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Abstract: In this paper, the leader-following consensus problem of first-order nonlinear multi-agent
systems (FONMASs) with external disturbances is studied. Firstly, a novel distributed fixed-time
sliding mode manifold is designed and a new static event-triggered protocol over general directed
graph is proposed which can well suppress the external disturbances and make the FONMASs
achieve leader-following consensus in fixed-time. Based on fixed-time stability theory and inequality
technique, the conditions to be satisfied by the control parameters are obtained and the Zeno behavior
can be avoided. In addition, we improve the proposed protocol and propose a new event-triggering
strategy for the FONMASs with multiple leaders. The systems can reach the sliding mode surface and
achieve containment control in fixed-time if the control parameters are designed carefully. Finally,
several numerical simulations are given to show the effectiveness of the proposed protocols.

Keywords: multi-agent systems; sliding mode control; leader-following consensus; fixed-time

1. Introduction

In the past several years, more and more researchers are interested in cooperative
control of multi-agent systems (MASs) because of its robustness, flexible deployment
and high efficiency. Cooperative control is widely used in various research fields to
solve engineering and non-engineering problems, such as formation of robots [1], sensor
networks [2], attitude alignment [3] and so on. Among multitudinous cooperative control
objectives, consensus is a basic problem in MASs. Its purpose is to design a controller which
can ensure that all members agree on an interest signal according to local information.
Therefore, the information exchange between agents on the shared network is regulated by
the consensus algorithm or protocol.

Based on observation of nature, the emergence of leaders in animal groups led to
the development of the leader-following problem in collective behavior of MASs. In the
distributed consensus problem, the existing results of MASs can be roughly divided into
three categories according to the number of leaders: leaderless consensus [4–6], leader-
following consensus [7–9] and containment control of multiple leaders [10,11]. In [4], the
leaderless consensus of discrete-time MASs was studied by considering the connectivity of
the network. In [5], the leaderless consensus of model-independent MASs was considered.
In [6], the leaderless consensus of fractional-order MASs was investigated. In the case of
single leader, the leader-following bipartite consensus problem was investigated for linear
MASs in [7]. The leader-following consensus for MASs with Lipshitz-type node dynamics
was considered in [8]. Furthermore, by using distributed impulsive control method, the
authors studied the leader-following consensus of nonlinear MASs in [9]. In the case of
multiple leaders, the reduplicative learning control problem for nonlinear heterogeneous
MASs was investigated in [10]. In [11], a completely distributed control protocol was
proposed to study the time-varying group formation tracking problem for linear MASs
with multiple leaders.
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In the consensus analysis of MASs, the convergence rate is an important index to eval-
uate the effectiveness of the proposed protocol. Most of existing results mainly concerned
with the asymptotic convergence of the system. Due to the rapid development of finite-time
theory, some researchers developed the finite-time consensus protocols [12–14]. In [12],
the authors investigated the practical finite-time consensus of second-order heterogeneous
switched nonlinear MASs. In [13], the authors investigated the distributed finite-time track-
ing control problem for second-order MASs, and proposed a novel observer-based control
algorithm. In [14], the finite-time control law for continuous FONMAS was proposed,
which ensures that the obstacles in the way can be passed by all agents, and the relative
position between two agents reaches a constant value in finite-time. In proposed finite-time
protocols, the estimation of convergence time depends on the initial values of MASs. To
overcome this shortcoming, the researchers developed the fixed-time consensus protocols.
In [15], the fixed-time leader-following flocking for second-order MASs was studied. For
fixed-time consensus of heterogeneous MASs, the protocol based on neighbors’ states was
proposed in [16], and the state observation control protocol was designed in [17].

Compared with the traditional continuous control, the sampling control can effectively
reduce the communication update frequency, so as to reduce the control cost. Therefore,
the sampled-data control method was applied to study the issue of resilient reliable dissipa-
tivity performance index for systems including actuator faults and probabilistic time-delay
signals in [18]. However, the traditional sampled-data control method is time-dependent,
which requires the controller to be updated regularly even if the control goal is achieved.
This method also leads to some unnecessary waste of computational and communication
resources. The event-triggered protocol is used as an efficient method to further reduce
communication and computing load. Therefore, the event-triggered controller was de-
signed to study the consensus of first-order MASs in [19]. The consensus of linear MASs
was studied via observer-based event-triggered control and two novel schemes were pro-
posed in [20]. The containment control of second-order nonlinear MASs was considered
based on event-triggered method in [21]. The consensus problem for a kind of stochastic
MASs was studied and an adaptive output feedback approach based on event-triggered
was proposed in [22]. To our knowledge, there is little research on the fixed-time consensus
of MASs under event-triggered control protocol.

Most of the work mentioned above considers the ideal environment, but agents may
face various disturbances signals or noise in communication. As pointed out in [23],
disturbances signals or noise can destroy some good properties of a system. Therefore,
the consensus of MASs under imperfect environment is worth considering. In [24], the
consensus problem for linear MASs with the heterogeneous disturbances generated by the
Brown motion was investigated. In [25], the authors investigated the distributed finite-
time optimization issue for second-order MASs with matched interferences. By using
disturbance rejection strategy, the event-triggered output consensus for MASs with time-
varying disturbances was considered in [26]. Furthermore, the fixed-time event-triggered
consensus for high-order and second-order MASs with uncertain disturbances was studied
in [27,28], respectively.

Since the sliding mode technology can achieve a fast convergence rate to suppress
disturbances, sliding mode control (SMC) method is widely used in the control of MASs
with disturbances. In [29], a sliding mode estimator was given to accomplish distributed
consensus for MASs. The sliding mode controllers were proposed for second-order MASs
with mismatched uncertainties in [30]. The adaptive SMC protocols were designed to
study the consensus of MASs with unknown disturbances in [31]. In order to improve the
convergence rate, the finite-time SMC protocol was proposed in [32]. Furthermore, by using
integral terminal SMC, the fixed-time consensus tracking issue for second-order MASs
was investigated under the influence of interference signals in [33]. In these works [29–33],
all control protocols were continuously updated. In order to reduce the control costs,
considering the external interference, the event-triggered integral SMC was proposed to
study the time-varying formation control of high-order MASs in [34]. Moreover, the event-
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triggered finite-time consensus for multirobot systems with disturbances was considered
via integral SMC strategy in [35]. The finite-time consensus for nonholonomic MASs with
disturbances was studied by using event-triggered integral SMC method in [36]. However,
in the existing research, the fixed-time event-triggered integral SMC method for single
leader and multiple leaders of MASs with disturbances are rarely considered.

Inspired by the above considerations, this paper studies the fixed-time consensus
problem for FONMASs with single leader and multiple leaders by using integral SMC and
the theory of fixed-time stability. Firstly, to study the fixed-time leader-following consensus
of FONMASs with external disturbances, a new event-triggered integral SMC protocol
is devised for each agent. We show that both the systems can get to the sliding mode
surface and all agents will achieve consensus in fixed-time under the proposed protocol.
Moreover, the FONMAS with multiple leaders and external disturbances is considered.
By generalizing our proposed event-triggered integral SMC protocol, it is proved that the
containment control can also be achieved and the disturbance can be effectively suppressed
in fixed-time. Compared with the existing works, the main contributions of the paper are
at least the following three points:

1. In existing works [27,28], the disturbance rejection method was applied to study the
fixed-time consensus of MASs with external disturbances. However, the integral
SMC method combination with event-triggered control mechanism are introduced
to design the distributed protocol in this paper, which can effectively suppress the
disturbances and achieve consensus in fixed-time.

2. In [35,36], the finite-time event-triggered integral SMC protocols were proposed, in
which the estimation of settling time was associated with the initial conditions. To
overcome this disadvantage, the fixed-time event-triggered integral SMC protocols
are proposed in this paper. According to the stability theory of fixed-time, we can
prove that the consensus can be reached in fixed-time and the upper bound estimation
of settling time is regardless of the initial conditions of MASs.

3. The containment control for FONMASs with multiple leaders is also considered,
in which a generalized event-triggered integral SMC protocol is designed and the
controller is updated only at some discrete instants. The sliding surface and the con-
tainment control can be reached in fixed-time. The Zeno phenomenon can be avoided.

The remainder of this paper is organized as follows. Section 2 introduces some
preliminaries including graph theory, definitions, lemmas and problem formulation. In
Section 3, the consensus protocols based on SMC technique are proposed, and some
theorems are proved. In Section 4, the effectiveness of the proposed control protocols is
verified by numerical simulations. Some conclusions are given in Section 5.

Notations. In this paper, Rn denotes the n-dimensional Euclidean space. In de-
notes n dimensional unit matrix. For q = [q1, q2, · · · , qN ]

T , ‖q‖1, ‖q‖ and ‖q‖∞ represent
the 1-norm, 2-norm and ∞-norm of q, respectively. sgn(q) = [sgn(q1), · · · , sgn(qN)]

T ,
sigα(q) = [|q1|αsgn(q1), · · · , |qN |αsgn(qN)]

T where α > 0 is a constant, sgn(·) represents
the sign function. For a matrix A ∈ RN×N , let AT represent its transpose, λmax(A) and
λmin(A) represent the maximum eigenvalue and minimum eigenvalue of A, respectively.
The symbol ⊗ denotes the Kronecker product of matrices. diag(·) represents the diago-
nal matrix.

2. Preliminaries
2.1. Algebraic Graph Theory

A graph that consists of N nodes is represented by G = (V , E ,A) where V =
{v1, · · · , vN} is the set of nodes, E denotes the edges set, in which (i, j) ∈ E if there exists
an edge between vi and vj. The weighted adjacency matrix is denoted asA = [aij] ∈ RN×N ,
where aij > 0 if (j, i) ∈ E , and aij = 0, otherwise. The set of neighbors of agent i is denoted
by Ni = {j ∈ V : (j, i) ∈ E}. The graph G is called directed and strongly connected if
there exists a directed path between each pair of nodes. The graph G contains a directed
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spanning tree if there exists at least one root. The Laplacian matrix L = [lij]N×N is defined
by lij = −aij for i 6= j, and lii = ∑N

j 6=i aij.

2.2. Definitions and Lemmas

Consider the following differential equation

ẋ(t) = f (x(t)), x(0) = x0, (1)

where x(t) ∈ Rn, and f : Rn 7→ Rn is a nonlinear function with f (0) = 0. The following
definitions and lemmas are given.

Definition 1 ([37]). For any solution x(t, t0, x0) of system (1), if there exists a positive number
T(x0) such that x(t, t0, x0) = 0 for all t ≥ t0 + T(x0), then the solution x = 0 is said to be
globally uniformly finite-time stable. T(x0) is called the settling time. Moreover, x = 0 is said to be
globally fixed-time stable if T(x0) is independent of the initial value x0.

Lemma 1 ([38]). For system (1), if there is a regular, positive definite and radially unbounded
function W(x) : Rn → R such that any solution of (1) satisfies the inequality

Ẇ(x(t)) ≤ −(τWp(x(t)) + φWq(x(t)))$, x(t) ∈ Rn \ 0,

where τ, φ, p, $ > 0, q ≥ 0, p$ > 1, q$ < 1, then solution x = 0 of system (1) is fixed-time stable,
and the settling time T(x0) is estimated by

T(x0) ≤
1

φ$ (
φ

τ
)

1−q$
p−q (

1
1− q$

+
1

p$− 1
).

2.3. Problem Formulation

Consider a FONMAS consisting of N followers and a virtual leader indexed by
i = 1, 2, · · · , N and 0, respectively. The dynamics is described by

ẋi(t) = f (xi(t)) + ui(t) + wi(t), i = 1, 2, · · · , N,

ẋ0(t) = f (x0(t)) + u0(t), (2)

where xi(t) ∈ Rn, ui(t) ∈ Rn and wi(t) ∈ Rn are the state, the bounded control input and
the external disturbance of the ith agent, respectively. f (xi(t)) is a nonlinear function, which
represents the inherent dynamics. In addition, we assume that the external disturbance is
bounded, which satisfies ‖wi(t)‖∞ ≤ D < ∞, for D > 0. x0(t) ∈ Rn and u0(t) ∈ Rn are
the state and the bounded control input of the leader, respectively. f (x0(t)) is a nonlinear
function, which also represents the inherent dynamics.

The communication topology among followers is expressed as directed graph Ĝ, and
the corresponding Laplacian matrix is described by the weighted matrix L̂. We use bi to
represent the communication weight between the leader and the ith agent, in which bi > 0
if the ith agent can receive information from the leader, bi = 0 otherwise. In addition, we
denote B = diag(b0, · · · , bN).

Definition 2. For the FONMAS (2), the fixed-time leader-following consensus is achieved for any
initial conditions, if the following equations hold

lim
t→T
‖xi(t)− x0(t)‖ = 0, ‖xi(t)− x0(t)‖ ≡ 0, t ≥ T , i = 1, 2, · · · , N,

where T > 0 is called the settling time.
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Assumption 1. For the nonlinear function f (·), there exists a positive constant l1 > 0 such that

‖ f (z1(t))− f (z2(t))‖ ≤ l1‖z1(t)− z2(t)‖, (3)

where z1(t), z2(t) ∈ Rn.

Assumption 2. The communication between the leader and all followers is represented by graph G
which contains a directed spanning tree with the leader as the root. In addition, the communication
topology Ĝ is directed.

3. Main Results
3.1. Fixed-Time Consensus with Single Leader

In this section, in order to achieve consensus between leader and followers, the integral
SMC protocol will be designed for FONMAS described by (2). Before moving on, we define
the following error variables

x̃i(t) = xi(t)− x0(t),

ũi(t) = ui(t)− u0(t), i = 1, 2, · · · , N. (4)

Since the disturbances exist in the follower agent dynamics, the integral SMC tech-
nique is applied. Then, we define the following integral type sliding mode variable

σi(t) = x̃i(t)−
∫ t

0
(χ

η
i (s) + sgn(χi(s)))ds, i = 1, 2, · · · , N, (5)

where σi(t) = [σi1(t), σi2(t), · · · , σin(t)]T , χi(t) = −[∑j∈Ni
aij(x̃i(t) − x̃j(t)) + bi(x̃i(t))],

and sgn(χi(t)) = [sgn(χi1(t)), sgn(χi2(t)), · · · , sgn(χin(t))]T . η is the ratio of two positive
odd numbers and η > 1. When the sliding mode surface is reached, σi(t) = 0 and σ̇i(t) = 0.
Hence, it has

˙̃xi(t) = χ
η
i (t) + sgn(χi(t)), i = 1, 2, · · · , N. (6)

In order to reduce the control cost and increase the rate of convergence, the event-
triggered consensus protocol is designed as follows

ũi(t) = χ
η
i (t

i
k) + sgn(χi(ti

k))− Ksgn(σi(ti
k))− K3sigβ+1(σi(ti

k))

− K4‖x̃i(ti
k)‖sgn(σi(ti

k)), t ∈ [ti
k, ti

k+1), (7)

where β > 0, K = K1 + K2, K1, K2, K3, K4 are constants to be determined. ti
k is the triggering

instant. Then, the novel measurement error is designed as

ei(t) = χ
η
i (t

i
k) + sgn(χi(ti

k))− Ksgn(σi(ti
k))− K3sigβ+1(σi(ti

k))

− K4‖x̃i(ti
k)‖sgn(σi(ti

k))−
(

χ
η
i (t) + sgn(χi(t))− Ksgn(σi(t))

− K3sigβ+1(σi(t))− K4‖x̃i(t)‖sgn(σi(t))
)

. (8)

In this paper, a distributed event-triggered sampling control is proposed. The trigger
instant of each agent only depends on its trigger function. Based on the zero order hold,
the control input is a constant in each trigger interval. In order to make FONMAS (2)
achieve leader-following consensus under the proposed protocol (7), the following theorem
is given.
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Theorem 1. Suppose that Assumptions 1 and 2 hold for the FONMAS (2). Under the protocol (7),
the leader-following consensus can be achieved in fixed-time, if the following conditions are satisfied

K1 ≥ D, K2 > max
1≤i≤N

{ξi}, K3 > 0, K4 ≥ l1, (9)

where ξi > 0 for i = 1, 2, · · · , N. The triggering condition is defined as

ti
k+1 = inf

{
t > ti

k | ‖ei(t)‖ − ξi ≥ 0
}

, i = 1, 2, · · · , N. (10)

Proof. Firstly, we prove that the sliding mode surface σi(t) = σ̇i(t) = 0 for i = 1, 2, · · · , N
can be achieved in fixed-time. Consider the Lyapunov function as

Vi(t) =
1
2

σT
i (t)σi(t), i = 1, 2, · · · , N. (11)

Take the time derivative of Vi(t) for t ∈ [ti
k, ti

k+1), we have

V̇i(t) = σT
i (t)σ̇i(t)

= σT
i (t)( ˙̃xi(t)− χ

η
i (t)− sgn(χi(t)))

= σT
i (t)(ẋi(t)− ẋ0(t)− χ

η
i (t)− sgn(χi(t)))

= σT
i (t)( f (xi(t)) + ui(t) + wi(t)− f (x0(t))− u0(t)− χ

η
i (t)− sgn(χi(t)))

= σT
i (t)( f (xi(t))− f (x0(t)) + ũi(t) + wi(t)− χ

η
i (t)− sgn(χi(t)))

= σT
i (t)( f (xi(t))− f (x0(t)) + ei(t) + wi(t)− Ksgn(σi(t))

− K3sigβ+1(σi(t))− K4‖x̃i(t)‖sgn(σi(t))). (12)

Based on Assumption 1, it has

σT
i (t)( f (xi(t))− f (x0(t))) ≤ ‖σi(t)‖l1‖xi(t)− x0(t)‖ ≤ l1‖σi(t)‖‖x̃i(t)‖,

σT
i (t)(wi(t)− K1sgn(σi(t))) ≤ D‖σi(t)‖1 − K1‖σi(t)‖1.

Based on conditions (9), we can get

V̇i(t) ≤ ‖ei(t)‖‖σi(t)‖ − K3‖σi(t)‖β+2 − K2‖σi(t)‖. (13)

According to triggering condition (10), we have

V̇i(t) ≤ −(K2 − ξi)‖σi(t)‖ − K3‖σi(t)‖β+2

= −(K2 − ξi)(2Vi(t))
1
2 − K3(2Vi(t))

β+2
2 . (14)

The closed-loop system will get to the sliding mode surface in fixed-time, which can
be obtained according to Lemma 1. The settling time can be computed as

Ti ≤
1√

2(K2 − ξi)

(
K2 − ξi

K32
β+1

2

) 1
β+1

(2 +
2
β
). (15)

Define T = max1≤i≤N{Ti}. Then, it is proved that the sliding mode surface σi(t) = 0
can be reached for any t > T.

Secondly, we will prove that the leader-following consensus can be achieved in fixed-
time. For convenience, χi(t) for i = 1, 2, · · · , N can be rewritten in the following compact
form χ(t) = −((L̂ + B)⊗ In)x̃(t) and ‖sgn(χ(t))‖ ≤

√
Nn.

Let L̂ + B = H. Based on Assumption 2, the matrix H is invertible and all eigenvalues
have positive real parts. Therefore, there exists a positive symmetric matrix P such that
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Q = PH + HT P > 0. Define the Lyapunov function as Ṽ(t) = χT(t)(P⊗ In)χ(t), then
taking the time derivative of Ṽ(t) for t > T yields

˙̃V(t) = −2χT(t)(P⊗ In)(H ⊗ In)(χ
η(t) + sgn(χ(t)))

= −χT(t)(Q⊗ In)χ
η(t)− χT(t)(Q⊗ In)sgn(χ(t))

≤ −λmin(Q)‖χ‖η+1 − λmin(Q)‖χ‖

≤ −λmin(Q)

λmax(P)
Ṽ

η+1
2 (t)− λmin(Q)

λmax(P)
Ṽ

1
2 (t). (16)

By Lemma 1, we can conclude that the closed-loop system will achieve consensus in
fixed-time. The settling time can be computed as

T̃ ≤ T +
λmax(P)
λmin(Q)

(2 +
2

η − 1
). (17)

Remark 1. In this paper, the general directed network topology is considered, so the matrix H is
asymmetric. We need to select the positive definite matrix P to make it symmetric. In particular,
if the network topology Ĝ is undirected, the matrix P corresponds to the identity matrix, and the
construction of Lyapunov function Ṽ(t) can be simplified. This reduces the computational burden.

Remark 2. In [12–14], the finite-time consensus problem of MASs was studied. Compared with
these literatures, we propose a fixed-time consensus protocol. Based on (17), we can find that the
estimation of settling time is independent of initial values. In [15,16], the fixed-time consensus
of MASs under ideal environment was studied. However, this paper considers a more complex
environment in which agents of MASs are affected by external disturbances. We propose a new
fixed-time consensus protocol based on integral sliding mode technique, which can suppress the
disturbances better and improve the closed-loop performance of the system.

Remark 3. There are generally three methods to deal with disturbances, namely internal made
method, disturbances observation and sliding mode control. In [27,28], the disturbance rejection
method was applied to eliminate the influence of disturbances in the protocols. However, in this
paper, we adopt the integral sliding mode technique combined with event-triggered to suppress
disturbances. Our research enriches the design method of control protocol and theoretical results.
In [35,36], although the consensus of FONMASs with external disturbances was discussed by using
integral sliding mode technique, only finite-time convergence was analyzed, and the estimation of
settling time related to the initial conditions of system. To overcome this disadvantage, this paper
proposes a new fixed-time event-triggered integral SMC protocol, in which the sliding mode surface
can be reached and the consensus can be achieved in fixed-time.

Theorem 2. Consider the FONMAS (2) with the event-triggered control protocol (7). If the
triggering condition is defined by (10) and the conditions of Theorem 1 hold, then the Zeno behavior
can be eliminated.

Proof. The proof is divided into two parts, before and after reaching the sliding mode surface.
On the one hand, we show the Zeno behavior does not exist before the systems achieve

the sliding mode surface. Through the analysis of Theorem 1, the sliding mode surface will
be reached when t > T. Therefore, we need to eliminate the Zeno behavior in the closed
interval t ∈ [0, T]. Since χi(t) is a continuous function, it must exist a maximum value.
Define τi = max0≤t≤T{‖χ

η
i (t)‖} and φi = max0≤t≤T{‖diag(χη−1

i (t))‖}.
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Take the time derivative of ‖ei(t)‖, it has

d
dt
‖ei(t)‖ ≤

∥∥∥∥ d
dt

[
χ

η
i (t) + sgn(χi(t))− Ksgn(σi(t))− K3sigβ+1(σi(t))

− K4‖x̃i(t)‖sgn(σi(t))
]∥∥∥∥

≤‖ d
dt

χ
η
i (t)‖+ ‖

d
dt

K3sigβ+1(σi(t))‖+
∥∥∥∥ d

dt
(K4‖x̃i(t)‖sgn(σi(t)))

∥∥∥∥
≤η‖diag(χη−1

i (t))‖‖χ̇i(t)‖+ K3(β + 1)‖diag(σβ
i (t))‖‖σ̇i(t)‖+ K4

√
n‖ ˙̃xi(t)‖

≤
[

ηφi
√

NnHii + K3(β + 1)‖diag(σβ
i (0))‖+ K4

√
n
]
‖ ˙̃xi(t)‖+ K3(β + 1)τi

× ‖diag(σβ
i (0))‖+ K3(β + 1)

√
n‖diag(σβ

i (0))‖

≤Ril1‖x̃i(t)‖+ RiD + Ri‖ũi(t)‖+ K3(β + 1)τi‖diag(σβ
i (0))‖

+ K3(β + 1)
√

n‖diag(σβ
i (0))‖

≤Ril1 x̄i + RiD + Riūi + K3(β + 1)τi‖diag(σβ
i (0))‖

+ K3(β + 1)
√

n‖diag(σβ
i (0))‖, (18)

where Ri = ηφi
√

NnHii + K3(β + 1)‖diag(σβ
i (0))‖ + K4

√
n, Hii is the element of i-th

row and column of matrix H, x̄i = max0≤t≤T{‖x̃i(t)‖} and ūi = max0≤t≤T{‖ũi(t)‖}.
Combination with ei(ti

k) = 0, it yields

‖ei(t)‖ ≤
[

Ril1 x̄i + RiD + Riūi + K3(β + 1)τi‖diag(σβ
i (0))‖

+ K3(β + 1)
√

n‖diag(σβ
i (0))‖

]
(t− ti

k). (19)

Using the triggering condition (10), the next trigger instant satisfies ‖ei(ti
k+1)‖ = ξi. There-

fore,

ξi ≤
[

Ril1 x̄i + RiD + Riūi + K3(β + 1)τi‖diag(σβ
i (0))‖

+ K3(β + 1)
√

n‖diag(σβ
i (0))‖

]
(ti

k+1 − ti
k). (20)

Denote Q1i = Ril1 x̄i +RiD+Riūi +K3(β+ 1)τi‖diag(σβ
i (0))‖+K3(β+ 1)

√
n‖diag(σβ

i (0))‖,
and ∆Ti

k = ti
k+1 − ti

k, we can get ∆Ti
k ≥

ξi
Q1i

> 0.
On the other hand, when the sliding mode surface is reached, σi(t) = 0. Similar to the

above proof, we can obtain

d
dt
‖ei(t)‖ ≤

∥∥∥∥ d
dt

[
χ

η
i (t) + sgn(χi(t))− Ksgn(σi(t))− K3sigβ+1(σi(t))

− K4‖x̃i(t)‖sgn(σi(t))
]∥∥∥∥

≤η‖diag(χη−1
i (t))‖‖χ̇i(t)‖

≤ηφi
√

NnHii(
1

λmin(P)
)

η
2 Ṽ(0)

η
2 + ηφi NnHii. (21)



Entropy 2021, 23, 1412 9 of 18

Combination with ei(ti
k) = 0, one has

‖ei(t)‖ ≤
[

ηφi
√

NnHii(
1

λmin(P)
)

η
2 Ṽ(0)

η
2 + ηφi NnHii

]
(t− ti

k). (22)

Using the triggering condition (10), on can obtain

∆Ti
k ≥

ξi
Q2i

> 0, (23)

where Q2i = ηφi
√

NnHii(
1

λmin(P) )
η
2 Ṽ(0)

η
2 + ηφi NnHii, and ∆Ti

k = ti
k+1 − ti

k. Based on the
above analysis, the Zeno behavior can be avoided in control process.

Remark 4. Since the trigger mechanism exists in the whole control process, the proof of Theorem 2
divided into two parts, i.e., before and after the system reaches the sliding mode surface. In this paper,
a static distributed event-triggered strategy is developed. In order to reduce the number of triggers
more effectively, we will consider the dynamic event-triggered control strategy in our future work.

3.2. Fixed-Time Containment Control with Multiple Leaders

In this section, we consider the MASs with multiple leaders. The main aim is to make
MASs realize containment control in fixed-time by designing appropriate control protocol.
That means all follower agents’ states converge to the convex combination of leaders’ states
in fixed-time. In particular, if the MASs has only one leader, the containment control will
degenerate into leader-following consensus.

For the sake of generality, we hypothesize that the FONMAS consisting of N followers
and M leaders indexed by indexed by i = 1, · · · , N and j = N + 1, · · · , N + M, respectively.
The dynamics of the FONMAS is described by

ẋi(t) = f (xi(t)) + ui(t) + wi(t), i = 1, · · · , N,

ẋj(t) = f (xj(t)) + uj(t) + wj(t), j = N + 1, · · · , N + M, (24)

where xi(t) ∈ Rn, ui(t) ∈ Rn and wi(t) ∈ Rn are the state, the bounded control input and
the external disturbance of the ith agent, respectively. f (xi(t)) is a nonlinear function which
represents the inherent dynamics. xj(t) ∈ Rn, uj(t) ∈ Rn and wj(t) ∈ Rn are the state, the
bounded control input and the internal disturbance of the jth leader, respectively. f (xj(t)) is
a nonlinear function, which also represents the inherent dynamics. In addition, we assume
that the disturbances are bounded, which satisfy ‖wi(t)‖∞ ≤ B < ∞, ‖wj(t)‖∞ ≤ F < ∞
for B > 0 and F > 0.

Assumption 3. Suppose that the communication among the leaders and followers is represented
by graph G. For each follower, there exists at least one leader that has a directed path to it.

Assumption 4. Given scalars ρ1, ρ2, · · · , ρM, satisfying ∑M
j=1 ρj = 1 and ρj ≥ 0. There exists a

constant l2 > 0 such that for xi(t), xj(t) ∈ Rn,

‖ f (xi(t))−
M

∑
j=1

ρj f (xj(t))‖ ≤ l2‖xi(t)−
M

∑
j=1

ρjxj(t)‖.

Under Assumption 3, the Laplcain matrix of graph G is denoted by L, which can be

decomposed into L =

[
L1 L2
0 0

]
, where L1 is a nonsingular matrix, L2 ∈ RN×M has at least

one positive entry and −L−1
1 L21M×1 = 1N×1.
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Before moving on, we define the following error variables

X̃(t) = (L1 ⊗ In)X1(t) + (L2 ⊗ In)X2(t),

Ũ(t) = (L1 ⊗ In)U1(t) + (L2 ⊗ In)U2(t),

W̃(t) = (L1 ⊗ In)W1(t) + (L2 ⊗ In)W2(t), (25)

where

X̃(t) = [X̃T
1 (t), X̃T

2 (t), · · · , X̃T
N(t)]

T , Ũ(t) = [ŨT
1 (t), ŨT

2 (t), · · · , ŨT
N(t)]

T , W̃(t) = [W̃T
1 (t), · · · , W̃T

N(t)]
T ,

X1(t) = [xT
1 (t), · · · , xT

N(t)]
T , X2(t) = [xT

N+1(t), · · · , xT
N+M(t)]T ,

U1(t) = [uT
1 (t), uT

2 (t), · · · , uT
N(t)]

T , U2(t) = [uT
N+1(t), uT

N+2(t), · · · , uT
N+M(t)]T ,

W1(t) = [wT
1 (t), wT

2 (t), · · · , wT
N(t)]

T , W2(t) = [wT
N+1(t), wT

N+2(t), · · · , wT
N+M(t)]T .

Combination with Assumption 3 and the property of Laplacian matrix L, we can
easily obtain that the containment control is achieve in fixed-time if and only if there exists
a T > 0 such that limt→T ‖X̃(t)‖ = 0 and ‖X̃(t)‖ ≡ 0 for t > T .

Considering the disturbances in the system, the consensus protocol can employ sliding
mode approach. The integral type sliding variable is defined as follows

σi(t) = X̃i(t)−
∫ t

0
(χ̃

η
i (s) + sgn(χ̃i(s)))ds, (26)

where χ̃i(t) = −X̃i(t), η is the ratio of two positive odd numbers and η > 1. The sliding
mode manifold (26) is given by following comport form

σ(t) = X̃(t)−
∫ t

0
(χ̃η(s) + sgn(χ̃(s)))ds. (27)

When the sliding mode surface is reached, σ(t) = 0 and σ̇(t) = 0. Hence, it has

˙̃X(t) = χ̃η(t) + sgn(χ̃(t)). (28)

In order to reduce the control cost and increase the rate of convergence, the event-
triggered sample-data control protocol is presented as

Ũi(t) =χ̃
η
i (tk) + sgn(χ̃i(tk))− Ksgn(σi(tk))− K3sigβ+1(σi(tk))

− K4‖X̃(tk)‖sgn(σi(tk)), t ∈ [tk, tk+1), (29)

where β > 0, K = K1 + K2, K1, K2, K3, K4 are constants to be determined. tk is the triggering
instant.

Similarly, the controller (29) can be rewritten in the following comport form

Ũ(t) =χ̃η(tk) + sgn(χ̃(tk))− Ksgn(σ(tk))− K3sigβ+1(σ(tk))

− K4‖X̃(tk)‖sgn(σ(tk)), t ∈ [tk, tk+1). (30)

Then, the novel measurement error for the system (24) is designed as

e(t) = χ̃η(tk) + sgn(χ̃(tk))− Ksgn(σ(tk))− K3sigβ+1(σ(tk))

− K4‖X̃(tk)‖sgn(σ(tk))−
(

χ̃η(t) + sgn(χ̃(t))− Ksgn(σ(t))

− K3sigβ+1(σ(t))− K4‖X̃(t)‖sgn(σ(t))
)

. (31)
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Theorem 3. Suppose that Assumptions 3 and 4 hold for the FONMAS (24). Under the protocol
(30), the containment control can be achieved in fixed-time, if the following inequalities are satisfied:

K1 ≥ ‖L1‖B + ‖L2‖F, K2 > ξ, K3 > 0, K4 ≥ l2‖L1‖‖L−1
1 ‖. (32)

The triggering condition is defined as

tk+1 = inf{t > tk | ‖e(t)‖ − ξ ≥ 0}, (33)

where ξ > 0.

Proof. Consider the Lyapunov function as

V(t) =
1
2

σT(t)σ(t). (34)

For t ∈ [tk, tk+1), the derivative of V(t) is

V̇(t) =σT(t)σ̇(t)

=σT(t)( ˙̃X(t)− χ̃η(t)− sgn(χ̃(t)))

=σT(t)((L1 ⊗ In)F1 + (L2 ⊗ In)F2 + Ũ(t) + W̃(t)− χ̃η(t)− sgn(χ̃(t)))

=σT(t)((L1 ⊗ In)F1 + (L2 ⊗ In)F2 + e(t) + W̃(t)− Ksgn(σ(t))

− K3sigβ+1(σ(t))− K4‖X̃(t)‖sgn(σ(t))). (35)

Define F1 = [ f T(x1(t)), · · · , f T(xN(t))]T , F2 = [ f T(xN+1(t)), · · · , f T(xN+M(t))]T . Let
−L−1

1 L2 , (ρT
1 , ρT

2 , · · · , ρT
N)

T , where ρi = (ρi1, · · · , ρiM). From Assumption 4,

‖F1 + (L−1
1 L2 ⊗ In)F2‖

=

∥∥∥∥[( f (x1(t))−
M

∑
j=1

ρ1j f (xj(t)))T , · · · , ( f (xN(t))−
M

∑
j=1

ρNj f (xj(t)))T ]T
∥∥∥∥

=

∥∥∥∥(‖( f (x1(t))−
M

∑
j=1

ρ1j f (xj(t)))‖, · · · , ‖( f (xN(t))−
M

∑
j=1

ρNj f (xj(t)))‖
)∥∥∥∥

≤
∥∥∥∥(l2‖x1(t)−

M

∑
j=1

ρ1jxj(t)‖, · · · , l2‖xN(t)−
M

∑
j=1

ρNjxj(t))‖
∥∥∥∥

= l2‖(L−1
1 ⊗ In)X̃(t)‖ ≤ l2‖L−1

1 ‖‖X̃(t)‖,

σT(t)(W̃(t)− K1sgn(σ(t))) ≤ (‖L1‖B + ‖L2‖F)‖σ(t)‖1 − K1‖σ(t)‖1.

Based on (32), we can get

V̇(t) ≤ ‖e(t)‖‖σ(t)‖ − K3‖σ(t)‖β+2 − K2‖σ(t)‖. (36)

According to (33), we have

V̇(t) ≤ −(K2 − ξ)‖σ(t)‖ − K3‖σ(t)‖β+2

= −(K2 − ξ)(2V(t))
1
2 − K3(2V(t))

β+2
2 . (37)
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According to Lemma 1, the closed-loop system (24) will get to the sliding mode surface
in fixed-time. The settling time can be estimated by

T̄ ≤ 1√
2(K2 − ξ)

(
K2 − ξ

K32
β+1

2

) 1
β+1

(2 +
2
β
). (38)

Then, it is proved that σ(t) = 0 is reached for t > T̄.
Then, we will prove that the containment control can be achieved in fixed-time. Define

the Lyapunov function as V̂(t) = χ̃T(t)χ̃(t). Taking the time derivative of V̂(t) for t > T̄
yields

˙̂V(t) = −χ̃T(t)(χ̃η(t) + sgn(χ̃(t)))

= −‖χ̃(t)‖η+1 − ‖χ̃(t)‖1

≤ −V̂
η+1

2 (t)− V̂
1
2 (t). (39)

By Lemma 1, we can conclude that the closed-loop system will achieve containment
control in fixed-time. The settling time can be computed as

T̂ ≤T̄ + (2 +
2

η − 1
). (40)

The proof is finished.

Remark 5. In [27], the fixed-time consensus problem of MASs with nonlinear dynamics and
indeterminate disturbances was considered based on event-triggered method. Compared with [27],
we introduce the integral sliding mode technique to deal with disturbances, and consider the
containment control problem in the case of multiple leaders. In addition, the event-triggered strategy
applied in this paper can greatly save computation and communication resources.

Theorem 4. Consider the FONMAS (24) with the event-triggered control protocol (30). If the
triggering condition is defined by (33) and all conditions of Theorem 3 are satisfied, then the Zeno
behavior can be avoided.

Proof. Similar to the proof of Theorem 2, the proof is divided into two parts.
First, we show that the Zeno behavior does not exist before the systems reach the

sliding mode surface. Through the analysis of Theorem 3, we know that sliding mode
surface will be reached when t > T̄. Therefore, we need to eliminate the Zeno behavior
in the closed interval [0, T̄]. Since χ(t) is a continuous function, it must exist a maximum
value. Define ε = max0≤t≤T̄{‖χ̃η(t)‖} and γ = max0≤t≤T̄{‖diag(χ̃η−1(t))‖}.

Take the time derivative of ‖e(t)‖, we have

d
dt
‖e(t)‖ ≤

∥∥∥∥ d
dt

[
χ̃η(t) + sgn(χ̃(t))− Ksgn(σ(t))− K3sigβ+1(σ(t))

− K4‖X̃(t)‖sgn(σ(t))
]∥∥∥∥

≤ψl2‖L1‖‖L−1
1 ‖X̄ + ψ(‖L1‖B + ‖L2‖F) + ψŪ + K3(β + 1)ε

× ‖diag(σβ(0))‖+ K3(β + 1)
√

Nn‖diag(σβ(0))‖, (41)
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where ψ = ηγ + K3(β + 1)‖diag(σβ(0))‖ + K4
√

Nn, X̄ = max0≤t≤T̄{‖X̃(t)‖} and Ū =

max0≤t≤T̄{‖Ũ(t)‖}. Based on e(tk) = 0, it has

‖e(t)‖ ≤
[

ψl2‖L1‖‖L−1
1 ‖X̄ + ψ(‖L1‖B + ‖L2‖F) + ψŪ + K3(β + 1)ε‖diag(σβ(0))‖

+ K3(β + 1)
√

Nn‖diag(σβ(0))‖
]
(t− tk). (42)

Applying the triggering mechanism (33), it has ‖e(tk+1)‖ = ξ. Therefore,

ξ ≤
[

ψl2‖L1‖‖L−1
1 ‖X̄ + ψ(‖L1‖B + ‖L2‖F) + ψŪ + K3(β + 1)ε

× ‖diag(σβ(0))‖+ K3(β + 1)
√

Nn‖diag(σβ(0))‖
]
(tk+1 − tk). (43)

Denote π1 = ψl2‖L1‖‖L−1
1 ‖X̄+ψ(‖L1‖B+ ‖L2‖F)+ψŪ +K3(β+ 1)ε‖diag(σβ(0))‖+

K3(β + 1)
√

Nn‖diag(σβ(0))‖, and ∆Tk = (tk+1 − tk), we can get ∆Tk ≥ ξ
π1

> 0.
Next, we prove that the Zeno behavior can be avoided when the sliding mode surface

is reached. Similar to the above proof, we can obtain

d
dt
‖e(t)‖ ≤

∥∥∥∥ d
dt

[
χ̃η(t) + sgn(χ̃(t))− Ksgn(σ(t))− K3sigβ+1(σ(t))

− K4‖X̃(t)‖sgn(σ(t))
]∥∥∥∥

≤ηγV̂(0)
η
2 + ηγ

√
Nn. (44)

Combination with e(tk) = 0, it yields

‖e(t)‖ ≤
[

ηγV̂(0)
η
2 + ηγ

√
Nn
]
(t− tk). (45)

When the event next event is triggered, it has ‖e(t)‖ = ξ. Therefore,

ξ ≤
[

ηγV̂(0)
η
2 + ηγ

√
Nn
]
(tk+1 − tk). (46)

Let π2 = ηγV̂(0)
η
2 + ηγ

√
Nn and ∆Tk = tk+1 − tk, we can get ∆Tk ≥ ξ

π2
> 0. Based

on above analysis, the lower bound of event-triggered interval is positive, then Zeno
phenomenon is eliminated in the whole control process.

4. Numerical Example

In this section, two numerical examples are presented to demonstrate the effectiveness
of the control protocols.

Example 1. Consider the FONMAS (2) with one leader and four followers. Figure 1a shows the
directed communication topology between the leader and all followers. Obviously, Assumption 2 is
satisfied. The nonlinear function is defined as follows

f (xi(t)) =
(
−xi1(t) + 2g(xi1(t))− 1.2g(xi2(t))
−xi2(t) + 1.2g(xi1(t)) + 2g(xi2(t))

)
, i = 0, 1, · · · , 4.

where g(xij(t)) = 0.5(|xij(t) + 1| − |xij(t) − 1|) + 0.01sgn(xij(t)), i = 0, 1, · · · , 4, j = 1, 2.
Then, Assumption 1 holds. The external disturbances are defined as w11(t) = w12(t) = 0.05 sin(t)+
0.1 cos(t), w21(t) = w22(t) = 0.05 sin(t) + 0.1 cos(t), w31(t) = w32(t) = 0.05 sin(t), and
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w41(t) = w42(t) = 0.1 cos(t). It follows that ‖wi(t)‖∞ ≤ 0.2, i = 1, 2, 3, 4. The control input of
leader is u01(t) = u02(t) = 0.1 sin(t) + 0.1 cos(t). We choose the controller parameters K1 = 0.2,
K2 = 1.7, K3 = 1.5, K4 = 2, η = 7

5 , β = 1.5, ξi = 0.2 for i = 1, 2, 3, 4 and implement the
proposed control protocol (7). Through the analysis, all conditions (9) of Theorem 1 are satisfied.

(a) (b)

Figure 1. The network topology. (a) Topology with 1 leader. (b) Topology with 2 leaders.

The simulation results are presented in Figures 2–4. Specifically, Figure 2 depicts
the states of all followers and the leader. It can be seen that all followers can track the
leader’s state in fixed-time under the proposed sliding mode control protocol (7) and the
setting time is T̃ ≤ 13.86. Based on analysis of Theorem 1, the sliding mode variable σ(t)
converges to zero in fixed-time, and the setting time is T ≤ 2, which is verified in Figure 3.
The event-triggered instants under the triggering mechanism (10) are shown in Figure 4. It
is shown that the event-triggered instants of each agent are different. Therefore, the results
of Theorem 1 are feasible and the proposed sliding mode control protocol (7) can effectively
suppress the external disturbances and realize leader-following consensus in fixed-time.
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Figure 2. The states of xi(t), i = 0, 1, · · · , 4. (a) The states of −xi1(t) + 2z(xi1(t)) − 1.2z(xi2(t));
(b) The states of −xi2(t) + 1.2z(xi1(t)) + 2z(xi2(t)).

Example 2. Consider the FONMAS (24) with two leaders and four followers. The directed
communication topology between two leaders and all followers are given in Figure 1b. The nonlinear
function is defined as follows

f (xi(t)) =
(
−xi1(t) + 2z(xi1(t))− 1.2z(xi2(t))
−xi2(t) + 1.2z(xi1(t)) + 2z(xi2(t))

)
, i = 1, 2, · · · , 6.

where z(xij(t)) = 0.5(|xij(t) + 1| − |xij(t)− 1|) + 0.01sgn(xij(t)), i = 1, 2, · · · , 6, j = 1, 2. The
external disturbances are defined as w11(t) = w12(t) = 0.05 sin(t) + 0.1 cos(t), w21(t) =
w22(t) = 0.05 sin(t) + 0.1 cos(t), w31(t) = w32(t) = 0.05 sin(t), w41(t) = w42(t) =
0.1 cos(t), w51(t) = w52(t) = 0.03 sin(t) + 0.2 cos(t), and w61(t) = w62(t) = 0.06 sin(t).
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It has ‖wi(t)‖∞ ≤ 0.2, i = 1, 2, 3, 4, ‖wj(t)‖∞ ≤ 0.2, j = 5, 6. The control input are uj1(t) =
uj2(t) = 0.1 sin(t) + 0.1 cos(t), j = 5, 6. We choose the controller parameters K1 = 1.7, K2 = 2,
K3 = 1.5, K4 = 24.5, η = 7

5 , β = 1.2, ξ = 1 and implement the proposed control protocol (30).
Through simple calculation, we can verify that all conditions of Theorem 3 are satisfied.
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Figure 3. The state of σ(t).
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Figure 4. The event-triggered instants.

The simulation results are presented in Figures 5–7. Specifically, Figure 5 shows the
states of four followers and two leaders. It can be seen that all followers’ states gradually
achieve consensus and fall into the convex hull of the leaders’ states in fixed-time and
the setting time is T̂ ≤ 11.3. Figure 6 shows the evolution of sliding mode variable σ(t).
The sliding mode surface can be reached in fixed-time, and the settling time is T̄ ≤ 4.3.
The triggering interval under the event-triggered mechanism (33) is presented in Figure 7.
In order to show the event-triggered intervals more clearly, we only give the simulation
result for a short period of time, from which we can see that the Zeno phenomenon can
be excluded. Different from the distributed event triggering condition (10), we employ a
centralized trigger function, which also can ensure the reachability of the consensus. In
particular, if the FONMAS (24) with one leader, the containment control can be reduced
into leader-following tracking problem.
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Figure 5. The states of xi(t), i = 1, 2, · · · , 6. (a) The states of −xi1(t) + 2z(xi1(t)) − 1.2z(xi2(t));
(b) The states of −xi2(t) + 1.2z(xi1(t)) + 2z(xi2(t)).
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Figure 7. The event-triggered instants.

5. Conclusions

In this paper, considering external disturbances, the leader-following consensus and
containment control of FONMASs are studied. Two kinds of event-triggered integral
SMC protocols are designed, which can well suppress the external disturbances and make
the FONMASs achieve consensus in fixed-time. Based on fixed-time stability theory and
inequality technique, some criteria are obtained and the Zeno behavior can be avoided.
The effectiveness of the proposed protocols are verified by several numerical simulations.
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In the future work, the consensus of higher-order MASs with dynamic event-triggered
communication mechanism will be considered.
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