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Abstract: This paper investigates the problem of adaptive event-triggered synchronization for
uncertain FNNs subject to double deception attacks and time-varying delay. During network
transmission, a practical deception attack phenomenon in FNNs should be considered; that is, we
investigated the situation in which the attack occurs via both communication channels, from S-C and
from C-A simultaneously, rather than considering only one, as in many papers; and the double attacks
are described by high-level Markov processes rather than simple random variables. To further reduce
network load, an advanced AETS with an adaptive threshold coefficient was first used in FNNs to
deal with deception attacks. Moreover, given the engineering background, uncertain parameters and
time-varying delay were also considered, and a feedback control scheme was adopted. Based on the
above, a unique closed-loop synchronization error system was constructed. Sufficient conditions that
guarantee the stability of the closed-loop system are ensured by the Lyapunov-Krasovskii functional
method. Finally, a numerical example is presented to verify the effectiveness of the proposed method.

Keywords: uncertain fractional order neural network; adaptive event-triggered scheme; double
deception attacks; time-varying delay

1. Introduction

Neural networks, which bridge the micro-world of communications with the physical
world for processing information as mathematical models, widely exist in a broad range of
areas, such as intelligent control, secure communication, and pattern recognition [1–4]. Due
to the complexity of the dynamic characteristics of some physical systems, a traditional
integer-order neural network model cannot accurately represent their dynamic behaviors.
Fractional order calculus is not only a generalized form of the traditional integer-order
calculus; it also has some irreplaceable properties of integral order calculus, such as the spe-
cial feature of time memory [4–7]. Based on these features, the fractional order differential
equation has been used to model neural networks [8–12]. Synchronization, among several
phenomena arising from the complex nonlinear dynamics of neural networks, has gained
lots of attention and has been applied in many integer-order neural networks [13–17].
However, there are few studies about the synchronization problem of FNNs, which was
the first motivation of this paper.

The event-triggered scheme (ETS) depends on a predefined event-triggered condition
to determine whether the sampled data should be transmitted to the next control unit rather
than a fixed period; therefore, replacing the time-triggered scheme (TTS) to save network
communication resources and guarantee the system’s performance simultaneously was
suggested in [16,18–23]. Although ETS was adopted in the latest three studies of different
fractional order, real-valued systems [21–23], there was still a common disadvantage: the
threshold coefficients of traditional ETS are all constants and cannot be timely adjusted
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to fit a system’s evolution. However, the adaptive event-triggered scheme (AETS), as a
combination of adaptive control and traditional ETS, can overcome the conservativeness
to make good use of communication resources dynamically. Therefore, designing an
AETS with an adaptive threshold coefficient for FNNs to further improve the utilization of
communication resources was the second motivation of the current work.

On the other hand, a security problem, due to advanced modern communication
technology, has recently emerged as a hot topic in the engineering applications [24,25],
especially in autonomous vehicle platooning [26,27]. Since the control components such as
sensors, controllers, and actuators are connected by the shared communication networks to
achieve remote control, compromise by malicious adversaries is extremely risky [22,28,29].
As a typical representative of malicious attacks, a deception attack can replace the original
data with false data to destroy the system [22,28–31]. To the best of the authors’ knowledge,
the synchronization problem of FNNs regarding deception attacks has been investigated
in the literature [22], although the deception attacks were only allowed to occur in the
controller to actuator (C-A) channel, governed by a Bernoulli variable. However, in com-
munication networks, attacks may occur in the sensor to controller (S-C) channel and C-A
channel simultaneously. Moreover, it is well known that a Bernoulli process is a special
kind of the Markov process. Therefore, inspired by the aforementioned discussion, investi-
gating double deception attacks governed by Markov processes in the synchronization of
FNNs under AETS was the third motivation. Given the actual environmental conditions,
neural networks inevitably suffer from noise and limitations of equipment, so uncertain-
ties in parameters and time-varying delay have also been taken into account. The main
contributions are outlined below.

(1) The synchronization problem of FNNs under network attacks is firstly proposed with
an AETS to further save network bandwidth resources. The AETS has an adaptive
law for adjusting its threshold coefficient such that the controller can timely access
system information to stabilize the error system.

(2) A generalized deception attack for FNNs is investigated; that is, the deception attack
may occur in S-C and C-A channels simultaneously. Moreover, the attack behaviors
are governed by independent Markov processes that are more extensive than the
Bernoulli processes in other studies.

(3) Parameters’ uncertainties and time-varying delay are also investigated in light of the
synchronization problem of FNNs and a double deception attack in the AETS. That is
more practicable to some extent.

The remainder of this paper is organized as follows. In Section 2, some preliminaries
are introduced and the model is formulated. The main results, including theorems, are
shown in Section 3. In Section 4, a simulation which verified the main results is presented.
Finally, the discussion and conclusions are presented in Section 5.

Notation: In this paper, Rn and ‖ · ‖ denote the n-dimensional Euclidean vector space
and the Euclidean norm for vectors, respectively. Rn×n is the set of all n× n real matrices.
T denotes the transposition of the vectors or matrices. I represents the identity matrix with
appropriate dimensions, and He[A] = A + AT . The symbol N represents the sets of all
natural numbers and N0 = N ∪ {0}. The signal “∗” denotes the symmetric block of matrix.
col(. . . ) and diag(. . . ) represent a column vector and a diagonal matrix, respectively.

Remark 1. Network attacks may occur in both S-C and C-A channels during network transmission,
as shown in Figure 1. We only found a few studies investigating relevant network attacks, and they
only used single-channel attacks: the C-A channel [22]; the S-C channel [32–34]. In addition, in
prior studies the behaviors of network attacks were governed by Bernoulli variables, usually. To
the authors’ knowledge, there is no literature simultaneously considering network attacks in S-C
and C-A channels in FNNs. Moreover, in this paper, the double network attacks governed by two
independent Markov processes are more general than Bernoulli processes.
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Figure 1. The framework of the closed-loop synchronization error system.

2. Preliminaries and Model Formulation

In this section, the basic definitions and relations about fractional calculus are intro-
duced; then a closed-loop synchronization error system is constructed.

2.1. Fractional Order Calculations

Definition 1. The fractional integral of order r for an integrable function f (x) : [t0,+∞]→ R is
defined as [19]:

t0 Ir
t f (t) =

1
Γ(r)

∫ t

t0

f (β)

(t− β)1−r dβ,

where 0 < r < 1, and Γ(·) is the Gamma function.

Definition 2. The Caputo fractional derivative of order r > 0 for a function f (t) ∈ Cn([t0,+∞), R)
is defined as [22]:

t0 Dr
t f (t) =

1
Γ(n− r)

∫ t

t0

f (n)(β)

(t− β)r−n+1 dβ,

where t ≥ t0 and n is an integer such that 0 < n− 1 < r < n. Moreover, when 0 < r < 1,

t0 Dr
t f (t) =

1
Γ(1− r)

∫ t

t0

f
′
(β)

(t− β)r dβ.

From the ldefinitions 1 and 2, it is clear that the Caputo fractional derivative satisfies
the following properties:

(1) t0 Dr
t t0 Is

t f (t) =t0 Dr
t t0 D−s

t f (t) =t0 Dr−s
t f (t), where r ≥ s ≥ 0.

(2) t0 Dr
t C = 0, where C is a constant.

(3) t0 Dr
t (v1 f (t) + v2g(t)) = v1t0 Dr

t f (t) + v2t0 Dr
t g(t), where v1 and v2 are any constants.

Lemma 1 ([22]). For a differentiable function vector x(t) ∈ Rn, an equality with the following
form is true:

t0 Dr
t (xT(t)Px(t)) ≤ 2xT(t)Pt0 Dr

t x(t),

where r and P ∈ Rn×n satisfy 0 < r < 1 and P > 0, respectively.
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Lemma 2 ([35]). For a given positive definite matrixR ∈ Rn×n, given scalars a, b satisfying a < b,
the following inequality holds for any continuously differentiable function e(x) in [a, b]→ Rn:

(b− a)
∫ b

a
eT(s)Re(s)ds ≥

( ∫ b

a
e(s)ds

)T

R
( ∫ b

a
e(s)ds

)
.

Lemma 3 ([36]). For η(t) ∈ [0, η] and any matrices R, S ∈ Rn×n satisfying
[

R S
∗ R

]
≥ 0, the

following inequality holds:

−η
∫ t

t−η
ėT(s)Rė(s)ds ≤ ξT(t)Θξ(t),

where ξ(t) = col{e(t), e(t− η(t)), e(t− η)} and

Θ =

−R R− S S
∗ −2R + He[S] R− S
∗ ∗ −R

.

Lemma 4 ([32]). For given matrix S =

[
S11 S12
S21 S22

]
, where S12 = ST

21, the following conditions

are equivalent.
(1)S < 0;

(2)S22 < 0, S11 − S21S−1
22 S12 < 0.

2.2. Model Formulation

Consider the following uncertain FNN model as the master system:

t0 Dr
t x(t) = −(A + ∆A(t))x(t) + (B + ∆B(t)) f̂ (x(t))

+ (D + ∆D(t)) f̂ (x(t− η(t))) + I(t),

y(t) = Cx(t),

x(t0) = φ1(t0), t0 ∈ [−η, 0],

(1)

where 0 < r < 1 denotes the order of fractional order derivative. x(t) = (x1(t), x2(t), . . . ,
xn(t))T ∈ Rn is the state vector of the neuron. y(t) is the measurable output vector. η(t)
satisfies 0 ≤ η(t) ≤ η, and η̇(t) ≤ η̄ denotes the time-varying coupling delay. f̂ (x(t)) =
( f̂1(x1(t)), f̂2(x2(t)), . . . , f̂n(xn(t))) and f̂ (x(t− η(t))) = ( f̂1(x1(t− η(t))), f̂2(x(t− η(t))),
. . . , f̂n(x(t − η(t)))) ∈ Rn are the activation functions. I(t) is an external input vec-
tor. A = diag(a1, a2, . . . , an) ∈ Rn×n, are the self-feedback connection weight matrices.
B = (bij)n×n ∈ Rn×n, D = (dij)n×n ∈ Rn×n are the connection weight matrices. Further-
more, ∆A(t), ∆B(t), ∆D(t) are the matrices with time-varying parameters, which are norm
bounded and satisfy

[∆A(t), ∆B(t), ∆D(t)] = GS(t)[Ea, Eb, Ed],

where G, Ea, Eb, Ed are known constant matrices, S(t) is an unknown time-varying matrix
function satisfying ST(t)S(t) ≤ I. Assume that master system (1) have a unique solution
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with initial value φ1(t0) and that it is continuously differential on t0 ∈ [−η, 0] [37].
Next, consider the corresponding slave system as follows:

t0 Dr
t x̂(t) = −(A + ∆A(t))x̂(t) + (B + ∆B(t)) f̂ (x̂(t))

+ (D + ∆D(t)) f̂ (x̂(t− η(t))) + I(t) + u(t),

ŷ(t) = Cx̂(t),

x̂(t0) = φ2(t0), t0 ∈ [−η, 0],

(2)

where x̂(t) = (x̂1(t), y2(t), . . . , x̂n(t))T is the state vector. Similarly, assume slave system
(2) also has a unique solution with initial value φ2(t0), which is continuously differential
on t0 ∈ [−η, 0], and u(t) is the control input, and the others are same as the master system.

In order to realize the synchronization between systems (1) and (2), define the syn-
chronization error z(t) = C(x̂(t)− x(t)), and the parameter uncertainty of each part is
treated as a whole. The following error system can be obtained:

t0 Dr
t e(t) = −Ae(t) + B f (e(t)) + D f (e(t− η(t))) + Gm(t) + u(t),

m(t) = S(t)(−Eae(t) + Eb f (e(t)) + Ed f (e(t− η(t)))),

z(t) = Ce(t),

e(t0) = φ(t0), t0 ∈ [−η, 0],

(3)

where f (e(t)) = f̂ (x̂(t))− f̂ (x(t)), f (e(t− η(t))) = f̂ (x̂(t− η(t)))− f̂ (x(t− η(t))). The
initial value of error system (3) is φ(t0) = φ2(t0)− φ1(t0), t0 ∈ [−η, 0]. It is well known
that system (3) has a unique solution [38].

Remark 2. The model considered in this paper can be regarded as a generalization of [22]. Such
an attack has only been considered in the C-A channel and governed by a Bernoulli process in
FNNs [22], in which the event-triggered threshold coefficient is a constant and cannot fit a system’s
evolution dynamically. The FNNs studied in this paper not only adopt AETS to further improve the
utilization of communication resources, but parameters’ uncertainties and double deception attacks
are also investigated.

The following assumption will be used later on.

Assumption 1. The neuron activation function f (e(t)) is continuous and bounded, and satisfies
the following conditions:

0 ≤ fi(e1(t))− fi(e2(t))
e1(t)− e2(t)

≤ φi, (4)

for i = 1, 2, . . . , n, where φi are known positive constants.

Let the two adversary network attacks during the communication be characterized by
two independent right-continuous Markov processes rt, qt on the probability space taking
values in the finite state space M = {1, 2, . . . , s} with generator π = (πij)s×s, ρ = (ρij)s×s
given by

Pr{rt+k = j|rt = i} =
{

πijk + o(k) i 6= j,
1 + πiik + o(k) i = j.

Pr{qt+k = n|qt = m} =
{

ρmnk + o(k) m 6= n,
1 + ρmnk + o(k) m = n.

where k > 0, limk→0
o(k)

k = 0, πij ≥ 0, i 6= j, ρmn ≥ 0, m 6= n, and for every i, m ∈ M, πii =
−∑j 6=i πij, ρmm = −∑n 6=m ρmn.

To save on network bandwidth as much as possible, an AETS was adopted in this
study. The sensor with sampling period h was time-driven, and the output error z(t) was
measured by the sensor at the sampling instant lh, l ∈ N0. Let tkh denote the triggered
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instant; then the next triggered instant is denoted by tk+1h. tk + ih, i ∈ N denotes the
current sampling time. Whether or not the sampled data z(tk + ih) should be transmitted
is determined by the adaptive event-triggered condition:

z̃T
k (t)Ωz̃k(t)− d(t)zT(tk + ih)Ωz(tk + ih) ≤ 0, (5)

where z̃k(t) = z(tkh)− z(tk + ih), z(tkh) denotes the latest transmitted data, Ω > 0 is a
weighting matrix to be designed, and the adaptive threshold coefficient d(t) satisfies the
following adaptive law:

ḋ(t) = (
1

d(t)2 −
w̄

d(t)
)z̃T

k (t)Ωz̃k(t), (6)

where w̄ ≥ 1 can adjust the monotonicity of d(t) [32], and the next triggered instant can be
denoted as follows:

tk+1h = tkh + min{ih|z̃T
k Ωz̃k > d(t)zT(tk + ih)Ωz(tk + ih), i ∈ N}.

Based on the reality of the network communication, the delay sk is considered at the
instant tkh. Assume that 0 ≤ sk ≤ s̄, where s̄ = max{sk}. The sampling date z(tkh) will
be transmitted at the instant tk + sk. Then the time interval [tkh + sk, tk+1h + sk+1) can be
divided I0 = [tkh + sk, tkh + h + s̄), Ii = [tkh + ih + s̄, tkh + ih + h + s̄), i = 1, 2, . . . , δ− 1,
and δ = tk+1 − tk − 1, Iδ = [tkh + δh + s̄, tk+1 + dk+1). Then z̃k(t) = z(tkh)− z(tkh + ih) is
equivalent to:

z̃k(t) =


z(tkh)− z(tkh), t ∈ I0,
z(tkh)− z(tkh + ih), t ∈ Ii,
z(tkh)− z(tkh + δh), t ∈ Iδ

(7)

which can be written as

z̃k(t) = z(tkh)− z(t− τ(t)), t ∈ [tkh + sk, tk+1h + sk+1) (8)

in which

τ(t) =


t− tkh, t ∈ I0,
t− tkh− ih, t ∈ Ii,
t− tkh− δh, t ∈ Iδ.

(9)

According to Equation (9), it is easy to get

0 ≤ τ(t) ≤ h + s̄, t ∈ [tkh + sk, tk+1h + sk+1).

Remark 3. From the adaptive event-triggered condition (5), it is easy to know the minimum
event-triggered interval is a constant, which means that there is no Zeno behavior.

As shown in Figure 1, deception attacks may occur on the S-C communication channel,
and the integrity of normal transmission data will be damaged by malicious attacks. To
depict the stochastic occurrence modeling of deception attacks, Markov processes are
adopted in this paper. Then the control input in time interval [tkh + sk, tk+1h + sk+1), k =
1, 2, . . . , can be denoted as

zs(tkh, rt) = bs(rt)z(tkh) + b̄s(rt)gs(z(tkh)),

= bs(rt)
(

z(t− τ(t)) + z̃k(t)
)
+ b̄s(rt)gs(z(tkh)).

(10)
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where bs(1) = 1, bs(2) = 0, b̄s(rt) = 1− bs(rt), and gs : Rn → Rn is the energy bounded
deception signal in the S-C communication channel satisfying

‖gs(x(t))‖ ≤ ‖Gsx(t)‖. (11)

where Gs ∈ Rn×n is a known constant matrix satisfying Gs > 0. If rt = 1, the data will be
transmitted normally without any attack. Conversely, rt = 2 means that malicious attack
signals occur in the S-C channel.

The main purpose of this study was to synchronize uncertain FNNs under AETS,
subject to double deception attacks and time-varying delay. Construct the state feed-
back controller:

u(t) = us(tkh, rt),

= Kzs(tkh, rt), t ∈ [tkh + sk, tk+1h + sk+1),
(12)

where the feedback gain matrix K needs to be determined.
In a similar routine to that of the S-C communication channel, when the released data

us(tkh, rt) are transmitted through the C-A communication channel, the channel may be
attacked again. Therefore, the control output signal can be denoted as

u(t) = uc(tkh, rt, qt),

= bc(qt)us(tkh, rt) + b̄c(qt)gc(us(tkh, rt)),

= bc(qt)bs(rt)KCe(t− τ(t)) + bc(qt)bs(rt)Kz̃(t) + bc(qt)b̄s(rt)Kgs(z̄(t))

+ b̄c(qt)gc(us(tkh, rt)), t ∈ [tkh + sk, tk+1h + sk+1),

(13)

where z̄(t) = z̃(t) + z(t− τ(t)), bc(1) = 1, bc(2) = 0, b̄c(qt) = 1− bc(qt), and gc : Rn → Rn

is the energy bounded deception signal in the C-A communication channel satisfying

‖gc(x(t))‖ ≤ ‖Gcx(t)‖. (14)

where Gc ∈ Rn×n is a known constant matrix satisfying Gc > 0. For simplicity, for every
i, m ∈ M, rt = i, qt = m, bs(rt), bc(qt) are denoted in this paper by bs

i and bc
m, respectively.

Similarly, for a matrix P1(rt, qt), it is denoted by Pim
1 . In addition, for a matrix Pim

1 , there is
the following definition:

P̄im
1 = ∑

j∈M
πijP

jm
1 + ∑

n∈M
ρmnPin

1 . (15)

Then, it is easy to obtain the error system

t0 Dr
t e(t) = −Ae(t) + B f (e(t)) + D f (e(t− η(t))) + Gm(t) + bc

mbs
i Kz̃(t)

+ bc
mbs

i KCe(t− τ(t)) + bc
m b̄s

i Kgs(z̄(t)) + b̄c
mgc(us(tkh, rt)),

m(t) = S(t)(−Eae(t) + Eb f (e(t)) + Ed f (e(t− η(t)))),

z(t) = Ce(t),

e(t0) = φ(t0), t0 ∈ [−max{η, h}, 0].

(16)

The following two definitions will be used in the proof of Theorem 1.

Definition 3 ([39]). Let V(t, e(t), rt = i, qt = m) be the positive Lyapunov–Krasovskii functional
and L(·) be a weak infinitesimal operator. Then

E
{∫ t

0
LV(s, e(s), i, m)ds

}
= EV(t, e(t), i, m)− EV(0, φ(t0), r0, q0),

where E denotes the expectation.
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Definition 4 ([40,41]). The synchronization error system (16) is said to be globally, stochastically,
asymptotically stable in the mean square sense, if for any initial conditions φ(t0) defined on
[−max{η, h}, 0] and r0, q0 ∈ M the following condition is satisfied:

lim
t→∞
E
{∫ t

0
eT(s)e(s)ds | φ(t0), r0, q0

}
< ∞.

So far, a closed-loop synchronization error system (16) has been constructed. In the
following, in order to realize the synchronization between systems (1) and (2), the stability
of error system (16) will be proven.

3. Results

Two theorems are developed in this section. Firstly, the synchronization criterion for
systems (1) and (2) is presented in Theorem 1. Then, on the basis of Theorem 1, the criterion
for feedback controller design is developed by Theorem 2.

Theorem 1. Suppose Assumption 1 holds. The FNNs (1) and (2) are globally, stochastically,
asymptotically synchronized under the feedback control scheme (12) in the mean square sense, for the
given scalars r and control gain matrix K, if there exist positive definite matrices P, Ω, Pim

1 , Pim
3 , N1,

N3, Rim
1 , Rim

2 , Mim
1 , Mim

2 , L1, L2, J1, J2, Q1, Q2; positive definite diagonal matrices ∆1, ∆2; and
matrices Pim

2 , N2, Sim, Tim; and positive scalars ε, λ1, λ2,such that the following LMIs for every
i, m hold: 

Π1,1 Π1,2 Π1,3 Π1,4 Π1,5 Π1,6 Π1,7
∗ Π2,2 Π2,3 0 Π2,5 0 0
∗ ∗ Π3,3 0 0 0 Π3,7
∗ ∗ ∗ Π4,4 0 Π4,6 Π4,7
∗ ∗ ∗ ∗ Π5,5 0 Π5,7
∗ ∗ ∗ ∗ ∗ Π6,6 0
∗ ∗ ∗ ∗ ∗ ∗ Π7,7


< 0, (17)

R̄im
1 < L1, R̄im

2 < L2, M̄im
1 < J1, M̄im

2 < J1, (18)[
Rim

2 Sim

∗ Rim
2

]
≥ 0,

[
Mim

2 Tim

∗ Mim
2

]
≥ 0, (19)

[
Pim

1 Pim
2

∗ Pim
3

]
> 0,

[
N1 N2
∗ N3

]
> 0, (20)

where

Π1,1 =

[
Ξ1,1 Ξ1,2
∗ Ξ2,2

]
, Π1,2 =

[
Sim Mim

2 − Tim Tim

Rim
2 − Sim 0 0

]
,

Π1,3 =

[
Ξ1,6 −εEaEd + PD

0 0

]
, Π6,6 = −(λ2GT

c Gc)
−1,

Π1,4 =

[
bc

m b̄s
i PK b̄c

mP bc
mbs

i PK
0 0 λ1CTGT

s Gs

]
, Π1,5 =

[
Pim

1 + (Pim
2 )T Pim

2 + Pim
3 0

0 0 0

]
,

Π1,6 =

[
0

bs
i CTKT

]
, Π1,7 = Ψ⊗

[
−AT

bs
i bc

mCTKT

]
, Π2,3 =

0 0
0 Φ∆2 − (1− η̄)N2
0 0

,
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Π2,2 =

−Q1 − Rim
2 0 0

∗ Ξ4,4 Mim
2 − Tim

∗ ∗ −Q2 −Mim
2

, Π2,5 =

 −Pim
1 −Pim

2 0
0 0 0

−(Pim
2 )T −Pim

3 0

,

Π3,3 =

[
Ξ6,6 εEaEd
∗ Ξ7,7

]
, Π3,7 = Ψ⊗

[
BT

DT

]
, Π4,4 =

−λ1 I 0 0
∗ −λ2 I 0
∗ ∗ Ξ10,10

,

Π4,6 =

b̄s
i KT

0
bs

i KT

, Π4,7 = Ψ⊗

b̄s
i bc

mKT

b̄c
m

bs
i bc

mKT

, Π5,5 =

P̄im
1 − Rim

1 P̄im
2 0

∗ P̄im
3 −Mim

1 0
∗ ∗ −εI

,

Π5,7 = Ψ⊗

 0
0

GT

, Π7,7 =


−(Rim

2 )−1 0 0 0
∗ −(Mim

2 )−1 0 0
∗ ∗ −2h(L2)

−1 0
∗ ∗ ∗ −2η(J2)

−1

,

Ξ1,1 = −2PA + Q1 + Q2 + N1 + h2Rim
1 + η2Mim

1 +
h3

2
L1 +

η3

2
J1 − Rim

2 −Mim
2 + εE2

a ,

Ξ1,2 = bc
mbs

i PKC + Rim
2 − Sim, Ψ =

[
h η h2 η2],

Ξ2,2 = −2Rim
2 + He[Sim] + CTΩC + λ1CTGT

s GsC + Ω,

Ξ4,4 = −(1− η̄)N1 − 2Mim
2 + He[Tim], Ξ6,6 = N3 − 2∆1 + εE2

b ,

Ξ7,7 = −(1− η̄)N3 − 2∆2 + εE2
d, Ξ10,10 = λ1GT

s Gs − w̄Ω,

Ξ1,6 = PB + N2 + Φ∆1 − εEaEb.

Proof. Consider the following fractional order Lyapunov–Krasovskii functional:

V(t, e(t)) =
9

∑
k=1

Vk(t, e(t), rt, qt),

where
V1(t, e(t), rt, qt) = t0Dr−1

t eT(t)Pe(t),

V2(t, e(t), rt, qt) =
1
2

dT(t)d(t),

V3(t, e(t), rt, qt) =

[∫ t
t−h e(s)ds∫ t
t−η e(s)ds

]T[
Pim

1 Pim
2

∗ Pim
3

][∫ t
t−h e(s)ds∫ t
t−η e(s)ds

]
,

V4(t, e(t), rt, qt) =
∫ t

t−h
eT(s)Q1e(s)ds +

∫ t

t−η
eT(s)Q2e(s)ds,

V5(t, e(t), rt, qt) =
∫ t

t−η(t)

[
e(s)

f (e(s))

]T[N1 N2
∗ N3

][
e(s)

f (e(s))

]
ds,

V6(t, e(t), rt, qt) = h
∫ 0

−h

∫ t

t+θ

[
e(s)
ė(s)

]T[Rim
1 0
0 Rim

2

][
e(s)
ė(s)

]
dsdθ,

V7(t, e(t), rt, qt) = η
∫ 0

−η

∫ t

t+θ

[
e(s)
ė(s)

]T[Mim
1 0

0 Mim
2

][
e(s)
ė(s)

]
dsdθ,

V8(t, e(t), rt, qt) = h
∫ 0

−h

∫ 0

θ

∫ t

t+β

[
e(s)
ė(s)

]T[L1 0
0 L2

][
e(s)
ė(t)

]
dsdβdθ,

V9(t, e(t), rt, qt) = η
∫ 0

−η

∫ 0

θ

∫ t

t+β

[
e(s)
ė(s)

]T[J1 0
0 J2

][
e(s)
ė(t)

]
dsdβdθ.

For simplicity, Vi = Vi(t, e(t), rt, qt), i = 1, 2, . . . , 9.
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The weak infinitesimal operator L is defined as follows:

LV(t, e(t), rt, qt) =
∂V(t, e(t), rt, qt)

∂t
+ ėT(t)

∂V(t, e(t), rt, qt)

∂e(t)

∣∣∣∣
rt=i,qt=m

+
2

∑
j=1

πijV(e(t), j, m) +
2

∑
n=1

ρmnV(e(t), i, n).

By calculating the weak infinitesimal derivatives of V(t, e(t), rt, qt) along with the
error system (16), one has

LV1 ≤ 2eT(t)PDγ
t e(t), LV2 = d(t)ḋ(t), (21)

LV3 = 2

[∫ t
t−h e(s)ds∫ t
t−η e(s)ds

]T[
Pim

1 Pim
2

∗ Pim
3

][
e(t)− e(t− h)
e(t)− e(t− η)

]
+

[∫ t
t−h e(s)ds∫ t
t−η e(s)ds

]T

×
[

P̄im
1 P̄im

2
∗ P̄im

3

][∫ t
t−h e(s)ds∫ t
t−η e(s)ds

]
,

(22)

LV4 = eT(t)(Q1 + Q2)e(t)− eT(t− h)Q1e(t− h)− eT(t− η)Q2e(t− η), (23)

LV5 =

[
e(t)

f (e(t))

]T[N1 N2
∗ N3

][
e(t)

f (e(t))

]
− (1− η̄)

[
e(t− η(t))

f (e(t− η(t)))

]T

×
[

N1 N2
∗ N3

][
e(t− η(t))

f (e(t− η(t)))

]
,

(24)

LV6 = h2
[

e(t)
ė(t)

]T[Rim
1 0
0 Rim

2

][
e(t)
ė(t)

]
− h

∫ t

t−h

[
e(s)
ė(s)

][
Rim

1 0
0 Rim

2

][
e(t)
ė(t)

]
ds

+ h
∫ 0

−h

∫ t

t+θ

[
e(t)
ė(t)

][
R̄im

1 0
0 R̄im

2

][
e(t)
ė(t)

]
dsdθ,

(25)

LV7 = η2
[

e(t)
ė(t)

]T[Mim
1 0

0 Mim
2

][
e(t)
ė(t)

]
− η

∫ t

t−η

[
e(s)
ė(s)

][
Mim

1 0
0 Mim

2

][
e(t)
ė(t)

]
ds

+ η
∫ 0

−η

∫ t

t+θ

[
e(t)
ė(t)

][
M̄im

1 0
0 M̄im

2

][
e(t)
ė(t)

]
dsdθ,

(26)

LV8 =
h3

2

[
e(t)
ė(t)

]T[L1 0
0 L2

][
e(t)
ė(t)

]
− h

∫ 0

−h

∫ t

t+θ

[
e(t)
ė(t)

]T[L1 0
0 L2

][
e(t)
ė(t)

]
dsdθ, (27)

LV9 =
η3

2

[
e(t)
ė(t)

]T[J1 0
0 J2

][
e(t)
ė(t)

]
− η

∫ 0

−η

∫ t

t+θ

[
e(t)
ė(t)

]T[J1 0
0 J2

][
e(t)
ė(t)

]
dsdθ. (28)

By using Lemmas 1 and 2, it follows that

−h
∫ t

t−h
ėT(s)Rim

2 ė(s)ds ≤ ξT
1 (t)Θ1ξ1(t), (29)

−η
∫ t

t−η
ėT(s)Mim

2 ė(s)ds ≤ ξT
2 (t)Θ2ξ2(t), (30)

−h
∫ t

t−h
eT(s)Rim

1 e(s)ds ≤ −
(∫ t

t−h
e(s)ds

)T
Rim

1

∫ t

t−h
e(s)ds, (31)
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−η
∫ t

t−η
eT(s)Mim

1 e(s)ds ≤ −
(∫ t

t−η
e(s)ds

)T
Mim

1

∫ t

t−η
e(s)ds, (32)

where ξ1(t) = col{e(t), e(t− τ(t)), e(t− h)}, ξ2(t) = col{e(t), e(t− η(t)), e(t− η)}, and

Θ1 =

−Rim
2 Rim

2 − Sim Sim

∗ −2Rim
2 + He[Sim] Rim

2 − Sim

∗ ∗ −Rim
2

,

Θ2 =

−Mim
2 Mim

2 − Tim Tim

∗ −2Mim
2 + He[Tim] Mim

2 − Tim

∗ ∗ −Mim
2

.

It can be obtained from m(t) that

εeT(t)E2
ae(t)− 2εeT(t)EaEb f (e(t))− 2εeT(t)EaEd f (e(t− η(t)))

+ε f T(e(t))E2
b f (e(t)) + 2ε f T(e(t))EbEd f (e(t− η(t)))

+ε f T(e(t− η(t)))E2
d f (e(t− η(t)))− εmT(t)m(t) ≥ 0.

(33)

Moreover, from the adaptive event-triggered condition, activation function, (11) and
(14), it follows that

d(t)ḋ(t) ≤ zT(T − τ(t))Ωz(T − τ(t))− w̄z̃T(t)Ωz̃(t), (34)

−2 f T(e(t))∆1 f (e(t)) + 2eT(t)Φ∆1 f (e(t)) ≥ 0, (35)

−2 f T(e(t− η(t)))∆2 f (e(t− η(t))) + 2eT(t− η(t))Φ∆2 f (e(t− η(t))) ≥ 0, (36)

λ1z̄T(t)GT
s Gs z̄(t)− λ1gT

s (z̄(t))gs(z̄(t)) ≥ 0, (37)

λ2uT
c GT

c Gcuc − λ2gT
c (uc)gc(uc) ≥ 0. (38)

Let

ζ(t) = col
{

e(t), e(t− τ(t)), e(t− h), e(t− η(t)), e(t− η), f (e(t)), f (e(t− η(t))),

gs(z̄), gc(uc), z̃(t),
∫ t

t−h
eT(s)ds,

∫ t

t−η
eT(s)ds, m(t)

}
,

together with (21)–(38). Then, the following can be obtained.

LV(t, e(t), rt, qt) ≤ ζT(t)Ξζ(t).

From the aforementioned part, we know that matrix inequality (17) guarantees Ξ < 0
holds. That further guarantees that LV(t, e(t), rt, qt) < 0 holds for every i, m ∈ M.

Let λ0 = λmin(−Ξ); then λ0 > 0. For any t > 0, we have:

LV(t, e(t), rt, qt) ≤ −λ0ζT(t)ζ(t) ≤ −λ0eT(t)e(t).

By Definition 3, one can obtain:

EV(t, e(t), i, m)− EV(0, φ(t0), r0, q0) ≤ −λ0E
{∫ t

0
eT(t)e(t)ds

}
,
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hence, for t ≥ 0:

E
{∫ t

0
eT(t)e(t)ds

}
≤ 1

λ0
EV(0, φ(t0), r0, q0),

based on Definition 4, which implies that error system (16) is globally, stochastically,
asymptotically stable in the mean square sense. That means systems (1) and (2) get
globally, stochastically, asymptotically synchronized in the mean square sense. The proof
is completed.

Notice that Theorem 1 only gives sufficient conditions for the synchronization of
systems (1) and (2), and fails to solve the design problem of the controller (12). Therefore,
the design method of the control gain K is constructed in Theorem 2.

Theorem 2. Suppose Assumption 1 holds. The FNNs (1) and (2) are globally, stochastically,
asymptotically synchronized in the mean square sense, for the given scalars r, if there exist positive
definite matrices P, Ω, Pim

1 , Pim
3 , N1, N3, Rim

1 , Rim
2 , Mim

1 , Mim
2 , L1, L2, J1, J2, Q1, Q2; positive defi-

nite diagonal matrices ∆1, ∆2; and matrices Pim
2 , N2, Sim, Tim, Y; and positive scalars ε, λ1, λ2,such

that the following LMIs for every i, m hold:

Π̃1,1 Π1,2 Π1,3 Π̃1,4 Π1,5 Π̃1,6 Π̃1,7
∗ Π2,2 Π2,3 0 Π2,5 0 0
∗ ∗ Π3,3 0 0 0 Π̃3,7
∗ ∗ ∗ Π4,4 0 Π̃4,6 Π̃4,7
∗ ∗ ∗ ∗ Π5,5 0 Π̃5,7
∗ ∗ ∗ ∗ ∗ Π̃6,6 0
∗ ∗ ∗ ∗ ∗ ∗ Π̃7,7


< 0, (39)

R̄im
1 < L1, R̄im

2 < L2, M̄im
1 < J1, M̄im

2 < J1, (40)[
Rim

2 Sim

∗ Rim
2

]
≥ 0,

[
Mim

2 Tim

∗ Mim
2

]
≥ 0, (41)

[
Pim

1 Pim
2

∗ Pim
3

]
> 0,

[
N1 N2
∗ N3

]
> 0, (42)

where

Π̃1,1 =

[
Ξ1,1 Ξ̃1,2
∗ Ξ2,2

]
, Π̃1,4 =

[
bc

m b̄s
i Y b̄c

mP bc
mbs

i Y
0 0 λ1CTGT

s Gs

]
, Π̃1,6 =

[
0

bs
i CTYT

]
,

Π̃1,7 = Ψ⊗
[
−AT P

bs
i bc

mCTYT

]
, Π̃3,7 = Ψ⊗

[
BT P
DT P

]
, Π̃4,6 =

b̄s
i YT

0
bs

i YT

,

Π̃4,7 = Ψ⊗

b̄s
i bc

mYT

b̄c
mP

bs
i bc

mYT

, Π̃5,7 = Ψ⊗

 0
0

GT P

, Π̃6,6 = −2α1P + α2
1λ2GT

c Gc,

Π̃7,7 = diag{−2α2P + α2
2Rim

2 ,−2α3P + α2
3Mim

2 ,−4hα4P + 2hα2
4L2,−4hα5P + 2hα2

5 J2},
Ξ̃1,2 = bc

mbs
i YC + Rim

2 − Sim,

and the other parameters are the same as in Theorem 1, among them the feedback gain matrix is
defined with K = P−1Y.

Proof. For any scalar α > 0, the following inequality holds:

(αΩ− P)Ω−1(αΩ− P) ≥ 0.
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Based on the inequality, it can be obtained that:

−PΩ−1P ≤ −2αP + α2Ω.

By defining χ = diag{
13︷ ︸︸ ︷

I, . . . , I, P, P, P, P, P}, multipling (17) by χ on the left side and
the right side, respectively, and replacing the term in Π6,6 with −2α1P + α2

1λ4GT
c Gc, Π̃6,6

can be obtained. In the same way, Π̃7,7 replaces Π7,7. In addition, Y = KP is also replaced.
Then linear matrix inequality (39) can be obtained. That completes the proof.

4. Numerical Simulations

In this section, a simulation is presented to demonstrate the effectiveness of the
proposed approach. Consider the FNNs which are described by Equation (1) and (2) with
the following parameters:

A =

[
1 0
0 1

]
, B =

[
1.8 −0.1
−2 0.4

]
, D =

[
−1.7 −0.6
0.5 −2.5

]
,

Ea =

[
0.01 0

0 0.01

]
, Eb =

[
0.01 0

0 0.01

]
, Ed =

[
0.01 0

0 0.01

]
,

G =

[
0.01 0

0 0.02

]
, C =

[
1 0
0 1

]
.

The nonlinear function was selected as f̂ (x) =tanh(x), so it can be calculated that Φ =

I. Due to the time-varying delay η(t) = 0.1et

1+et , η = 0.1, η̄ = 0.025 can be obtained, respec-
tively. The functions of deception signals are were chosen to be gs(x) =tanh(x), gc(x) =
tanh(x); therefore, one can get Gs = I, Gc = I. In this numerical example, we set the sam-
pling period to h = 0.05, γ = 0.98, the initial value of the adaptive event-triggered parame-
ter d0 to 0.8, the external input vector I(t) to 0, ε1 = 0.1, ε2 = 0.1, ε3 = 0.1, ε4 = 0.1, ε5 = 0.1.
Additionally, the generators of Markov process rt, qt were

πij =

[
−0.4 0.4
0.5 −0.5

]
, ρij =

[
−0.4 0.4
0.65 −0.65

]
.

Based on the proposed method, by solving the LMIs in Theorem 2, one can obtain the
desired controller gain and the adaptive event-triggered weighting matrix as follows:

K =

[
−0.0178 0.0026
−0.0021 −0.0270

]
, Ω =

[
0.0007 0.0007
0.0007 0.0011

]
. (43)

We chose the initial values φ1(t0) = (0.5;−0.1), φ2(t0) = (0.1; 0.2). Figure 2 shows
the state trajectories of synchronization errors without control input. As can be seen from
Figure 2, if there is no control input, the error system itself is unstable, which means that
the systems cannot be synchronized. Using the feedback controller (12), the simulation
results were obtained, as shown in Figures 3–7. Figure 3 shows the state trajectories of
synchronization errors with control input, and one can see that synchronization errors
finally converged to zero under the designed control protocol, which shows that the systems
can achieve synchronization. Figures 4 and 5 depict the states of double deception attacks,
whose states caused the oscillations of the synchronization error and the control input.
Figure 6 depicts the trajectories of control input, from which one can see that the control
input gradually tended to 0; that is, when the system achieves synchronization, external
control is no longer required. Figure 7 shows the evolution of adaptive threshold coefficient
d(t) in AETS. From the adaptive law (6), the adaptive threshold coefficient can be timely
adjusted according to the synchronization error. Therefore, when the error system is stable,
that is, when synchronization is achieved, the parameter will no longer be adjusted and
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will tend toward a constant. From the above simulation results, it can easily be seen that
the proposed synchronization problem in this paper was effectively solved.
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Figure 2. Synchronization error ei(t)(i = 1, 2) without control input.
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Figure 3. Synchronization error ei(t)(i = 1, 2) with control input ui(t)(i = 1, 2).
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Figure 4. The state of the deception signal in the S-C channel.
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Figure 5. The state of the deception signal in the C-A channel.
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Figure 6. The trajectories of control input ui(t)(i = 1, 2).
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Figure 7. The trajectory of event-triggered parameter d(t).

5. Discussion and Conclusions

The adaptive event-triggered synchronization problem of uncertain FNNs with double
deception attacks and time-varying delay has been investigated in this paper. Noteworthy
is that, regarding fractional order systems receiving deception attacks using traditional
event-triggered methods given in the literature [22], we believe that the literature has not
been comprehensive enough. Not only the traditional ETS technology, but also the attack
phenomena were governed by Bernoulli processes, and attacks only occurred in the C-A
channel. Thus, in this study, the AETS was adopted to determine the signals the needed
to be transmitted. The deception attacks in communication channels from the sensor
to controller and from controller to actuator are governed by two independent Markov
processes. Considering the AETS, double deception attacks, and parameter uncertainties, a
time-varying closed-loop fractional order synchronization error system was constructed.
Sufficient conditions were formulated to guarantee the considered system is stochastically
stable by employing the Lyapunov–Krasovskii functional method. Finally, a numerical
example was presented to verify its effectiveness and the feasibility of the proposed



Entropy 2021, 23, 1291 17 of 18

method. Thereby, we showed that our approach is more meaningful and comprehensive.
It should be mentioned that besides deception attacks, denial of service (DoS) attacks is
another interesting issue for FNNs and deserves further exploration. In addition, solving
the problem of multiple communication channels for FNNs will be part of our future
research efforts.
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