*R) defined as:

(B,K, M) A (C,L,N) = (G,K x L,P),
where, G : K x L — BIY*R; V(ky,1,) € (Kx L), s',t' € A, and P = max(M,N),
(Ui, Tigs 1))

Blgx, 1) (tisTisr )
Blgk,1,) (Wi Tigsr 1)) = [Beliy 1) (tir Tist ) Pla k1) (Mis Tigst 1)) ]-

G(ksl,lt/) S ) == ri(s’,t’) = max(ril(s’,t’)’ rzz(s’,t’))’

—~

where, [Belg 1) (i, Ti(s 1)) Pla e, 1,y (Wi Tigsr 1)) ] =

(BEZB(kS/) (uis ri(s 1)) + Bele,) (ui, ri(s’,t’))) -

WIN

max { Belp ) (ui, ti(sr 1)), Belc, ) (i Tigsr 1)) }
(PZB(kS/) (uis rigs 1)) + Pleq,) (i ri(s’,t’))) -

max{ Py, (1, 7y ), quzt,)(ui,n(s/,ﬂp}}

QJM—\U)\NQJM—\I—|

with (u;, r}(s,,t,)) € B(K) and (u;, 1> ", t,)) e C(L).

Definition 16. Soft min-OR operation of two BIVNSS (B, K, M) and (C,L, N) (where B : K —
BIY*R gnd C : L — BIY*R) defined as:

(B,K,M)V (C,L,N) = (Q,K x L,0),
where, Q : K x L — BIY*R; V(ky, 1) € (Kx L), s',# € A, and O = min(M, N)

(ul/ Ti(s, t’))
BIgk,,1,) (Wis Tisr 11y
Bl (i it ) = [Belge,,1,) (Wi Ticst ), Ploge, 1) (i Tigsr 1)) ]-

Q(ks// lt/)

— i (1 2
) 4 Tis' ¢y = mzn(ri(s/,t/), ri(s/,t/))’

where,
[Belok, 1,y (Wi Tigsr 1)) Ploe, 1) (is Tigst 41y)] =
E (Belig, (1t o)) + Bl (i igor ) ) —
%min{BelB(ksl)(uirri(s’,t’)> Belc(, (ui, v (sf,y))},
% <PZB(kS/) (ui, rigsr 1)) + Pleq,,) (i ri(s’,t’))) -
;min{PlB(ks/)(uirri(s’,t’))/PlC(lt,)(ui/ri(s’,t’))}]
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with (u, v} i, ))GB( ) and (uj, 1> i, ))GC( ).

Example 6. Consider (B,K,5) and (C,L,4) as described in Example 4, then their soft max-

AND is:

(ug,1) (up,40)

_ (us,3)
(GJ<XL5)"{<“1kﬂ <m3007ﬂ m1004ﬂ’m7;08ﬂ>>’

their soft min-OR is:

(uq,2) (up,4)

[0.37,0.80] " [0.20,0.63]’

u12 u24

(u3,2) >
[0.73,0.83]

[0.30,0.70] [0.20,0.47]’

uy,2) (ua,4)

M33 >
[0.43,0.80]

M33

(uq,3) (u,1)

]’ [0.43,0.80]
u34

0.17,0.57]" [0.17,0.40]’

(u1,3) (u2,2)

0
[0.57,0.83]

u34

(1w
(100
(o) (o o070y
(1w
(ko

[0.23,0.60] " [0.30,0.57]"

)
)
))
)
)

[0.57,0.83]

|

(QKXLA)_{<““hx<mg8§%]m?gg%]m;ggw )
<k1k3 (mi;;80 m;g§76 0;?S%Q)>
<“h Qﬁ&%@p%ﬁ% OQSM))
<“k3<m£5% mﬁgm oﬁﬁw))
< ks k), ( 0. 21131 0063 ]’ [o. 21432 01 40]” [0. 61433 0386] )>
<k3k3 (mgg;m méggm (¢§§%0>}

Proposition 1. Given that (B,K,M),(C,L,N), and (D, T,O) are any three BIVNSS on U,
then the commutative and associative properties are held:

1) (B,K,M)Ng (B,K, M) = (B,K, M),

2) (B,K,M)Ng (B,K, M) = (B,K, M),

(3) (B,K,M) U (B,K, M) = (B,K, M),

4) (B,K,M)Ug (B,K,M) = (B,K, M),

(5) (B/ Kr M) NE (Cr L/ N) = (Cr L, N) NE (Bl K, M)/

6) (B,K,M)Ng(C,L,N) = (C,L,N)Ng (B,K, M),

(7) (B,K,M)Ug (C,L,N) = (C,L,N) Ug (B,K, M),

(8) (B,K,M)Ug (C,L,N) = (C,L,N) Ug (B,K, M),

(9 (B,K,M)nNg ( (C,L,N)ng (D, T, O)) ((B,K,M) Ne (C,L,N) ) Ne (D, T,0),
(10) (B,K, M) Ny ((c L N)Ng (D, T,O)) - ((B,K,M) N& (C,L,N) ) N& (D, T,0),
(11) (B,K, M) Ug ((c L, N) Uk (D, T,O)) = ((B,K,M) Ug (C,L,N) ) Ug (D, T,0),
(12) (B,K, M) Ug ((c L,N) Ug (D, T,O)) = ((B,K,M) Ur (C,L,N)) Ur (D, T,0).

Proof. (1)—(8) follows from the definition. (9) Let (C,L, N) and (D, T,O) (where C : L —
BIY*Rand D : T — BIY*R) be two BIVNSS. By the definition of extended intersection
we have (S, V, Z)(where S : V — BIY*R) such that,

(S,V,Z) = (C,L,N)ng (D, T,0),
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where S = CNg D, V = LUT, Z = max(N,O) ;Yo; € V with v} € Land 0]2 €T,
C(Ul) , if UjGL—T/
S(Uj) _ D(UZ) , if vj € T—1L,
C(v]{)ﬂR D(v]Z) , if ;e LNT.

As, (B,K, M) Ng ((C, L, N)Ng (D, T,O)) = (B,K, M) N (S,V, Z). Suppose that (B, K, M)

Ne (S,V,Z) = (G,W, X) such that G : W — BIY*R, where G = BNgS, W = KUV =
KULUT, X =max(M,Z) ; Yw; € W withw] € K,w; € Landw? € T,

B(w]l) ,ifZUjEK—L—T,
C(w?) , if w e L-K-T,
D(wj) , if wjeT-K-L,
G(wj) = C(w]‘)ﬂRD(wj) , if w;e LNT K,
B(w;) Ng C(w}) , if w e KNL—T,
B(w;) Mg D(w?) , if wj e KNT-L,
B(w}) Nr C(w7) "r D(w?) , if wje KNLNT.

Again, let (B,K, M) and (C,L,N) (where B : K — BIU*R and C : L — BIY*R) be two
BIVNSS. By the definition of extended intersection we have (F,S, P) where (F : S —
BIU*R) such that,

(F/S/P) = (B/K/M) ME (C/L/N)/

where F = BNgC, S = KUL, P =max(M,N); Vs; € Swiths} € Kand s? € L,

B(s;) , if s;e K—L,
F(sj) =< C(s?) , if sje L—K,
B(s]l)ﬁRC( :) , if sje KNL.

As, [ (B,K, M)Ng(C,L,N))ng(D,T,0) = (F,S,P)Ng (D, T,O). Suppose that (F,S, P) N\
pp

(D,T,0) = (I,W,X) such that I : W — BIY*R where | = FNgD, W = SUT =
KuLuT,xzmax(P,O);ijeWwithw}eK,w}eLandw]?eT,

B(w)) , if weK—L—T,
C(wy) ,ifwjeL—K-T,
D(w?) , if w e T—K—1L,
(w;) = C(wjé) Nk D(wj’) ,if wpe LNT —K,
B(w;) Ng C(w}) ,if wje KNL—T,
B(w;) N D(w?) ,if wje KNT—L,
B(w!) Nk C(w?) Ng D(w?) , if wj € KNLNT.

Then G(w;) = I(w;), Vw; € W. Hence, (9) is held, (10)-(12) are similar to (9). O

Proposition 2. Given that (B,K, M) and (C, L, N) are any two BIVNSS on U, then the following

results hold:

(1) ((B),K,M) = (B,K,M),

(2) (BSK, M) Ug (CC L,N) = ((B NeC), (KUL), max(M,N)),
(3) (BS,K,M)Ng(C5L,N)= ((B U C), (KUL),m x(M,N)),
(4) (B K,M)Ugr(C°L,N)= ((B NrRC)S,(KNL),m x(M,N)),
(5) (BS,K,M)Ng(C°L,N) = ((B Ur C)¢, (KNL),min(M, N )
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Proof. (1) is straight-forward. We start from (2), let (B,K, M) and (C,L, N) (where B :
K — BIY*R C: L — BIY*R) be two BIVNSS on U. Then by the definition of weak belief
interval-valued complement and extended union we have,

(B, K, M) Ug (C*,L,N) = (J,5,P),

where | = B°Ug C%, § = KUL, P = max(M,N);Vs; € Swiths} € Kand s € L,

BC(s}) , if sje K—1L,
I(s;) = CC(S{Z-) , if sje L—K,

BS(sj) UpC*(s7) , if s; € KNL.

Again by the definition of extended intersection we have (F,S,P) = (BNgC), S =
KUL, P= max(M,N);Vsj € S with s} € Kand 5]2 elL,

B(s}) , if s;eK—1L,
F(sj) = C(S{Z) , if sje L—K,

B(s) N C(s7) , if s; € KNL.

Thus, by the definition of weak complement we have,

B(s}) , if s;eK—1L,
F(sj) = CC(S{Z) , if sje LK,
Cc

B (sj)UECC(s]Z) , if s;€ KNL.

Then, J(s;) = F°(s;); Vs; € S. Hence, (2) holds, and (3)~(5) are similar to (2). O

5. Possibility Belief Interval-Valued N-Soft Set (PBIVNSS)
In this section, we defined the notion of possibility belief interval-valued N-soft set.

Definition 17. Assume that BIY is the set of all belief interval-valued subsets of U and E is the
set of attributes, for any non-empty set K C E. The pair (U, K) is called a soft universe, and
R =1{0,1,2,...,N — 1} is a set of ordered grades where N € {2,3,4,...}. Let B : K — BIY*R,
and b is a belief interval-valued subsets of K, i.e., b : K — BIY*R where BIY*R is the collection
of all belief interval-valued soft sets over U x R. A triple (By, K, N) is called a possibility belief
interval-valued N-soft set over (U, K) if there is a mapping By, : K — BIY*R x BJUXR_ [t js
represented as:

By (kj) (ui, 1ij) = { [Belp k) (i, 7ij), Plyr (i, 7ij) ) [ Belyqry (i, 7if), Pl (1, 7’1’]’)]}
such that (u;,rij) € U x R forallk; € K C E.

Example 7. Let U = {ul, Uj, 1/[3}, R = {O, 1,2,3,4,5,6},E = {kl, kz, k3,k4} and K - E such
that K = {kq,ka,k3}. Then,(By, K, 7) is the possibility belief interval of 7—soft set as follows:

(By,K,7) = {(kl, ({ (u1,1) (12,5) (u3,2) >>

0.3,0.8],[0.3,0.7] [0.3,0.4],[0.1,0.5] " [0.4,0.6],[0.3,0.5]

<k< (11, 4) (12,0) (13,6) >>
2\10.6,0.7],[0.5,0.7]” [0.1,0.8],[0.7,0.9] [0.6,0.8], [0.4,0.7] / }*

(1o (gt (12,3) (13,5) >>}
% 170.1,0.2],[04,0.5]’ [0.8,0.9],[0.7,0.8] [0.8,0.9], [0.3, 0.6] ‘
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6. Operations on PBIVNSS

In this section, we discussed some algebraic operations on a possibility belief interval
valued N-soft set and their fundamental properties.

Definition 18. Let U be the non-empty universal set of objects. Given that (By, K, M) and
(Yy, L, N) are two PBIVNSS on U, their restricted intersection is defined as:

(D4, T,0) = (B, K, M) Mg (Y, L, N),

where D = BNRY, d =bnNgy, T =KNL # ® and O = min(M,N), i.e., vt €
Tandu; = U,

(ui,1if)
Blp s, (i, rij), Blagr,) (i, 7ij)

€Dy(t) & rij= min(r}j, rlzj),

Blp ) (ui rij) = [Belps)) (ui,ij), Plpgs;) (ui, 7ij)],
Blys;) (ui, rif) = [Belyqs;) (i, vig), Plage;) (i, vif) ]

where,
[Belps)) (i, ij), Plps;) (ui, rif) | = [ml”(BEZD(t)(uu i), Belpy) (ui, 7; )),
min(PlD(tj)(uz, ), PZD(t)(ul, ))}

and
[Belgqy (i, 7ij), Plyge) (i, i) | _[min(Beld(tj)(uzr i;), Belyy )(Mi,ffj))/

min(Pld(t],)(u,, )Pld(t)(uu ))]

If((ul-,rl.lj), [BelD(t]_)(ul, ), PZD( )(MI, )} [Beld( )(ul, ) Pld( )(ui,r}j)}) € Bb(i’]l») and

((u,-,rizj), [BelD(t)(u,, "), Plp;, 3 (w73 )] [Beld( 3 (w73 ) Ply )(ui,rlzj)]> € Yy(t]Z), with
t}eKandtjz-eL.

Definition 19. Let U be the non-empty universal set of objects. Given that (By, K, M) and
(Yy, L, N) are two PBIVNSS on U, their restricted union is defined as:

(Ee, T, P) = (By, K, M) Ug (Yy, L,N)
where E=BURY,e=b Ug y, T=K N Land P = max(M,N),i.e., th € Tand u; = U,

(Mi/rij)
BIE(tj)(uirrq) Bl )(uzrrq)

€ Ee(tj)) & rij= max(rl-lj, rlzj),

Blg(,) (ui rif) = [Belg(s)) (i, 7ij), Ple(s;) (ui, vif) ],
Bl (ui, 1ij) = [Bel,; (i, 7ij), Pl 3 (w1 ).
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where,
[BelE(tj)(ui,rij),PlE(tj)(u,»,rij)] —[max(BelE(t])(ul, ) BelE( )(ui,rizj)),

max(PlE(t])(ul, ), Plgs )(ui,riz]-)>]

and
[Bel, (t)(ul,rl]) Ply, S (ui, )] = [max(BeZ( ) (g, 7} ) Bel,(;, 3 (i, zj))/

max(Pl( U ) Pl( S (ug, ]))]

If <<Mi,7’l-1]->, [BelE(t)(ul, ) PZE( )(Ml, )} [Bel( )(Lll, ) Pl( )(Lll, ll])}) € Bb(t]l) and
<(ui,r?]-), [Belpy) (i, 17), Pli() (ui 135)], [Beloqey) (i, 75), Ploge,) (i, 1]’)]) € Yy(#2), with

t}EKandt]ZGL.

Definition 20. Let U be the non-empty universal set of objects. Given that (By, K, M) and
(Yy, L, N) are two PBIVNSS on U, their extended intersection is defined as:

(Ff/ S, P) = (Bb/Kr M) ME (sz L, N)

where F = BNgY, f=bNgy, S=KUL and P = max(M,N),i.e., Vsj € S, u; =
U with s}eKandsjzeL,

By(s}) , if sje K—1L,
Fe(sj) =< Yy(s7) , if sje L—K,
B(s]l)mRY( 5) L if sje LNK.

Definition 21. Let U be the non-empty universal set of objects. Given that (By, K, M) and
(Yy, L, N) are two PBIVNSS on U, their extended union is defined as:

(Hy, S, P) = (By, K, M) Ug (Y,,L,N)

where H=BUrY, h=bUgy, S=KUL and P =max(M,N),i.e., Vs; € S,u;=U, u; =
Uwithsjl- € Kandsjz €L,

By(s)) , if sje K—1L,
Hy(s;) = ¢ Yy(s7) , if sje L=K,
B(s]l)l_lRY( 5) L if sje LNK.

Example 8. Let U = {uy,uy,us}, E = {ki,kp k3, ky} and KANL C E such that K =
{k1,kp,k3}, L = {ko, kys}. Then PBIVNSS are defined as follows:

(B, K,7) = {(k]’ ({ (u1,1) ) (u2,5) ) (u3,2) >>,

0.3,0.8],0.3,0.7]" [0.3,0.4],[0.1,05] [04,0.6],[0.3,0.5]

(k < (u1/4) (MZ,O) (M3,6) ))
2\ 106,0.7],05,0.7]” [0.1,0.8], [0.7,09] [0.6,0.8],[0.4,0.7] ) )’

(k ( (M1,6) (M2,3) (”3/5) ))
3\[0.1,0.2],[0.4,0.5]" [0.8,0.9], [0.7,08] ' [0.8,0.9],[0.3,0.6] /) [
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(u1,2)

(up,1)

Yy L,6) = { (kz’ ( 02, 0.6],,[0.4,0.5}'

(ul,O)

[0.2,0.5],[0.1,0.7]

(u2,5)

(u3, 4)
[0‘2,0.7]3, [?).3, 0.7] ))

<k4’ ( [0.6,0.9],[0.5,0.8]

Then their restricted intersection is:

(11,2)

[0.5,0.7],]0.4,0.8]

(uz,O)

(us,3
[03, 0.;[]3, [0?1,0.9] >> }

(Da, T,6) = { (kz' ( [0.2,0.6],,[0.4,0.5]’

their restricted union is:

(u1,4)

[0.1,0.5],[0.1,0.7]

(u2,1)

uz, 4)
02, o§7]3, [?).3,0.7} >> }

(E.,T,7) = {( ([o(, 0.7],[0.5,0.7]

their extended intersection is

(u1,1)

[0.2,0.8],[0.7,0.9]

(ng, 5)

0.6, 0%}3,/[3?4, 0.7] ) ) } '

(Ff,S,7) = {("1' ( 0.3,0.8] /[03 0.7)’

2
ka, (m,

0.3,0.4],[0.1,05] |

(u2/0)

(u3,2) >
[0.4,0.6],[0.3,0.5]

0.2,0.6], [04 05"

[0.1,0.5],[0.1,0.7] |

(“2/ 3)

Ll35

M10

0.8,0.9],[0.7,0.8] |

(le, 5)

[0.8,0.9],[0.3,0.6

(k2 (
(k3 (01031[3405]
<k4 (06 0.9],[0.5,0.8]"

their extended union is:

[05,0.7],0.4,0.8] |

)

02, 0313[33 0.7] ))
))

(us, 3) >>

[0.3,0.9],[0.1,0.9

(Hy,S,7) = {Zq

ks,

u10

(u2,5)

Ll33

(u1,1) (u2,5) (u3,2) ))
[0.3,0.8], [0.3,0.7]’ [0.3,0.4],[0.1,0.5] [0-4,0.6], [0.3,0.5]

uy,4) (u2,1) (u3,6) ))
[0.2,0.8],[0.7,09] [0.6,0.8], [0.4,0.7]

(u1,6) (12,3) (u3,5) ))
[0.1,0.2], [0.4,05]” [0.8,0.9],[0.7,0.8] [0.8,0.9], [0.3,0.6]

ks,

(1 (
<k2([0607 1,[05,07]"
(1 (
(ke (

[0.6,0.9],[0.5,0.8]

[0.5,0.7],0.4,0.8]"

)}

[0.3,0.9],[0.1,0.9]

2

Definition 22. Let (By, K, N) bea PBIVNSS on a non-empty universe U. Then a weak possibility

belief interval-valued complement is denoted by (Bj,., K, N') where Bj. (k;) N By(k;) =

and B, (k;) is defined as:

(ui, 7’1’]’)

B (k;
be ki) = {BIBC( o (i, 7i), Bl i (1, 7

where, BIBC(kJ)(uurz])

Blye i) (i, i) =

[1 = Ply) (ui, rij), 1

[1 — Plb(k]-) (ui, 7’,‘]‘), 1

) (ul-,ri]-) elUx R},

_ BelB(k],)(u,‘,i’i]')},

— Belb(k],) (ui, 1’1’]‘)] .

D; Vk] €K

Definition 23. For any PBIVNSS (By, K, N) on U. The bottom weak possibility belief interval-
valued complement (B,*, K, N) of (By, K, N) is defined as:

(B, K,N) = By(kj) =

(”i/o)

BIBC(kj)(ui/rij)lBlbc( ]> u; 7‘1]

(u;,N—

1)

Blpek; (u i) Blye 1

Jf rij >0,

S ¢ F i = 0
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Definition 24. For any PBIVNSS (B, K, N) on U. The top weak possibility belief interval-
valued complement (B, , K, N) of (By, K, N) is defined as:

(”irN*l) ifv.. —
o Bk — Blpe i) (uisrig) Blye ) (tioris) ffrij < N—1,
(B, K, N) = By(kj) = (1,0) ro— N—1
Blge i) (wiori) Blye ) (iori) frij = ’

Example 9. Consider (By, K,7) as described in Example 7, then its weak possibility belief interval-
valued complement is:

. _ (u1,1) (u2,5) (u3,2)
(Bje, K, 7) = { (kl' (9207105077 06,071.105,09]° 04,061 105,071 ))

(k( (11,4) (12,0) (13,6) )>
2\10.3,0.4],]0.3,0.5]” [0.2,0.9],[0.1,0.3]" [0.2,0.4],[0.3,0.6] / )’

(k ( (u1'6) (qu 3) (u3/ 5) )>
\10.8,0.9],[0.5,0.6]” [0.1,0.2],[0.2,0.3]" [0.1,0.2], [0.4,07] /) [

its bottom weak possibility belief interval-valued complement is:

- . (u1,0) (uz,0) (u3,0)
(B, K.7) = { <k1' (0207105077 06.07.105.05]' 04,06 105071 ))

<k ( (ul,O) (H2,6) (“3/0) >>
2\[03,0.4],0.3,05]" [0.2,09],[0.1,03] [02,0.4], [0.3,0.6] ) )/

<k ( (ullo) (“2/0) (Ll3,0) >>
3\10.8,09],[0.5,0.6]" [0.1,0.2],[0.2,0.3] " [0.1,0.2], [0.4,0.7] / ) ("
its top weak possibility belief interval-valued complement is:

w5 ={ (i (e 12:6) e ).

[0.2,0.7],0.3,0.7] [0.6,0.7],0.5,0.9] " [0.4,0.6], [0.5,0.7]

<k ( (u1,6) (u2,6) (u3,0) )>
2\103,0.4],[0.3,0.5]" [0.2,0.9], [0.1,0.3]" [0.2,0.4], [0.3,0.6] / )

(15 (o) (12,6) (13,65) )>}
“\10.8,0.9],[0.5,0.6]" [0.1,0.2],[0.2,0.3]" [0.1,0.2], [0.4,0.7] ‘

Definition 25. Soft max-AND operation of two PBIVNSS (B, K, M) and (Y, L, N) (where
By : K — BIPR 5 B R gpnd Y, : L — BIY*R x BIU*R) defined as:

(BbrKl M)K(sz Lr N) = (Gg/K X L/P)r
where Gg : K x L — BIW*R 5 BJU*R; (kg ,1y) € (Kx L), s',t' € A, and P = max(M,N),

c (”i/ ri(s’,t’))
Blg,1,)(tisTigs 1)), Blgk 1) (Wis Tigst 11))
Blgk,1,) (Ui Tigst 1)) = [BelG kg, L) (uis Tisr 41), Pl ke 1,0) (Wi Tigsr 1)) ]
Bl 1) (Wi Tige 1)) = [Belge, 1) (tis Tigsr 1))y Ploi, 1,y (Wi Tigsr 1)) ]

Gg(ks’/ lt’) ~ I’i(S/,tl) = mﬂJC(T’il(S/,t/), 1’1-2(5/,11/) )/
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where,
[BelG kg, 1y) (i, Tig 41)) Pl k1) (i Tigst 1)) ] =

2
[3 (BEIB(kS/) (i, Tigsr 1)) + Bely,) (ui, Ty 1) )) -

1
gmax{BelB(ks,) (i, Tigsr 11y, Belyr, ) (i Tisr 1)) },
2
3
1
gmﬂx{PlB(ks,) (uis Tigsr 1)) Ply 1) (i Tiger 1)) }}

(PZB(kS/)(ul/ Ti(s!, t/)) + PlY(l/)(ul/ i(s! ,t’))) -

and

—~

[Belg(, 1) (Wi Tigst 41)) Pl 1.y (Wi, Tigsr 1)) | =

(Belh(ks/) (ul-, ri(s’,t’)) -+ Bely(lt/) (MZ‘, ri(s’,t’))) —

WIN

ax { Bely ) (wi, ri(s 1)), Bely ) (i, Tigsr 1)) }
(Plb(ks/)(ul’ Ti(s!, t/)) + Pl (l/)(ulf i(s’ ,t’))) -

X{Plb(ks/)(”w Tits, ) Plyq, )(ui/ri(s/,t/))}:|

QJ\)—\QJ\NUJM—\I—|

with (u;, r} i(s 't’)> € By(K) and (u;, i(s )) € Yy(L).

/tl

Definition 26. Soft min-OR operation of two PBIVNSS (B, K, M) and (Y, L, N) (where By, :
K — BIR 5 BIU*R gnd Y, : L — BIU*R x BIY*R) defined as:

(Bb/K/M) Q (Y]// L/ N) = (quK X L,O),
where Qg : K x L — BIY*R x BIUXR (k1) € (K x L), s/, € A, and O = min(M,N),

(Ui, Tigsr 1))
Bl 1) (WirTigst 1)) Blyr 1) (Wi Tisr 11y
Blgk,1,) (Wi Ticst ) = [Belgi, 1,y (Wi Tics 1)) Ploe, 1,y (Mir Tigst 1)) ]
Bl 1) (s Tier ) = [Belggi i) (i Ticst ), Plogi 1) (Wi Tigst 11))] -

Qqlky, ly) €

_ . 1 2
) S Tigp) = mzn(ri(s,,t,),ri(s,,t,)),

where,
[Belok 1,y (Wi Tigst ) ) Pl 1) (Wi Tige 1)) ] =

2
[3 (BelB(kS/)(”u Ti(st, 1)) + Belyq,) (i ri(s ,t’))) -

1 .
gmm{BEZB(ks,)(Mi,ri(s',t')) Bely ) (ui, z(s/,t/))}/

2
3 (PZB(kS/) (ui, ri(sr 41y) + Py, (ui, ri(s’,t’))) -

1 .
gmm{PlB(ks/) (i, igsr 4r))s Ply 1) (Wi, Tigst 1r)) }}
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and

—~

[Belyi 1) (Wi Tigst 1)) Plye 1,0y (Wi Tigsr 1)) =

%(Belb(ksl)(ul, Tigstiry) + Bely ) (i, Tigsr ,t/)))—
min{ Bely(,) (s igo ), Belyay) (4 i)}
(Plb(ksl) (uis Tigst 41y) = Ply,y (i, Tior 11y )) -

mi”{Plb(ks/) (i, Tigsr 41))s Ply(r,) (s Tigst 1)) }}

W= WINW =

with (u;, 7} i(s', t,)) € By(K) and (u;, 1> ", t/)) € Yy(L).

Example 10. Consider (By,K,7) and (Yy, L,6) as described in Example 8, then their soft max-

AND is:
Ml 2 (u2,5) M3 4
(Gg/ Kx L,7) {< k), ([0 23,0.66], [0.33,0.56] " [0.23,0.43], [0.10,0.56] ' [0.26,0.63], [0.30, 0.56] )
k k ( u1 1 (u2,5) u3 3 )
1ka), [0.40,0.83], [o 36,0.73] [0.36,0.50], [0.20,0.60] * [0.33,0.70], [0.16,0.63]
k k < M1 4 (llz,l) M3 6 )
2k2) [0.33,0.63], [0.43,0.56] " [0.13,0.60], [0.30,0.76] " [0.33,0.73],[0.33,0.70] / )’
(Fka, k) ( (u1,4) (u2,5) (u3,6) )
2k4):\ [0.60,076],[050,0.73] [0.23,073], [0.50,0.83] [0.40,0.83], [0.20,076] ) )’
(ks ko) ( (uq,6) (up,3) (u3,5) )
»k2):\ 1013,033], [0.40,0.50] ' [0.40, 063, [030,073] [0.40,076), [0.30,063] ) )’
(ks k) ( (uq,6) (up,5) (u3,5) )
3k41):  1926,0.43], 0.43,0.60]’ [0.60, 076}, [0.50,0.80]" [0.46,0.90), 0.16, 0.70]
their soft min-OR is:

(QqKXL6 { k1k2

=
2
>~
£

(k2 ky),

(ks k2),

(ke

/\/\/\/_\/\
=
¥
=
I\)

Mll

(uz,1)

M32

[0.26,0.73],0.36,0.63]

u10

[0.26,0.46], [0.10,0.63]

(le, 5)

[0.33,0.66], [0.30, 0.63]

u32

[0.50,0.86], [0.43,0.76]

[0.43,0.60], [0.30,0.70]

(uZIO)

[0.36,0.80],[0.23,0.76]

u10

[0.16,0.70], [0.50, 0.83]

(12,0)

u33

[0.60,0.83], [0.50,0.76]’

(u1,2)

[0.36,0.76], [0.60,0.86] "

(l/lz, l)

[0.50,0.86], [0.30, 0.83]
(u3,4)

[0.16,0.46], [0.40,0.50]"

u10

(
(
([046 oeg1 (2346 0.63]'
(
)
(

[0.60,0.76],[0.50,0.76] "

(u2/3)

[0.60, 0.83], [0.30, 0.66]

u33

)
)

[0.46, 07? 336 0701))’
)
)
)

[0.43,0.66], [0.46,0.70]’

[0.70,0.83], [0.60,0.80]*

)}

[0.63,0.90], [0.23,0.80]

Proposition 3. Given that (By, K, M), (Yy,L,N), and (D, T,O) are any three BIVNSS on U,

then the commutative and associative properties hold:

(1) (Bb,K M) Mg (Bh,K,M) = (By, K, M),

(2) (Bb,K M) (Bb,K,M) = (Bb,K,M),

(3) (Bb,K M) Ug (Bb,K, M) = (Bb,K,M),

(4) (Bb,K M) Ur (Bb,K,M) = (Bb,K,M),

(5) (Bh,K M) Mg (Yy, L, N) = (Yy, L,N) Mg (Bb,K,M),

(6) (Bb,K M) MR (Yy,L,N) = (Yy,L,N) MR (Bb,K,M),

(7) (Bb,K M) Ug (Yy,L,N) = (Yy,L,N) Ug (Bb,K,M),

(8) (Bh,K M) LR (Yy,L,N) = (Yy,L,N) LR (Bb,K,M),

(9) (Bb/K M) Mg ((Yy' L, N) Mg (Dd/ T/O)) = ((Bb/K/M) Mg (Yyr L, N)) Mg (Dd/ T/O)/
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(10) (Bb,K,M) MR ((Yy,L,N) MR (Dd,T,O)) ((Bb,K,M) MR (Yy,L,N))HR (Dd,T,O),
(11) (Bh,K,M) Ug ((Yy, L, N) Ug (Dd/ T,O)) = ((Bh,K,M) Ug (Yy, L, N)) Ug (Dd/ T,O),
(12) (Bh,K,M) LIR ((Yy,L,N) LR (Dd,T,O)) ((Bb,K,M) LIR (Yy,L,N))I_IR (Dd,T,O).

Proof. (1)—(8) follows from definition. For (9), let (Y,, L, N) and (Dy, T,O) (where Y, :
L — BIY*R x BIUXR and Dy : T — BIY*R x BIU*R) be two PBIVNSS by the def-
inition of extended intersection we have (S5, V,Z) (where Ss : V — BIY*R x BIU*R)
such that (S5, V,Z) = (Y,,L,N) Ng (Dy, T,0), where Ss = Y, Mg Dy, V. = LUT, Z =
max(N,O) ; Vouj € V with v} € Land ZJ]Z eT,

Yy (0}) , if ;e L—T,
Ss(v;) ={  Da(v) , if v;eT—1L,
Yy (0}) Mk Dd(z;?) , if ;e LNT.

7 7 4 7 7 7 7 - 7 4 Srs 7 . 7 4
As, (By, K, M) Mg ((Yy L N)Mg (Dg T O)) (By, K, M) Mg (S, V, Z). Suppose (By, K, M)

Me(Ss,V,Z) = (Gg, W, X) such that G : W — BIUXR » BIUXR where Gg = By g
S, W=KUV =KULUT, X =max(M,Z) ; Vw;j € Wwithw]l € Kw]2 € Land

By(w}) , if wjeK—L-T,
Yy(wf) , if wje L=K-T,
D, (w?) , if wje T-K—1L,
w;’ erT, Gg(w]) = Yy(wjzz) MR Dd(w3> , if w; € LNT-K,
By(w}) Mg Yy (w?) , if wje KNL—T,
By (w}) Mg Da(w?) , if wje KNT—L,
Bb(w})mR Yy (w?) Mg Dd(w?) , if wje KNLNT.

Again, let (By, K, M) and (Y,,L,N) (where B, : K — BIUXR 5 BIUXR and Yy : L —
BIU*R x BJUXR) be two PBIVNSS by the definition of extended intersection we have
(Ff, S, P)(where Fy : S — BI'*R x BIY*R) such that (Fy, S, P) = (By, K, M) Ng (Y, L,N),
where Fr = B, Mg Yy, S =KUL, P = max(M,N) ; Vs; € S with 5]1 € Kand s]z clL,

By(s)) , if sje K—L,
Fi(s) = Yy(s]j) , if sje L—K,

Bh(s<)|‘|RYy(s]2) , if s;€ KNL.

—

As, ((Bh,K,M) Me (Y, L, N)) Me (Dg, T,0) = (Fy, S, P) Mg (Dy, T,0). Suppose (Fy, S, P)
ME (Dg, T,0) = (I;, W, X) such that I; : W — BIY*R x BI"*R where I; = Ff Mg Dy, W =
SUT=KULUT, X = max(P,0); Vw; € W withw} € K,w? € Landw? € T,

By(w?) , if wje K—L-T,
yy(w].) , if wje L-K-T,
D, (w?) , if wje T-K—1L,
Ii(w)) = Yy(wJZ]) Mg Dg(w?) , if wje LNT—K,
By (w}) Mg Yy (w?) , if wje KNL—T,
By (w}) Mg Da(w?) , if wje KNT—L,
Bb(w})mR Yy (w?) Mg Dd(w]?) , if wje KNLNT.

Then, Gg(wj) = I;(wj), Yw; € W. Hence, (9) is hwld and (10)~(12) are similar to (9). [
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Proposition 4. Given that (By, K, M) and (Y,, L, N) are any two PBIVNSS on U, then the
following results hold:

W ((B)fpper K, M) = (B, K, M),

() (Bje, K, M) Ug (Y, L,N) = ((Bb MEY,)S, (KUL), max(M,N)),
(3) (Bie K, M) Mg (Y, LN) = ((By Up Yy)°, (KU L), max(M,N)),
(4) (B, K, M) Ug (Y, L,N) = ((Bb Mg Y,)S, (KN L), m x(M,N)),
(5) (B, K, M) Mg (Y, L,N) = ((B,, U Y,)S, (KN L), min(M, N)).

Proof. (1) is straight-forward. We start from (2). Let (By, K, M) and (Y, L, N) (where
By : K — BIY*R x BJU*Rand Y, : L — BIY*R x BIY"*R) be two PBIVNSS on U. Then by
the definition of weak possibility belief interval-valued complement and extended union

we have,
(B, K, M) LIg (Y‘%,L N) = (]j,S,P),

where J; = Bj. g Y;C, S =KUL, P=max(M,N);Vs; € S with s} € Kand 5]2 €L,

Bzc(sjl) ’ if S/‘EK—L,
Ji(sj) = Yy%(s]?) , if s;e L—K,
Bj.(sj) UE Yye(s?) , if s; € KNL.

Again by the definition of extended intersection we have (Fs,S,P) = (By,NpYy), S =
KUL, P =max(M,N);Vs; € S withs} € Kand s? € L,

By(s}h) , if sje K—1L,
Ff(s]) = yy(S]) , if S]' cL-K,
By(sj) MEYy(s7) , if s; € KNL.

Thus, by the definition of weak possibility belief interval-valued complement we have,

BgC(S];) , if s;e K—1L,
Fie(sj) = Yye(s7) , if s;€ L—K,
Bie(s}) Ug Yg(s?) , if s; € KNL.

Then, J;(s;) = FJEC (sj); Vsj € S. Hence, (2) holds. Remaining (3)~(5) are similar to (2). [

In Figures 1 and 2, we give the flow charts of Algorithms 1 and 2 respectively.
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| !
Step 2 :l y Evaluate soft max-AND WM
'

M
|

l Step 4 l Evaluate the score ]

v

Step 5 ' For each u; , find its weighted value J

_
«

Figure 1. Flow chart of Algorithm 1.

Str-_'pl!lnpu?)

—_—

m M Evaluate choice value

In step 5, maximum weighted value is the best

I Step 6 (Output] l chaice

Figure 2. Flow chart of Algorithm 2.

7. Algorithms

In this section, we will present the algorithms on soft max-AND and soft min-OR
operations on two possibility belief interval valued N-soft sets for decision making.
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Algorithm 1 Soft max-AND operations
Step 1: We have two PBIVNSS (B, K, M) and (Y, L, N) (where
By : K — BI"*R x BJU*R and Y, : L — BIY*R x BIY*R) on universal set

u= {ul, Uy, .. .,ul}.
Step 2: Evaluate

(Gg, K x L, P) = (By, K, M)A(Yy,L,N),
where
Gg: Kx L — BIYR x BI"*R; v(ky,14) € (Kx L), s',t' € Aand P = max(M, N).

Step 3: Evaluate the choice value
Cl(kg, 1y)(u;); Yu; € U, (kg,ly) € (Kx L),s', ' € A defined as:

<c<ksf,zy><ui>—{ lite. 1) }

Ie(ky 1) (Wi Tigs 1))

where the interval of choice value is:
Iy 1) (i Tigs 1)) :[Bflc(ks,,zt,)(uw i(s', 1)) T Belgr 1) (uis Tigsr 1)),
Pl 1,y (Wir Tigst 1)) + Ploic, 1,y (s ri(s’,t’))} -
Step 4: Evaluate the score S(ky, ly) (u;); Yu; € U, (kg,lp) € (Kx L), s',t' € A
defined as:
S(ksr, 1) (ui) = S kg, Ly ) (ui) x Sa (ks Iy) (us),

where,

Si(ky, Ip) (ui) = ) [“lI(C(kS/,lt/)(”irri(s’,t’))_‘XlI(C(kS/,lt/)(tqrrq(s’,t’))+

telr
a2l k1) (Wi Tisr 1)) = 021k 1) (Bgs Tg(st 1) )} :

where ay, : [0,1] — [0,1] is the mth projection mapping such that a; is the lower
membership value and «; is the upper membership value of choice interval and

S ( sy lt/ Zmax{r sltl S’ tl }

Step 5: For each S(u;) it’s weighted value is:

S(uy) = Y. S(ky,ly)(uy).
(ko dy)e(KxL)

Step 6: Now the optimal decision is:

X = arg max {S(ul),S(uz),cdots,S(ul)}.
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Algorithm 2 Soft min-OR operations

Step 1: Let we have two PBIVNSS (By, K, M) and (Yy, L, N) (where
By : K — BIY*R x BJU*R and Y, : L — BIY*R x BIY*R) on universal set

u= {ul, Uy, .. .,ul}.
Step 2: Evaluate
(Qq K x L,P) = (By, K, M)V(Yy,L,N),

where
Qq:Kx L — BI"Rx BI"™<R; w(ky,14) € (Kx L),
s',t' € Aand O = min(M, N).
Step 3: Evaluate the choice value
C(ks/, lt/)(ul-); v u; € U, (ksl,lt/) € (K X L),S,, t' € A defined as:

<C<ks/,zt/><ui>={ lits#) }

Ie(iy 1, (Wi Tigst 1))

where the interval of choice value is:
Iegky 1) (Wi Tigs 1)) :[Belc(ksf,l,/)(”ir Titst 1))+ Belgqi, 1) (tis Tigsr 1)),
Pl k1) (Wis Tigst 1)) + Ploi 1,y (i 7 (s’,t’)):|'
Step 4: Evaluate the score S(ky, Iy) (4;); Yu; € U, (kg,lp) € (Kx L), s',t' € A
defined as:
S<ks’/ lt’)(ui) =51 (ks’rlt’><ui) X SZ(ks’/ lt’)(ui>/

where,

St (kt, Ly ) (ui) = Y {wll(C(kS/,lt/)(”ilri(s’,t’))_D‘ll(C(kS/,lt/)(tqfrq(s’,t’))‘l'
el

a2le k1) (Ui Tierpry) — a2logry 1) (b (s ) )} ’

where a,, : [0,1] — [0, 1] is the mth projection mapping such that «a; is the lower
membership value and «; is the upper membership value of choice interval and

S ( lt/ Z max{r s/, t/ (s/’t/)}.

Step 5: For each S(u;) it’s weighted value is:

S(u;) = Y S(ke,ly)(up).
(ky 1y )€(KXL)

Step 6: Now the optimal decision is:

X = arg max {S(ul),S(uz),. . .,S(u,)}.

8. Applications

In this section, we give the application of our proposed sets.

Example 11. Let Mr. H wants to buy a smartphone with particular features, and there are
three smartphones that are under consideration. Let U = {uq1, up, uz, ug, us, g} be the
set of smartphones. Let E be the set of parameters (particular features) for the evaluation of
smartphone and K, L C E such that K = {k; = Reasonable, ks = Expensive} and L = {kq =
High resolution, ks = Good battery timing, ke = Guest mode}. Assume that Mr. H wants to
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buy one such smartphone depending on two parameters only. Suppose there are two observations
(Bp, K, 4) and (Yy, L,7) by two experts as follows:

_ (u1,1) (up,3) (us3,1)
(By, K, 4) = { <k1’ ( [0.1,0.6]1, [0.4,0.7] [0.8,0.9]2, [0.3,0.8]" [0.2,0.4]3, [0.2,0.7]
(u412) (M5,0) (u6r3) )>
[0.7,0.8],[0.5,0.6] " [0.5,0.9],[0.7,0.9] " [0.6,0.8],[0.4,0.6] / )’
(k ( (u1,0) (up,3) (u3,2)
¥ \10.5,0.6],[0.2,0.8]" [0.4,0.8],[0.7,0.9] " [0.3,0.4],[0.4,0.5]
(14,2) (us,1) (16, 1) )>}
[0.2,0.3],0.5,0.7] " [0.3,0.7], [0.4,0.8] " [0.9,1.0],[0.1,0.7] :
_ (u1,3) (u,1) (us,4)
Yy L,7) = { (k“' ( 05,09] L0 02,09]. 0408’ 07,08, 0102
(u4/1) (Ll5,6) (uﬁlo) >>
[0.2,09],]0.3,0.5]" [0.4,0.6],[0.8,1.0]" [0.1,0.9],0.3,0.8] / )’
(k ( (ullo) (le,Z) (u3/6)
>\10.1,0.7],[0.3,0.9]” [0.7,0.9],[0.6,0.8] " [0.5,0.9], [0.1,0.5]’
(u4,5) (us,1) (u6,3) )>
[0.6,1.0],[0.4,0.5]" [0.7,0.8],[0.3,0.4] [0.6,0.7],[0.6,0.8] / )’
(k ( (u1,1) (u2,5) (u3,0)
\70.2,0.8],[0.3,0.4]" [0.8,0.9],[0.2,0.3] " [0.6,0.8],[0.4,0.8]
(114,6) (us,4) (116,6) )>}
[0.1,0.4],]0.2,0.3]" [0.6,0.7],[0.5,0.6] " [0.2,0.9],[0.4,0.7] :

Firstly, we will evaluate the soft max-AND operation (Gg, K x L,7) = (B, K,4) A (Y,,L,7) by
using step 2 of Algorithm 1:

_ (u1,3) (uz,3) (us,4)
(Gg KX L7) = { <(k1’k4)’ ( [0.26,0.70]1, [0.20,0.50]” [040,090]2, [0.33,0.66]’ [0.36,0.53]3, 0.13,036]’

(u4,2) (us,6) (u6,3) ))
[0.36,0.83], [0.36,0.53] " [0.43,0.70], [0.73,0.93] " [0.26,0.83], [0.33, 0.66]

(k k) ( (”1/1) (u2/3) (u3/6)
1:%5):\10.10,0.63], [0.33,0.76] " [0.73,0.90], [0.40, 0.80] " [0.30,0.56], [0.13, 0.56]

(u4,5) (us,1) (u6,3) )>
[0.63,0.86], [0.43,0.53] " [0.56,0.83], [0.43,0.56] " [0.60,0.73], [0.46, 0.66]

(k k) ( (ulrl) (u2/5) (u3,1)
1762\ [0.13,0.66], [0.33,0.50] ’ [0.80, 0.90], [0.23,0.46]’ [0.33,0.53], [0.26,0.73]

(M4, 6) (Ll5,4) (MG/ 6) ))
[0.30,0.53], [0.30,0.40] " [0.53,0.76], [0.56,0.70] " [0.33,0.83], [0.40, 0.63]
((k k ) ( (u1/3) (”2/3) (u3r4)
3840 [0.53,0.70], [0.13,0.53] " [0.26,0.83],[0.50,0.70] " [0.43,0.53], [0.20,0.30]’
(usg,2) (us,6) (6, 1) )>
[0.20, 0.50}, [0.36, 0.56] ! [0.33, 0.63], [0.53, 0.86} ! [0.36, 0.93], [0.16, 0.73] !
((k k ) ( (ulro) (u2/3) (M3,6)
3:%5):\ [0.23,0.63], [0.23,0.83] ' [0.50,0.83], [0.63, 0.83] " [0.36,0.56], [0.20, 0.50]”
(u4,5) (us,1) (u6,3) ))
[0.33,0.53], [0.43,0.56]  [0.43,0.73], [0.33,0.53] " [0.70, 0.80], [0.26, 0.73]

(k3 ké) ( (ulll) (142,5) (u3/2)
+%6):\ [0.30,0.66], [0.23,0.53] ' [0.53, 0.83], [0.36,0.50] " [0.40, 0.53], [0.40,0.60]"

(114, 6) (u5,4) (116, 6) )> }
[0.13,0.33], [0.30,0.43] " [0.40,0.70], [0.43,0.66] " [0.43,0.93], [0.20,0.70] :

Then we will evaluate the choice value C(ky,ly)(u;); Y u; € U, (kg,ly) € (KX L), s =
1,3 and t' = 4,5, 6 by using step 3 of Algorithm 1:
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(Grading, Interval Value)

(C(ks’l kt’) (ui)
Clks, ka)(uz)

(Grading, Interval Value)

(C(ks’rkt’)(ui)

(3,[0.66,1.23])
(3,[0.76,1.53])
(4,[0.63,0.83])
(2,10.56,1.06])
(6,[0.86,1.50))
(1,]0.53,1.66])
(0,[0.46,1.46))
(3,[1.13,1.66))
(6,0.56,1.06))
(5,]0.76,1.10])
(1,[0.76,1.26))
(3,[0.96,1.53])
(1,]0.53,1.20])
(5,0.90,1.33])
(2,[0.80,1.13])
(6,0.43,0.76))
(4,]0.83,1.36])
(6,0.63,1.63])

(3,[0.46,1.20])
(3,[0.73,1.56))
(4,[0.50,0.90])
(2,0.73,1.36))
(6,[1.16,1.63))
(3,[0.60,1.50))
(1,[0.43,1.40))
(3,[1.13,1.70])
(6,[0.43,1.13])
(5,[1.06,1.40))
(1,[1.00,1.40))
(3,[1.06,1.40))
(1,[0.46,1.16))
(5,[1.03,1.36))
(1,[0.60,1.26))
(6,[0.60,0.93])
(4,[1.10,1.46))
(6,[0.73,1.46))

Ck1, ka)(ur)

Clks, k4)(uz)

C(k1, kq)(uz)

C(ks, kq)(u3)

Clk1,k4)(u3)

Clks, k4)(us)

Clk1,k4)(us)

Clks, ka)(us)

Ck1, ka)(us)

Clks, ka)(ue)

Ck1, ka)(ug)

Clks, ks)(u1)

Ck1, ks)(u1)

Clks, ks)(uz)

C(k1,ks)(uz)

C(ks, ks)(u3)

C(ky, ks)(u3)

C(ks, ks)(u4)

Cl(k1,ks)(us)

C(ks, ks)(us)

C(ky, ks) (us)

C(ks, ks) ()

Ck1,ks)(ue)

Clks, ke)(u1)

Ck1, ke)(u1)

Clks, ke)(u2)

Cki1, ke)(uz)

Clks, ke)(u3)

C(k1,ke)(us)

Cks, ke ) (14)

C(k1, ke)(ug)

C(ks, k) (us)

C(k1, k) (us)

C(ks, k) ()

C(k1, ke ) (u6)

S/

Now we will evaluate the Score S(kg,ly)(u;); ¥ u; € U, (kg,lp) € (K x L),

1,3 and t' = 4,5, 6 by using step 4 of Algorithm 1.

S(kgr, k) (u;) The Score
S(ks, kg )(u1)

The Score

S(ks’l kt’) (ui)

—10.34
42 .46

—52.14
31.02
—102.18
441
158.76

S(kq, ka)(u1)

S(kz, k4)(u2)

S(kq, ka)(u2)

-79.3
—41.8
84.6

S(kz, k4)(u3)

S(kq, ka)(u3)

S(kz, kq)(u4)

S(kq, ka)(1ta)

S(ka, ky) (us)

S(k1, ky) (us)

5.94 S(ks, kg) (1) 25.27

—48.64
79.12

S(k1, ka) (ue)

—21.24
92.92
—107.28

S(ks, ks)(u1)

S(ky, ks ) (u1)

S(k3, ks)(u2)

S(kq, ks)(u2)

S(k, ks)(u3)

—150.48
37.82
16.34

28.06

S(kq, ks)(u3)

—47.74
—11.02

51.52
—27.6
59.2

S(ks, ks)(u4)

S(kq, ks ) (14)

S(ks, ks)(us)

S(kq, ks ) (us)

S(ks, ks ) (ug)

S(k1,ks) (ug)

—55.89 S(k3,k6)(u1)

70.08

S(k1,ke) (u1)

S(ks, ke ) (12)

S(kl,k6)(u2)
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S(kgr, k) (1) The Score S(kgr, k) (1) The Score
S(k1, ke ) (u3) —22.77 S(ks, ke ) (u3) 1.25
S(ky, k) (114) 10692 S(ks, k¢) (114) —158.04
S(ky, ke ) (us) 93.09 S(ks, ke ) (us) 46.69
S(ky, ke) (146) 35.64 S(ks, ke) (116) 73.08

By using step 5 of Algorithm 1 the weighted values for each S(u;) are:
S(u1) = —215.85, S(up) = 374.8, S(uz) = —460.76,

S(ug) = —312.27,S(us) = 388.46, S(ue) = 219.51.
Here the optimal decision by using step 6 of Algorithm 1 is:

X = arg max {S(uy),S(uz),S(usz), S(ua), S(us), S(ug) }.
Thus, us is the best choice. Hence Mr. H will buy the us smartphone.

In Figures 3 and 4, we give the graphical behavior of score values of Examples 11 and 12
by means of Algorithms 1 and 2 respectively.

Figure 3. Graphical behavior of score values of Example 11 by means of Algorithm 1.

Figure 4. Graphical behavior of score values of Example 12 by means of Algorithm 2.

Example 12. Consider the Example 11 and assume that Mr. H wants to buy one such smartphone
depending on one of two parameters only.
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Firstly, we will evaluate the soft min-OR operation (Qq, K x L,4) = (By, K,4) V (Yy,L,7)
by using step 2 of Algorithm 2:

_ (u1,1) (u2,1) (u3,1)
(Qq KxL4) = { ((kl’k4)' ( [0.43,0.80]1, [0.30,0.60] " [0.60, 0.90}2, [0.36,0.73]" [0.53,0.66]3, [0.16,0.53]"
(uq,1) (u5,0) (u6,0) ))
[0.53,0.86], [0.43,0.56] " [0.46,0.80], [0.76,0.96] " [0.43,0.86],[0.36,0.73] / )’
((k k ) ( (ul,O) (”2/2) (Ll3,])
155 [0.10, 0.66], [0.36,0.83]" [0.76,0.90], [0.50, 0.80] " [0.40,0.73], [0.16,0.63]”
(u412) (u5/ O) (u613) ))
[0.66,0.93], [0.46,0.56] " [0.63,0.86],[0.56,0.73] " [0.60,0.76], [0.53,0.73] / }*
<(k ke) ( (u1,1) (12,3) (u3,0)
1-%6)7\ [0.16,0.73], [0.36,0.60] * [0.80,0.90], [0.26,0.63] " [0.46, 0.66], [0.33,0.76]
(u4/2) (115, O) (M5,3) ))
[0.50, 0.66], [0.40,0.50]” [0.56,0.83], [0.63,0.80] " [0.46,0.86], [0.40,0.66] / )’
((k k ) ( (”1/0) (u2r1) (”3/2)
8,74 [0.56,0.80], [0.16,0.66] " [0.33,0.86], [0.60,0.80] " [0.56,0.66], [0.30,0.40]
(ug,1) (us,1) (u6,0) ))
[0.20,0.70], [0.43,0.63] " [0.36,0.66], [0.66,0.93] " [0.63,0.96],[0.23,0.76] /
<(k ks) ( (11,0) (12,2) (u3,2)
3%5)7\70.36,0.66], [0.26,0.86] " [0.60, 0.86], [0.66, 0.86] " [0.43,0.73], [0.30, 0.50]
(ug,2) (us,1) (ug, 1) ))
[0.46,0.76],[0.46,0.63] " [0.56,0.76],[0.36,0.66] " [0.80,0.90], [0.43,0.76] /
((k k ) ( (ullo) (MZ/S) (u3,0)
8,76 [0.40,0.73],[0.26,0.66] " [0.66,0.86],[0.53,0.70] " [0.50, 0.66], [0.40,0.70]”
(14,2) (u5,1) (16, 1) )> }
[0.16,0.36], [0.40,0.56] " [0.50,0.70], [0.46,0.73] " [0.66,0.96], [0.30, 0.70] ’

Then we will evaluate the choice value C(ky,ly)(u;); ¥V u; € U, (kg,lp) € (Kx L), § =
1,3 and t' = 4,5, 6 by using step 3 of Algorithm 2:

C(kg, k) (u;)  (Grading, Interval Value) C(ky, ky)(u;)  (Grading, Interval Value)

C(ky, ko) (1) (1,[0.73,1.40)) C(ks, ko) (1) (0,0.73, 1.46))
C(ky, ko) (12) (1,0.96,1.63)) C(ks, ko) (12) (1,0.93, 1.66))
C(ky, ko) (u3) (1,[0.70,1.20]) C(ks, ko) (13) (2,[0.86,1.06))
C(ky, ky) (11a) (1,[0.96,1.43]) C(ks, ky) (11a) (1,[0.63,1.33))
C(ky, kg) (us) (0,[1.23,1.76)) C(ks, kg) (us) (1,[1.03,1.60))
C(ky, ka) (11g) (0,0.80, 1.60]) C(ks, ko) (116) (0,[0.86,1.73))
C(ky, ks) (1) (0, [0.46,1.50]) C(ks, ks) (1) (0,[0.63,1.53))
C(ky, ks) (12) (2,[1.26,1.70]) C(ks, ks) (12) (2,[1.26,1.73))
C(ky, ks) (u3) (1,[0.56,1.36)) C(ks, ks) (13) (2,[0.73,1.23))
C(ky, ks) (11s) (2,[1.13,1.50]) C(ks, ks) (11s) (2,0.93,1.40))
C(ky, ks) (u5) (0,1.20,1.60]) C(ks, ks) (u15) (1,[0.93,1.43])
C(ky,ks) (u6) (3,[1.13,1.50)) C(ks, ks) (u6) (1,[1.23,1.66))
C(ky, ke ) (u1) (1,[0.53,1.33]) C(ks, ke ) (u1) (0,[0.66,1.40))
C(ky, ke) (12) (3,[1.06,1.53)) C(ks, ke) (112) (3,[1.20,1.56))
C(ky, ke) (13) (0,0.80, 1.43)) C(ks, ko) (113) (0,090, 1.36))
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(C(ks’rkt’)(ui)

(Grading, Interval Value)

(C(ks’l kt’) (ui)

(Grading, Interval Value)

C(k1, ke )(ug)

(2,0.90,1.16))

Clks, ke )(us)

(2,[0.56,0.93])

C(ky, ko) (us)

(0,[1.20,1.63])

C(ks, k) (us)

(1,[0.96,1.43))

C(k1, ke ) (u6)

(3,]0.86,1.53])

C(ks, k) ()

(1,]0.96,1.66))

Now we will evaluate the Score S(ky,ly)(u;); ¥V u; € U, (kg,lp) € (Kx L), § =

1,3 and ' = 4,5, 6 by using step 4 of Algorithm 2.

S(kgr, k) (1) The Score S(kgr, k) (1) The Score
S(k1, kq) (u7) —9.72 S(ks, kq) (u7) -37
S(kr, kg) (12) 6.84 S(ks, ks) (12) 11.62
S(ky, kq) (u3) —18 S(ks, kq) (u3) —28.32
S(ky, ka) (114) 036 S(ks, ka) (114) —14.84
S(ky, kq) (us) 14.16 S(ks, kq)(us) 13.3
S(k1, ka) (ue) 0 S(ks, ka)(ue) 8.3
S(k1, ks) (u7) —25.12 S(ks, ks) (u7) —13.84
S(k1, ks) (uz) 37.18 S(ks, ks) (uz) 39
S(k1, ks) (u3) —33.8 S(ks, ks) (u3) —35.16
S(ky, ks ) (114) 11.44 S(ks, ks) (114) —8.52
S(ky, ks) (us) 15.2 S(ks, ks) (us) —4.77
S(k1, ks) (ue) 15.84 S(ks, ks) (ue) 23.85
S(k1, ke ) (u7) —-30.8 S(ks, ke ) (u7) —8.54
S(k1, ke ) (u2) 28.44 S(ks, ke ) (u2) 53.64
S(k1, ke ) (u3) —5.22 S(ks, ke) (u3) —0.14
S(ky, ke ) (114) —224 S(ks, k¢) (114) —60.32
S(ky, ke ) (u15) 27.18 S(ks, ke ) (u5) 6.84
S(ky, ke ) (it6) 6.84 S(ks, ke ) (116 19.26

By using step 5 of Algorithm 2 the weighted values for each S(u;) is:

S(L{4) = -95, S(u5) = 71.91, S(u6) = 74.09.

Here the optimal decision by using step 6 of Algorithm 2 is:

Thus, uy is the best choice. Hence Mr. H will buy the uy smartphone.

S(up) = —91.72, S(up) = 1776.72, S(u3) = —120.64,

X = argmax {S(uq),S(uz),S(uz),S(us),S(us),S(ue) }.

In Figure 5, we observe that the following relations between the score values of

Examples 11 and 12 by means of Algorithms 1 and 2, respectively.

S(uz) = S(us) = S(u1) = S(ue) =< S(ua) = S(us),

S(us) = S(ug) = S(u1) < S(us) = S(us) = S(uz).
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Figure 5. Comparison of score values of Examples 11 and 12 by means of Algorithms 1 and 2.

Example 13. Mr. X wants to select a personal secretary with remarkable qualities, and there are
three persons under consideration. Let U = {uy, up, uz, ug, us, g } be the set of persons. Let E =
{k1 = communication and planning skills, k, = multitasking skills, k3 = time management,
ky = judgement ability, ks = hardworking, ke = confident, ky = technology skills} be the
set of parameters (remarkable qualities) for the selection of personal secretary and K, L C E such
that K = {kq,k3,ks} and L = {ky, ks, k7}. Assume that Mr. X wants to select one such person
depending on two parameters only. Suppose there are two observations (By, K, 5) and (Y, L,8) by
two experts as follows:

B (u1,1) (112,3) (u3,0)
(By, K,5) = { <k1’ ( [0.5,0.8]1, [0.3,05]" [0.2,0.9]2, [03,07]" [0.1,0.3]3, [0.1,04]"
(u412) (u5r4) (U6,3) ))
[0.1,0.3],[0.5,0.6] " [0.4,0.7],[0.3,0.9] " [0.6,0.7],0.3,0.6] / )’
<k ( (u1,0) (up,4) (us3,1)
% \104,0.9],[0.3,0.6]’ [0.4,0.7],[0.5,0.9] [0.8,0.9], [0.4,0.9]’
(u4/3) (M5,2) (u6/4) )>
[0.3,0.5],[0.4,0.6]" [0.8,0.9],[0.3,0.7]” [0.2,0.4],[0.3,0.5] / )’
(k < (”1/4) (1/[2,3) (M3,2)
>\10.3,0.7],[0-2,0.5]’ [0.3,0.8],[0.2,0.9] [0.7,0.9],[0.5,0.8]’
(13,3) (u5,0) (u6,1) D}
[0.7,0.8],[0.5,0.6]" [0.1,0.7],[0.3,0.4]" [0.7,1.0],[0.5,0.8] ‘
_ (11,5) (u2,6) (u3,3)
(Yy, L.8) = { <k4' ( 0L07].[03,08]' [05,07] [05,07]' 03,04 05,08
(u4r 7) (M5,4) (1/[6,2) ))
[0.1,0.6],[0.2,0.4]" [0.5,0.6], [0.4,1.0]” [0.3,0.6],[0.2,0.8] / )’
(k ( (n,2) (u2,1) (u3,0)
> \10.3,0.5],[0.6,0.7]’ [0.3,0.9],[0.3,0.6] [0.2,0.3],[0.3,0.5]’
(u4/5) (Ll5,4) (M6,3) >>
[0.5,0.8],0.6,0.7] " [0.6,0.9],[0.7,0.8]" [0.3,0.5],[0.2,0.6] / )’
(k ( (u1/7) (u2/4) (u3/5)
77\10.8,0.9],0.4,0.5]" [0.6,0.8],[0.4,0.7]" [0.1,0.9],[0.1,0.8]’

(14,3) (u5,2) (116, 6) »}
[0.1,0.5],[0.2,0.7]" [0.2,0.3], [0.4,0.5]" [0.4,0.7],[0.5,0.6] :
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Firstly, we will evaluate the soft max-AND operation (Gg, K x L,8) = (Bp, K,5) A (Y, L,8) by
using step 2 of Algorithm 1:

_ (u1,5) (u2,6) (u3,3)
(Gg K< L,8) = { <(k1’k“)’ < [0.36,0.76]1, [0.30,0.70]" [0.40,0.83]2, [0.43,0.70]’ [0.23,0.36]3, [0.36,0.53]”

(u4,7) (us,4) (ug,3) )
[0.10,0.50], [0.40,0.53] " [0.46, 0.66], [0.36,0.96] " [0.50,0.66], [0.26,0.73] / )’

((k k) < (M1,2) (“2/3) (u3/0)
1%5):\ 10.43,0.70], [0.50, 0.63] " [0.26,0.90], [0.30, 0.66] " 0.16,0.30], [0.23, 0.46]’

(u4/5) (u5r4) (uﬁr 3) ))
[0.36,0.63], [0.56,0.66]” [0.53,0.83],[0.56,0.86] " [0.50,0.63], [0.26, 0.60]

((k k) ( (u1,7) (u2,4) (u3,5)
1%7)\ 10.70,0.86], [0.36,0.50] " [0.46,0.86], [0.36,0.70] " [0.10,0.70], [0.10,0.66]

(u4,3) (us,4) (us,6) )
[0.10,0.43], [0.40,0.66] " [0.33,0.56], [0.36,0.76] " [0.53,0.70], [0.43,0.60] / )’

(k k) < (u1/5) (“2/6) (”3/3)
3:%4):\ 1030, 0.83], [0.30,0.73] " [0.46,0.70], [0.50, 0.83] " [0.63,0.73], [0.46, 0.80]”

(u4,7) (us,4) (u6,4) ))
[0.23,0.56], [0.33,053] " [0.70, 0.80], [0.36,0.90] " [0.26,0.53], [0.26, 0.70]

(ks ks) ( (u1,2) (up,4) (us,1)
35)7\10.36,0.76], [0.50,0.66] " [0.36,0.83], [0.43,0.80] " [0.60, 0.70], [0.36,0.76]

(us,5) (us, 4) (u6,4) )
[0.43,0.70], [0.53,0.66] " [0.73,0.90], [0.56,0.76] ' [0.26,0.46], [0.26,0.56] / )’

((k k ) < (”1/7) (u2l4) (”3/5)
3:%7):\ [0.66,0.90], [0.36,0.56] ' [0.53,0.76], [0.46,0.83] " [0.56,0.90], [0.30, 0.86]”
(us,3) (us,2) (u6,6) ))
[0.23, 0.50}, [0.33, 0.66] ! [0.60, 0.70], [0.36, 0.63} ! [0.33, 0.60], [0.43, 0.56]

(ks k) ( (u1,5) (u2,6) (u3,3)
5%4)7\10.23,0.70], [0.26,0.70] * [0.43,0.76], [0.40, 0.83] " [0.56,0.73], [0.50,0.73]

(us,7) (us,4) (u6,2) ) )
[0.50,0.73], [0.40,0.53] [0.36,0.66], [0.36,0.80] " [0.56, 0.86], [0.40, 0.80]
((k k ) ( (u1/4) (u2/3) (u3/2)
5:%5):\ [0.30, 0.63], [0.46,0.63] " [0.30, 0.86], [0.26,0.80] " [0.53,0.70], [0.43, 0.70]”
(u415) (u5/4) (u613) )>
[0.63, 0.80}, [0.56, 0.66] ! [0.43, 0.83], [0.56, 0.66} ! [0.56, 0.83], [0.40, 0.73]

((k k) ( (u1,7) (ua,4) (u3,5)
5:%7):\ 10.63,0.83], [0.33,0.50] ' [0.50,0.80], [0.33, 0.83] " [0.50,0.90], [0.36, 0.80]”

(114,3) (u5,2) (it6,6) )> }
[0.50,0.70], [0.40, 0.66] " [0.16,0.56], [0.36,0.46] " [0.60, 0.90], [0.50, 0.73] '

Then we will evaluate the choice value C(ky,1y)(u;); ¥V u; € U, (kg,lp) € (Kx L), s =
1,3,5and t' = 4,5,7 by using step 3 of Algorithm 1:

C(kg, ki) (u;)  (Grading, Interval Value) C(kgy,ky)(u;)  (Grading, Interval Value)

C(ky, ko) (1) (5,[0.53,1.33)) C(ks, ks) (11s) (5,[0.83,1.23))
Clk1, ka) (uz2) (6,[0.66,1.46]) C(ks, ks)(us) (4,[1.10,1.63])
C(ky, k) (u3) (3,[0.40,0.80]) C ks, ks) (u6) (4,]0.46,0.96])
C(ky, ko) (1) (7,10.40,0.86)) C(ks, k7) (1) (7,]0.86,1.43))
C(ky, ko) (u5) (4,[0.76,1.56)) C(ks, k7) (2) (4,0.90,1.50])
C(ky, ko) (1g) (3,[0.63,1.30]) C(ks, k7) (u3) (5,[0.53,1.73))
C(ky, ks) (1) (2,0.76,1.16)) C(ks, k7) (1us) (3,[0.43,1.13))
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(Grading, Interval Value)

(C(ks’l kt’) (ui)
Clks, k7)(us)

(Grading, Interval Value)

(C(ks’rkt’)(ui)

(2,[0.73,1.06))
(6,[0.63,1.03])
(5,[0.40,1.30])
(6,[0.67,1.50))
(3,[0.93,1.23))
(7,10.60,1.13])
(4,[0.56,1.23])
(2,0.73,1.53])
(4,[0.63,1.13])
(3,0.53,1.53])
(2,[0.73,1.10])
(5,[1.10,1.43))
(4,10.70,1.30])
(3,0.73,1.33])
(7,0.73,1.26))
(4,[0.66,1.56))
(5,[0.53,1.70])
(3,[0.60,1.23])
(2,[0.46,0.86))
(6,[1.00,1.46])

(3,[0.53,1.53])
(0,[0.30,1.73])
(5,]0.76,1.10])
(4,0.90,1.60))
(3,[0.63,1.16))
(7,0.93,1.33])
(4,[0.66,1.53])
(5,[0.20,1.03])
(3,[0.40,1.00])
(4,[0.60,1.06))
(6,[0.83,1.30])
(5,[0.50,1.43))
(6,[0.93,1.46))
(3,1.90,1.26))
(7,[0.43,1.00])
(4,[0.93,1.50))
(4,]0.46,1.06])
(2,0.73,1.26))
(4,[0.70,1.46))
(1,[0.73,1.13))

C(ki1,ks)(uz)

Clks, k7)(ue)

C(ky, ks)(u3)

Clks, ka)(u1)

C(k1,ks)(us)

Clks, k4)(uz)

C(ky, ks) (us)

Clks, ka)(us)

Clk1,ks)(ue)

Clks, ka)(us)

C(k1, k7)(u1)

Clks, ka)(us)

C(k1, k7)(uz)

Clks, ka)(ue)

C(k1,k7)(us)

C(ks, ks ) (u1)

C(k1,k7)(ug)

(C(k5, k5) (uz)

C(ky, k7) (us)

C(ks, ks)(u3)

C(k1, k7)(u6)

C(ks, ks) (14)

Clks, ka)(u1)

Clks, ks)(us)

Clks, ka)(uz)

Clks, ks)(ue)

Clks, ka)(us)

Clks, k7)(u1)

Clks, ka)(ug)

Clks, k7)(uz)

Clks, kq)(us)

Cl(ks, k7)(u3)

C(ks, kq) (o)

C(ks, k7)(us)

C(ks, ks)(u1)

C(ks, k7)(us)

C(ks, ks)(u2)

Clks, k7)(ue)

Clks, ks)(u3)

s’ =

Now we will evaluate the Score S(ky,ly)(u;); ¥ u; € U, (kg,lp) € (K x L),

1,3,5and t' = 4,5,7 by using step 4 of Algorithm 1.

The Score S(kgr, k) (1) The Score

S(ks’l kt’) (ui)

15.51 S(k3, k5)(u4) 4.2

75.11

S(kq, ka)(u1)

104

S(ks, ks ) (us)

S(kq, ka)(u2)

—-92.5
74.76

S(ks, ks ) (ue)

—97.72
—131.46

96.9

S(kq, ka)(u3)

S(ks, k7)(u1)

S(ky, ka)(us)

732

S(kg,, k7) (uz)

S(k1,kq) (us)

24.92 S(k3, k7) (u3) 52.8

S(ky, ka)(ue)

—72.8
—32.94
—74
—-53.13
44.77
32.2

—12.16 S(k3,k7) (u4)

S(kq, ks)(u1)

S(ks, k7)(us)

4.2
0.34
—-30

S(kq, ks) (u2)

S(ks, k7)(ue)

S(kq, ks)(u3)

S(ks, ka)(u1)

S(kq, ks ) (14)

71 S(ks, kq)(u2)

—29.82

S(k1, ks) (us)

S(ks, ka)(u3)

S(k1, ks) (ue)
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S(kgr, k) (1) The Score S(kgr, k) (1) The Score
S(ky, k7) (u1) 112.98 S(ks, ks) (114) —60.06
S(k1, k7) (uz) 68.1 S(ks, kq) (us) -321
S(ky, k7) (u3) ~115.17 S(ks, ks ) (ug) 47.25
S(ky, k7) (uyg) —71.63 S(ks, ks) (u1) —42
S(ky, k7) (us) —27.3 S(ks, ks) (u2) 2.64
S(ky, k7) (ue) 70.67 S(ks, ks) (u3) —26.46
S(ks, kq)(u7) —9.24 S(ks, ks) (uy) 88.2
S(ks, ks) (u2) 91.76 S(ks, ks) (us) —6
S(ks, kq)(u3) 31.9 S(ks, ks) (ue) 2.64
S(ks, ky) (114) ~137.76 S(ks, k7) (1) —4.62
S(ks, ky) (5) 81.6 S(ks, ky) (u2) 38.1
S(ks, ka) (1t6) 822 S(ks, k7) (u3) 43.89
S(ks, ks) (u7) —5.88 S(ks, k7)(us) —29.96
S(ks, ks) (uz) 18.5 S(ks, k7) (us) —111.51
S(ks, ks) (u3) -21.2 S(ks, k7) (ue) 100.27

By using step 5 of Algorithm 1 the weighted values for each S(u;) is:
S(u1) = 76.22, S(up) = 416.38, S(uz) = —99.42,
S(ug) = —441.27, S(us) = 143.65, S(ug) = —32.77.
Here the optimal decision by using step 6 of Algorithm 1 is:
X = arg max {S(uy),S(uz),S(uz), S(ua), S(us), S(ug) }-

Thus, us is the best choice.
Hence Mr. X will select uy person as a personal secretary.

In Figures 6 and 7, we give the graphical behavior of score values of Examples 13 and 14
by means of Algorithms 1 and 2 respectively.

Figure 6. Graphical behavior of score values of Example 13 by means of Algorithm 1.
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Figure 7. Graphical behavior of score values of Example 14 by means of Algorithm 2.

Example 14. Consider the Example 13 and assume that Mr. X wants to select one such person
depending on one of two parameters only. Suppose there are two observations (By,K,5) and

(Yy, L,8) by two experts as follows:

Firstly, we will evaluate the soft min-OR operation (Q,, K % L,5) = (B, K,5) V (Y, L,8)

by using step 2 of Algorithm 2:

_ (u1,1) (u2,3) (u3,0)
(Qq KX L,5) = { <(kl'k4)’ ( [0.36,0.76]1, [0.30,0.70]’ [0.40,0.83]2, [0.43,0.70]’ [0.23,0.36]3, [0.36,0.53]”

(1g,2) (us,4) (u6,2) )
[0.10,0.50], [0.40,0.53] " [0.46,0.66], [0.36,0.96] " [0.50, 0.66], [0.26,0.73] / )

(k1 ks) ( (u1,1) (u2,1) (u3,0)
1%5):\ 10.43,0.70], [0.50,0.63] " [0.26,0.90], [0.30, 0.66] " [0.16,0.30], [0.23, 0.46]’

(“4/2) (u5/4) (“6/3) )
[0.36,0.63], [0.56,0.66]* [0.53,0.83], [0.56,0.86] [0.50,0.63], [0.26,0.60] / )’

(k k7) ( (ulrl) (u2/3) (u3/0)
1%7)7\10.70,0.86], [0.36,0.50] " [0.46,0.86], [0.36,0.70] " [0.10,0.70], [0.10, 0.66]

(M4,2) (115,2) (M6/3) )
[0.10,0.43], [0.40, 0.66] [0.33,0.56], [0.36,0.76] " [0.53,0.70], [0.43,0.60] / )/

(k k) ( (Ll],o) (M2,4) (u3/1)
3-%4):\ 1030, 0.83], [0.30,0.73] [0.46,0.70], [0.50, 0.83] " [0.63,0.73], [0.46, 0.80]”

(ug,3) (us,2) (ue,2) )
[0.23,0.56], [0.33,0.53] " [0.70, 0.80], [0.36,0.90] [0.26,0.53], [0.26,0.70] / )’

(s, k) ( (11,0) (u2,1) (u3,0)
3:%5):\70.36,0.76], [0.50,0.66] " [0.36,0.83], [0.43,0.80]” [0.60, 0.70], [0.36,0.76]"

(1s,3) (us,2) (us,3) )
[0.43,0.70], [0.53,0.66] [0.73,0.90], [0.56,0.76] " [0.26,0.46],[0.26,0.56] / )’

(k k) ( (“1/0) (M2,4) (“3/1)
3%7)\ [0.66,0.90], [0.36,0.56] ' [0.53,0.76], [0.46,0.83] " [0.56,0.90], [0.30, 0.86]”

(ug,3) (us,2) (ug, 4) )
[0.23,0.50], [0.33,0.66]* [0.60,0.70], [0.36,0.63] " [0.33,0.60], [0.43,0.56] / )’

(k k) ( (M1,4) (u2,3) (u3,2)
5%4)7\70.23,0.70], [0.26,0.70] ' [0.43,0.76], [0.40, 0.83] ' [0.56,0.73], [0.50, 0.73]’

(us,3) (us,0) (u,1) )
[0.50,0.73], [0.40,0.53] " [0.36, 0.66], [0.36,0.80] " [0.56,0.86], [0.40,0.80] / )’

(k k) ( (“1/2) (”2/1) (”3/0)
5:%5):\ 1030, 0.63], [0.46,0.63] [0.30,0.86], [0.26,0.80] " [0.53,0.70], [0.43,0.70]”

(ug,3) (us,0) (us, 1) )
[0.63,0.80], [0.56,0.66] " [0.43,0.83], [0.56,0.66] " [0.56,0.83], [0.40,0.73] / )

(ks k) ( (u1,4) (u2,3) (u3,2)
5577\ 10.63,0.83],[0.33,0.50] " [0.50,0.80], [0.33,0.83] " [0.50, 0.90], [0.36, 0.80] "

(u4,3) (us,0) (us,1) ))
[0.50,0.70], [0.40,0.66] " [0.16,0.56], [0.36,0.46]” [0.60,0.90], [0.50,0.73] / )
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s’ =

Then we will evaluate the choice value C(ky,ly)(u;); Y u; € U, (kg,lp) € (K x L),

1,3,5and t' = 4,5,7 by using step 3 of Algorithm 2:

(Grading, Interval Value)

C(ks’l kt’) (ui)
Clks, ks)(us)

(Grading, Interval Value)

C(ks’l kt’) (ui)
Ck1, ka)(ur)

(3,0.96,1.36))
(2,[1.30,1.66))
(3,[0.53,1.03])
(0,[1.03,1.46))
(4,[1.00,1.60])
(1,[0.86,1.76))
(3,[0.56,1.16))
(2,[0.96,1.33])
(4,0.76,1.16))
(4,[0.50,1.40))
(3,[0.83,1.60])
(2,[1.06,1.46))
(3,0.90,1.26))
(0,[0.73,1.46))
(1,0.96,1.66))
(2,[0.76,1.26))
(1,[0.56,1.66))
(0,[0.96,1.40))
(3,[1.20,1.46))
(0,[1.00,1.50))
(1,[0.96,1.56))
(4,0.96,1.33))
(3,[0.83,1.63])
(2,[0.86,1.70])
(3,0.90,1.36))
(0,[0.53,1.03])
(1,1.10,1.63))

(1,]0.66,1.46])
(3,[0.83,1.53])
(0,[0.60,0.90])
(2,[0.50,1.03])
(4,0.83,1.63])
(2,[0.76,1.40))
(1,[0.93,1.33))
(1,[0.56,1.56))
(0,[0.40,0.76))
(2,[0.93,1.30])
(4,[1.10,1.70))
(3,]0.76,1.23])
(1,[1.06,1.36])
(3,[0.83,1.56))
(0,[0.20,1.36))
(2,10.50,1.10])
(2,[0.70,1.33])
(3,0.96,1.30])
(0,[0.60,1.56))
(4,[0.96,1.53])
(1,1.10,1.53])
(3,[0.56,1.10))
(2,[1.06,1.70])
(2,0.53,1.23])
(0,[0.86,1.43])
(1,[0.80,1.63])
(0,0.96,1.46))

Clks, ks)(us)

Clk1, ka)(uz)

Clks, ks)(ue)

C(k1,ka)(us)

Clks, k7)(uz)

Ck1, ka)(ug)

Cl(ks, k7)(uz)

C(kq, kg)(us)

Clks, k7)(u3)

Ck1,k4)(ue)

C(ks, k7)(us)

Ck1,ks)(u1)

C(ks, k7)(us)

Ck1,ks)(uz)

Clks, k7)(ue)

Ck1,ks)(us)

Clks, ka)(ur)

Cki1,ks)(us)

Clks, ka)(uz)

C(k1, ks)(us)

C(ks, ks )(u3)

C(kq, ks) (ue)

Clks, k4)(us)

Clky, k7)(u1)

C(ks, kg)(us)

C(ky, k7)(u2)

Clks, ka)(ue)

C(ky, k7)(u3)

Clks, ks)(u1)

Ck1, k7)(us)

Clks, ks)(uz)

C(k1, k7)(us)

Clks, ks)(u3)

C(k1, k7)(ue)

C(ks, ks)(us)

Clks, kq)(u1)

C(ks, ks) (us)

Clks, k4)(uz)

C(ks, ks) ()

C(ks, kg)(u3)

C(ks, k7)(u1)

Clks, ka)(us)

Clks, k7)(uz)

Clka, ka)(us)

Clks, k7)(us)

Clks, ka)(ue)

Clks, k7)(us)

Clks, ks)(u1)

Cl(ks, k7)(us)

C(ks, ks)(uz)

C(ks, k7)(us)

C(ks, ks)(u3)

s’ =

Now we will evaluate the Score S(kg,1y)(u;); ¥ u; € U, (kg,ly) € (K x L),

1,3,5and t' = 4,5,7 by using step 4 of Algorithm 2.

The Score S(kgr, k) (1) The Score

S(ksl, kt’) (u,-)

—1.08
52.92

7.67 S(kg,k5)(u4)
38.57

—37.56
—44.25

S(kq, ka)(u1)

S(ks, ks ) (us)

S(kq, ka)(u2)

—83.16
18.2

S(ks, ks ) (ue)

S(kq, ka)(u3)

S(ks, k7)(u1)

S(kq, ka)(1ta)
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S(kgr, k) (1) The Score S(kgr, k) (1) The Score
S(ky, k) (113) 63.12 S(ks, 7 (112) 47.04
Sk, ko) (1tg) 1245 S(ks, 7 (113) 312
S(k1, ks) (u1) 12 S(ks, k7) (us) —66.4
S(kr, ks) () 192 S(ks, k) (13) 17
S(ky, ks) (u3) 616 S(ks, k7) (itg) —50.88
S(ky, ks) (12) 123 S(ks, kg) (1) 5808
S(k1, ks) (13) 10176 S (ks, k) (1) 1444
S(ky, s ) (1tg) 1178 S(ks, k) (113) 208
S(ky, ) (117 2712 S (ks, k) (112) 16,34
S(ky, k) (1) 37.44 S(ks, k) (13) 884
S(kr, k) () 319 S(ks, k) (1) 266
Sk, k) (11s) 3724 S(ks, ks) (1) —28.08
S(ky, k) (u3) “112 S(ks, ks) (112) 864
S(ky, k) (1) 234 S(ks, ks) (113) 084
S(ks, ka)(u1) —6 S(ks, ks) (us) 30.24
S(ks, k) (112) 35.52 S (ks, s ) (113) 5.04
S(ks, ka) (13) 30.16 S(ks, ks) (1) 756
S(ks, ka) (142) 665 S(ks, k7) (1) 288
S(ks, ka) (115) 165 S(ks, k7) (112) 17.1
S(ks, ka)(ue) —43.5 S(ks, k7)(u3) 24
S(ks, ks) (117) 216 S(ks, k7) (12) 57
S(ks, s ) (112) 6.6 S(ks, 7 (113) 585
S(ks, ) (113) 486 S(ks, 7 (1tg) 35.28

By using step 5 of Algorithm 2 the weighted values for each S(u;) is:

S(up) = —32.21, S(up) = 189.99, S(u3) = —20.88,

S(uy) = —194.97, S(us) = 202.58, S(ug) = —84.03.

X = arg max {S(u1),S(u2),S(u3),S(us),S(us), S(ug) }-

Thus, us is the best choice.
Hence Mr. X will select us person as a personal secretary.

Here the optimal decision by using step 6 of Algorithm 2 is:

In Figure 8, we observe the following relations between the score values of Examples 13
and 14 by means of Algorithms 1 and 2, respectively.

S(u4) j S(Ll3) j S(u6) j S(Hl) j S(Ll5) j S(uz),

S(u4) j S(uﬁ) j S(ul) j S(u3) j S(uz) j S(u5).
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Figure 8. Comparison of score values of Examples 13 and 14 by means of Algorithms 2 and 2.

9. Conclusions

The main intent of this work is to present a possibility belief interval-valued N-soft set
by consolidating a belief interval value and possibility with N-soft set and its applications
for solving the complicated decision-making problems in various fields of life. There are
great applications for the belief interval in many different fields of life, while the other
tool N-soft set theory is arising as a prosperous mathematical approach for manipulating
ambivalent information. First, we defined basic theory and definitions of important sets in
a very clear way. Then we discussed the BIVNSS, various algebraic operations, and their
fundamental properties. Then we defined PBIVNSS, its algebraic operations, its elemental
properties, and also its applications for decision-making problems. We have also provided
algorithms for these decision-making methods and showed how decision-making methods
are applied successfully in the problems of real life. In further work, this idea can be seen
in many other algebraic expressions and topological structures.
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D.P; writing—original draft preparation, Q.X.; writing—review and editing, R.F.; visualization, R.F,;
supervision, S.A.; project administration, R.E. All authors have read and agreed to the published
version of the manuscript.
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