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Abstract: Different arguments led to supposing that the deep origin of phase transitions has to
be identified with suitable topological changes of potential related submanifolds of configuration
space of a physical system. An important step forward for this approach was achieved with two
theorems stating that, for a wide class of physical systems, phase transitions should necessarily stem
from topological changes of energy level submanifolds of the phase space. However, the sufficiency
conditions are still a wide open question. In this study, a first important step forward was performed
in this direction; in fact, a differential equation was worked out which describes how entropy varies
as a function of total energy, and this variation is driven by the total energy dependence of a topology-
related quantity of the relevant submanifolds of the phase space. Hence, general conditions can be in
principle defined for topology-driven loss of differentiability of the entropy.

Keywords: phase transitions; differential topology; entropy flow; Weingarten map; Ginzburg-Landau

1. Introduction

At the beginning of the last century, statistical mechanics was introduced to replace
the inaccessible knowledge of the dynamics of an N-body system. With the advent of
electronic computers, and since the pioneering work of E. Fermi, J. Pasta and S. Ulam, the
knowledge of the dynamical behavior of N interacting particles became accessible. Even
though the accessible number of degrees of freedom was, and still is, by far smaller than
the Avogadro number, so-called molecular dynamics has proven very effective for deriving
the macroscopic physical properties of systems, of which the microscopic Hamiltonian
dynamics are simulated numerically.

The numerical simulation of microscopic Hamiltonian dynamics can be carried out in
the presence of a phase transition. In this case the dynamical approach is equivalent to a
microcanonical approach to the study of phase transitions, because the ergodic invariant
measure of generic non-integrable Hamiltonian flows is the microcanonical measure. The
dynamical approach brings about added value which is absent in the standard study of
phase transitions in the canonical ensemble framework, both with analytical methods and
numerical Monte Carlo algorithms. In fact, the dynamics of a generic system of N degrees
of freedom (particles, classical spins, quasi-particles such as phonons and so on), confined
in a finite volume (therein free to move, or defined on a lattice), described by a Hamiltonian

H =
1
2

N

∑
i=1

p2
i + V(q1, . . . , qN) , (1)
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or equivalently by the corresponding Lagrangian function

L =
1
2

N

∑
i=1

q̇2
i −V(q1, . . . , qN) , (2)

are chaotic. The largest Lyapunov exponent, which quantifies the degree of chaoticity of
the dynamics, is a new observable that can be used to characterize phase transitions from
a dynamical viewpoint. This can lead rather far by combining the dynamical approach
with the natural and effective explanation of the origin of Hamiltonian chaos stemming
from the identification of a Hamiltonian flow with a geodesic flow of a suitably defined
Riemannian differentiable manifold. This differential geometric framework is defined by
endowing configuration space with the non-Euclidean metric of components [1–3]

gij = 2[E−V(q)]δij , (3)

whence the infinitesimal arc element ds2 = 4[E−V(q)]2dqi dqi; then Newton’s equations
are retrieved from the geodesic equations

d2qi

ds2 + Γi
jk

dqj

ds
dqk

ds
= 0 . (4)

where Γi
jk are the Christoffel connection coefficients of the manifold. In this framework, the

degree of instability of the dynamics can be investigated through the Jacobi–Levi-Civita
equation for the geodesic deviation vector field J (J locally measures the distance between
nearby geodesics), which in a parallel-transported frame reads

d2 Jk

ds2 + Rk
ijr

dqi

ds
J j dqr

ds
= 0 . (5)

where Ri
jkl are the components of the Riemann curvature tensor. Applied to the configu-

ration space of a physical system, the degree of instability of the phase space trajectories
is related to the “landscape” of the curvature of the configuration space manifold, and
this can lead—under suitable approximations—to the analytic computation of the largest
Lyapunov exponent for high dimensional Hamiltonian flows [4]. In so doing, it was natural
to look for some connection between the occurrence of phase transitions and their coun-
terparts in the geometry of the manifolds underlying the flows. This led to discovering
that in correspondence with phase transitions, there are peculiar geometrical changes of
the mechanical manifolds. Then it turned out that these peculiar geometrical changes
were the effects of deeper topological changes of the energy level sets ΣHN

E = H−1
N (E) and

MHN
E = {H−1

N ((−∞, E])}E∈R [5–8], where HN is the Hamiltonian function of the physical
system. Then this was rigorously ascertained for a few exactly solvable models [4]. Finally,
it was found that—for a large class of physical potentials—a phase transition necessarily
stems from the loss of diffeomorphicity of the MHN

E , and equivalently, of the ΣHN
E [9–11].

More precisely, it has been proved that diffeomorphicity among the members of the family
{MHN

E }E∈R, for any N larger than some N0, implies the absence of phase transitions (the
necessity theorems have been given a counterexample in reference [12], however, the
problem raised by this work has been fixed in [13], and, rigorously, in [14]). This means
that the members of the family {ΣHN

E }E<Ec are not diffeomorphic to those of the family
{ΣHN

H }E>Ec . As well, the members of the family {MHN
E }E<Ec are not diffeomorphic to

those of {MHN
E }E>Ec . If Ec stands for the critical value of the Hamiltonian function at

the transition point. Hence, the starting of a topological theory of phase transitions that
goes beyond the existing theories on this topic [4]—namely, the Yang-Lee theory [15,16]
and the Dobrushin–Lanford–Ruelle theory [17]—requires the limit N → ∞ to account
for the loss of analyticity of thermodynamic observables; but the study of transitional
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phenomena in finite N systems (with N extremely smaller than the Avogadro number) is
particularly relevant in many other contemporary problems [18], for instance, those related
to polymers’ thermodynamics and biophysics [19–21], Bose–Einstein condensation and
Dicke’s superradiance in microlasers, superconductive transitions in small metallic objects,
just to quote some example.

On the other hand, the Landau theory, which relates phase transitions with the
symmetry-breaking phenomenon, is not an all-encompassing theory because there are
many systems undergoing phase transitions in the absence of an order parameter, and thus
in the absence of symmetry-breaking [22,23]. Therefore, looking for generalizations of the
existing theories is a well motivated and timely purpose.

Now, an explicit link between thermodynamics and topology is provided by the
following exact formula:

SN(E) = (kB/N) log
[∫

M
HN
E

dNq dN p
]

=
kB
N

log

vol[MHN
E \

N (E)⋃
i=1

Γ(x(i)c )] +
N

∑
i=0

wi µi(MHN
E ) +R

, (6)

where SN is the entropy, E is the total energy per degree of freedom and the µi(MHN
E ) are the

Morse indexes (in one-to-one correspondence with topology changes) of the submanifolds
MHN

E = {H−1
N ((−∞, E])}E∈R of the phase space. The first term of Equation (6) in square

brackets is the result of the excision of certain neighborhoods of the critical points of the
Hamiltonian function from MHN

E ; the second term is a weighed sum of the Morse indexes;
and the third term is a smooth function of N and E. It is evident that sharp changes
in the Hamiltonian function pattern of at least some of the µi(MHN

E ) (thus of the way
topology changes with E) could affect SN(E) and its derivatives. In what follows, the
development of a fundamental analytical tool is shown, which was made to pave the way
to future investigations about the different kinds of topology changes that can entail a
phase transition, thereby providing the theory with sufficiency conditions.

2. Entropy Flow

For a long time, it has been well known [24–26] that the statistical description of the
phase transitions (PTs) of an autonomous Hamiltonian system—which consists of defining
suitable integration measures—can be re-phrased and re-interpreted within a geomet-
ric/topological framework—where one studies which geometric-topological changes in
phase space can give rise to a PT. In the microcanonical ensemble, the relation between
such two descriptions can be realized by working with the entropy function which is the
fundamental thermodynamic potential. In fact, being defined as a function of energy, S(E),
all the thermodynamic observables can be deduced, through suitable combinations of
its derivatives with respect to the energy. Conceptually, given an Hamiltonian function
H : Λ → R defined on the phase space, Λ ⊂ RN × RN , and by adopting Boltzmann’s
entropy definition, the entropy of the system at a given energy, E, is

S(E) = log
(
volχ(ΣH

E )
)
, (7)

with
volχ(ΣH

E ) =
∫

ΣH
E

χ dσΣH
E

, (8)

where dσΣH
E

is the Euclidean volume measure induced on ΣH
E and with the energy level set

ΣH
E = H−1(E) = {x ∈ Λ |H(x) = E} ⊂ RN ×RN . (9)
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The function χ reminds us that one can actually consider a weighted volume measure,
as we discuss in a moment, for physical reasons.

In order to advance, the crucial point is that to provide a definition for the function
χ in Equation (8), which in turn, will allow us to explicitly define volχ. It is worth noting
that the definition of an integration measure is a matter of choice. Actually, from a purely
mathematical viewpoint, any energy level set, ΣH

E , being viewed as a topological space, can
be equipped with a Borel measure so as to be compatible with the topology of any energy
level set.

On the basis of statistical mechanics assumptions, we can restrict the range of possibil-
ities. In fact, a natural choice is to consider a measure that, by virtue of Liouville theorem,
is invariant with respect to the Hamiltonian flow—namely, it has to be preserved by the
dynamics. This can be done by defining, on a given energy level set, ΣH

E , the following
function:

χ =
1

‖∇H‖ , (10)

where ‖ · ‖ is the Euclidean norm in Λ and ∇ = {∂p1 , . . . , ∂pN , ∂q1 , . . . , ∂qN} is the gradient
operator acting on phase-space-valued functions. Therefore, for physical reasons, rather
then choosing an integration measure which exactly produces the geometric volume, i.e.,
χ = 1 so that volχ=1 ≡ vol, one is led to consider, a volume measure weighted by the
function ‖∇H‖−1. Thus, from definition (10), the weighted volume (8) reads:

volχ(ΣH
E ) =

∫
ΣH

E

dσΣH
E

‖∇H‖ , (11)

and the entropy

S(E) = log

(∫
ΣH

E

dσΣH
E

‖∇H‖

)
. (12)

In order to better understand our aim, a remark is now in order. For the sake of
simplicity, let us discuss in terms of the first derivative of S(E), but obviously, it can be
extended to higher order derivatives.

Roughly speaking, the differentiation under the integral sign in Equation (12) involves
derivatives of the induced measure dσΣH

E
and of ‖∇H‖−1. Moreover, the former evidently

contains the information about the geometry of the energy level set ΣH
E , whereas the latter

adds a further contribution to the entropy variation, but it cannot be directly traced back to
any geometric origin.

Therefore, a question naturally arises: what is the role played by the geometry of the
ΣH

E in a PT? In other words, how relevant is the geometric contribution at the ground of a
PT?

Before answering these questions, one should firstly wonder: is it legitimate to drop
out the ‖∇H‖−1 term? It is worth noting that—at least in systems with small numbers
of degrees of freedom—there exists a positive answer to the last question, as has been
shown in [27,28]. In this setting, i.e., when N is relatively small, a more appropriate entropy
definition is given by

S(E) = log
∫

ΣH
E

dσΣH
E

, (13)

which consists of setting χ = 1 in Equation (8) so that the weighted volume reduces to the
geometric one:

vol(ΣH
E ) =

∫
ΣH

E

dσΣH
E

. (14)

Clearly, for systems with large numbers of degrees of freedom, Boltzmann entropy in
Equation (12) is the correct one. However, as a first step in compliance with the aim of our
present work, we begin by using the entropy defined in Equation (13).
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2.1. Introduction to the Geometric Approach

Let us consider an interval S = (E0, E1) in an energy domain such that the Hamilto-
nian has no critical points; i.e.,

dH
∣∣
x 6= 0 ∀x ∈ S .

This allows one to introduce a regular foliation of the the phase space region defined as

Λ =
⋃

E∈S

ΣH
E . (15)

Of course, a natural symplectic structure on phase space does not carry any Rieman-
nian geometric structure. Moreover, we assume that any energy level set ΣH

E is equipped
with a metric tensor hE, resulting in a family of Riemannian metrics {hE}E∈S . In so doing,
a Riemannian metric is defined on the whole phase space as [29]

gΛ =
dE
‖∇H‖ ⊗

dE
‖∇H‖ + hE; (16)

hence, the volume measure on the phase space

dµgΛ =

√
det hE
‖∇H‖ dy1 . . . dyn−1dE, (17)

where n = 2N is the dimension of the phase space, and {yi
E}n−1

i=1 is the system of coordinates
on ΣH

E . Thus, the induced measure on the energy level which defines the entropy in
Equation (12) corresponds to:

dµgΛ

∣∣∣∣
ΣH

E

=
dσΣH

E

‖∇H‖ =

√
det hE(y)
‖∇H‖ dy1

E . . . dyn−1
E . (18)

A remark is in order. In writing the Riemannian metric tensor in Equation (16), we
have tacitly introduced a curvilinear coordinate system on Λ, i.e., {u0, u1, . . . , un−1}, such
that u0 = E and ui = yi. This set of coordinates gives rise to a vector basis together with its
dual, respectively,

{∂u0 , ∂u1 , . . . , ∂un−1}, {du0, du1, . . . , dun−1}, (19)

such that
duα(∂uβ) = δα

β, α, β = 0, 1, . . . , n− 1. (20)

In order to better understand the role of ∂u0 , we introduce the unit normal vector field
to the energy level sets

ν =
∇H
‖∇H‖ , (21)

and since g(ν, ν) = 1, we necessarily have du0(ν) = χ−1. Moreover, g(ν, ∂ui ) = 0 for every
i = 1, . . . , n− 1; thus, we can write ∂u0 = f ν where f is an unknown function that, through
the condition (20), produces f = χ. This means that the basis vector ∂u0 actually is not
normalized and ‖∂u0‖ = gΛ(∂u0 , ∂u0)1/2 = χ. In fact, we note that the reference frame and
its dual given in Equation (19) represent a moving frame.

Therefore, ∂u0 is the normal vector field which generates diffeomorphisms between
energy level sets. Roughly speaking, the introduction of a Hamiltonian function H : Λ→ R
provides a parametrization H(ΣH

E ) = E ≡ u0, which, in turn, gives rise to a covering of the
phase space in terms of energy level sets. As a consequence, any variation of the energy
value, E→ E′, is associated with a diffeomorphism ΣH

E → ΣH
E′ generated by the flow of the

vector field ∂u0 = χν [29,30].
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In the end, such a fact implies that the practical and correct way for differentiating the
entropy function (13) with respect to the energy is by means of ∂u0 , and it is associated with
the Lie operator L∂u0 , which clearly differs from that defined by the unit normal vector (21)
denoted with Lν.

We stress that, although the above-mentioned differentiation is the rigorous one, we
actually adopt a different parameterization, e, based on the unit normal vector ν and such
that de(ν) = 1. In this way, we give the following definition (different than the definition
in Equation (16)) of the metric tensor with respect to the energy-like variable:

gΛ = de⊗ de + hE. (22)

Such a parametrization can be geometrically interpreted as a normal deformation of
the energy level set as the previous one (the vector ∂u0 is normal to ΣE

H and ν), but we have
an equidistant motion of energy level sets [31] since, in Equation (22), the tensor de⊗ de is
not multiplied by any function.

2.2. Entropy Flow Equation

We now show the main result of this paper, namely—based on the entropy definition (13)
—one can define a nonlinear differential equation describing the entropy flow as a func-
tion of energy. We then recognize that the forcing term in this equation depends on well
identifiable geometric features such as scalar curvature and Weingarten operator.

In order to obtain the equation for the entropy flow, let us rewrite Equation (13) as

S(e) = log
(

vol(ΣH
e )
)
≡ log

∫
ΣH

e

dσΣH
e

; (23)

then, let us compute the first and second order e-derivatives. We have:

∂eS(e) =
∂evol(ΣH

e )

vol(ΣH
e )

, (24)

∂2
e S(e) =

∂2
e vol(ΣH

e )

vol(ΣH
e )
−
(

∂evol(ΣH
e )

vol(ΣH
e )

)2

. (25)

By substituting the first equation into the second term in the right-hand side of the
second equation, one finds

∂2
e S(e) + (∂eS(e))2 =

∂2
e vol(ΣH

e )

vol(ΣH
e )

. (26)

The equation above is a Riccati differential equation [32] describing the flow of entropy
driven just by geometry, as we will see later on. Meanwhile, we anticipate that the geometric
contribution is contained in the non-homogeneous term which is proportional to the second
derivative of the volume; therefore, it is necessary to explicitly compute the second volume
variation.

2.2.1. First Variation of Volume

The first volume variation formula can be obtained by computing the first e-derivative
of the volume measure:

∂evol(ΣH
e ). (27)

This quantity can be explicitly written, noting that the Lie derivative with respect to
the unit normal vector ν applied to the induced metric he is twice the second fundamental
form II [29,31]:

Lνhe = 2 II. (28)
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Thus, Equation (27) becomes:

∂evol(ΣH
e ) =

∫
ΣH

e

Lν

(
dσΣH

e

)
=
∫

ΣH
e

Tr[II] dσΣH
e

, (29)

since [4,33]

Lν

√
det he =

(det he)

2
√

det he
C[h−1

e Lνhe] =
√

det heTr[II],

where C is the total contraction operator which yields the trace of its argument.
The Weingarten (or shape) operator of an immersed manifold is defined on ΣH

e as [29,31,33]

Wν(X) = ∇X ν, (30)

for any X which lies on the tangent space to the energy level set ΣH
e . The trace of the second

fundamental form coincides with the trace of the Weingarten operator

Tr[II] =
n−1

∑
i=1

II(ai, ai) =
n−1

∑
i=1

he(Wν(ai), ai) =
n−1

∑
i=1

he(∇ai ν, ai) ≡ Tr[Wν], (31)

where {ai}n−1
i=1 is an orthonormal basis on ΣH

e .
Therefore, one has

∂vol(ΣH
e )

∂e
(e) =

∫
ΣH

e

Tr[Wν] dσΣH
e

. (32)

2.2.2. Second Variation of Volume

The second volume variation formula can be obtained by deriving once more Equation (32)
with respect to the e-variable, and it is

∂2vol(ΣH
e )

∂e2 (e) =
∫

ΣH
e

Lν

{
Tr[Wν] dσΣH

e

}
=
∫

ΣH
e

{
Tr[∇νWν] + (Tr[Wν])

2
}

dσΣH
e

. (33)

Then, by taking the trace of the Riccati equation for the Weingarten operator [29]:

Tr[∇νWν] = −Tr[W 2
ν ]− Ric(ν, ν), (34)

where Ric(ν, ν) is the Ricci curvature along the vector field ν which identically vanishes
in Rn, and by plugging it in Equation (33), one gets the second variation formula for the
volume

∂2vol(ΣH
e )

∂e2 (e) =
∫

ΣH
e

{
Tr[Wν]

2 − Tr[W 2
ν ]

}
dσΣH

e
. (35)

The equation above obtained contains the essence of our final result, and therefore,
a remark is worth making. The second variation of volume (acceleration) is driven by a
particular combination of the trace of Weingarten operator which is related to the scalar cur-
vature of the energy level set. In order to see it, let us consider the following decomposition
(see decomposition in Section 2.3 of [31])

R(Λ) = 2 Ric(ν, ν) + R(ΣH
e ) + Tr[W 2

ν ]− Tr[Wν]
2, (36)

where R(Λ) and R(ΣH
e ), respectively, are the scalar curvatures of phase space Λ (ambient

manifold) and of the energy level set, and since the ambient space Λ is Euclidean, we have

Ric(ν, ν) = 0, R(Λ) = 0, (37)
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which implies
R(ΣH

e ) = Tr[Wν]
2 − Tr[W 2

ν ]. (38)

Hence, the second variation formula of volume can be recast into a more intuitive fashion:

d2vol(ΣH
e )

de2 (e) =
∫

ΣH
e

R(ΣH
e ) dσΣH

e
. (39)

2.2.3. Entropy Flow

By substituting Equation (39) into Equation (26), the entropy flow is described by

∂2
e S(e) + (∂eS(e))2 =

∫
ΣH

e

R(ΣH
e ) dηΣH

e
, (40)

where the normalized measure

dηΣH
e
=

dσΣH
e

vol(ΣH
e )

. (41)

has been introduced.
An appropriate definition of Equation (40) would be that it is a geometric entropy flow

equation. In fact, the choice of the energy-like parametrization e associated with the Lie
derivative Lν entails that the second derivative of the volume depends only on the way
the geometry of the energy level sets varies with the energy-like parameter e.
This can be observed by acting twice with the Lie derivative L∂E = χLν on the volume,
that is,

∂2
Evol(ΣH

E ) =
∫

ΣH
E

χ(∇νχ) Tr[Wν]dσΣH
E
+
∫

ΣH
E

χ2 R(ΣH
E )dσΣH

E
, (42)

and comparing the outcome with Equation (39). Hence, it is clear by inspection that
geometric factors such as the trace of the Weingarten operator and scalar curvature are
multiplied by factors as χ∇νχ and χ2, respectively, which cannot be given a geometric
interpretation.

Moreover, in addition to the assumptions introduced in Section 2.1, we have also
assumed that the first and second order derivatives (see Equations (24) and (25)) of the
entropy function (23) represent a closed system of differential equations that can be reduced
to Equation (40). In fact, one can recognize in the second term of the right-hand side of
Equation (25), i.e., ∂evol(ΣH

E )/vol(ΣH
E ), the first derivative of S(e) given in Equation (24).

Then, one assumes that the term ∂2
e vol(ΣH

E )/vol(ΣH
E ) is not related to any combination

of the derivatives of the entropy, and in fact, one can show that it coincides with the
normalized integral of the scalar curvature of the energy level sets. Therefore, the system
of equations is shown to be closed since the previous term is just of geometric meaning.

In principle, one could include in the system (24) and (25) higher order derivatives of
entropy to obtain a differential equation for the entropy equivalent to Equation (40). For
instance, let us consider the third order derivative

∂eS(e) =
∂evol(ΣH

e )

vol(ΣH
e )

, (43)

∂2
e S(e) =

∂2
e vol(ΣH

e )

vol(ΣH
e )
−
(

∂evol(ΣH
e )

vol(ΣH
e )

)2

, (44)

∂3
e S(e) =

∂3vol(ΣH
e )

vol(ΣH
e )
− 3

∂2
e vol(ΣH

e )

vol(ΣH
e )

∂evol(ΣH
e )

vol(ΣH
e )

+ 2
(

∂evol(ΣH
e )

vol(ΣH
e )

)3

. (45)

Now, by substituting in Equation (45), the first and second derivatives, we get

∂3
e S(e) + 3∂2

e S(e)∂eS(e) + (∂eS(e))3 =
∂3vol(ΣH

e )

vol(ΣH
e )

. (46)
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Here, the right-hand side can be interpreted again as a term of purely geometric
meaning, and in fact [29]

∂3vol(ΣH
e ) =

∂

∂e

∫
ΣH

e

R(ΣH
e ) dσΣH

e
=
∫

ΣH
e

(
∂eR(ΣH

e ) + R(ΣH
e ) Tr[II]

)
dσΣH

e

= −2
∫

ΣH
e

Tr[G ·Wν] dσΣH
e

, (47)

where G = Ric(ΣH
e )− 1

2
he R(ΣH

e ) is the contravariant Einstein tensor, Ric(ΣH
e ) is the Ricci

curvature tensor of the energy level set whereas G ·Wν, in the last equality, stands for the
matrix product, that is, (G ·Wν)ij = Gik(Wν)

k
j .

Therefore, Equation (46) together with (47) defines a differential equation for the
entropy function which contains the same thermodynamic information contained in
Equation (40). Alternatively, one could define a sort of geometric temperature function
defined by T(e) := ∂eS(e), and Equation (46) becomes an equation for the geometric
temperature:

∂2
e T(e) + 3(∂eT(e))T(e) + T(e)3 = −2

∫
ΣH

e

Tr[G Wν] dσΣH
e

. (48)

It is worth mentioning that in reference [34], similar investigations were proposed
concerning the relation between geometric and thermodynamic quantities and their be-
havior in the presence of a PT; in this context, the derivatives of the entropy are treated
as observables, such as temperature, specific heat and the second order derivative of the
entropy. Contrarily, our present approach treats S as an unknown function which can be
determined by solving Equation (40).

An equivalent and very interesting version of the entropy flow Equation (40) can be
given in the form of a harmonic oscillator-like equation. In fact, by introducing a function
Y, which plays the role of a volume, such that

S(e) = log
(

Y(e)
Y(e0)

)
, (49)

where Y(e0) is related to the volume value corresponding to the lowest accessible energy
value; and by replacing this relation into Equation (40), we get

∂2
e Y(e)−

( ∫
ΣH

e

R(ΣH
e ) dµΣe

)
Y(e) = 0. (50)

This equation already allows one to infer some interesting properties of the energy
level sets, at least in the present framework of energy-like parametrization. In practice,
the total scalar curvature needs to be positive in order to be compatible with a physically
meaningful entropy function.

With the help of the Hölder inequality for integrals, we have∫
ΣH

e

R(ΣH
e ) dσΣH

e
≤
∫

ΣH
e

|R(ΣH
e )| dσΣH

e
≤
[∫

ΣH
e

{|R(ΣH
e )|}n/2dσΣH

e

]2/n[∫
ΣH

e

dσΣH
e

]1/(1−2/n)
, (51)

whence, at large n,∫
ΣH

e

R(ΣH
e ) dµΣH

e
=
∫

ΣH
e

R(ΣH
e ) dσΣH

e

[∫
ΣH

e

dσΣH
e

]−1
=

[∫
ΣH

e

{|R(ΣH
e )|}n/2dσΣH

e

]2/n
− r(e), (52)

where r(e) is a positive remainder function. The scalar curvature is here given by

R(ΣH
e ) = ∑

i<j
κiκj,
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where the κi are principal curvatures of ΣH
e . Using the expression of a multinomial expansion

(x1 + · · ·+ xν)
ν = ∑

{ni},∑ nk=ν

ν!
n1! · · · nν!

· xn1
1 · · · x

nν
ν , (53)

we can write
|R(ΣH

e )|n/2 = n(n− 1)
(n

2

)
!|κ1κ2 . . . κn|+R(e), (54)

where R(e) contains all the terms of the multinomial expansion (53) but that one with
n1 = n2 = · · · = nν = 1. Then, since |κ1κ2 . . . κn| = |KG|, where |KG| is the Gauss–
Kronecker curvature, by resorting to the Chern–Lashof theorem [35]:

∫
ΣH

e

dσΣH
e
|KG| =

1
2

vol(Sn−1
1 )

n

∑
i=0

µi(ΣH
e ) , (55)

where µi(ΣH
e ) are the Morse indexes of ΣH

e , immersed in the Euclidean space Rn, Sn is an
n-dimensional sphere of unit radius and dσΣH

e
is the measure on ΣH

e . Thus, we can rewrite
Equation (50) as

∂2
e Y(e)−

{
n(n− 1)

(n
2

)
! vol(Sn−1

1 )
n

∑
i=0

µi(ΣH
e ) +

∫
ΣH

e

R(e) dσΣH
e
− r(e)

}
Y(e) = 0 . (56)

This equation represents a first interesting step toward the definition of sufficient
topological conditions to entail a PT. If the remainder functionsR(e) and r(e) are smooth,
the topological problem is now converted into a problem in real analysis. In other words,
by relating the differentiability class of the function Y(e) (and thus of the entropy S(e))
to the energy variation property of the topological term in curly brackets, the mentioned
sufficient conditions can be obtained. Of course, this equation requires further clarifications
because the Morse indexes are integers so that the topological term is not a differentiable
function, and the remainder functions R(e) and r(e) have to “round its edges”. All this
will be the subject of further investigations. This first step paves the way to constructive
definitions of classes of topological changes of the energy level sets that can entail a PT.

3. A Consistency Check

In this section, we test the entropy flow Equation (40) in case of two minimalistic
systems: harmonic oscillator and Ginzburg–Landau-like potentials.

3.1. Harmonic Oscillators and Ginzburg–Landau-Like Potential

We consider a physical system composed by N particles and described by a Ginzburg–
Landau-like potential (GL) function

VGL(q) = −
α

2

N

∑
i=1

(qi)2 +
β

4

(
N

∑
i=1

(qi)2

)2

, (57)

where the set of coordinates q = {q1, . . . , qN} has been introduced with qi ∈ R for every
i ∈ [1, N] and α, β ∈ R+.

We note that the harmonic oscillators (HOs) system can be obtained from the potential (57)
by setting

α→ −α, β→ 0, (58)

and one gets:

VHO(q) =
α

2

N

∑
i=1

(qi)2. (59)
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For the Hamiltonian function, we used the same notation adopted for the potential:
namely, we denote with HGL and HHO the GL and HO Hamiltonian functions, respectively.

By denoting with p = {p1, . . . , pN} the set of momenta, we can define an energy level
set to be:

ΣHGL
E =

{
(p, q) ∈ Λ

∣∣∣∣ N

∑
i=1

p2
i

2
− α

2

N

∑
i=1

(qi)2 +
β

4

(
N

∑
i=1

(qi)2

)2

= EGL

}
. (60)

Depending on the value of E, the energy level sets show a change in their topology. In
fact, by defining the order parameter

r2 =
N

∑
i=1

(qi)2, (61)

together with the squared norm of the total momentum:

P2 =
N

∑
i=1

p2
i , (62)

the Hamiltonian function whose potential is the one in Equation (57) is rewritten as

HGL(P, r) =
P2

2
− α

2
r2 +

β

4
r4, (63)

and it admits three classes of stationary points given by the condition ∇HGL = 0—namely:

∂HGL
∂P

= P = 0,
∂HGL

∂r
= (−α + βr2)r = 0. (64)

This implies that

r±m = ±
√

α

β
and Pm = 0, rM = 0 and PM = 0, (65)

where the subscript m stands for minima and M for the maximum; and finally, in terms of
particle coordinates, we have(

N

∑
i=1

(qi
±)

2

)1/2

= ±
√

α

β
and pj = 0, qi = 0 and pj = 0, ∀ j ∈ [1, N].

(66)
Therefore, the energy level set are defined by

HGL(P, r) =
P
2
− α

2
r2 +

β

4
r4 = EGL. (67)

Not all the energy values EGL are associated with an accessible energy level set. In fact:

∀ EGL < HGL(Pm, r±m) = −
α2

4β
=⇒ ΣHGL

E = ∅ . (68)

Therefore, the lowest energy value is Em
GL = −α2/4β and the accessible level sets are

defined by the following range of energies:

E ∈ [−α2/4β, ∞). (69)
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Thus, the energy level sets corresponding to the energy values H(Pm, r±m) ≤ EGL <
HGL(PM, rM) = 0 are homeomorphic to two disjoint hyperspheres:

ΣHGL
E ' Sn−1 ∪ Sn−1, (70)

As EGL = 0, the energy level set ΣHGL
0 is homeomorphic to the one-point-union of the

two previous hyperspheres, and this can be written through the wedge sum:

ΣHGL
0 ' Sn−1 ∧ Sn−1 = (Sn−1 ∪ Sn−1)/ ∼, (71)

where ∼ is the equivalence relation which identifies a point x1 on the first hypersphere
with the point x2 on the second hypersphere.
Finally, for 0 < EGL < ∞, the energy level sets are homeomorphic to hyperspheres; hence,
we have

ΣHGL
E ' Sn−1. (72)

In Figure 1, we report a three-dimensional graphic representation of the values of the
Hamiltonian function (63) as a function of the macroscopic coordinates (P, r) together with
the projection onto the two dimensional plane defined by P-r.

(a)

-��� -��� -��� ��� ��� ��� ���
-���
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-���
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���

���

���

�
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���

���

���

���

���

���

(b)
Figure 1. (a) Plot of the Hamiltonian function (63). (b) Projection of the energy level sets (67) on the P-r plane. In both cases,
we used the macroscopic coordinate system (P, r).

In the case of harmonic oscillators, the energy level sets are always homeomorphic
to hyperspheres of radii that depend on the energy values. In fact, by applying the
condition (58) to the potential (57), the condition HHO(P, r) = EHO reduces to the equation
of an hypersphere centered in r = P = 0 with radius R(EHO) =

√
2EHO. I.e.,

HHO(P, r) = P2 +
(√

αr
)2

=
(√

2EHO

)2
. (73)

Thus, we have
ΣHHO

E ' Sn−1, (74)

in the energy range:
E ∈ [0, ∞), (75)

where the lowest energy value is Em
HO = 0.
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3.2. Geometry of the Energy Level Sets

Let us first report the mathematical expression of the scalar curvature of the energy
level sets. The results that we show can be applied to both our cases of interest. Therefore,
for simplicity we drop the GL and HO subscripts in the Hamiltonian function.

The fundamental geometric structure is defined by the the unit normal vector field
which is

ν =
∇H
‖∇H‖ = P− sgn(α− βr2)

q
r

, (76)

where we introduced the canonical basis {ai}2N
i=1 ⊂ R2N so that q =

N

∑
i=1

qi ai and P =

2N

∑
i=N+1

piai, and sgn is the sign function and where the Einstein’s convention on the repeated

indices has been adopted.
The trace of Weingarten operator (see Equation (31)) can be immediately computed,

and it is

Tr[Wν] = div(ν) =
Lap H
‖∇H‖ −

〈∇H, Hess H ∇H〉
‖∇H‖3 , (77)

where Lap H and Hess H are, respectively, the Laplacian and the Hessian of the Hamilto-
nian H with respect to the basis in RN . We note that we are using the Hessian as a linear
application Hess H : RN −→ RN .

The trace of the squared Weingarten operator is

Tr[W 2
ν ] =

Tr[(Hess H)2]

‖∇H‖2 +
〈∇H, Hess H ∇H〉2

‖∇H‖6 − 2
‖Hess H ∇H‖2

‖∇H‖4 . (78)

Hence, the scalar curvature of the energy level set, given by the relation in Equation (38),
is:

R(ΣH
E ) =

(Lap H)2

‖∇H‖2 −
Tr[(Hess H)2]

‖∇H‖2 − 2 Lap H
〈∇H, Hess H ∇H〉

‖∇H‖4 + 2
‖Hess H ∇H‖2

‖∇V‖4 . (79)

3.3. Numerical Results

We now present our results—namely, the solutions of the entropy flow Equation (40)—for
the two systems described in the previous section.

In order to do that, we have to: (i) solve the Hamilton equations for a suitable set of
allowed energy values, depending on the considered potential function—that is, (59) or (57);
(ii) evaluate the scalar curvature along the dynamics for each energy value in the set of energy
above-mentioned; (iii) solve the differential Equation (40) or (50).

In practice, we have chosen the following allowed energy subsets IHO = [0, 4] and
IGL = [−α2/4β, 1] and we have sampled energy values from these sets with a step ∆E =
10−4. Then, we have numerically solved the Hamilton equations with N = 150 particles
for both potentials (57) and (59) using a second order bilateral symplectic algorithm [36].
We have set α = 0.5 and β = 0.7 which implies that α2/4β = 0.089 and an integration time
step ∆t = 10−4. We note that the closer the energy values to the lowest possible, the larger
the scalar curvature. In fact, since the energy level sets are always homeomorphic to a
sphere (for HO-potential) or two disjoint spheres (for GL-potential with E < 0), the level
sets shrink to, respectively, a point and two points, being the scalar curvature of a surface
roughly given by R(ΣH

E ) ∝ 1/E. Therefore, in order to avoid floating point overflow, we
chose as minimum energy values, respectively, Em

GL = −0.08 and Em
HO = 0.1.

For any energy value E, random initial conditions have been chosen. The normalized
geometric integral of the scalar curvature entering the entropy flow equation, namely,

R(e) =

∫
ΣH

e
R(ΣH

e ) dσΣH
e

vol(ΣH
e )

, (80)



Entropy 2021, 23, 1414 14 of 17

has been computed along the numerical phase space trajectories under the assumption
of ergodicity of the dynamics. The dynamics of the nonlinear, nonintegrable Ginzburg-
Landau-like model is chaotic and after the Poincaré-Fermi theorem is ergodic and mixing.
To the contrary, the set of uncoupled harmonic oscillators is integrable, however, each
single harmonic oscillator is ergodic in its own two-dimensional phase space, and, since all
the oscillators have the same frequency, so that they are interchangeable, and the initial
conditions are random, also this systems behaves as if it was ergodic, as the stability of
the results of the computation of the geometric observables has been checked by changing
the initial conditions. In fact, given an observable, Φ, defined on the phase space, the
microcanonical averages can be measured along the dynamics as follows [23,34]:

〈Φ〉M =

∫
ΣH

e

Φ(q)
dσΣH

e

‖∇H(q)‖∫
ΣH

e

dσΣH
e

‖∇H(q)‖

≡ lim
T→∞

1
T

∫ T

0
Φ(q(τ)) dτ = 〈Φ〉T . (81)

Hence, in our case, we have:

R(e) =
〈‖∇H‖ R(ΣH

e )〉M
〈‖∇H‖〉M

≡ 〈‖∇H‖R(ΣH
e )〉T

〈‖∇H‖〉T
. (82)

Finally, we solve the entropy flow equation in the version given by Equation (50)
using a fourth order Runge–Kutta algorithm [37,38] whose integration step (in energy)
is, by construction, inherited by the curvature sampling, namely, ∆E = 10−4. The initial
condition has been chosen so that Y(e0) = 1 and Y′(e0) = 10−3.

We show in Figures 2 and 3 the scalar curvature and entropy, respectively, for the GL
and HO systems.
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(b)
Figure 2. (a) Plot of the scalar curvatures of the energy level sets, using the HO system as a function of the energy. (b) Plot
of the scalar curvatures of the energy level sets using the GL system as a function of the energy. The values of the scalar
curvature have been re-scaled by a factor 106 for a better visualization.
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Figure 3. (a) Entropy function associated with the harmonic oscillators system. (b) Entropy function associated with the
system with the GL potential function (57).

4. Discussion

The theoretical derivation of the entropy function S(e) through the solution of Equation (50)
—which involves R(e) in Equation (80)—was done with respect to the energy-like variable e,
whereas the numerical simulations were carried out as a function of energy E, and reported in
Figures 2 and 3 as functions of E. However, with a large number of degrees of freedom (where
large is already the number considered here), e = e(E) is almost a constant parametrization
because ‖∇H‖ has small variations for any generic random choice of the initial conditions. In
any case, a non-constant deformation between e and E does not hinder the clear-cut qualitative
information which is here relevant.

As a matter of fact, the outcomes reported in Figures 2 and 3 show that the entropy is a
non-decreasing always concave function of the energy displaying a jump in correspondence
of the PT in the GL model. On the other hand, the total scalar curvature displays a non-
monotonous, discontinuous pattern in the presence of the PT of the GL model, and this—
after Equation (56)—means that some non-trivial change of topology of the energy level
sets is behind the PT. As a matter of fact, the outcomes reported in Figures 2 and 3 show that
the entropy is a non-decreasing, always concave function of the energy displaying a jump
in correspondence of the PT in the GL model. The property of the entropy pattern of being
always concave, that is, without turning somewhere from concave to convex, entails the
absence of regions of negative specific heat, as expected for the model under consideration
with polynomial short-range interactions. On the other hand, the total scalar curvature
displays a non-monotonous, discontinuous pattern inthe presence of the PT of the GL
model, and this—after Equation (56)—means that some non-trivial change of topology of
the energy level sets is behind the PT. What is reported here has nothing to do yet with
sufficiency conditions; it is just a consistency check, mainly showing how Equation (56)
actually works. As already remarked above, on the basis of this equation, the future steps
to define sufficient topological conditions for the appearance of a PT in a physical system
will be worked out in the framework of real analysis—that is, identifying some kinds of
variation with energy of the Betti numbers of the energy level sets in order to make the
solution Y(e) of Equation (56)—and consequently the entropy function S(e)—of a suitably
low differentiability class.
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