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1. Introduction

As fundamental limit theorems of probability theory, the classical law of the iterated
logarithm (LIL for short) plays an important role in the development of probability theory
and its applications. The original statement of LIL obtained by Khinchine [1] is for a class
of Bernoulli random variables. After that, a lot of literature has performed in-depth and
detailed research on LIL, we can refer to Hartman and Wintner [2], Acosta [3], Shao and
Su [4], and so on. Motivated by modeling uncertainty in practice, Peng [5] introduced the
reasonable framework of the sub-linear expectation of random variables in a general func-
tion space. As an alternative to the traditional probability/expectation, capacity/sub-linear
expectation has been studied in many fields, such as statistics, mathematical economics,
measures of risk, and super-hedging in finance. In recent years, after studying the limit
theorem of sub-linear expectation (e.g., see Feng [6], Deng and Wang [7], Tan and Zong [8],
and Zhang [9,10], etc.), more and more research results of LIL under this framework have
been obtained, the Hartman–Winter LIL were established by Chen and Hu [11] for bounded
random variables, the functional central limit and Chung’s LIL were recently obtained by
Zhang [12], and the LIL for independent and negatively dependent identically distributed
random variables were proven by Zhang [13].

As is well known, the linear processes are especially important in time series analysis
and they arise from a wide variety of contexts (cf. Hannan [14]). Applications to economics,
engineering, and physical sciences are extremely broad and a vast amount of literature
is devoted to the study of linear processes under a variety of circumstances. The limit
theory of linear processes has been studied in detail in many papers. Philips and Solo [15]
prove the strong law of numbers and the law of iterated logarithm for linear processes,
Zhang [16] gives the limit law of the iterated logarithm for linear processes. Recently,
Liu and Zhang [17] obtained the central limit theorem and invariance principle for linear
processes generated by independent and identically distributed (IID for short) random
variables under sub-linear expectation.

A natural question is: can LIL of linear processes be realized under Peng’s framework?
The main purpose of this paper is to establish the law of iterated logarithm for linear
processes generated by IID random variables in sub-linear expectation space. In the
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classical case, the LIL of partial sum is established by decomposing the linear process. We
will find that this way is also valid for proving LIL for linear process in the sub-linear
expectation space, though there are some differences. Intuitively, sub-linear expectation
and related non-additive probabilities (Capacities) generated by them plays a decisive role
in our proof. In the sequel, c denotes a positive constant, which may take different values
whenever it appears in different expressions.

To state the result, we shall first recall the framework of sub-linear expectations. We
use the framework and notation of Peng [5,18,19]. Let (Ω,F ) be a given measurable space.
LetH be a linear space of real functions defined on (Ω,F ), such that if X1, X2, ..., Xn ∈ H
then ϕ(X1, X2, ..., Xn) ∈ H for each ϕ ∈ Cl,Lip(Rn) where ϕ ∈ Cl,Lip(Rn) denotes the linear
space of local Lipschitz continuous functions ϕ satisfying

|ϕ(x)− ϕ(y)| ≤ c(1 + |x|m + |y|m)|x− y|, ∀x, y ∈ Rn,

for some c > 0, m ∈ N depending on ϕ. H contains all IA where A ∈ F . We also denote
ϕ ∈ Cb,Lip(Rn) as the linear space of bounded Lipschitz continuous functions ϕ satisfying

|ϕ(x)− ϕ(y)| ≤ c|x− y|, ∀x, y ∈ Rn,

for some c > 0.

Definition 1. A function Ê : H → [−∞,+∞] is said to be a sub-linear expectation if it satisfies
for ∀X, Y ∈ H,

1. Monotonicity: X ≥ Y implies Ê[X] ≥ Ê[Y];
2. Constant preserving: Ê[c] = c, ∀c ∈ R;
3. Sub-additivity: Ê[X + Y] ≤ Ê[X] + Ê[Y];
4. Positive homogeneity: Ê[λX] = λÊ[X], ∀λ ≥ 0.

The triple (Ω,H, Ê) is called a sub-linear expectation space. Give a sub-linear expecta-
tion Ê, let us denote the conjugate expectation Ê of Ê by Ê [X] := −Ê[−X], ∀X ∈ H.

Remark 1. (i) The sub-linear expectation Ê[·] satisfies translation invariance: Ê[X + c] = Ê[X] +
c, ∀c ∈ R. (ii) From the definition, it is easy to show that Ê [X] ≤ Ê[X] and Ê[X − Y] ≥
Ê[X]− Ê[Y], ∀X, Y ∈ H with Ê[Y] being finite.

Definition 2. (i) (Identical distribution) Let X1 and X2 be two n-dimensional random vectors
defined, respectively, in sub-linear expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2). They are

called identically distributed, denoted by X1
d
= X2, if

Ê1[ϕ(X1)] = Ê2[ϕ(X2)], ∀ϕ ∈ Cl,Lip(Rn),

whenever the sub-expectations are finite. A sequence of random variables {Xn, n ≥ 1} is said to be

identically distributed if Xi
d
= X1 for each i ≥ 1.

(ii) (Independence) In a sub-linear expectation space (Ω,H, Ê), a random vector Y =
(Y1, ..., Yn)(Yi ∈ H) is said to be independent to another random vector X = (X1, ..., Xm)(Xi ∈ H)
under Ê if for each test function ϕ ∈ Cl,Lip(Rm ×Rn) we have

Ê[ϕ(X, Y)] = Ê[Ê[ϕ(x, Y)]|x=X ],

whenever ϕ(x) := Ê[|ϕ(x, Y)|] < ∞ for all x and Ê[|ϕ(x)|] < ∞.
(iii) (IID random variables) A sequence of random variables {Xn, n ≥ 1} is said to be

independent and identically distributed (IID), if Xi
d
= X1 and Xi+1 is independent to (X1, ..., Xi)

for each i ≥ 1.
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It is obvious that, if {Xn, n ≥ 1} is a sequence of independent random variables
and f1(x), f2(x), ... ∈ Cl,Lip(R), then { fn(Xn), n ≥ 1} is also a sequence of independent
random variables.

Next, we introduce the capacities corresponding to the sub-linear expectations.

Definition 3 ([11]). A set function V: F → [0, 1] is called a capacity, if

1. V(∅) = 0, V(Ω) = 1;
2. V(A) ≤ V(B), ∀A ⊂ B, A, B ⊂ F .

It is called to be sub-additive if V(A∪ B) ≤ V(A)+V(B) for all A, B ∈ F with A∪ B ∈ F .

A sub-linear expectation Ê could generate a pair (V,V) of capacity denoted by

V(A) := inf{Ê[ξ] : IA ≤ ξ, ξ ∈ H}, V(A) = 1−V(Ac), ∀A ∈ F ,

where Ac is the complement set of A. Then

V(A) := Ê[IA], V(A) := Ê [IA], if IA ∈ H,

Ê[ f ] ≤ V(A) ≤ Ê[g], Ê [ f ] ≤ V(A) ≤ Ê [g], if f ≤ IA ≤ g, f , g ∈ H. (1)

In addition, a pair (CV, CV ) of the Choquet integrals/expecations denoted by

CV [X] =
∫ ∞

0
V(X ≥ t)dt +

∫ 0

−∞
[V(X ≥ t)− 1]dt,

with V being replaced by V and V , respectively.
If limc→∞ Ê[(|X| − c)+] = 0 or Ê is countably sub-additive, then Ê[|X|] ≤ CV(|X|)

(See Lemma 4.5 (iii) of Zhang [13]).

Definition 4 ([20]). (a) A sub-linear expectation Ê : H → [−∞,+∞] is called to be countably
sub-additive if it satisfies Ê[X] ≤ ∑∞

n=1 Ê[Xn], whenever X ≤ Σ∞
n=1Xn, X, Xn ∈ H and

X ≥ 0, Xn ≥ 0, n = 1, 2, ...;

(b) A function V: F → [0, 1] is called to be countably sub-additive if V
(⋃∞

n=1 An

)
≤

∑∞
n=1 V(An), ∀An ∈ F ;

(c) A capacity V: F → [0, 1] is called a continuous capacity if it satisfies:
c1. Continuity from below: V(An) ↑ V(A), if An ↑ A, where An, A ∈ F ;
c2. Continuity from above: V(An) ↓ V(A), if An ↓ A, where An, A ∈ F .

It is obvious that the continuity from above and sub-additivity imply the continuity
from below, and the continuity from the below and sub-additivity imply the countable sub-
additivity. Therefore, we call a sub-additive capacity to be continuous if it is continuous
from above. Set H = {A : IA ∈ H}, then V is a countably sub-additive capacity in H if
Ê is countably sub-additive inH, and (V,V) is a pair of continuous capacities in H if Ê is
continuous inH.

2. Main Results

In this section, we shall study the LIL of linear processes under association assumption
in the sub-linear expectation space. For any I ∈ (k,+∞), {Xj, j ∈ I} is a sequence of
independent random variables satisfying Definition 2; For a finite index set I ∈ (−∞, k),
{Xj, j ∈ I} is also a sequence of independent random variables satisfying Definition 2.

First, we give the definition of strictly stationary sequence under the sub-linear expectation.
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Definition 5. {εn, n ∈ N} is said to be a sequence of strictly stationary random variables on the
(Ω,H, Ê), if for any a function φn ∈ Cl,Lip(Rn) : Rn → R, then

Ê[φn(ε1, ε2, ..., εn)] = Ê[φn(ε1+k, ε2+k, ..., εn+k)], ∀n ≥ 1, k ∈ N.

Next we give the main results: the law of the iterated logarithm for linear processes in
the sub-linear expectation space.

Theorem 1. Suppose that {ε j, j ∈ Z} is a sequence of strictly stationary independent random
variables on the (Ω,H, Ê) with Ê[ε1] = Ê[−ε1] = 0 and σ2 = Ê[ε2

1], σ2 = Ê [ε2
1]. Further,

assume that Ê is countably sub-additive and

(A1) Ê
[
ε2

1(log |ε1|)1+δ
]
< ∞, f or some δ > 0;

(A2) limc→∞ Ê[(ε2
1 − c)+] = 0;

(A3)CV

[
ε2

1
log log |ε1|

]
< ∞.

Define the linear process by Xt = ∑∞
j=−∞ αjεt−j, t ≥ 1 and the partial sum Tn = ∑n

t=1 Xt, where
{αj, j ∈ Z} is a sequence of real numbers satisfying A = |∑∞

j=−∞ αj| 6= 0, ∑∞
j=−∞ |αj| < ∞.

Then we have

V
(

lim sup
n→∞

|Tn|
an
≤ Aσ

)
= 1, (2)

where an =
√

2n log log n, log n = ln(n ∨ e), log log n = ln ln(n ∨ ee), n ≥ 1.

Remark 2. If α0 = 1, αj = 0, j 6= 0, Theorem 1 can be regarded as Lemma 3.

Remark 3. In particular, according to Proposition 4.1 in Zhang [10], for the random variable
sequence of IID, if V is continuous, then Ê is linear. Then, the LIL of this paper is the known result
of classical probability space.

3. Proofs

In order to prove the main results, we need the following Lemmas. The first one was
the convergence part of the Borel–Cantelli Lemma.

Lemma 1 ([20]). Let {An, n ≥ 1} be a sequence of events in F . Suppose that V is a countably
sub-additive capacity. If ∑∞

n=1 V(An) < ∞ then

V(An i.o.) = 0, where {An i.o.} =
∞⋂

n=1

∞⋃
i=n

Ai.

The second Lemma on the exponential inequality is Lemma 2.1 of Zhang [9].

Lemma 2 ([9]). Let {Zn,k : k = 1, ..., kn} be an array of independent random variables, such that
Ê[Zn,k] ≤ 0 and Ê[Z2

n,k] < ∞, k = 1, ..., kn. Then for all x, y > 0

V
(

max
m≤kn

m

∑
k=1

Zn,k ≥ x
)

≤ V
(

max
k≤kn

Zn,k ≥ y
)
+ exp

{
x
y
− x

y

(
Bn

xy
+ 1
)

ln
(

1 +
xy
Bn

)}
, (3)

where Bn = ∑kn
k=1 Ê[Z

2
n,k].

The following Lemma is a law of iterated logarithm under sub-linear expectation.
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Lemma 3. Let {εn, n ≥ 1} be a sequence of IID random variables in (Ω, H, Ê) with ̂̂E[ε1] =
Ê[−ε1] = 0. Write Ê[ε2

1] = σ2, E [ε2
1] = σ2, Sn = ∑n

k=1 εk. Suppose that the conditions (A2)
and (A3) in Theorem 1 hold. If V is countably sub-additive, then we have

V
(

lim sup
n→∞

|Sn|
an
≤ σ

)
= 1. (4)

Proof. Obviously, (4) can be directly derived from Theorem 3.11 and (4.29) in Zhang [13].

Lemma 4. Let {εn, n ∈ Z} be a sequence of IID random variables on the (Ω,H, Ê) with
Ê[ε1] = Ê[−ε1] = 0 and σ2 = Ê[ε2

1], σ2 = Ê [ε2
1]. Further assume that Ê is countably sub-

additive and the condition (A1) in Theorem 1 hold. Then we have

Ê
[

sup
n
(2n log log n)−1/2|

n

∑
k=1

εk|
]
< ∞. (5)

Proof. Note that Ê is countably sub-additive, if CV[|ε|] < ∞, then Ê[|ε|] ≤ CV[|ε|] < ∞.
Hence, to prove (5), it suffices to prove

CV
[

sup
n
(2n log log n)−1/2|

n

∑
k=1

εk|
]
< ∞. (6)

By the definition of CV, we have

CV
[

sup
n
(2n log log n)−1/2|

n

∑
k=1

εk|
]

=
∫ ∞

0
V
{

sup
n

|∑n
k=1 εk|

(2n log log n)1/2 > x
}

dx

=
∫ D

0
V
{

sup
n

|∑n
k=1 εk|

(2n log log n)1/2 > x
}

dx +
∫ ∞

D
V
{

sup
n

|∑n
k=1 εk|

(2n log log n)1/2 > x
}

dx

= D +
∞

∑
l=0

∫ ∞

D
V
{

max
2l≤n<2l+1

|∑n
k=1 εk|

(2n log log n)1/2 > x
}

dx

= D +
∞

∑
l=0

∫ ∞

D
V
{

max
2l≤n<2l+1

|
n

∑
k=1

εk| > x(2 · 2l log log 2l)1/2
}

dx, (7)

where D > 1, value to be determined.
Let bk = (k/ log log k)1/2, k ≥ 1. We define

ε̃k = (−xbk) ∨ (εk ∧ xbk).

Noting that

n

∑
k=1

εk ≤
n

∑
k=1

ε̃k +

∣∣∣∣∣ n

∑
k=1

(εk − ε̃k)

∣∣∣∣∣ ≤
n

∑
k=1

(ε̃k − Ê[ε̃k]) +

∣∣∣∣∣ n

∑
k=1
−Ê[ε̃k]

∣∣∣∣∣+
∣∣∣∣∣ n

∑
k=1

(εk − ε̃k)

∣∣∣∣∣. (8)
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According to the Lemma condition Ê[ε1] = Ê[−ε1] = 0, we know that∣∣∣∣∣ n

∑
k=1
−Ê[ε̃k]

∣∣∣∣∣ ≤
∣∣∣∣∣ n

∑
k=1

(Ê[εk]− Ê[ε̃k])

∣∣∣∣∣ ≤ n

∑
k=1

Ê|εk − ε̃k|

≤
n

∑
k=1

Ê[|εk|I{|εk |>xbk}]

≤
n

∑
k=1

Ê[ε2
k]

xbk
≤ c

n

∑
k=1

1
xbk
≤ c · 1

x
(n log log n)1/2. (9)

Then, by (9), and for x > D large enough, we have

max
2l−1≤n<2l

∣∣∣∣∣ n

∑
k=1
−Ê[ε̃k]

∣∣∣∣∣ ≤ c · 1
x
(2l+1 log log 2l+1)1/2 ≤ x

4
(2 · 2l log log 2l)1/2. (10)

Hence, by (8), we obtain

∞

∑
l=0

∫ ∞

D
V
{

max
2l≤n<2l+1

n

∑
k=1

εk > x(2 · 2l log log 2l)1/2
}

dx

≤
∞

∑
l=0

∫ ∞

D
V
{

max
2l≤n<2l+1

n

∑
k=1

(ε̃k − Ê[ε̃k]) >
x
4
(2 · 2l+1 log log 2l)1/2

}
dx

+
∞

∑
l=0

∫ ∞

D
V
{

max
2l≤n<2l+1

∣∣∣∣∣ n

∑
k=1

(εk − ε̃k)

∣∣∣∣∣ > x
2
(2 · 2l+1 log log 2l)1/2

}
dx

:= I1 + I2. (11)

First, to estimate I2, by (11), we get

I2 ≤ c
∞

∑
l=0

∫ ∞

D

Ê
[
max2l≤n<2l+1 |∑n

k=1(εk − ε̃k)|
]

x(2l log log 2l)1/2 dx

≤ c
∞

∑
l=0

∫ ∞

D

∑2l+1

k=1 Ê
[
|εk|I{|εk |>xbk}

]
x(2l log log 2l)1/2 dx. (12)

It is important to note that the identical distribution under Ê is defined through continuous
functions in Cl,Lip and the indicator function of an event is not continuous. We need to
modify the indicator function by functions in Cl,Lip. So, let gε be a function satisfying that
its derivatives of each order are bounded, gε(x) = 1 if x ≥ 1, gε(x) = 0 if x ≤ 1− ε, and
0 ≤ gε(x) ≤ 1 for all x, where 0 < ε < 1. Then

gε(·) ∈ Cl,Lip(R), I{x ≥ 1} ≤ gε(x) ≤ I{x > 1− ε}. (13)

For ε = 1
2 in (13), by (1) and (12), we have

I2 ≤ c
∞

∑
l=0

∫ ∞

D

∑2l+1

k=1 Ê
[
|εk|g( εk

xbk
)
]

x(2l log log 2l)1/2 dx

= c
∞

∑
l=0

∫ ∞

D

∑2l+1

k=1 Ê
[
|ε1|g( ε1

xbk
)
]

x(2l log log 2l)1/2 dx

≤ c
∞

∑
l=0

∫ ∞

D

∑2l+1

k=1 Ê
[
|ε1|I{|ε1|> 1

2 xbk}

]
x(2l log log 2l)1/2 dx (14)
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Using condition (A1). For some δ > 0, it is obvious that

2l+1

∑
k=1

Ê
[
|ε1|I{|ε1|> 1

2 xbk}

]
≤

2l+1

∑
k=1

Ê
[

ε2
1(log |ε1|)1+δ 1

|ε1|(log |ε1|)1+δ

]
I{|ε1|> 1

2 xbk}

≤ Ê
[
ε2

1(log |ε1|)1+δ
] 2l+1

∑
k=1

1
1
2 xbk

· 1
(log 1

2 xbk)1+δ

≤ c
2l+1

∑
k=1

√
log log k

k
· 1
(log k)1+δ

· 1
x

≤ c

√
2l+1 log log 2l

(log 2l+1)1+δ
· 1

x
. (15)

Combining (12), (14) and (15), we get

I2 ≤ c
∞

∑
l=0

∫ ∞

D

1

x
√

2l log log 2l
·

√
2l log log 2l

(log 2l)1+δ
· 1

x
dx

≤
∞

∑
l=0

c
∫ ∞

D

1
x2 dx · 1

(log 2l)1+δ

≤
∞

∑
l=0

c
1

(l log 2)1+δ
< ∞. (16)

Next, to estimate I1. Noting that

I1 ≤
∞

∑
l=0

∫ ∞

D
V
{

max
l≤n<2l+1

n

∑
k=1

(ε̃k − Ê[ε̃k]) >
x
4

c1(2l+1 log log 2l+1)1/2
}

dx. (17)

By the properties of IID random variables, {ε̃k − Ê[ε̃k]} is also a sequence of IID random
variables, Ê[ε̃k − Ê[ε̃k]] = 0, |ε̃k − Ê[ε̃k]| ≤ 2xbk ≤ 2xb2l+1 for every k and Ê[ε̃k − Ê[ε̃k]]

2 ≤
4Ê[ε̃2

k] = 4Ê[ε2
1 ∧ x2b2

k ] = 4σ2 < ∞, Bn ∼ 2l+1 · 4σ2. Taking y = 2xb2l+1 in (3), then

x
4 c1(2l+1 log log 2l+1)1/2

y
=

c1

4
log log 2l+1 = A log log 2l+1, (where A :=

c1

4
),

and

x
4 c1(2l+1 log log 2l+1)1/2 · y

Bn
=

x2

4
c1 ·

1
4σ2 =

c1x2

16σ2 = Bx2, (where B :=
c1

16σ2 ).

For a sufficiently large x, there is a constant c2 < 1, such that log(1 + Bx2) ≥ c2 log x2.
Choose D large enough to make (Dc2 − 1)A > 1. And since Dlog log 2l+1

= O((log 2l+1)D),
using Lemma 2, we have
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I1 ≤
∞

∑
l=0

∫ ∞

D
exp

{
A log(log 2l+1)

(
1− log(1 + Bx2)

)}
dx

≤
∞

∑
l=0

(log 2l+1)A
∫ ∞

D
exp

{
−Ac2 log log 2l+1 log x

}
dx

≤ c
∞

∑
l=0

(log 2l+1)A
∫ ∞

D

1

xAc2 log log 2l+1 dx

≤ c
∞

∑
l=0

(log 2l+1)A 1

(Dlog log 2l+1
)Ac2

≤ c
∞

∑
l=0

(log 2l+1)A 1
(log 2l+1)DAc2

≤ c
∞

∑
l=0

1
(log 2l+1)(Dc2−1)A

< ∞. (18)

Combining (11), (16), and (18), we get

∞

∑
l=0

∫ ∞

D
V
{

max
2l≤n<2l+1

n

∑
k=1

εk > x(2 · 2l log log 2l)1/2
}

dx < ∞.

For (−∑n
k=1 εk), we have the same convergence as the above. Then, we obtain

∞

∑
l=0

∫ ∞

D
V
{

max
2l≤n<2l+1

|
n

∑
k=1

εk| > x(2 · 2l log log 2l)1/2
}

dx < ∞. (19)

From (7) and (19), (6) holds. So Lemma is proved.

Proof of Theorem 1. For m, n, t ∈ N, define

Ym,n =
1
an

n

∑
t=1

m

∑
j=−m

αjεt−j,

α̃m = 0, α̃j =
m

∑
i=j+1

αi, j = 0, 1, · · ·, m− 1,

˜̃α−m = 0, ˜̃αj =
j−1

∑
i=−m

αi, j = −m + 1,−m + 2, · · ·, 0,

ε̃t =
m

∑
j=0

α̃jεt−j, ˜̃εt =
0

∑
j=−m

˜̃αjεt−j.

Obviously, we have

Ym,n =
( m

∑
j=−m

αj
) 1

an

( n

∑
t=1

εt
)
+

1
an

(ε̃0 − ε̃n + ˜̃εn+1 − ˜̃ε1), (20)

1
an

n

∑
t=1

Xt = Ym,n +
1
an

( n

∑
t=1

∑
|j|>m

αjεt−j
)
. (21)

First note that

ε̃0

an
= (2n log log n)−1/2

m

∑
j=0

m

∑
i=j+1

αiε−j → 0 a.s. V , n→ ∞,
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and ˜̃ε1

an
= (2n log log n)−1/2

0

∑
j=−m

j−1

∑
i=−m

αiε1−j → 0 a.s. V , n→ ∞.

For any δ > 0, the Lemma 4.5 in Zhang [13] shows that

∞

∑
n=1

V(|ε1| > δan) < ∞⇐⇒ CV

[
|ε1|2

log log |ε1|

]
< ∞.

Hence by (1), (A3) and let gε(·) be a smooth function satisfying (13), for any δ > 0

∞

∑
n=1

V(|εn−j|/an > δ) ≤
∞

∑
n=1

Ê
[

g 1
2

( |εn−j|
anδ

)]
=

∞

∑
n=1

Ê
[

g 1
2

(
|ε1|
anδ

)]
(since εn−j

d
= ε1)

≤
∞

∑
n=1

V(|ε1| >
1
2

δan)

≤ cCV

[
|ε1|2

log log |ε1|

]
< ∞.

By the Lemma 1 (Borel–Cantelli Lemma), we have

V(lim sup
n

|εn−j|
an

> δ) = 0, ∀δ > 0.

So we get

V(lim sup
n

|εn−j|
an

≤ δ) = 1, ∀δ > 0.

Thus
ε̃n

an
= (2n log log n)−1/2

m

∑
j=0

m

∑
i=j+1

αiεn−j → 0 a.s. V , n→ ∞.

Using the proof similar to the above formula, we get

˜̃εn+1

an
= (2n log log n)−1/2

0

∑
j=−m

j−1

∑
i=−m

αiεn+1−j → 0 a.s. V , n→ ∞.

So, we conclude that

1
an

(ε̃0 − ε̃n + ˜̃εn+1 − ˜̃ε1)→ 0 a.s. V , n→ ∞. (22)

Combining with (20), (21), and (22), we have

lim sup
n

|Tn|
an

= lim sup
n

∣∣∣∣Ym,n + ∑
|j|>m

αj
1
an

n

∑
t=1

εt−j

∣∣∣∣
≤ lim sup

n

∣∣ m

∑
j=−m

αj
∣∣ 1
an

∣∣ n

∑
t=1

εt
∣∣+ lim sup

n
∑
|j|>m

|αj|
1
an

∣∣ n

∑
t=1

εt−j
∣∣

≤ lim sup
n

∣∣ m

∑
j=−m

αj
∣∣ 1
an

∣∣ n

∑
t=1

εt
∣∣+ ∑
|j|>m

|αj| sup
n

1
an

∣∣ n

∑
t=1

εt−j
∣∣. (23)
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By the stationariness of {εk} and the Lemma 4, we have

Ê
[

sup
n
(2n log log n)−1/2|

n

∑
t=1

εt−j|
]
= Ê

[
sup

n
(2n log log n)−1/2|

n

∑
t=1

εt|
]
< ∞,

then

sup
n
(2n log log n)−1/2

∣∣∣∣∣ n

∑
t=1

εt−j

∣∣∣∣∣ < ∞. (24)

The countably sub-additive of Ê shows that V is countably sub-additive. Then, according
to the condition of Lemma 3, {εi} satisfies (4). Next, using (4) and (24), let m→ ∞ in (23),
we get

lim sup
n→∞

|Tn|
an
≤
∣∣ ∞

∑
j=−∞

αj
∣∣σ a.s. V . (25)

So, we obtain

V
(

lim sup
n→∞

|Tn|
an
≤ Aσ

)
= 1.

The proof of Theorem 1 now completes.

4. Conclusions

This paper mainly studies the LIL of linear processes under capacity induced by
sub-linear expectation, which is based on Zhang [13]. According to the new concepts of
distribution and independence under Peng’s framework, we define the strictly stationary
sequence under sub-linear expectation, and further redefine the linear processes under
sub-linear expectation. We first obtain Lemma 4 by truncating random variables, countably
sub-additive of capacity and exponential inequality under sub-linear expectation. Secondly,
the tail of the partial sum of linear processes tends to zero in the sense of capacity by using
the decomposition of the partial sum of linear processes, Lemma 4, the transformation of
Choquet expectation and integral. Finally, the main results of this paper are obtained by
using Lemma 3.

The results obtained in this paper enrich the limit theory of capacity (non additive
probability) and are also a natural generalization of the LIL under classical additive prob-
ability. The key to the main results of this paper is an exponential inequality. If we
can establish the corresponding exponential inequalities for negative dependent (ND)
sequences, then we can obtain the LIL of linear processes generated by stationary ND
sequences under sub-linear expectation. ND sequences are weaker than independent
sequences. Therefore, it is an impending problem to study the theoretical properties of ND
sequences in sub-linear expectation, which is the subject of future research.
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