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During the last few decades, the notion of entropy has become omnipresent in many
scientific disciplines, ranging from traditional applications in statistical physics and chem-
istry, information theory, and statistical estimation to more recent applications in biology,
astrophysics, geology, financial markets, or social networks. All these examples belong to
the large family of complex dynamical systems that is typified by phase transitions, scaling
behavior, multiscale and emerging phenomena, and many other non-trivial phenomena.
Frequently, it turns out that in these systems, the usual Boltzmann–Gibbs–Shannon entropy
and ensuing statistical physics are not adequate concepts. This especially happens in cases
where the sample space in question does not grow exponentially.

This Special Issue, “The Statistical Foundations of Entropy”, is dedicated to discussing
solutions and delving into concepts, methods, and algorithms for improving our under-
standing of the statistical foundations of entropy in complex systems, with a particular
focus on the so-called generalized entropies that go beyond the usual Boltzmann–Gibbs–
Shannon framework. The nine high-quality articles included in this Special Issue propose
and discuss new tools and concepts derived from information theory, non-equilibrium
statistical physics, and the theory of complex dynamical systems to investigate various
non-conventional aspects of entropy with assorted applications. They illustrate the poten-
tial and pertinence of novel conceptual tools in statistical physics that, in turn, help us to
shed fresh light on the statistical foundations of entropy.

In the first contribution [1], the authors discuss the important topic of ecological
inference used to estimate individual behavior from the knowledge-aggregated data. The
authors discuss two popular approaches: the Generalized Maximum Entropy approach
and the Distributionally Weighted Regression equation. Moreover, the authors show that
it is possible to obtain a combined solution with the so-called Generalized Cross-Entropy
solution for the matrix adjustment problem.

The theory of critical phenomena is one of the essential parts of statistical physics with
important overlaps to other scientific fields. The authors of the second paper [2] extend
the classic Landau theory of critical phenomena in the context of multiscale dynamics.
By using renormalization group theory, the authors can describe critical points through
the inseparability of levels at certain points. These findings allow experimentalists more
precise measurements of critical points.

The third contribution [3] describes a general approach toward generalized entropies
based on the non-Newtonian calculus. The main idea is to redefine the usual arithmetic
operations (e.g., addition and multiplication) and related calculus operators (e.g., dif-
ferentiation and integration) in such a way that some crucial properties remain valid.
Entropy and the corresponding thermodynamic quantities are then defined analogously
to the Boltzmann–Gibbs–Shannon case in terms of these deformed operations. This ap-
proach incorporates many popular generalized entropies and gives a general recipe for
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the thermodynamics of such generalized entropies. Since the potential of this general
approach is immense, the editors decided to promote this article by choosing the paper as
the Editor’s Choice.

The aim of the fourth paper [4] was to show that for each distribution obtained
from the principle of maximum entropy, there exists freedom in the choice of entropic
functions and constraints, which make the reverse identification of entropic function and
constraints from the form of MaxEnt distribution impossible. The paper consists of two
simple examples of such invariance, where the different choices of entropy and constraints
lead to the same MaxEnt distribution, which differs only in the Lagrange parameters. Since
the Lagrange parameters may have some thermodynamic interpretation, it is essential to
identify some additional properties of the system to decide which function plays the role
of thermodynamic entropy.

In the fifth paper [5], the authors focused on the problem of estimation for entropy
and the parameters of generalized Bilal distribution under an adaptive type II progressive
hybrid censoring scheme. To this end, they used the maximum likelihood estimator
and Newton–Raphson iteration method. In addition, some other estimators, such as the
Bayesian estimator and confidence intervals, were also provided. Finally, the study contains
an illustrative example that applies the obtained results.

The main result of the sixth contribution [6] was to introduce a generalization the
concept of Shannon’s entropy power based on Rényi entropy. Consequently, the authors
could generalize several popular identities, including the de Bruijn identity, isoperimetric
inequality, or Stam inequality. Moreover, this enables one to introduce a new class of the
one-parameter family of Rényi entropy power-based quantum mechanical uncertainty
relations. These relations turn out to be very useful in many applications in quantum
mechanics, including entanglement and quantum metrology.

The seventh paper [7] revisited the Boltzmann H theorem for both the classical and
quantum systems. The authors considered a spatially inhomogeneous system initially out
of equilibrium and studied its relaxation toward equilibrium. They accomplished this by
considering small local cells and assuming the local equilibrium hypothesis. The global
H-function is a sum of the local H functions. The authors recovered the H theorem for
the case of spatially inhomogeneous gasses for both the classical and quantum cases. The
correspondence principle connects the classical and quantum H functions.

In the eighth paper [8], the authors introduced a generalization of mutual information
based on two-parameter Sharma–Mittal entropy. They also discussed the distinction
between mutual information and capacity for the case of generalized entropies based
on Sharma–Mittal entropy. They accomplished this by considering a proper axiomatic
framework. Finally, the authors showed that the proper definition of both Sharma–Mittal
mutual information and Sharma–Mittal capacity solves the issue of non-physical behavior.

Finally, in the last paper of this Special Issue [9], the authors reviewed the maximum
entropy principle from the point of view of a general inference framework. The authors
discussed a general procedure of updating the prior distribution to a posterior probability
distribution through an eliminative induction process. The authors showed that under
the assumption of subsystem independence, the logarithmic relative entropy (also called
Kullback–Leibler divergence) is the unique solution that fulfills the prescribed axiomatic
framework. Furthermore, the authors showed that this general framework contains the
MaxEnt principle and Bayes’ rule as special cases and unifies the entropic and Bayesian
inference methods.

Entropy is presumably one of the most intricate and complex scientific concepts. Its
comprehension is an open challenge that requires new abstractions and methodological
approaches. Information theory, statistical physics, and estimation theory methods provide
a versatile and flexible framework with the potential to move research in this field forward.
In this Special Issue, various conceptual and methodological approaches were provided to
further deepen our understanding of the statistical foundations of entropy. They provided
relevant pieces of research that addressed timely, current topics associated with the entropy
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paradigm. It is our hope that the reader will enjoy the articles included in this Special Issue
and will find them helpful.
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