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Abstract: In the present paper, we study the information generating (IG) function and relative
information generating (RIG) function measures associated with maximum and minimum ranked
set sampling (RSS) schemes with unequal sizes. We also examine the IG measures for simple random
sampling (SRS) and provide some comparison results between SRS and RSS procedures in terms of
dispersive stochastic ordering. Finally, we discuss the RIG divergence measure between SRS and
RSS frameworks.
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1. Introduction

Moment generating function (MGF) plays an important role in statistical distribution
theory. Its derivatives evaluated at zero yield the moments of the considered distribu-
tion. Information generating (IG) functions have also been used in information theory, in
addition to the moment generating function, to generate some well-known information
measures such as Shannon entropy and Kullback–Leibler divergence.

The IG function of a probability model f was first introduced by Golomb [1], whose
first derivative evaluated at one provides Shannon entropy for that probability model.

Suppose the variable X has an absolutely continuous probability density function
(PDF) f . Then, the IG function of density f , for any α > 0, is defined as

Gα(X) =
∫
X

f α(x)dx, (1)

when the integral is finite. In order to simplify the notation, we do not use X in the
integration with respect to dx throughout the article, unless a distinction needs to be made.
The following properties of Gα(X) in (1) have been stated in Golomb [1]:

(i) G1(X) = 1; (ii)
∂

∂α
Gα(X)|α=1 = −H(X), (2)

where H(X) is the Shannon entropy defined as H(X) = −
∫

f (x) log f (x)dx. In particular,
when α = 2, the IG measure is simply

∫
X f 2(x)dx, known as informational energy (IE)

function. The IG function and its extensions have been used extensively in chemistry and
physics to discuss the atomic structure of a given phenomena or system; for more details,
one may see López-Ruiz et al. [2]. In addition, the IG function, known as entropic moment
in chemistry and physics literature, plays a key role in chaos theory and non-extensive
thermodynamics. Note that the IG function is closely linked to Tsallis and Rényi entropies.
The entropic moment measure, as well as the information entropy, reflect on the degree of
spread of a probabilistic model, see Bercher [3].

Recently, Clark [4] has presented an analogous IG function for stochastic processes to
assist in the derivation of information measures for point processes.
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Guiasu and Reischer [5] proposed relative information generating (RIG) function
between two density functions, whose first derivative evaluated at 1, yields Kullback–
Leibler (KL) divergence (Kullback and Leibler, [6]) measure.

Suppose the variables X and Y have absolutely continuous density functions f and g,
respectively. Then, the RIG function, for any α > 0, is defined as

Rα(X, Y) =
∫

g(x)
{

f (x)
g(x)

}α

dx (3)

when the integral is finite. The KL divergence is then obtained, from its first derivative, as

KL(X, Y) =
∂

∂α
Rα(X, Y)|α=1 =

∫
f (x)

(
log

f (x)
g(x)

)
dx. (4)

One may refer to Clark [4] and Mares et al. [7] for some discussions on the usefulness and
applications of the RIG function

The main objective of this paper is to study the IG and RIG information measures
associated with ranked set sampling (RSS) schemes. The analysis of information content
in various sampling strategies is of great importance in sampling theory. In this regard,
information theory provides specifically a framework for the quantification of information
content in a given source with a probabilistic structure under different sampling strategies.
Among various strategies discussed in sampling theory, we focus here on some well-known
strategies that are known to be efficient. A cost-effective survey sampling method, known as
ranked set sampling (RSS), was first introduced by McIntyre [8]. He specifically introduced
RSS to estimate the mean of a population based on a given simple random sample (SRS)
of size n and observed that the estimator based on RSS is an unbiased estimator with a
smaller variance as compared to the mean of a SRS. The RSS and some of its generalizations
have been discussed rather extensively in the literature. For example, Frey [9]; Park and
Lim [10]; and Chen, Bai, and Sinha [11] have all discussed the information content in RSS
based on Fisher entropy, while Tahmasebi et al. [12] have studied the Tsallis entropy based
on maximum RSS scheme. Therefore, considering the importance of this issue and the
connection between information theory and ranked set sampling theory, a systematic study
of the IG function as generator function of some well-known information measures, in the
framework of RSS strategy, seems to be necessary. This forms the primary motivation for
the present study.

We now briefly introduce SRS and RSS strategies that will be used in the sequel. Let X
be an absolutely continuous random variable with PDF f . Then, a SRS of size n, derived
from the random variable X, is denoted by XSRS = {Xi, i = 1, ..., n}. Further, suppose a
random sample of size n2 is selected and is randomly divided into n groups of equal size n.
Then, a one-cycle RSS is observed in the following manner:

1 : X(1:n)1 X(2:n)1 . . . X(n:n)1 → X(1:n) = X(1:n)1

2 : X(1:n)2 X(2:n)2 . . . X(n:n)2 → X(2:n) = X(2:n)2

...
...

...
. . .

...
...

...

n : X(1:n)n X(2:n)n . . . X(n:n)n → X(n:n) = X(n:n)n.

As we see from the above representation, the recorded sample in each group of SRS
with size n corresponds to the ith order statistic. Thus, the RSS vector of observations is
given by X(n)

RSS = {Xi:n, i = 1, · · · n}, where Xi:n is the ith order statistic based on a given
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SRS of size n with PDF f and cumulative distribution function (CDF) F. Then, the PDF of
Xi:n is known to be

fi:n(x) =
n!

(i− 1)!(n− i)!
f (x)Fi−1(x)(1− F(x))n−i. (5)

Here, Xi:n corresponds to the ith order statistic, and with that taking the value x, there
will be i− 1 observations less than x each with probability F(x) and n− i observations
greater than x each with probability 1− F(x). For pertinent details, one may refer to the
authoritative book on this subject by Arnold et al. [13].

Maximum and minimum ranked set sampling schemes are two useful modifications of
ranked set sampling procedure. A maximum RSS is given by X(n)

MRSS =
{

X(i)i, i = 1, · · · , n
}

,
where X(i)i is the largest order statistic based on a SRS of size i from f . Similarly, a min-

imum RSS is given by X(n)
mRSS =

{
X(1)i, i = 1, · · · , n

}
, where X(1)i is the smallest order

statistic based on a SRS of size i from f . From (5), the PDF of X(1)i is given by

f(1)i(x) = i[F̄(x)]i−1 f (x), i = 1, ..., n, (6)

where F̄ = 1− F, is the survival function of X. Similarly, the PDF of X(i)i is given by

f(i)i(x) = i[F(x)]i−1 f (x), i = 1, ..., n. (7)

The corresponding CDFs of (6) and (7) are given by 1− F̄i(x) and Fi(x), respectively.
The purpose of this work is twofold. The first part is to derive IG measures for the SRS

and RSS, and especially in maximum and minimum RSS frameworks, and provide some
comparison results associated with IG measures of these observations based on dispersive
stochastic ordering. In the second part, we further study the RIG divergence measure
between SRS and RSS, and specifically the RIG divergence measure between minimum
and maximum RSS procedures.

The rest of this paper is organized as follows. In Section 2, we consider the information
generating function and establish some results for SRS and RSS procedures. We show that
the IG measures of SRS and RSS can be expressed based on different orders of fractional
Shannon entropy. Moreover, we examine the monotonicity properties of IG measure
for vectors X(n)

MRSS and X(n)
mRSS based on a sample of size n, under a mild condition. In

Section 3, we discuss the comparison of information generating functions for SRS and RSS
frameworks in terms of dispersive stochastic ordering. Next, in Section 4, we study the RIG
measures for vectors X(n)

SRS, X(n)
MRSS and X(n)

MRSS. Finally, we make some concluding remarks
in Section 5.

2. IG Measures Based on SRS and RSS Schemes

In this section, we first consider the IG measure for SRS and then for RSS schemes.
Specifically, we discuss the IG measure for the maximum and minimum RSS schemes.

2.1. IG Measure Based on SRS Scheme

Let X(n)
SRS = (X1, · · · , Xn) be a SRS of size n obtained from PDF f . Then, the IG

measure of vector X(n)
SRS is given by

Gα(X(n)
SRS) =

∫
· · ·

∫
f α(x1) · · · f α(xn)dx1 · · · dxn

=
n

∏
i=1

∫
f α(xi)dxi =

(∫
f α(x)dx

)n
= (Gα(X))n. (8)
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Lemma 1. Suppose the random variable X has density function f . Then, we have

Gα(X(n)
SRS) =

{ ∞

∑
j=0

(1− α)j

j!
Hj( f )

}n

,

where Hj( f ) is the extended fractional Shannon entropy of order n defined as

Hj( f ) =
∫ {
− log f (x)

}j f (x)dx. For more details about fractional Shannon entropy, one may
refer to Xiong et al. [14].

Proof. From the definition of IG measure of X(n)
SRS in (8) and using Lemma 1 of Kharazmi

and Balakrishnan [15], we have

{
Gα(X(n)

SRS)
} 1

n = E
[
e(α−1) log f (X)

]
=

∞

∑
j=0

(1− α)j

j!

∫ {
− log f (x)

}j

f (x)dx

=
∞

∑
j=0

(1− α)j

j!
Hj( f ),

as required.

2.2. IG Measure Based on RSS Scheme

Suppose X1, ..., Xn are independent and identically distributed (iid) variables from
an absolutely continuous CDF F and PDF f , and X1:n, ..., Xn:n are the corresponding order
statistics. We then present the IG measure of vector X(n)

RSS = {Xi:n, i = 1, · · · n} in the
following theorem.

Theorem 1. Let X(n)
RSS denote a RSS from density function f . Then, the IG measure of vector X(n)

RSS,
for α > 0, is given by

Gα(X(n)
RSS) =

n

∏
i=1

Gα(Xi:n) = ψ(α, n)
n

∏
i=1

E
[

f α−1
(

F−1(Vi)
)]

, (9)

where ψ(α, n) = ∏n
i=1

B(α(i−1)+1,α(n−i)+1)
Bα(i,n−i+1) , and Vi has Beta

(
α(i− 1) + 1, α(n− i) + 1

)
distri-

bution with PDF

fVi (v) =
1

B
(
α(i− 1) + 1, α(n− i) + 1

)vα(i−1)(1− v)α(n−i), 0 < v < 1.

Proof. From the definition of IG measure in (1) for vector X(n)
RSS and setting v = F(x),

we have

Gα(X(n)
RSS) =

n

∏
i=1

Gα(Xi:n) =
n

∏
i=1

∫
f α
i:n(x)dx

=
n

∏
i=1

∫ 1
Bα(i, n− i + 1)

f α(x)[F(x)]α(i−1)[1− F(x)]α(n−i)dx

= ψ(α, n)
n

∏
i=1

E
[

f α−1
(

F−1(Vi)
)]

,

as required.
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Based on the definition of fractional Shannon entropy and Lemma 1 of Kharazmi and
Balakrishnan [15], we can present an alternative representation for Gα(X(n)

RSS) as

Gα(X(n)
RSS) =

∞

∑
j=0

(1− α)j

j!

n

∏
i=1

Hj( fi:n),

where Hj is the fractional Shannon entropy of order j and fi:n is the PDF of Xi:n as given
in (5).

Example 1. Let X be an exponential variable with PDF f (x) = λe−λx, λ > 0, x > 0. From (1) and
(8), we then find Gα

(
X(n)

SRS

)
= λn(α−1)

αn . On the other hand, as f (F−1(u)) = λ(1− u), 0 < u < 1,
from (9), we find

Gα(X(n)
RSS) = λn(α−1)

n

∏
i=1

B(α(i− 1) + 1, α(n− i + 1))
Bα(i, n− i + 1)

.

Next, we discuss the IG measure for maximum and minimum RSS schemes with
vectors X(n)

MRSS =
{

X(i)i, i = 1, · · · n
}

and X(n)
mRSS =

{
X(1)i, i = 1, · · · n

}
, respectively.

Theorem 2. Let X(n)
mRSS and X(n)

MRSS denote the minimum and maximum RSS schemes from

density function f , respectively. Then, the IG measures of vectors X(n)
mRSS and X(n)

MRSS, for α > 0,
are given by

Gα(X(n)
mRSS) =

n

∏
i=1

Gα(X(1)i) = c(α, n)
n

∏
i=1

E
{

f α−1
(

F−1(Ui)
)}

(10)

and

Gα(X(n)
MRSS) =

n

∏
i=1

Gα(X(i)i) = c(α, n)
n

∏
i=1

E
{

f α−1
(

F−1(Vi)
)}

, (11)

respectively, where Ui has Beta
(
1, α(i− 1) + 1) and Vi has Beta

(
α(i− 1) + 1, 1) distributions,

with c(α, n) = (n!)α

∏n
i=1(α(i−1)+1) .

Proof. From the definition of IG measure in (1) and using the PDF of X(1)i in (6), upon
setting u = F(x), we get

Gα(X(n)
mRSS) =

n

∏
i=1

∫ ∞

−∞
f α
(1)i(x)dx =

n

∏
i=1

∫ ∞

−∞
iα[F̄(x)]α(i−1) f α(x)dx

= (n!)α
n

∏
i=1

∫ 1

0
(1− u)α(i−1) f α−1(F−1(u))du

= c(α, n)
n

∏
i=1

E
{

f α−1
(

F−1(Ui)
)}

,

as required. The proof of (11) is similar, and is therefore omitted for the sake of brevity.

Example 2. For the exponential PDF considered in Example 1, by using (10) and (11), we find

(i) Gα(X(n)
mRSS) =

(n!)α−1λn(α−1)

αn ,

(ii) Gα(X(n)
MRSS) = Gα(X(n)

mRSS)((α− 1)!)∏n
i=1

Γ(α(i−1)+1)
Γ(αi) .
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Figure 1 shows the differences between IG measures of vectors X(n)
SRS, X(n)

RSS, X(n)
MRSS,

and X(n)
MRSS in Examples 1 and 2, for different values of α > 0 and n = 2. From Figure 1, it

is easy to observe that for α ∈ (0, 1], the IG differences are negative and increasing (Panel
(a)), while for α ∈ [1, ∞), the IG differences are positive and increasing (Panel (b)).
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−
4

0
−

2
0

0

(a)

α

Gα(XRSS
(n)

)−Gα(XSRS
(n)

)

Gα(XmRSS
(n)

)−Gα(XSRS
(n)

)

Gα(XmRSS
(n)

)−Gα(XRSS
(n)

)

Gα(XMRSS
(n)

)−Gα(XSRS
(n)

)

Gα(XMRSS
(n)

)−Gα(XRSS
(n)

)

Gα(XMRSS
(n)

)−Gα(XmRSS
(n)

)

2 4 6 8 10 12 14

0
4

0
8

0

(b)

α

Gα(XRSS
(n)

)−Gα(XSRS
(n)

)

Gα(XmRSS
(n)

)−Gα(XSRS
(n)

)

Gα(XmRSS
(n)

)−Gα(XRSS
(n)

)

Gα(XSRS
(n)

)−Gα(XMRSS
(n)

)

Gα(XRSS
(n)

)−Gα(XMRSS
(n)

)

Gα(XmRSS
(n)

)−Gα(XMRSS
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Figure 1. The differences between IG measures for exponential distribution with λ = 2 and n = 2 when 0 < α < 1 (a) and
α > 1 (b).

Suppose X has CDF F and PDF f , and the vectors X(n)
MRSS and X(n)

mRSS are the associated
maximum and minimum RSS schemes based on a sample of size n. Then, the following
results present the monotonicity properties of IG measures for vectors X(n)

MRSS and X(n)
mRSS.

Theorem 3. Consider the IG measure of vector X(n)
MRSS. If f (F−1(u)) ≥ 1 for all 0 < u < 1, then:

(i) If α ≥ 1, Gα(X(n)
MRSS) is increasing in n;

(ii) If α ≤ 1, Gα(X(n)
MRSS) is decreasing in n.

Proof. By using the assumption and the definition of IG measure for the vector X(n)
MRSS in

(11), we have

Gα(X(n+1)
MRSS)

Gα(X(n)
MRSS)

=
∏n+1

i=1

∫ ∞
−∞ f α

(i)i(x)dx

∏n
i=1
∫ ∞
−∞ f α

(i)i(x)dx
=
∫ ∞

−∞
f α
(n+1)n+1(x)dx

= (n + 1)α
∫ 1

0
uαn f α−1

(
F−1(u)

)
du

≥ (n + 1)α
∫ 1

0
uαndu =

(n + 1)α

αn + 1
≥ 1, f or α ≥ 1,

which proves Part (i). Part (ii) can be proved in an analogous manner.

Theorem 4. Consider the IG measure of vector X(n)
mRSS. If f (F−1(u)) ≥ 1 for all 0 < u < 1, then:

(i) If α ≥ 1, Gα(X(n)
mRSS) is increasing in n;

(ii) If α ≤ 1, Gα(X(n)
mRSS) is decreasing in n.
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Proof. By using the assumptions and the definition of IG measure for the vector X(n)
mRSS in

(10), we have

Gα(X(n+1)
mRSS )

Gα(X(n)
mRSS)

=
∏n+1

i=1

∫ ∞
−∞ f α

(1)i(x)dx

∏n
i=1
∫ ∞
−∞ f α

(i1)i(x)dx
=
∫ ∞

−∞
f α
(1)n+1(x)dx

=
∫ ∞

−∞
(n + 1)α(1− F(x))αn f α(x)dx

= (n + 1)α
∫ 1

0
(1− u)αn f α−1

(
F−1(u)

)
du

≥ (n + 1)α
∫ 1

0
(1− u)αndu =

(n + 1)α

αn + 1
≥ 1, f or α ≥ 1,

which proves Part (i). Part (ii) can be proved in an analogous manner.

Next, we compare the IG measure of vector X(n)
SRS with those of X(n)

mRSS and X(n)
MRSS.

Theorem 5. Consider the IG measures Gα(X(n)
SRS), Gα(X(n)

mRSS) and Gα(X(n)
MRSS). Then:

(i) If α ≥ 1, Gα(X(n)
mRSS) ≤ (n!)αGα(X(n)

SRS);

(ii) If α ≥ 1, Gα(X(n)
MRSS) ≤ (n!)αGα(X(n)

SRS).

Proof. By the definition of IG measures of vectors X(n)
SRS and X(n)

mRSS, we find

Gα(X(n)
mRSS) = (n!)α

n

∏
i=1

∫ 1

0
(1− u)α(i−1) f α−1

(
F−1(u)

)
du

≤ (n!)α
n

∏
i=1

∫ 1

0
f α−1

(
F−1(u)

)
du

= (n!)α

{∫ 1

0
f α−1

(
F−1(u)

)
du
}n

= (n!)αGα(X(n)
SRS),

which proves Part (i). Part (ii) can be proved in an analogous manner.

3. IG Ordering Results Based on the RSS Scheme

An important criterion for comparing the dispersions (or variabilities) of two variables
(or distributions) is dispersive ordering. Let the variables X and Y have CDFs F and G
and PDFs f and g, respectively. Then, X said to be less dispersed than Y (denoted by
X ≤disp Y) if g(G−1(x)) ≤ f (F−1(x)) for all x ∈ (0, 1); see, for instance, Shaked and
Shanthikumar [16] for relevant details.

Definition 1. Let X and Y be two variables with IG measures Gα( f ) and Gα(g), respectively.
Then, X is said to be less than Y in the sense of information generating function, denoted
by X ≤IG Y, if Gα( f ) ≤ Gα(g).

Lemma 2. Suppose X ≤disp Y. Then:

(i) If α ≤ 1, X ≤IG Y;
(ii) If α ≥ 1, Y ≤IG X.

Proof. See Kharazmi and Balakrishnan [15] for a detailed proof.

Now, we present the following theorem about the IG ordering for RSS schemes.
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Theorem 6. Let
{

Xi
}∞

1 be a sequence of i.i.d. variables from a deceasing failure rate (DFR)
distribution. Then:

(i) If α ≤ 1, X(n)
mRSS ≤IG X(n)

RSS ≤IG X(n)
MRSS;

(ii) If α ≥ 1, X(n)
mRSS ≥IG X(n)

RSS ≥IG X(n)
MRSS.

Proof. From the DFR assumption of the underling distribution, it is known that

X1:n ≤disp Xi:n ≤disp X(i)i, i = 1, ..., n;

see Shaked and Shantikumar (2007). Therefore, from Lemma 2 and for α ≤ 1, we get

Gα(X1:i) ≤ Gα(Xi:n) ≤ Gα(X(i)i), i = 1, ..., n,

and consequently,
n

∏
i=1

Gα(X1:i) ≤
n

∏
i=1

Gα(Xi:n) ≤
n

∏
i=1

Gα(X(i)i).

Now, from the above inequality and definitions of the IG measures for vectors X(n)
mRSS,

X(n)
RSS and X(n)

MRSS, we immediately obtain

Gα(X(n)
mRSS) ≤ Gα(X(n)

RSS) ≤ Gα(X(n)
MRSS),

which is equivalent to
X(n)

mRSS ≤IG X(n)
RSS ≤IG X(n)

MRSS,

which proves Part (i). Part (ii) can be proved in an analogous manner.

Theorem 7. Let X and Y be independent random variables with densities f and g, respectively,
and X ≤disp Y. Then:

(i) If α ≤ 1, X(n)
RSS ≤IG Y (n)

RSS ;

(ii) If α ≥ 1, Y (n)
RSS ≤IG X(n)

RSS.

Proof. By the definition of IG measure for RSS in (9), we have

Gα(X(n)
RSS) =

n

∏
i=1

Gα(Xi:n) = ψ(α, n)
n

∏
i=1

E
[

f α−1
(

F−1(Vi)
)]

.

Because X≤dispY, we have f (F−1(u)) ≥ g(G−1(u)) for all u ∈ (0, 1), and so for α ≤ 1, we
get f α−1(F−1(u)) ≤ gα−1(G−1(u)). Now, making use of this inequality, we obtain

Gα(X(n)
RSS) =

n

∏
i=1

1
Bα(i, n− i + 1)

∫ 1

0
uα(i−1)(1− u)α(n−i) f α−1

(
F−1(u)

)
du

≤
n

∏
i=1

1
Bα(i, n− i + 1)

∫ 1

0
uα(i−1)(1− u)α(n−i)gα−1

(
G−1(u)

)
du = Gα(Y

(n)
RSS),

which proves Part (i). Part (ii) can be proved in an analogous manner.

Corollary 1. Let X and Y be independent random variables with densities f and g, respectively,
and X ≤disp Y. Then:

(i) If α ≤ 1, X(n)
mRSS ≤IG Y (n)

mRSS ;

(ii) If α ≥ 1, Y (n)
mRSS ≤IG X(n)

mRSS;

(iii) If α ≤ 1, X(n)
MRSS ≤IG Y (n)

MRSS ;
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(iv) If α ≥ 1, Y (n)
MRSS ≤IG X(n)

MRSS.

4. RIG Divergence Measure Based on RSS Scheme

Let XSRS = {Xi, i = 1, ..., n} denote a SRS of size n from density function (PDF)
f and cumulative distribution function F. Further, let X(n)

RSS, X(n)
mRSS and X(n)

MRSS be the
corresponding RSS, minimum RSS and maximum RSS vectors, respectively. We now
consider the RIG measure between variable X and each of the vectors X(n)

mRSS and X(n)
MRSS.

From the definition of RIG measure in (3), the RIG divergence between X(1)i with density
in (6) and X is given by

Rα(X(1)i, X) =
∫ ∞

−∞
f α
(1)i(x) f 1−α(x)dx = iα

∫ 1

0
(1− u)α(i−1)du =

iα

α(i− 1) + 1
.

Similarly, the RIG divergence between X(i)i with density in (7) and X is given by

Rα(X(i)i, X) =
∫ ∞

−∞
f α
(i)i(x) f 1−α(x)dx = iα

∫ 1

0
uα(i−1)du =

iα

α(i− 1) + 1
.

It is evident from the above results that Rα(X(1)i, X) = Rα(X(i)i, X), which is free of the
underling distribution F.

Theorem 8. Consider the vectors X(n)
SRS and X(n)

mRSS from density function f . Then, we have:

(i) Rα(X(n)
mRSS, X(n)

SRS) = ∏n
i=1 Rα(X(1)i, X) = c(α, n);

(ii) Rα(X(n)
MRSS, X(n)

SRS) = ∏n
i=1 Rα(X(i)i, X) = c(α, n),

where c(α, n) = (n!)α

∏n
i=1(α(i−1)+1) .

Proof. From the definition of RIG divergence between vectors Xn
SRS and Xn

RSS, we find

Rα(X(n)
mRSS, X(n)

SRS) =
∫
· · ·

∫
f α
(1)1(x1) · · · f α

(1)n(xn) f 1−α(x1) · · · f 1−α(xn)dx1 · · · dxn

=
n

∏
i=1

∫
f α
(1)i(x) f 1−α(x)dx

=
n

∏
i=1

Rα(X(1)i, X)

= c(α, n),

which proves Part (i). Part (ii) can be proved in an analogous manner.

With the result that Rα(X(n)
mRSS, X(n)

SRS) = Rα(X(n)
MRSS, X(n)

SRS) = (n!)α

∏n
i=1(α(i−1)+1) in

Theorem 8, we have plotted the RIG measure between vectors X(n)
mRSS and X(n)

SRS, for some
selected choices of α and sample size n, in Figure 2. From Figure 2, it is easy to observe
that for α ∈ (0, 1], the RIG divergence measure between X(n)

mRSS and X(n)
SRS is decreasing

with respect to sample size n (Panels (a) and (b)), while for α ∈ [1, ∞), the considered RIG
measure is increasing with respect to sample size n (Panels (c) and (d)). Therefore, for
α ∈ (0, 1], the similarity between the density functions of the considered sampling vectors
X(n)

mRSS and X(n)
SRS gets increased. For α ∈ [1, ∞), the result is the opposite, i.e., the similarity

between the two sampling vectors gets decreased.
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Figure 2. Rα(X(n)
mRSS, X(n)

SRS) for some selected choices of parameter α and sample size n.

Theorem 9. Consider the vectors X(n)
RSS and X(n)

mRSS from density function f . Then, we have:

(i) Rα(X(n)
mRSS, X(n)

RSS) = ∏n
i=1 Rα(X(1)i, Xi:n) = c∗(α, n);

(ii) Rα(X(n)
MRSS, X(n)

RSS) = ∏n
i=1 Rα(X(i)i, X(1)i) = n! ∏n

i=1
Γ(α(i−1)+1)Γ((1−α)(i−1)+1)

Γ(i+1) ,

where c∗(α, n) = n[(n− 1)!]α ∏n
i=1 (

n−1
i−1)

1−α Γ(α−i(α−1))Γ(α(2i−n−1)+n−i+1)
Γ(α(i−n)+n+1) .

Proof. From the definition of RIG measure between vectors X(n)
mRSS and X(n)

RSS, we have

Rα(X(n)
mRSS, X(n)

RSS) =
n

∏
i=1

∫
f α
(1)i(x) f 1−α

i:n (x)dx

=
(n!)α

nα−1

n

∏
i=1

∫ 1

0

(
n− 1
i− 1

)1−α

(1− u)α(2i−n−1)+n−iu(1−α)(i−1)du

= n[(n− 1)!]α
n

∏
i=1

(
n− 1
i− 1

)1−α Γ(α− i(α− 1))Γ(α(2i− n− 1) + n− i + 1)
Γ(α(i− n) + n + 1)

,

which proves Part (i). Part (ii) can be proved in a similar manner.

We have plotted the results of Theorem 9 in Figures 3 and 4 for some choices of α. From
these figures, we observe that for α ∈ (0, 1], both RIG measures in Theorem 9 are deceasing
with respect to sample size n. Therefore, the similarity between the density functions of the
considered sampling vectors X(n)

mRSS and X(n)
RSS gets increased with increasing sample size n.



Entropy 2021, 23, 1381 11 of 12

2 4 6 8 10

0
.0

0
.4

0
.8

(a)

n

R
0

.1
(X

m
R

S
S

(n
)

,X
R

S
S

(n
)

)

2 4 6 8 10

0
.0

0
.4

0
.8

(b)

n

R
0

.5
(X

m
R

S
S

(n
)

,X
R

S
S

(n
)

)

2 4 6 8 10

0
.0

0
.4

0
.8

(c)

n

R
0

.9
(X

m
R

S
S

(n
)

,X
R

S
S

(n
)

)

Figure 3. Rα(X(n)
mRSS, X(n)

RSS) for some choices of parameter α and sample size n.

Figure 4. Rα(X(n)
MRSS, Xn

RSS) for some choices of parameter α and sample size n.

5. Concluding Remarks

In this paper, we have studied the information generating (IG) function and relative
information generating (RIG) function measures associated with SRS and RSS strategies.
Specifically, we have examined the IG function for maximum and minimum RSS schemes.
We have shown that, under a mild condition on the density function f , for α ≥ 1, the IG
function associated with the sampling vector X(n)

MRSS is increasing with respect to sample
size n. On the other hand, for α ≤ 1, this function is decreasing. Similar results are
established for the IG function of sampling vector X(n)

mRSS based on values of α and n. We

have shown that for values of α ≥ 1, we can provide upper bounds for Gα(X(n)
mRSS) and

Gα(X(n)
MRSS) based on Gα(X(n)

SRS). We have also provided some comparative results for RSS
schemes in terms of dispersive stochastic ordering. Based on this stochastic ordering, we
have established some ordering results among the IG functions of sampling vectors X(n)

RSS,

X(n)
mRSS and X(n)

MRSS in terms of α ≥ 1 (or α ≤ 1). Finally, we have examined the RIG measure

between the vectors X(n)
SRS, X(n)

RSS, X(n)
mRSS and X(n)

MRSS. The corresponding results associated
with RIG divergence have been plotted in Figures 2–4. For example, Figures 3 and 4 present
both RIG measures presented in Theorem 9 for some choices of α. We have demonstrated
that the similarity between the density functions of the considered sampling vectors X(n)

mRSS

and X(n)
RSS gets increased when the sample size n increases.

Author Contributions: All authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Golomb, S. The information generating function of a probability distribution (corresp.). IEEE Trans. Inf. Theory 1966, 12, 75–77.

[CrossRef]
2. López-Ruiz, R.; Mancini, H.L.; Calbet, X. A statistical measure of complexity. Phys. Lett. A 1995, 209, 321–326. [CrossRef]

http://doi.org/10.1109/TIT.1966.1053843
http://dx.doi.org/10.1109/TIT.1966.1053843


Entropy 2021, 23, 1381 12 of 12

3. Bercher, J.F. Some properties of generalized Fisher information in the context of non-extensive thermostatistics. Phys. A Stat.
Mech. Appl. 2013, 392, 3140–3154. [CrossRef]

4. Clark, D.E. Local entropy statistics for point processes. IEEE Trans. Inf. Theory 2019, 66, 1155–1163. [CrossRef]
5. Guiasu, S.; Reischer, C. The relative information generating function. Inf. Sci. 1985, 35, 235–241. [CrossRef]
6. Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [CrossRef]
7. Mares, C.; Mares, I.; Dobrica, V.; Demetrescu, C. Quantification of the direct solar impact on some components of the hydro-

climatic system. Entropy 2021, 23, 691. [CrossRef]
8. McIntyre, G.A. A method for unbiased selective sampling, using ranked sets. Aust. J. Agric. Res. 1952, 3, 385–390. [CrossRef]
9. Frey, J. A note on Fisher information and imperfect ranked-set sampling. Commun. Stat.-Theory Methods 2014, 43, 2726–2733.

[CrossRef] [PubMed]
10. Park, S.; Lim, J. On the effect of imperfect ranking on the amount of Fisher information in ranked set samples. Commun.

Stat.-Theory Methods 2012, 413, 3608–3620. [CrossRef]
11. Chen, Z.; Bai, Z.; Sinha, B. Ranked Set Sampling: Theory and Applications; Springer: New York, NY, USA, 2013. [CrossRef]
12. Tahmasebi, S.; Longobardi, M.; Kazemi, M.R.; Alizadeh, M. Cumulative Tsallis entropy for maximum ranked set sampling with

unequal samples. Phys. A Stat. Mech. Appl. 2020, 556, 124763. [CrossRef]
13. Arnold, B.C.; Balakrishnan, N.; Nagaraja, H.N. A First Course in Order Statistics; John Wiley & Sons: New York, NY, USA, 1992.
14. Xiong, H.; Shang, P.; Zhang, Y. Fractional cumulative residual entropy. Commun. Nonlinear Sci. Numer. Simul. 2019, 78, 104879.

[CrossRef]
15. Kharazmi, O.; Balakrishnan, N. Jensen-information generating function and its connections to some well-known information

measures. Stat. Probab. Lett. 2020, 170, 108995.
16. Shaked, M.; Shanthikumar, J.G. Stochastic Orders; Springer: New York, NY, USA, 2007. [CrossRef]

http://dx.doi.org/10.1109/TIT.1966.1053843
http://dx.doi.org/10.1016/j.physa.2013.03.062
http://dx.doi.org/10.1109/TIT.2019.2941213
http://dx.doi.org/10.1016/0020-0255(85)90053-2
http://dx.doi.org/10.1016/0020-0255(85)90053-2
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.3390/e23060691
http://www.ncbi.nlm.nih.gov/pubmed/34072681
http://dx.doi.org/10.1071/AR9520385
http://dx.doi.org/10.1080/03610926.2012.683131
http://dx.doi.org/10.1080/03610926.2011.563015
http://dx.doi.org/10.1016/j.physa.2020.124763
http://dx.doi.org/10.1016/j.cnsns.2019.104879

	Introduction
	IG Measures Based on SRS and RSS Schemes 
	IG Measure Based on SRS Scheme
	IG Measure Based on RSS Scheme

	IG Ordering Results Based on the RSS Scheme 
	RIG Divergence Measure Based on RSS Scheme
	Concluding Remarks
	References

