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Abstract: Envariance is a symmetry exhibited by correlated quantum systems. Inspired by this
“quantum fact of life,” we propose a novel method for shortcuts to adiabaticity, which enables the
system to evolve through the adiabatic manifold at all times, solely by controlling the environment.
As the main results, we construct the unique form of the driving on the environment that enables
such dynamics, for a family of composite states of arbitrary dimension. We compare the cost of this
environment-assisted technique with that of counterdiabatic driving, and we illustrate our results for
a two-qubit model.
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1. Introduction

An essential step in the development of viable quantum technologies is to achieve
precise control over quantum dynamics [1,2]. In many situations, optimal performance
relies on the ability to create particular target states. However, in dynamically reaching
such states, the quantum adiabatic theorem [3] poses a formidable challenge since finite-
time driving inevitably causes parasitic excitations [4–7]. Acknowledging and addressing
this issue, the field of “shortcuts to adiabaticity” (STA) [8–11] has developed a variety of
techniques that permit to facilitate effectively adiabatic dynamics in finite time.

Recent years have seen an explosion of work on, for instance, counterdiabatic
driving [12–19], the fast-forward method [20–23], time-rescaling [24,25], methods based on
identifying the adiabatic invariant [26–29], and even generalizations to classical
dynamics [30–32]. For comprehensive reviews of the various techniques, we refer to
the recent literature [9–11].

Among these different paradigms, counterdiabatic driving (CD) stands out, as it is the
only method that forces evolution through the adiabatic manifold at all times. However, ex-
perimentally realizing the CD method requires applying a complicated control field, which
often involves non-local terms that are hard to implement in many-body systems [15,17].
This may be particularly challenging if the system is not readily accessible, due to, for
instance, geometric restrictions of the experimental set-up.

In the present paper, we propose an alternative method to achieve transitionless
quantum driving by leveraging the system’s (realistically) inevitable interaction with
the environment. Our novel paradigm is inspired by “envariance,” which is short for
entanglement-assisted invariance. Envariance is a symmetry of composite quantum sys-
tems, first described by Wojciech H. Zurek [33]. Consider a quantum state |ψSE 〉 that lives
on a composite quantum universe comprising the system, S , and its environment, E . Then,
|ψSE 〉 is called envariant under a unitary map uS ⊗ IE if and only if there exists another
unitary IS ⊗ uE acting on E such that the composite state remains unaltered after applying
both maps, i.e., (uS ⊗ IE )|ψSE 〉 = |φSE 〉 and (IS ⊗ uE )|φSE 〉 = |ψSE 〉. In other words, the
state is envariant if the action of a unitary on S can be inverted by applying a unitary on E .
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Envariance was essential to derive Born’s rule [33,34], and in formulating a novel
approach to the foundations of statistical mechanics [35]. Moreover, experiments [36,37]
showed that this inherent symmetry of composite quantum states is indeed a physical
reality, or rather a “quantum fact of life” with no classical analog [34]. Drawing inspiration
from envariance, we develop a novel method for transitionless quantum driving. In
the following, we will see that instead of inverting the action of a unitary on S , we can
suppress undesirable transitions in the energy eigenbasis of S by applying a control field
on the environment E . In particular, we consider the unitary evolution of an ensemble
of composite states {|ψSE 〉} on a Hilbert space HS ⊗ HE of arbitrary dimension, and
we determine the general analytic form of the time-dependent driving on HE , which
suppresses undesirable transitions in the system of interest S . This general driving on the
environment E guarantees that the system S evolves through the adiabatic manifold at all
times. We dub this technique environment-assisted shortcuts to adiabaticity, or “EASTA”
for short. In addition, we prove that the cost associated with the EASTA technique is exactly
equal to that of counterdiabatic driving. We illustrate our results in a simple two-qubit
model, where the system and the environment are each described by a single qubit. Finally,
we conclude with discussing a few implications of our results in the general context of
decoherence theory and quantum Darwinism.

2. Counterdiabatic Driving

We start by briefly reviewing counterdiabatic driving to establish notions and nota-
tions. Consider a quantum system S , in a Hilbert space HS of dimension dS , driven by
the Hamiltonian H0(t) with instantaneous eigenvalues {En(t)}n∈J0, dS−1K and eigenstates
{|n(t)〉}n∈J0, dS−1K. For slowly varying H0(t), according to the quantum adiabatic theo-
rem [3], the driving of S is transitionless. In other words, if the system starts in the eigenstate
|n(0)〉, at t = 0, it evolves into the eigenstate |n(t)〉 at time t (with a phase factor) as follows:

|ψn(t)〉 ≡ U(t)|n(0)〉 = e−
i
h̄
∫ t

0 En(s)ds−
∫ t

0 〈n|∂sn〉ds|n(t)〉 ≡ e−
i
h̄ fn(t)|n(t)〉. (1)

For arbitrary driving H0(t), namely for driving rates larger than the typical energy
gaps, the system undergoes transitions. However, it was shown [12–14] that the addition
of a counterdiabatic field HCD(t) forces the system to evolve through the adiabatic manifold.
Using the following total Hamiltonian,

H = H0(t) + HCD(t) = H0(t) + ih̄ ∑
n
(|∂tn〉〈n|−〈n | ∂tn〉|n〉〈n|) , (2)

the system evolves with the corresponding unitary UCD(t) = ∑n |ψn(t)〉〈n(0)| such that the
following holds:

UCD(t)|n(0)〉 = e−
i
h̄ fn(t)|n(t)〉. (3)

This evolution is exact no matter how fast the system is driven by the total Hamilto-
nian. However, the counterdiabatic driving (CD) method requires adding a complicated
counterdiabatic field HCD(t) involving highly non-local terms that are hard to implement in
a many-body set-up [15,17]. Constructing this counterdiabatic field requires determining
the instantaneous eigenstates {|n(t)〉}n∈J0, dS−1K of the time-dependent Hamiltonian H0(t).
Moreover, changing the dynamics of the system of interest (i.e., adding the counterdiabatic
field) requires direct access and control on S .

In the following, we will see how (at least) the second issue can be circumvented by
relying on the environment E that inevitably couples to the system of interest. In particular,
we make use of the entanglement between system and environment to avoid any transitions
in the system. To this end, we construct the unique driving of the environment E that
counteracts the transitions in S .
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3. Open System Dynamics and STA for Mixed States

We start by stating three crucial assumptions: (i) the joint state of the system S and
the environment E is described by an initial wave function |ψSE (0)〉 evolving unitarily,
according to the Schrödinger equation; (ii) the environment’s degrees of freedom do not
interact with each other; (iii) the S-E joint state belongs to the ensemble of singly branching
states [38]. These branching states have the following general form:

|ψSE 〉 =
N−1

∑
n=0

√
pn|n〉

NE⊗
l=1

|E l
n〉, (4)

where pn ∈ [0, 1] is the probability associated with the nth branch of the wave function,
with orthonormal states |n〉 ∈ HS and

⊗NE
l=1 |E

l
n〉 ∈ HE .

Without loss of generality, we can further assume
√

pn = 1/
√

N for all n ∈ J0, N− 1K
since if

√
pn 6= 1/

√
N we can always find an extended Hilbert space [33,34] such that the

state |ψSE 〉 becomes even. Thus, we can consider branching states |ψSE 〉 of the simpler
form as follows:

|ψSE 〉 =
1√
N

N−1

∑
n=0
|n〉

NE⊗
l=1

|E l
n〉. (5)

In the following, we will see that EASTA can actually only be facilitated for even
states (5). In Appendix B, we show that EASTA cannot be implemented for arbitrary
probabilities (i.e., (∃ n);

√
pn 6= 1/

√
N).

3.1. Two-Level Environment E
We start with the instructive case of a two-level environment, cf. Figure 1. To this end,

consider the following branching state:

|ψSE (0)〉 =
1√
2
|g(0)〉 ⊗ |Eg(0)〉+

1√
2
|e(0)〉 ⊗ |Ee(0)〉, (6)

where the states |Eg(0)〉 and |Ee(0)〉 form a basis on the environment E , and the states
|g(0)〉 and |e(0)〉 represent the ground and excited states of S at t = 0, respectively.

It is then easy to see that there exists a unique unitary U′ such that the system evolves
through the adiabatic manifold in each branch of the wave function as follows:

(∃! U′); (U ⊗U′)|ψSE (0)〉 = (UCD ⊗ IE )|ψSE (0)〉. (7)

Starting from the above equality, we obtain the following:

U|g(0)〉 ⊗U′|Eg(0)〉+ U|e(0)〉 ⊗U′|Ee(0)〉 = e−
i
h̄ fg(t)|g(t)〉 ⊗ |Eg(0)〉

+ e−
i
h̄ fe(t)|e(t)〉 ⊗ |Ee(0)〉.

(8)

Projecting the environment E into the state “|Eg(0)〉”, we have

U|g(0)〉〈Eg(0)|U′|Eg(0)〉+ U|e(0)〉〈Eg(0)|U′|Ee(0)〉 = e−
i
h̄ fg(t)|g(t)〉, (9)

equivalently written as

(U′g,g)U|g(0)〉+ (U′g,e)U|e(0)〉 = e−
i
h̄ fg(t)|g(t)〉, (10)

which implies the following:

(U′g,g)|g(0)〉+ (U′g,e)|e(0)〉 = e−
i
h̄ fg(t)U†|g(t)〉. (11)
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Therefore,

U′g,g = e−
i
h̄ fg(t)〈g(0)|U†|g(t)〉, and U′g,e = e−

i
h̄ fg(t)〈e(0)|U†|g(t)〉. (12)

Additionally, by projecting E into the state “|Ee(0)〉” we obtain the following:

U′e,g = e−
i
h̄ fe(t)〈g(0)|U†|e(t)〉, and U′e,e = e−

i
h̄ fe(t)〈e(0)|U†|e(t)〉. (13)

It is straightforward to check that the operator U′, which reads as follows:

U′ =

(
U′g,g U′g,e
U′e,g U′e,e

)
, (14)

is indeed a unitary on E .
In conclusion, we have constructed a unique unitary map that acts only on E , but

counteracts transitions in S . Note that coupling the system and environment implies
that the state of the system is no longer described by a wave function. Hence the usual
counterdiabatic scheme evolves the density matrix ρS (0) to another density ρS (t) such that
both matrices have the same populations and coherence in the instantaneous eigenbasis of
H0(t) (which is what EASTA accomplishes, as well).

(a) Counterdiabatic scheme for open system dynamics.

(b) Environment-assisted shortcut scheme.

Figure 1. Sketch of the two different schemes of applying STA in a branching state of the form presented
in Equation (6). In both panels, the state preparation involves a Hadamard gate (H) applied on S,
and coupling with the environment through a c-not operation. In panel (a), we describe the “usual”
counterdiabatic scheme. As shown in Section 3, local driving on E suppresses any transitions of S in the
instantaneous eigenbasis of H0(t). The latter scheme is illustrated in panel (b).
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3.2. N-Level Environment E
We can easily generalize the two-level analysis to an N-level environment. Similar to

the above description, coupling the system to the environment leads to a branching state of
the following form:

|ψSE (0)〉 =
1√
N

N−1

∑
n=0
|n(0)〉 ⊗ |En(0)〉, (15)

where the states {|En(0)〉}n form a basis on the environment E . We can then construct a
unique unitary U′ such that the system evolves through the adiabatic manifold in each
branch of the wave function as follows:

(∃! U′); (U ⊗U′)|ψSE (0)〉 = (UCD ⊗ IE )|ψSE (0)〉. (16)

The proof follows the exact same strategy as the two-level case, and we find the
following:

(∀ (m, n) ∈ J0, N − 1K2); U′m,n = e−
i
h̄ fm(t)〈n(0)|U†|m(t)〉. (17)

The above expression of the elements of the unitary U′ is our main result, which holds
for any driving H0(t) and any N-dimensional system.

3.3. Process Cost

Having established the general analytic form of the unitary applied on the environ-
ment, the next logical step is to compute and compare the cost of both schemes: (a) the
usual counterdiabatic scheme and (b) the environment-assisted shortcut scheme presented
above (cf. Figure 1). More specifically, we now compare the time integral of the instanta-
neous cost [39] for both driving schemes [39–43], (a) CCD(t) = (1/τ)

∫ t
0 ‖HCD(s)‖ds and (b)

Cenv(t) = (1/τ)
∫ t

0 ‖Henv(s)‖ds (‖.‖ is the operator norm), where the driving Hamiltonian
on the environment can be determined from the expression of
U′(t), Henv(t) = ih̄ dU′(t)

dt U′†(t).
In fact, from Equation (17) it is not too hard to see that the field applied on the

environment Henv(t) has the same eigenvalues as the counterdiabatic field HCD(t), since
there exists a similarity transformation between Henv(t) and H∗CD(t). Therefore, the cost of
both processes is exactly the same, CCD = Cenv, for any arbitrary driving H0(t). Details of
the derivation can be found in Appendix A. Note that for t = τ, the above definition of the
cost becomes the total cost for the duration “τ” of the process.

3.4. Illustration

We illustrate our results in a simple two-qubit model, where the system and and
the environment are each described by a single qubit. Note that the environment can
live in a larger Hilbert space while still being characterized as a virtual qubit [44]. The
aforementioned virtual qubit notion simply means that the state of the environment is of
rank equal to two.

We choose a driving Hamiltonian H0(t), such that

H0(t) =
B
2

σx +
J(t)

2
σz, (18)

where J(t) is the driving/control field, B is a constant, and σz and σx are Pauli matrices.
Depending on the physical context, B and J(t) can be interpreted in various ways. In
particular, as noted in ref. [45], in some contexts, the constant B can be regarded as the
energy splitting between the two levels [46–48], and in others, the driving J(t) can be
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interpreted as a time-varying energy splitting between the states [49–52]. To illustrate our
results we choose the following:

(∀ t ∈ [0, τ]); J(t) = B cos2
(

πt
2τ

)
. (19)

The above driving evolves the system beyond the adiabatic manifold, and we quantify
this by plotting, in Figure 2, the overlap between the evolved state |φn(t)〉 ≡ U(t)|n(0)〉 and
the instantaneous eigenstate |n(t)〉 of the Hamiltonian H0(t), for n ∈ {g, e}. To illustrate
our main result, we also plot the overlap between the states resulting from the two shortcut
schemes (illustrated in Figure 1): the first scheme is the usual counterdiabatic (CD) driving,
where we add a counterdiabatic field HCD to the system of interest, and we note the resulting
composite state as “|ψCD

SE 〉”. The second scheme is the environment-assisted shortcut to
adiabaticity (EASTA), and we note the resulting composite state as “|ψEASTA

SE 〉”. Confirming our
analytic results, the local driving on the environment ensures that the system evolves through
the adiabatic manifold at all times since the state overlap is equal to one for all t ∈ [0, τ].

Finally, we compute and plot the cost of both shortcut schemes and verify that they
are both equal to each other for all times “t” (cf. Figure 2b), and for all “τ” (cf. Figure 2c).

(a)

0.2 0.4 0.6 0.8 1.0
t/τ

0.1

0.2

0.3

0.4

EASTA/B

CD/B

(b)

Figure 2. Cont.
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2 4 6 8 10
τ0.0

0.2

0.4

0.6

0.8

EASTA(τ)/B

CD(τ)/B

(c)

Figure 2. In panel (a), the blue curve illustrates the overlap between the nth evolved state |φn(t)〉 and
the nth instantaneous eigenstate |n(t)〉 of the Hamiltonian H0(t). This curve shows that the driving
H0(t) evolves the system beyond the adiabatic manifold. The red curve illustrates that EASTA
guarantees an exact evolution through the adiabatic manifold. In panel (b), we illustrate the cost of
both the EASTA and the CD schemes, and numerically verify that they are equal C = CCD = Cenv for
all t/τ ∈ [0, 1], and τ = 1. Note that in the illustrations we pick the driving field J(t) = B cos2(πt

2τ

)
and B = 1. In panel (c), we illustrate the costs for different values of τ. For infinitely fast processes
(τ → 0) the cost diverges and it tends to zero for infinitely slow processes (τ → ∞).

4. Concluding Remarks
4.1. Summary

In the present manuscript, we considered branching states {|ψSE 〉}, on a Hilbert space
HS ⊗HE of arbitrary dimension, and we derived the general analytic form of the time-
dependent driving onHE , which guarantees that the system S evolves through the adiabatic
manifold at all times. Through this environment-assisted shortcuts to adiabaticity scheme,
we explicitly showed that the environment can act as a proxy to control the dynamics of the
system of interest. Moreover, for branching states |ψSE 〉with equal branch probabilities, we
further proved that the cost associated with the EASTA technique is exactly equal to that of
counterdiabatic driving. We illustrated our results in a simple two-qubit model, where the
system and the environment are each described by a single qubit.

It is interesting to note that while we focused in the present manuscript on counter-
diabatic driving, the technique can readily be generalized to any type of control unitary
map “Ucontrol”, resulting in a desired evolved state |κn(t)〉 ≡ Ucontrol|n(0)〉. The corresponding
unitary U′ onHE has then the following form:

(∀ (m, n) ∈ J0, N − 1K2); U′m,n = 〈n(0)|U†|κm(t)〉. (20)

In the special case, for which the evolved state is equal to the nth instantaneous
eigenstate of H0(t) (with a phase factor),

|κn(t)〉 = e−
i
h̄ fn(t)|n(t)〉, (21)

we recover the main result of the manuscript. The above generalization illustrates the
broad scope of our results. Any control unitary on the system S can be realized solely by
acting on the environment E , without altering the dynamics of the system of interest S (i.e.,
for any arbitrary driving H0(t) and thus, any driving rate).

4.2. Envariance and Pointer States

In the present work, we leveraged the presence of an environment to induce the
desired dynamics in a quantum system. Interestingly, our novel method for shortcuts to
adiabaticity relies on branching states, which play an essential role in decoherence theory
and in the framework of quantum Darwinism.

In open system dynamics [53–55], the interaction between system and environ-
ment superselects states that survive the decoherence process, also known as the pointer
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states [56,57]. It is exactly these pointer states that are the starting point of our analysis,
and for which EASTA is designed. While previous studies [58–60] have explored STA
methods for open quantum systems, to the best of our understanding, the environment
was only considered a passive source of additional noise described by quantum master
equations. In our paradigm, we recognize the active role that an environment plays in
quantum dynamics, which is inspired by envariance and reminiscent of the mindset of
quantum Darwinism. In this framework [44,61–77], the environment is understood as
a communication channel through which we learn about the world around us, i.e., we
learn about the state of systems of interest by eavesdropping on environmental degrees of
freedom [44].

Thus, in true spirit of the teachings by Wojciech H. Zurek, we have understood the
agency of quantum environments and the useful role they can assume. To this end, we
have applied a small part of the many lessons we learned from working with Wojciech, to
connect and merge tools from seemingly different areas of physics to gain a deeper and
more fundamental understanding of nature.
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Appendix A. Cost of Environment-Assisted Shortcuts to Adiabaticity

In this appendix, we show that CD and EASTA have the same cost. Generally, we have
the following:

Henv(t) = ih̄
dU′(t)

dt
U′†(t),

= ih̄ ∑
i,j

∑
k

dU′i,k
dt

(U′j,k)
∗|Ei(0)〉〈Ej(0)|.

(A1)

From the main result in Equation (17), we obtain the following:

Henv(t) = ∑
i,j

(
∑
k

(
〈k(0)|ih̄∂tU†|ψi(t)〉(U′j,k)

∗ + ih̄〈k(0)|U†|∂tψi(t)〉(U′j,k)
∗
))

× |Ei(0)〉〈Ej(0)|.
(A2)

Given that H0(t) = ih̄ dU(t)
dt U†(t), we also have

Henv(t) = ∑
i,j

(
∑
k

(
〈k(0)|(−U† H0)|ψi(t)〉(U′j,k)

∗ + ih̄〈k(0)|U†|∂tψi(t)〉(U′j,k)
∗
))

× |Ei(0)〉〈Ej(0)|,
(A3)
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which implies

Henv(t) = ∑
i,j

(
∑
k

(
〈k(0)|(−U† H0)|ψi(t)〉(U′j,k)

∗ + 〈k(0)|U† H|ψi(t)〉(U′j,k)
∗
))

× |Ei(0)〉〈Ej(0)|,
(A4)

and hence,

Henv(t) = ∑
i,j

(
∑
k
〈k(0)|U† HCD|ψi(t)〉(U′j,k)

∗
)
|Ei(0)〉〈Ej(0)|. (A5)

Using |φk(t)〉 ≡ U(t)|k(0)〉 we can write the following:

Henv(t) = ∑
i,j

(
∑
k
〈ψj(t)|φk(t)〉〈φk(t)|HCD|ψi(t)〉

)
|Ei(0)〉〈Ej(0)|. (A6)

Therefore, the following holds:

Henv(t) = ∑
i,j

(
〈ψj(t)|HCD|ψi(t)〉

)
|Ei(0)〉〈Ej(0)|. (A7)

By definition, we also have the following:

HCD = ∑
i,j

(
〈ψi(t)|HCD|ψj(t)〉

)
|ψi(t)〉〈ψj(t)|, (A8)

and hence,
HT

CD = H∗CD = ∑
i,j

(
〈ψj(t)|HCD|ψi(t)〉

)
|ψi(t)〉〈ψj(t)|. (A9)

Thus, there exists a similarity transformation between H∗CD and Henv, and CCD = Cenv
for any arbitrary driving H0(t). The similarity transformation is given by the matrix
S = ∑j |Ej(0)〉〈ψj(t)|, such that SH∗CDS−1 = Henv. Since we proved that the Hamiltonians
HCD and Henv have the same eigenvalues, our result can be valid for other definitions of
the cost function C, which might involve other norms (e.g., the Frobenius norm).

It is noteworthy that in the above analysis, we do not consider the effect of quantum
fluctuations [78] in the control fields, since their energetic contribution to the cost function
is negligible in our context.

Appendix B. Generalization to Arbitrary Branching Probabilities

Finally, we briefly inspect the case of non-even branching states. We begin by noting
the consequences of our assumptions. In particular, we have assumed that the state of
system+environment evolves unitarly. Thus, consider a joint map of the form U ⊗M, where
U is a unitary on S . Then, it is a simple exercise to show that the map M, on E , is also unitary,
MM† = M† M = I. In what follows, we prove by contradiction that there exists no unitary
map M that suppresses transitions in S , for branching states with arbitrary probabilities.

Consider the following:

|ψSE (0)〉 =
N−1

∑
n=0

√
pn|n(0)〉

NE⊗
l=1

|E l
n(0)〉, (A10)

and assume that there exists a unitary map M on E that suppresses transitions in S , i.e.,

N−1

∑
n=0

√
pnU|n(0)〉 ⊗

(
M

NE⊗
l=1

|E l
n(0)〉

)
=

N−1

∑
n=0

√
pne−

i
h̄ fn(t)|n(t)〉 ⊗

( NE⊗
l=1

|E l
n(0)〉

)
. (A11)
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Following the same steps of Section 3, we obtain the following:

(∀ (m, n) ∈ J0, N − 1K2); Mm,n =

√
pm

pn
e−

i
h̄ fm(t)〈n(0)|U†|m(t)〉. (A12)

Comparing the above map with our main result in Equation (17), we conclude that
the additional factor

√
pm
pn

violates unitarity, and hence we conclude that EASTA cannot
work for non-even branching states (A10).

This can be seen more explicitly from the form of the matrices MM† and M† M.
Generally, and by dropping the superscript in environmental states

⊗NE
l=1 |E

l
n(0)〉 ≡ |En(0)〉,

we have the following:
MM† = ∑

i,j,k
Mi,k M∗j,k|Ei(0)〉〈Ej(0)|, (A13)

from the expression of the elements of M (cf. Equation (A12)), and by adopting the notation
|φn〉 ≡ U(t)|n(0)〉, we obtain the following:

MM† = ∑
i,j,k

√pi pj

pk
〈φk|ψi〉〈ψj|φk〉|Ei(0)〉〈Ej(0)|, (A14)

which implies

MM† = I+ ∑
i,j

√
pj

pi
〈ψj|D(i)|ψi〉|Ei(0)〉〈Ej(0)|, (A15)

such that the matrix
D(i) = ∑

k

pi
pk
|φk〉〈φk| − I (A16)

is diagonal in the basis spanned by the orthonormal vectors {|φk〉}k. This matrix is generally
(for any choice of H0(t) and initial state of S) different from the null matrix for non-equal
branch probabilities. A similar decomposition can be made for the matrix M† M, such that

M† M = I+ ∑
i,j

√
pi
pj
〈φj|D(i)|φi〉|Ei(0)〉〈Ej(0)|, (A17)

where
D(i) = ∑

k

pk
pi
|ψk〉〈ψk| − I. (A18)

In conclusion, for branching states with non-equal probabilities, there is no unitary
map that guarantees that the system evolves through the adiabatic manifold at all times
and for any arbitrary driving H0(t). Hence, we can realize the EASTA technique only for a
system maximally entangled with its environment (cf. Equation (A10) with

√
pn = 1/

√
N

for all n ∈ J0, N − 1K), or in the general case (non-equal branch probabilities) when we can
access an extended Hilbert space.
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