
entropy

Article

Acceleration of Global Optimization Algorithm by Detecting
Local Extrema Based on Machine Learning

Konstantin Barkalov * , Ilya Lebedev and Evgeny Kozinov

����������
�������

Citation: Barkalov, K.; Lebedev, I.;

Kozinov, E. Acceleration of Global

Optimization Algorithm by Detecting

Local Extrema Based on Machine

Learning. Entropy 2021, 23, 1272.

https://doi.org/10.3390/e23101272

Academic Editors: Alexander Gorban

and Ivan Tyukin

Received: 28 August 2021

Accepted: 26 September 2021

Published: 28 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mathematical Software and Supercomputing Technologies, Lobachevsky University,
603950 Nizhny Novgorod, Russia; ilya.lebedev@itmm.unn.ru (I.L.); evgeny.kozinov@itmm.unn.ru (E.K.)
* Correspondence: konstantin.barkalov@itmm.unn.ru

Abstract: This paper features the study of global optimization problems and numerical methods
of their solution. Such problems are computationally expensive since the objective function can be
multi-extremal, nondifferentiable, and, as a rule, given in the form of a “black box”. This study
used a deterministic algorithm for finding the global extremum. This algorithm is based neither on
the concept of multistart, nor nature-inspired algorithms. The article provides computational rules
of the one-dimensional algorithm and the nested optimization scheme which could be applied for
solving multidimensional problems. Please note that the solution complexity of global optimization
problems essentially depends on the presence of multiple local extrema. In this paper, we apply
machine learning methods to identify regions of attraction of local minima. The use of local opti-
mization algorithms in the selected regions can significantly accelerate the convergence of global
search as it could reduce the number of search trials in the vicinity of local minima. The results of
computational experiments carried out on several hundred global optimization problems of different
dimensionalities presented in the paper confirm the effect of accelerated convergence (in terms of the
number of search trials required to solve a problem with a given accuracy).

Keywords: global optimization; local optimization; multiextremal problems; numerical methods;
approximation; decision trees

1. Introduction

The successful application of machine learning (ML) methods to solve a wide range of
problems leads to the emergence of new ways to apply ML for many tasks. Methods of
machine learning were shown to be particularly effective for identifying the principal prop-
erties of the phenomena (for example, physical, economic, or social), which are stochastic
by nature or contain some hidden parameters [1,2]. ML is also successfully used to solve
complex problems of computational mathematics, for example, for simulation of dynamical
systems [3], solution of ordinary, partial, or stochastic differential equations [4–6].

In particular, ML could be applied for solving such a complex problem of computa-
tional mathematics as global optimization. The solution to this class of problems, as a rule,
cannot be found analytically and, therefore, one needs to construct numerical methods to
solve it.

The numerical solution of optimization problems is fraught with significant difficulties.
In many ways, they are related to the dimensionality and type of the objective function.
Consequently, the most difficult problems are those in which the objective function is
multi-extremal, nondifferentiable, and, moreover, given in the form of a “black box” (i.e.,
in the form of some computational procedure, the input of which is an argument, and the
output is the corresponding value of the function). These complex problems are the main
focus of this article.

There are several approaches to the construction of numerical methods for solving
global optimization problems. Some algorithms are based on the idea of a multistart:

Entropy 2021, 23, 1272. https://doi.org/10.3390/e23101272 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-5273-2471
https://orcid.org/0000-0002-8736-0652
https://orcid.org/0000-0001-6776-0096
https://doi.org/10.3390/e23101272
https://doi.org/10.3390/e23101272
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23101272
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23101272?type=check_update&version=3

Entropy 2021, 23, 1272 2 of 14

launching a local search either from different starting points or with varying parameters.
Local optimization methods have a high convergence rate. At the same time, one of the
main problems in multistart schemes is the choice of starting points that would correspond
to the regions of attraction of various local solutions. Machine learning methods can be
successfully applied to solve this problem. For example, in [7] methods of cluster analysis
were used to select promising starting points. In [8], the area for starting the local method
was allocated based on the classification of starting points using a support vector machine.

Machine learning methods are actively used in combination with bayesian optimiza-
tion algorithms based on the probabilistic surrogate models of the objective function. The
detailed overview of this trend in the development of global optimization methods is
presented in [9,10].

Another popular class of methods for solving global optimization problems is meta-
heuristic algorithms. Many of them are based on imitation of the processes occurring
in living nature. The parameters of such algorithms could also be tuned using ML. For
example, ref. [11] provides an overview of machine learning applications in evolutionary
algorithms.

Please note that the algorithms of the latter class do not provide guaranteed con-
vergence to the solution of the problem and are inferior to deterministic algorithms in
terms of the quality of solution [12,13] (e.g., measured by the number of correctly solved
problems from a particular set). Therefore, deterministic methods seem to be potentially
more effective.

This paper aims to further develop the efficient deterministic global optimization
method known as the information-statistical global search algorithm [14]. The book ref-
erenced here contains the results of theoretical studies of the method that are of direct
importance for its practical implementation. In particular, it discusses in detail the issues
of convergence, the choice of parameters, and the conditions for stopping the algorithm,
etc. Please note that the global search algorithm was originally designed for solving
unconstrained optimization problems. Later, it was generalized to solve problems with
non-convex constraints [15] and multicriteria optimization problems [16]. At the same
time, scholars proposed various parallel versions of these algorithms, which can be used
on modern supercomputers [17–19].

Several strategies have been proposed to speedup the global search algorithm (in
terms of the number of iterations required to solve the problem with a given accuracy).
In this paper, we propose a new approach to acceleration based on identifying areas of
attraction of local minima using machine learning methods. The identification of regions
of attraction and the launch of local search in these regions can significantly reduce the
number of trials required for the method to achieve global convergence. Experiments
carried out on a series of several hundred test problems confirm this statement.

2. Problem Statement

In this paper, we will consider global optimization problems of the form

ϕ(y∗) = min {ϕ(y) : y ∈ D}, (1)

D =
{

y ∈ RN : ai ≤ yi ≤ bi, 1 ≤ i ≤ N
}

.

Problem (1) is considered under the assumption that the objective function is multi-
extremal, is given in a form of a “black box”, and the calculation of its values is asso-
ciated with solving the problem of numerical simulation, which makes the solution a
labor-intensive operation.

A typical situation for many applied problems is when a limited change in the vector
of parameters y causes a limited change in the values of ϕ(y). The mathematical model
describing this premise is based on the assumption that the Lipschitz condition is satisfied∣∣ϕ(y′)− ϕ(y′′)

∣∣ ≤ L
∥∥y′ − y′′

∥∥, y′, y′′ ∈ D, 0 < L < ∞.

Entropy 2021, 23, 1272 3 of 14

This assumption is typical for many approaches to the development of optimization
algorithms [20–24]. At the same time, many known approaches are based on various
methods of dividing the search domain into a system of subdomains and then choosing
the most promising subdomain for placing the next trial (calculating the value of the
objective function) [25–30]. An important property of global optimization problems is the
fact that, in contrast to the problems of finding a local extremum, the global minimum is an
integral characteristic of the problem being solved. Making sure that the point y∗ ∈ D is a
solution to the problem requires going beyond its neighborhood to the investigation of the
entire search domain. As a result, when minimizing substantially multi-extremal functions,
the numerical method must construct a coverage of the search domain. The number of
nodes of this coverage increases exponentially with increasing dimensionality. This feature
determines the high complexity of solving multiextremal optimization problems making
dimensionality a critical factor that affects the complexity of their solving.

The dimensionality in multi-extremal optimization leads to many issues, so, scholars
use a wide variety of approaches to reducing it. For example, simplicial or diagonal
partition of the search domain allows using methods for solving one-dimensional problems
to solve the original multidimensional problem (see, for example, refs. [31,32]). Another
well-known approach to dimensionality reduction is using the Peano space-filling curves
to map the multidimensional domain onto a one-dimensional interval [14,33].

In this work, we will use another method based on the nested optimization
scheme [34–37] and its generalization [38,39]. The nested optimization scheme, on the one
hand, does not worsen the properties of the objective function (unlike reduction using
Peano curves), and, on the other hand, does not require the use of complex data structures
to support simplex or diagonal partitions of the feasible region. At the same time, the
nested optimization scheme makes it possible to reduce the original multidimensional
optimization problem to a family of recursively connected one-dimensional optimization
subproblems, which can be solved by a wide range of one-dimensional global optimization
algorithms.

3. Methods
3.1. Core Global Search Algorithm

As a standard, let us consider a one-dimensional multiextremal optimization problem:

ϕ∗ = ϕ(x∗) = min {ϕ(x) : x ∈ [a, b], a < b, a, b ∈ R} (2)

with an objective function satisfying the Lipschitz condition.
Here is the description of global search algorithm (GSA) for solving the basic problem

in accordance with [14]. In the course of its work, GSA generates a sequence of points xi, at
which the values of the objective function zi = ϕ(xi) are calculated. We will refer to the
process of calculating the value of the objective function as trial.

In accordance with the algorithm, the first two trials are carried out at the boundary
points of the segment [a, b], i.e., x0 = a, x1 = b. At these points, the values of the objective
function z0 = ϕ(x0), z1 = ϕ(x1) are calculated and the counter value is set to k = 1. The
point of the next trial xk+1, k ≥ 1, is selected in accordance with the following procedure.

Step 1. Renumber (starting at 0) the points xi, 0 ≤ i ≤ k, of the trials conducted in
ascending order of the coordinate, i.e.

a = x0 < x1 < . . . < xk = b. (3)

Associate the values of the objective function zi = ϕ(xi), 0 ≤ i ≤ k, to the points xi, 0 ≤
i ≤ k, at which these values were calculated.

Step 2. Calculate the maximum absolute value of the relative first difference

µ = max
1≤i≤k

|zi − zi−1|
∆i

, (4)

Entropy 2021, 23, 1272 4 of 14

where ∆i = xi − xi−1. If the value calculated in accordance with (4) is equal to zero, then
take µ = 1.

Step 3. For all the intervals (xi−1, xi), 1 ≤ i ≤ k, calculate the value

R(i) = rµ∆i +
(zi − zi−1)

2

rµ∆i
− 2(zi + zi−1), (5)

refered to as the characteristics of the interval; value r > 1 is the parameter of the algorithm.
Step 4. Find the interval (xt−1, xt) with the maximum characteristic

R(t) = max
1≤i≤k

R(i). (6)

If the maximum characteristic corresponds to several intervals, then choose the minimum
number that satisfies (6) as t.

Step 5. Carry out a new trial at the point

xk+1 =
1
2
(xt−1 + xt)−

zt − zt−1

2rµ
. (7)

The algorithm stops when the condition ∆t < ε is satisfied; here t is from (6), and
ε > 0 is a given accuracy. The values

z∗k = min
0≤i≤k

ϕ(xi), x∗k = arg min
0≤i≤k

ϕ(xi)

are selected to estimate the solution.
The theoretical conditions that determine the convergence of the algorithm are pre-

sented in [14]. The work of the algorithm during the minimization of a specific multiex-
tremal function, which is specified in accordance with formula (17), is shown in Figure 1.
The algorithm was launched with the parameter r = 2.2 from (5) and value ε = 10−3 in
the method stopping condition. Figure 1 shows the objective function graph and points
of 71 search trials which GSA needed to solve the problem to the specified accuracy. This
highlights the problem of all methods of global optimization—the concentration of trial
points in the vicinity of local minima of the problem, which are not a global solution.

Figure 1. Minimization of a function of the form (17) using GSA.

3.2. Machine Learning Regression as a Tool for Identifying Attraction Regions of Local Extrema

The functions considered in this study belong to the class of Lipschitzian functions.
Therefore, classical regression methods (for example, polynomial regression, where a
function is approximated by a polynomial of a given degree) will not properly match the
behavior of the function. A more powerful tool for this task is regression splines. When
constructing a regression spline, the domain is divided into K non-overlapping subdomains.

Entropy 2021, 23, 1272 5 of 14

In each of such domains, the function is approximated by a polynomial. Dividing the
interval into a sufficient number of subdomains allows one to very accurately approximate
the original function.

Regression can also be constructed using such a powerful tool as artificial neural
networks. Different types of networks can be used to build the regression, for example,
multilayer perceptron, radial basis function network, etc. However, in both of these cases,
the model itself (spline or neural network) becomes rather complex for the analysis required
to solve the given problem (identifying areas of attraction of local extrema).

Therefore, within the framework of the study, we chose a regression model based
on decision trees to analyze the local behavior of a function. For example, if the objective
function is properly approximated by polynomials, then the polynomial regression, of
course, will appropriately convey the properties of the function. However, if there is a more
complex relationship between them, then the decision tree can surpass the classical variants
of regression in terms of the quality of the approximation. At the same time, the regression
based on the decision tree makes it possible to easily identify the areas of attraction of local
extrema with sufficient accuracy.

Building a regression using a decision tree consists of two main steps:

• Search domain D is divided into J non-overlapping subdomains D1, D2, ..., DJ , pro-
vided that D =

⋃J
j=1 Dj.

• Any value falling into the subdomain Dj, i.e., x ∈ Dj, is matched to the average value
cj based on the training trials that fall into this subdomain.

In fact, decision trees build a model of a function of the form

f (x) = cj, x ∈ Dj. (8)

Generally speaking, a decision tree is a binary tree, the leave nodes of which contain
the values of the function, and the other nodes contain the transition conditions. In our
case, when applying a decision tree to construct a regression, each node corresponds to the
results of several trials and the value cj, which is calculated as the mean square of the trial
points assigned to this node. The final piecewise constant approximation is constructed
using the values cj, located in the leave nodes of the tree.

The tree is built recursively, starting from the root node. A decision rule is applied
at each node: all data are divided into two groups (according to a partitioning rule) and
sent to the left and right child nodes. The procedure then recursively separates the left and
right nodes. Recursion stops at a node in one of the following cases:

• The number of trial points assigned to the node becomes less than the specified
threshold value (we used 1).

• The sum of the squared deviations of the function values from the value cj, assigned
to this node becomes less than the set accuracy (we used 10−3).

For more information on the algorithm for constructing regression using decision
trees, see, for example [40].

Regression built using decision trees, is, on the one hand, rather simple, and on the
other hand, it adequately reflects the properties of the function under investigation (the
presence or absence of local minima). The selection of regions of attraction of local minima
using model (8) can be organized as follows.

Let xk+1 be the point of the current trial. For a given point, an index j is sought
such that xk+1 ∈ Dj. Next, the cj values corresponding to neighboring subdomains are
compared. If one of the conditions is met

Entropy 2021, 23, 1272 6 of 14

cj ≤ cj+1 ≤ cj+2 ≤ cj+3 ≤ cj+4, j = 1;

cj−1 ≥ cj ≤ cj+1 ≤ cj+2 ≤ cj+3, j = 2;

cj−2 ≥ cj−1 ≥ cj ≤ cj+1 ≤ cj+2, 3 ≤ j ≤ J − 2; (9)

cj−3 ≥ cj−2 ≥ cj−1 ≥ cj ≤ cj+1, j = J − 1;

cj−4 ≥ cj−3 ≥ cj−2 ≥ cj−1 ≥ cj, j = J;

then the subdomain Dj is considered the area of attraction of the local minimum. Here, one
can start a local search, and subsequently exclude this subdomain from the global search.
Any of the zero-order local methods can be used as a local algorithm, for example, golden
section search or parabolic interpolation [41].

To modify the global search algorithm from Section 3.1 to exclude the regions of
attraction of local minima, we associate each trial point xi obtained during the operation
of the algorithm with an additional attribute qi ∈ {0, 1, 2}, which will characterize the
properties of this point. The value qi = 0 is assigned by default and indicates that point
xi is obtained as a result of rule (7) of the global search algorithm. The value qi = 1 is
assigned to the points obtained as a result of the work of the local method, while the value
qi = 2 corresponds to the point of the local minimum found as a result of the work of the
local search.

Using the additional attribute qi, 0 ≤ i ≤ k, makes it possible to distinguish between
points obtained during a global (qi = 0) and a local (qi = 1, 2) search. The intervals,
the boundary points of which have the value qi = 1 or qi = 2, will be skipped in the
global search, i.e., they will not be tried further. While the selected value qi = 2, which
corresponds to the local minimum will allow using these points for checking the stopping
criterion. When the rules of the global search signal that a new trial point needs be placed
in a given ε-neighborhood of one of the found local minima, this will correspond to the
end of the search.

Let us now describe a modified global search algorithm that uses decision trees to
isolate and exclude areas of attraction of local minima; we will further refer to this algorithm
as GSA-DT. Recall that the superscript corresponds to the number of the iteration at which
the trial was carried out at this point, and the subscript corresponds to the number of the
point in the row (3).

Steps 1–5 of the GSA–DT algorithm are the same as steps 1–5 of GSA.
Step 6. If qt−1 ∈ {1, 2} or qt ∈ {1, 2}, then go to check the stopping criterion. Other-

wise, go to Step 7.
Step 7. Construct a decision tree based on the results of the trials performed, and

obtain the corresponding piecewise constant approximation, which assigns the value
c1, c2, ..., cJ to each subdomain D1, D2, ..., DJ .

Step 8. For the point xk+1 of the current trial, find a number j such that xk+1 ∈ Dj
and check whether the condition (9) is satisfied. If condition (9) is satisfied, start a local
search in the domain Dj from the point xk+1. The results of all trials performed during
the local search at the points xk+2, ..., xk+klocal are stored in the information base of the
algorithm and are used at subsequent iterations. All these points receive the attribute
qi = 1, i = k + 2, ..., k + klocal . The attribute equal to 2 is assigned to the point corresponding
to the found local minimum.

The stopping criterion of the modified algorithm will look as follows. The algorithm
stops when one of the following conditions is met:

• |xt − xt−1| < ε;
• |xk+1 − xt−1| < ε and qt−1 = 2;
• |xk+1 − xt| < ε and qt = 2;

where t is from (6), and ε > 0 is a given accuracy.

Entropy 2021, 23, 1272 7 of 14

Please note that the specified stopping criterion is checked after Step 6, i.e., after the
calculation according to the rules of the global search for the point of the next trial xk+1,
but before the trial itself is carried out in it. The idea behind this criterion is as follows. The
search stops when the interval (xt−1, xt), in which the point xk+1 falls, becomes sufficiently
small, or when the point xk+1 falls into a small neighborhood of one of the found local
minima. Such minima in this case will be simultaneously global.

For example, consider the work of the GSA-DT algorithm with minimization of the
same multi-extremal function, which is presented in Figure 1. The same parameters were
used at the start of the algorithm: the parameter r = 2.2 from (5) and value ε = 10−3 in
the stopping criterion of the method. Figure 2 illustrates the operation of the GSA-DT
algorithm. In addition to the graph of the objective function, it shows a piecewise constant
approximation of the form (8) built at the final stage of the search. Black points on the
graph correspond to the global search phase, green points correspond to the work of the
local method. In total, the GSA-DT method required 49 trials to solve the problem; there
was no accumulation of trial points in the vicinity of local minima.

Figure 2. Using GSA-DT to minimize the function (17).

3.3. Adaptive Dimension Reduction Scheme

The recursive nested optimization scheme is based on the well-known relation [35]

min
y∈D

ϕ(y) = min
y1∈[a1,b1]

min
y2∈[a2,b2]

... min
yN∈[aN ,bN]

ϕ(y), (10)

which allows reducing the solution of the original multidimensional problem (1) to the
solution of a family of recursively connected one-dimensional subproblems.

For a formal description of the nested optimization scheme, we introduce a family of
functions defined in accordance with the relations

ϕN(y1, ..., yN) ≡ ϕ(y1, ..., yN), (11)

ϕi(y1, ..., yi) = min
yi+1∈[ai+1,bi+1]

ϕi+1(y1, ..., yi, yi+1), 1 ≤ i ≤ N − 1. (12)

Then, in accordance with (10), solving the multidimensional problem (1) is reduced to
solving a one-dimensional problem

ϕ∗ = min
y1∈[a1,b1]

ϕ1(y1). (13)

However, each calculation of the value of the function ϕ1 at some fixed point y1 presupposes
the solution of the one-dimensional optimization problem of the second level

ϕ1(y1) = min
y2∈[a2,b2]

ϕ2(y1, y2). (14)

Entropy 2021, 23, 1272 8 of 14

Calculation of the values of the function ϕ2 in turn, requires one-dimensional minimization
of the function ϕ3 all the way to the solution of the problem

ϕN−1(y1, ..., yN−1) = min
yN∈[aN ,bN]

ϕN(y1, ..., yN) (15)

at the last level of recursion.
The solution of the set of subproblems arising in the nested optimization scheme (12)

can be organized in different ways. The obvious way (described in detail in [35,37]) is
based on solving subproblems in accordance with the recursive order of their generation.
However, a significant part of the information about the objective function is lost here.

Another approach is an adaptive scheme, in which all subtasks are solved simultane-
ously, which allows taking into account much more information about a multidimensional
problem, thereby speeding up the process of its solution. This approach was theoretically
substantiated and tested in [38,39,42].

Please note that within the framework of the original nested optimization scheme,
the generated subproblems are solved only sequentially; the resulting hierarchical scheme
for generating and solving subproblems has the form of a tree. The construction of this
tree occurs dynamically in the process of solving the original problem (1). In this case, the
calculation of one value of the function ϕi(y1, y2, ..., yi) at the i-th level requires a complete
solution of all problems of one of the subtrees of level i + 1.

The adaptive nested optimization scheme of dimensionality reduction changes the
order of solving subproblems: they will be solved not one by one (in accordance with their
hierarchy in the problem tree), but simultaneously, i.e., there will be a set of subtasks in the
process of solution. Within the adaptive scheme:

• to calculate the value of i-th level function from (12) a new i + 1 level problem is
generated, in which only one trial is carried out, after which the new generated
problem is included in the set of already existing problems to be solved;

• iteration of the global search consists of choosing one (most promising) problem from
the set of available problems, in which one trial is carried out; the new trial point
is determined according to the basic global search algorithm from Section 3.1 or a
modified algorithm from Section 3.2;

• the minimum values of functions from (12) are their current estimates obtained based
on accumulated search information.

4. Experimental Results

Numerical experiments were performed on the Lobachevsky supercomputer of the
University of Nizhny Novgorod (operating system CentOS 7.2, management system
SLURM). One supercomputer node has two Intel Sandy Bridge E5-2660 2.2 GHz pro-
cessors, 64 Gb RAM. The CPU is 8-core (i.e., a total of 16 CPU cores are available on the
node). All the algorithms were implemented in C++; GCC 5.5.0 was used for compilation
on the supercomputer.

The traditional approach to assessing the effectiveness of global optimization methods
is based on using these methods to find the numerical solution of a series of problems. In
this case, the assumption is that a certain algorithm is used to generate the next problem to
be solved. Typical examples of such test function classes are Shekel and Hill functions. The
first of them (denoted FSH) is based on the formula

ϕ(x) = −
10

∑
j=1

1
(Kj(x− Aj)2 + Cj)

, x ∈ [0, 10], (16)

where parameters 1 ≤ Kj ≤ 3, 0 < Aj, Cj < 10, are independent random variables
uniformly distributed in the indicated intervals. The next generator (denoted FHL) is
determined by the expression

Entropy 2021, 23, 1272 9 of 14

ϕ(x) =
14

∑
j=1

(Aj sin(2jπx) + Bj cos(2jπx)), x ∈ [0, 1], (17)

where the values of the parameters Aj, Bj, 1 ≤ j ≤ 14, are independently and uniformly
distributed in the interval [−1, 1].

Let us compare the basic global search algorithm (GSA) and its decision tree-based
modification (GSA-DT) with the well-known DIRECT global optimization algorithm [25].
The choice of this particular method for comparison is explained as follows. DIRECT is one
of the most well-known and popular deterministic methods for solving global optimization
problems with a “black box” objective function. An overview of various modifications of
the method, as well as examples of solving problems, is given in [43]. It is known that with
a sufficiently large number of search trials, DIRECT is guaranteed to find a global solution
to the problem. However, if the stopping by accuracy is used as a criterion, then the method
can abruptly stop at one of the local minima, which is confirmed by the experimental results
presented in this section.

Regarding the deterministic optimization algorithms implemented in popular Com-
puter Algebra Systems (CAS), their comparison with methods such as DIRECT or GSA
will be incorrect for the following reason. Optimization algorithms from CAS are focused
on solving problems with an objective function set explicitly, in the form of a formula.
Formula definition of the objective function assumes that its derivatives are also known,
which makes it possible to use first-order methods with significantly faster convergence
than zero-order methods, which include both DIRECT and GSA. However, first-order
methods do not guarantee finding the global minimum. For example, the Mathematica
system offers methods for solving global optimization problems that are guaranteed to find
a global solution to the problem only if the objective function and constraints are linear or
convex. Otherwise, the result may sometimes only be a local minimum.

Moreover, methods that require a formulaic specification of the objective function
cannot be applied to the solution of a large class of applied problems in which the form of
the objective function is not known, and its values are calculated as a result of numerical
simulation. The use of heuristic methods for solving problems of this kind (such as
Differential Evolution, Simulated Annealing or Random Search) also does not always lead
to the solution of the problem. These methods often do find the global minimum, but are
not guaranteed to do so. In terms of the number of correctly solved problems, heuristic
methods are inferior to deterministic ones [13].

The decision trees in the GSA-DT algorithm were built using the OpenCV 4.5.1 library
(class cv::ml::DTrees). A regression function was constructed by a single decision tree.
This allowed us to obtain a piecewise constant approximation of the objective function
in which one or several trial points corresponded to each leaf node of the tree. The tree
was built without any limitations on maximum depth (MaxDepth); the accuracy of tree
construction (RegressionAccuracy) was 10−3; the minimum number of trial points in the
tree node (MinSampleCount) was equal to one; all other parameters were set by default.
Stopping tree building occurred if all absolute differences between an estimated value in a
node and values of train samples in this node are less than accuracy.

The global optimization methods discussed above were compared when solving
100 problems from the FSH and FHL classes. The problem will be considered correctly
solved if after stopping the method by accuracy (i.e., when the length of the current
search interval becomes less than ε · |b− a|) the current estimate of the optimum x∗k lies
in the ε-neighborhood of the known solution of the problem x∗, i.e., if the condition
|x∗ − x∗k | ≤ ε · |b− a| is satisfied.

Tables 1 and 2 show the number of search trials that, on average, were required to
minimize the Shekel and Hill functions with different search accuracy ε. The number
of unsolved problems is indicated in parentheses. These and subsequent tables feature
the total number of trials that were performed during both global and local searches by
GSA-DT. When solving problems with an accuracy 10−2, 10−3, 10−4 the number of local

Entropy 2021, 23, 1272 10 of 14

search launches when solving one problem on average was equal to 2, 3, and 4, respectively;
and the ratio of the number of trials performed according to the global search rules to the
number of trials performed by the local method was (with appropriate accuracy) 7.2, 6.0,
4.5 for problems of the FHL class and 3.2, 2.3, 1.9 for the FSH class problems.

The experimental results show that with a rough solution to the problem, all methods
show similar results in terms of the number of trials, while with a high solution accuracy,
the GSA-DT algorithm requires two times fewer trials than its prototype. At the same time,
GSA-DT outperforms the DIRECT method both in the average number of search trials
and in the number of correctly solved problems. In particular, if we use the accuracy ε =
10−2|b− a|, then the DIRECT method stops too early and does not find a global solution to
many problems. Therefore, in further experiments in which multidimensional problems
are solved, we will not use DIRECT for comparison, since when solving multidimensional
problems with stopping by accuracy, this method will provide a correct solution to no more
than 50% of problems.

Table 1. The average number of tests when minimizing Shekel test functions (the number of unsolved
problems is indicated in parentheses).

ε = 10−4 ε = 10−3 ε = 10−2

DIRECT 64(1) 34(6) 20(17)
GSA 106 53 31

GSA-DT 49 43 35

Table 2. The average number of tests when minimizing Hill test functions (the number of unsolved
problems is indicated in parentheses).

ε = 10−4 ε = 10−3 ε = 10−2

DIRECT 66(12) 36(31) 20(51)
GSA 130 75 43

GSA-DT 64 59 50

The next series of experiments involved the solution of multidimensional problems.
A well-known generator of multi-extremal optimization test problems is GLKS [44]. It can
be used to generate test functions with given properties: the number of local extrema, their
areas of attraction, the global minimum point, and the value of the objective function at
this point, etc. The procedure for generating test functions is based on using polynomials
to redefine a convex quadratic function (paraboloid). Test functions are defined by five
parameters:

• dimensionality of the problem N;
• the number of local minima l;
• value of the global minimum f ∗;
• radius of the area of attraction of the global optimizer ρ∗;
• the distance between the global optimizer and the vertex of the paraboloid d∗.

By changing the specified parameters, one can create test classes with different prop-
erties. For example, with a fixed dimensionality of the problem and the number of local
minima, a more complex class can be generated by narrowing the region of attraction of
the point of the global minimum or by increasing the distance between this point and the
vertex of the paraboloid. In the experiments, the values l = 10, f ∗ = −1, ρ∗ = 0.2 and
d∗ = 0.9 were used.

As an example, consider the operation of the GSA and GSA-DT algorithms when
solving one of the two-dimensional problems generated by the GKLS generator. The level
lines of the objective function shown in Figures 3 and 4, indicate the presence of ten local
extrema. When starting the algorithms, the same parameters were used: r = 3.0 from (5)
and ε = 10−2|b− a| in the stopping criterion of the method. Black dots in Figures 3 and 4

Entropy 2021, 23, 1272 11 of 14

show the points of the search trials performed by the methods in the process of solving the
problem. In this case, the GSA algorithm required 247 trials, while the GSA-DT algorithm
took 138 trials. The red dot in the figures marks the exact solution of the problem, and
the yellow dot indicates the best approximation found by the algorithm. Green dots in
Figure 4 indicate trials performed as part of a local search. This graph demonstrates that
using decision trees to identify areas of attraction of local minima removes the problem of
accumulation of test points in the region of local extrema inherent in the original global
search algorithm.

Figure 3. Using GSA algorithm to solve GKLS problems.

Figure 4. Using GSA-DT algorithm to solve GKLS problems.

We used GKLS to generate 300 test problems of dimensionalities N = 2, 3, 4 (100 prob-
lems of each dimensionality). The resulting series of problems were solved using the GSA
and GSA-DT algorithms with the parameter r = 5.0 from (5). The specified value of the

Entropy 2021, 23, 1272 12 of 14

parameter r ensures the solution of 100% of the problems; at lower values of the parameter,
some problems were not solved correctly.

Tables 3 and 4 show the average number of trials required by the GSA and GSA-
DT methods to correctly solve all problems with an accuracy of ε = 10−2|b− a| and
ε = 2× 10−3|b− a|, respectively.

The data from the tables confirm that the global search algorithm based on the ap-
plication of machine learning to extract local extremum provides a faster solution to
multiextremum problems than the basic global search algorithm. For rough accuracy solu-
tions, the acceleration is about 30%, for high accuracy solutions, the process is accelerated
from 2 to 6 times.

Table 3. Solving GKLS problems with an accuracy ε = 10−2|b− a|.

N = 2 N = 3 N = 4

GSA 937 12716 206869
GSA-DT 653 9204 156190

Table 4. Solving GKLS problems with an accuracy ε = 2× 10−3|b− a|.

N = 2 N = 3 N = 4

GSA 1489 69764 583903
GSA-DT 831 10776 173155

5. Conclusions and Future Work

The article discusses an efficient deterministic method for solving multiextremal
optimization problems—the information-statistical global search algorithm. A new way
of speeding up the operation of this algorithm was proposed (in terms of the number
of trials required to solve the problem with a given accuracy). This method is based on
identifying areas of attraction of local minima of the objective function using machine
learning methods. The identification of regions of attraction and the launch of local
search in these regions can significantly reduce the number of trials required for the
method to achieve global convergence. Within the framework of the investigated approach,
solving multidimensional problems is reduced to solving a series of information-related
one-dimensional subproblems; therefore, the key point is to identify local minima in
one-dimensional problems. This is achieved by approximation of the objective function
built using decision trees. Computational experiments were carried out on a series of
test problems of different dimensions to compare the speed of the original global search
algorithm (GSA) and its modification, which uses decision trees to identify local minima of
the objective function (GSA-DT). The experimental results show that the use of the GSA-DT
algorithm can significantly (up to 6 times) reduce the number of trials required to solve the
problem with a given accuracy.

Further research into this issue will focus on using more complex models of the
objective function to obtain a more accurate approximation. We plan to use artificial neural
networks as such an approximator. This will require the development of new methods for
identifying local extrema since function approximation using a neural network is more
complicated from this point of view. We also plan to pay attention to the issues of the
reliability of the results obtained using machine learning methods. For the solved model
problems, the use of machine learning methods shows good results, but the question of
whether this effect will persist in more complex problems remains open.

Another direction for further work will be the combination of the proposed approach
to the application of local search with traditional methods of accelerating global optimiza-
tion algorithms. For example, a well-known way to speed up algorithms of this class is to
use local adaptive estimates of the Lipschitz constant Li in various subdomains Di ∈ D
within the search domain D instead of a single global estimate of the constant L for the

Entropy 2021, 23, 1272 13 of 14

entire domain D (see [45,46]). This allows the algorithm to adjust to the local behavior of
the objective function in different parts of the feasible domain, and, thereby, reduces the
number of search trials required to achieve convergence. Using only global information
about the behavior of the objective function during its minimization can significantly slow
down the convergence of the algorithm to a point of global minimum. Further research on
this issue could focus on using machine learning methods to isolate subdomains Di ∈ D
and construct local estimates of the Lipschitz constant Li in the selected subdomains.

Author Contributions: Conceptualization and methodology, K.B.; software and validation, I.L. and
E.K.; formal analysis, K.B.; investigation, I.L.; data curation, I.L.; writing—original draft preparation,
K.B.; writing—review and editing, K.B.; visualization, I.L.; funding acquisition, K.B. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Higher Education of the Russian
Federation, agreement number 075-15-2020-808.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Golovenkin, S.; Bac, J.; Chervov, A.; Mirkes, E.; Orlova, Y.; Barillot, E.; Gorban, A.; Zinovyev, A. Trajectories, bifurcations,

and pseudo-time in large clinical datasets: Applications to myocardial infarction and diabetes data. GigaScience 2020, 9, 1–20.
[CrossRef] [PubMed]

2. Gonoskov, A.; Wallin, E.; Polovinkin, A.; Meyerov, I. Employing machine learning for theory validation and identification of
experimental conditions in laser-plasma physics. Sci. Rep. 2019, 9, 7043. [CrossRef] [PubMed]

3. Seleznev, A.; Mukhin, D.; Gavrilov, A.; Loskutov, E.; Feigin, A. Bayesian framework for simulation of dynamical systems from
multidimensional data using recurrent neural network. Chaos 2019, 29, 123115. [CrossRef] [PubMed]

4. Lagaris, I.; Likas, A.; Fotiadis, D. Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans.
Neural Netw. 1998, 9, 987–1000. [CrossRef]

5. Blechschmidt, J.; Ernst, O. Three ways to solve partial differential equations with neural networks—A review. GAMM Mitteilungen
2021, 44, e202100006. [CrossRef]

6. Xu, Y.; Zhang, H.; Li, Y.; Zhou, K.; Liu, Q.; Kurths, J. Solving Fokker–Planck equation using deep learning. Chaos 2020, 30, 013133.
[CrossRef] [PubMed]

7. Rinnooy Kan, A.; Timmer, G. Stochastic global optimization methods part I: Clustering methods. Math. Program. 1987, 39, 27–56.
[CrossRef]

8. Cassioli, A.; Di Lorenzo, D.; Locatelli, M.; Schoen, F.; Sciandrone, M. Machine learning for global optimization. Comput. Optim.
Appl. 2012, 51, 279–303. [CrossRef]

9. Archetti, F.; Candelieri, A. Bayesian Optimization and Data Science; Springer: New York, NY, USA, 2019. [CrossRef]
10. Zhigljavsky, A.; Žilinskas, A. Bayesian and High-Dimensional Global Optimization; Springer: New York, NY, USA, 2021; [CrossRef]
11. Jin, Y. A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. 2005, 9, 3–12. [CrossRef]
12. Kvasov, D.E.; Mukhametzhanov, M.S. Metaheuristic vs. deterministic global optimization algorithms: The univariate case. Appl.

Math. Comput. 2018, 318, 245–259. [CrossRef]
13. Sergeyev, Y.D.; Kvasov, D.E.; Mukhametzhanov, M.S. On the efficiency of nature-inspired metaheuristics in expensive global

optimization with limited budget. Sci. Rep. 2018, 8, 435. [CrossRef]
14. Strongin, R.G.; Sergeyev, Y.D. Global Optimization with Non-Convex Constraints. Sequential and Parallel Algorithms; Kluwer Academic

Publishers: Dordrecht, The Netherlands, 2000.
15. Barkalov, K.; Strongin, R. A global optimization technique with an adaptive order of checking for constraints. Comput. Math.

Math. Phys. 2002, 42, 1289–1300.
16. Gergel, V.; Kozinov, E.; Barkalov, K. Computationally efficient approach for solving lexicographic multicriteria optimization

problems. Optim. Lett. 2020, 15, 2469–2495. [CrossRef]
17. Barkalov, K.; Lebedev, I. Solving multidimensional global optimization problems using graphics accelerators. Commun. Comput.

Inf. Sci. 2016, 687, 224–235.
18. Gergel, V.; Barkalov, K.; Sysoyev, A. A novel supercomputer software system for solving time-consuming global optimization

problems. Numer. Algebr. Control Optim. 2018, 8, 47–62. [CrossRef]
19. Strongin, R.; Gergel, V.; Barkalov, K.; Sysoyev, A. Generalized Parallel Computational Schemes for Time-Consuming Global

Optimization. Lobachevskii J. Math. 2018, 39, 576–586. [CrossRef]

http://doi.org/10.1093/gigascience/giaa128
http://www.ncbi.nlm.nih.gov/pubmed/33241287
http://dx.doi.org/10.1038/s41598-019-43465-3
http://www.ncbi.nlm.nih.gov/pubmed/31065006
http://dx.doi.org/10.1063/1.5128372
http://www.ncbi.nlm.nih.gov/pubmed/31893666
http://dx.doi.org/10.1109/72.712178
http://dx.doi.org/10.1002/gamm.202100006
http://dx.doi.org/10.1063/1.5132840
http://www.ncbi.nlm.nih.gov/pubmed/32013470
http://dx.doi.org/10.1007/BF02592070
http://dx.doi.org/10.1007/s10589-010-9330-x
http://dx.doi.org/10.1007/978-3-030-24494-1
http://dx.doi.org/10.1007/978-3-030-64712-4
http://dx.doi.org/10.1007/s00500-003-0328-5
http://dx.doi.org/10.1016/j.amc.2017.05.014
http://dx.doi.org/10.1038/s41598-017-18940-4
http://dx.doi.org/10.1007/s11590-020-01668-y
http://dx.doi.org/10.3934/naco.2018003
http://dx.doi.org/10.1134/S1995080218040133

Entropy 2021, 23, 1272 14 of 14

20. Jones, D.; Perttunen, C.; Stuckman, B. Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 1993,
79, 157–181. [CrossRef]

21. Pinter, J. Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications); Kluwer
Academic Publishers: Dordrecht, The Netherlands, 1996.

22. Žilinskas, J. Branch and bound with simplicial partitions for global optimization. Math. Model. Anal. 2008, 13, 145–159. [CrossRef]
23. Evtushenko, Y.; Malkova, V.; Stanevichyus, A.A. Parallel global optimization of functions of several variables. Comput. Math.

Math. Phys. 2009, 49, 246–260. [CrossRef]
24. Sergeyev, Y.D.; Candelieri, A.; Kvasov, D.E.; Perego, R. Safe global optimization of expensive noisy black-box functions in the

δ-Lipschitz framework. Soft Comput. 2020, 24, 17715–17735. [CrossRef]
25. Jones, D. The DIRECT global optimization algorithm. In The Encyclopedia of Optimization; Springer: Heidelberg, Germany, 2009;

pp. 725–735.
26. Paulavičius, R.; Žilinskas, J.; Grothey, A. Investigation of selection strategies in branch and bound algorithm with simplicial

partitions and combination of Lipschitz bounds. Optim. Lett. 2010, 4, 173–183. [CrossRef]
27. Evtushenko, Y.; Posypkin, M. A deterministic approach to global box-constrained optimization. Optim. Lett. 2013, 7, 819–829.

[CrossRef]
28. Kvasov, D.E.; Sergeyev, Y.D. Lipschitz global optimization methods in control problems. Autom. Remote Control 2013,

74, 1435–1448. [CrossRef]
29. Paulavičius, R.; Žilinskas, J. Advantages of simplicial partitioning for Lipschitz optimization problems with linear constraints.

Optim. Lett. 2016, 10, 237–246. [CrossRef]
30. Paulavičius, R.; Sergeyev, Y.D.; Kvasov, D.E.; Žilinskas, J. Globally-biased BIRECT algorithm with local accelerators for expensive

global optimization. Expert Syst. Appl. 2020, 144, 113052. [CrossRef]
31. Paulavičius, R.; Žilinskas, J. Simplicial Global Optimization; Springer: New York, NY, USA, 2014.
32. Sergeyev, Y.D.; Kvasov, D.E. Deterministic Global Optimization: An Introduction to the Diagonal Approach; Springer: New York, NY,

USA, 2017.
33. Sergeyev, Y.D.; Strongin, R.G.; Lera, D. Introduction to Global Optimization Exploiting Space-Filling Curves; Springer: New York, NY,

USA, 2013.
34. Shi, L.; Ólafsson, S. Nested partitions method for global optimization. Oper. Res. 2000, 48, 390–407. [CrossRef]
35. Sergeyev, Y.D.; Grishagin, V.A. Parallel asynchronous global search and the nested optimization scheme. J. Comput. Anal. Appl.

2001, 3, 123–145.
36. Van Dam, E.; Husslage, B.; Den Hertog, D. One-dimensional nested maximin designs. J. Glob. Optim. 2010, 46, 287–306.

[CrossRef]
37. Gergel, V.; Grishagin, V.; Israfilov, R. Local tuning in nested scheme of global optimization. Procedia Comput. Sci. 2015, 51, 865–874.

[CrossRef]
38. Gergel, V.; Grishagin, V.; Gergel, A. Adaptive nested optimization scheme for multidimensional global search. J. Glob. Optim.

2016, 66, 35–51. [CrossRef]
39. Grishagin, V.A.; Israfilov, R.A.; Sergeyev, Y.D. Comparative efficiency of dimensionality reduction schemes in global optimization.

AIP Conf. Proc. 2016, 1776, 060011.
40. Breiman, L.; Friedman, J.; Stone, C.; Olshen, R. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984.
41. Press, W.; Teukolsky, S.; Vetterling, W.; Flannery, B. Numerical Recipes: The Art of Scientific Computing; Cambridge University Press:

New York, NY, USA, 2007.
42. Grishagin, V.A.; Israfilov, R.A.; Sergeyev, Y.D. Convergence conditions and numerical comparison of global optimization methods

based on dimensionality reduction schemes. Appl. Math. Comput. 2018, 318, 270–280. [CrossRef]
43. Jones, D.; Martins, J. The DIRECT algorithm: 25 years Later. J. Glob. Optim. 2021, 79, 521–566. [CrossRef]
44. Gaviano, M.; Kvasov, D.E.; Lera, D.; Sergeyev, Y.D. Software for generation of classes of test functions with known local and

global minima for global optimization. ACM Trans. Math. Softw. 2003, 29, 469–480. [CrossRef]
45. Kvasov, D.E.; Mukhametzhanov, M.S.; Nasso, M.C.; Sergeyev, Y.D. On Acceleration of Derivative-Free Univariate Lipschitz

Global Optimization Methods. Lect. Notes Comput. Sci. 2020, 11974, 413–421. [CrossRef]
46. Sergeyev, Y.D.; Nasso, M.C.; Mukhametzhanov, M.S.; Kvasov, D.E. Novel local tuning techniques for speeding up one-dimensional

algorithms in expensive global optimization using Lipschitz derivatives. J. Comput. Appl. Math. 2021, 383, 113134. [CrossRef]

http://dx.doi.org/10.1007/BF00941892
http://dx.doi.org/10.3846/1392-6292.2008.13.145-159
http://dx.doi.org/10.1134/S0965542509020055
http://dx.doi.org/10.1007/s00500-020-05030-3
http://dx.doi.org/10.1007/s11590-009-0156-3
http://dx.doi.org/10.1007/s11590-012-0452-1
http://dx.doi.org/10.1134/S0005117913090014
http://dx.doi.org/10.1007/s11590-014-0772-4
http://dx.doi.org/10.1016/j.eswa.2019.113052
http://dx.doi.org/10.1287/opre.48.3.390.12436
http://dx.doi.org/10.1007/s10898-009-9426-y
http://dx.doi.org/10.1016/j.procs.2015.05.216
http://dx.doi.org/10.1007/s10898-015-0355-7
http://dx.doi.org/10.1016/j.amc.2017.06.036
http://dx.doi.org/10.1007/s10898-020-00952-6
http://dx.doi.org/10.1145/962437.962444
http://dx.doi.org/10.1007/978-3-030-40616-5_38
http://dx.doi.org/10.1016/j.cam.2020.113134

	Introduction
	Problem Statement
	Methods
	Core Global Search Algorithm
	Machine Learning Regression as a Tool for Identifying Attraction Regions of Local Extrema
	Adaptive Dimension Reduction Scheme

	Experimental Results
	Conclusions and Future Work
	References

