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Abstract: Some theories are explored in this research about decision trees which give theoretical
support to the applications based on decision trees. The first is that there are many splitting criteria
to choose in the tree growing process. The splitting bias that influences the criterion chosen due
to missing values and variables with many possible values has been studied. Results show that
the Gini index is superior to entropy information as it has less bias regarding influences. The
second is that noise variables with more missing values have a better chance to be chosen while
informative variables do not. The third is that when there are many noise variables involved in the
tree building process, it influences the corresponding computational complexity. Results show that
the computational complexity increase is linear to the number of noise variables. So methods that
decompose more information from the original data but increase the variable dimension can also be
considered in real applications.

Keywords: decision tree; splitting bias; splitting criteria; computational complexity; noise variable

1. Introduction

Decision trees [1–3] are a decision support tool that use a tree-like graph or model
of decisions either for classification or regression. Both classification trees and regression
trees can be seen as supervised learning models, the former one maps the input space into
predefined classes while the latter one maps the input space into a real-valued domain. As
an important part of data mining, decision trees are a discovery and prediction-oriented
supervised inductive learning method in which the trained model is assumed to be ap-
plicable to future, unseen, examples. The meaning of classification not only includes
identifying which group a new observation belongs to, on the basis of training dataset, but
also includes learning how this new observation is identified by detecting the variables’
difference between groups. In most cases, both identifying and learning are important, but
sometimes, learning is more important when the class has already been provided. Similarly,
for regression trees, the aim is to predict the new observation’s response variable value and
understand how it is determined.

The method decision trees have many advantages that others do not have [4–7].
Decision trees can discover the hidden decision rules, which have quite high interpretability
in explaining real applications. There are also many criteria to choose under different
situations, thus leading to more possibility in modeling. For learning different variables’
behavior between different groups, many traditional methods test variables’ values to
determine whether they differ significantly or not across different groups, typically using
means and variances. Subtle trends, however, may not be detected. So more complex
statistical models, like logistic regression [8,9], can be built to explore the information
involved in the data, but usually require many assumptions to make parameter estimation
possible. For example, logistic regression requires the observations to be independent of
each other and for there to be little or no multicollinearity among the independent variables.
If the assumptions are not valid, solutions obtained from these methods are not reliable.
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In practice, some variables are correlated with each other. These are typically against the
assumptions required and will inevitably lead to unreliable results.

These advantages undoubtedly bring convenience to decision making in medicine [10,11],
commerce [12,13], and elsewhere. Classification and regression trees (CART) proposed by
Loh [14] are one type of decision tree. This model splits the original dataset recursively
using the Gini index [15], twoing criteria [14] or ANOVA [16,17] to decide which variable
is most important and continues growing the tree until some criteria are achieved. It
can output a variable importance list and the corresponding accuracy. We have applied
decision trees to classification and regression problems in Zhao et al. [18] and Zhao et al.
[19] and find good behavior in these applications.

However, CART has some undesirable properties like tending to select variables that
have many classes (values) or many missing values. Different variables have different
properties. For example, some categorical variables only have two possible values while
some have a lot. Variables with many missing values maybe collected under low collection
frequency. Different properties of the variables may cause bias in the modeling process.
CART may favor some kinds of variables. In this research, the influence of different
property is explored. Specifically, the following areas are explored: the splitting bias due
to missing values under two different conditions and due to more values or categories
(Section 2), and the influence of noise variables on computational complexity (Section 3).
Some conclusions and future research are shown in Section 4.

2. Splitting Bias

In this section, the properties of different splitting criteria (entropy, Gini, etc.) are
explored under different conditions. The splitting bias is defined as the difference between
the observed and the theoretical information gain. For classification trees, one of the most
popular criteria is information gain, namely the Shannon entropy information gain from
parent node to child nodes. However this criterion is liable to unfairly favor attributes with
large numbers of values or categories compared to those with few. This will be proven
later in this section. In this sense, noise variables with large numbers of values could be
selected in preference to genuinely informative attributes with fewer values. In general,
this would lead to poorer predictive performance from the resulting tree. The probability
to choose predictor variables with more information decreases.

In addition, splitting rules favor those noisy predictor variables with more missing
values since their sample size is smaller than others. In this case, as the sample size
decreases, the probability for choosing noisy predictor variables with more information
decreases.

The gain ratio calculated from information gain also suffers the same kind of prob-
lem. It is acknowledged that attributes with very low information values (low attribute
information) appear to gain an unfair advantage [20].

Another splitting criterion is χ2. In fact, this criterion is not biased since for different
degrees of freedom, χ2 follows different probability distribution functions. Using degrees
of freedom, χ2 eliminates the problem of bias. Although there are splitting criteria like
χ2 that have no bias, CHAID [21] in R, which uses χ2 as the splitting criterion, however
requires dependent and explanatory variables both to be categorical variables, which is
not suitable for the datasets. For regression problems, ctree [2,3] will be used, which is an
unbiased method, having no splitting bias in these cases.

2.1. Bias Due to Missing Values

In this section, it will be shown that both Gini and entropy information have bias in
favor of choosing variables with more missing values. So no matter which splitting criterion
is chosen, we have to face the bias due to missing values. That is why pre-processing is
applied to missing values in the real data application.

When information gain is calculated, there is a bias between the theoretical gain and
observed gain values due to the difference between the sample and population distributions.
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This bias can be different when there are missing values. For missing values in independent
variables, most procedures deal with them by leaving out incomplete observations. The
models in this research actually are more ambitious. Any observation with values for the
dependent variable and at least one independent variable will participate in the modelling
process [22]. For the Gini index, how bias is influenced by missing values has been
investigated by Strobl et al. [20]. So an equivalent analysis for entropy is conducted as the
following.

Assume there are an independent variable X and a dependent variable Y with two
categories. The number of observations in the first category for Y is N1, and that in the
second category is N2, with a summation as N. Then the entropy information for the root
node is

entN = −N1

N
log2

(
N1

N

)
− N2

N
log2

(
N2

N

)
.

In order to calculate the expectation of entN , for simplicity, we first calculate the bias for
E
(

N2
N log2

(
N2
N

))
, where N2 ∼ B(N, p) and N is fixed. Specifically, B denotes binomial

distribution, N denotes the total number of observations, p denotes the probability p =
P(Y = secondcategory). The result is

E
(
−N2

N
log2

(
N2

N

))
=E
(
−N2

N
(log2(N2)− log2(N))

)
=E
(
−N2

N
(log2(N2))

)
+ p log2(N).

If bias has value 0, that is the observed information gain is equal to the theoretical informa-
tion gain, then

E
(
−N2

N
log2

(
N2

N

))
= −p log2(p),

so that

E
(
−N2

N
(log2(N2))

)
= −p log2(Np).

Then bias is given by E
(
−N2

N (log2(N2))
)
− (−p log2(Np)). Similarly, we can get the bias

for N1, which follows B(N, 1− p). Then the total bias for the root node is

E(biasN) =E
(
−N1

N
(log2(N1))

)
− (−(1− p) log2(N(1− p)))

+ E
(
−N2

N
(log2(N2))

)
− (−p log2(Np)).

It is not easy to get E
(
−N1

N (log2(N1))
)

and E
(
−N2

N (log2(N2))
)
− (−p log2(Np)) analyti-

cally as they contain the terms of the form E(N1 log2(N1)), so a polynomial expression is
used to approximate the log function. Given that

log2(1 + a) = a− a2

2
+

a3

3
· · · , (1)
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for |a| < 1, we substitute a = p − 1 in Equation (1), and require that p is not small. If
X ∼ B(n, p), then its moments are given by

E(X) = np,

E
(

X2
)
= np + n(n− 1)p2,

E
(

X3
)
= np + p2

(
3n2 − 3n

)
+ p3

(
n3 − 3n2 + 2n

)
, and

E
(

Xk+1
)
= pq ·

d
(

E
(

Xk
))

dp
+ npE

(
Xk
)

for k = 3, 4, . . . .

Given that N1 and N2 are binomially distributed, we obtain, using the first two terms in
the expansion of the log function,

E
(

êntN2

)
=E
(
−X

N
log2

X
N

)
=E

[
−X

N

(
X− N

N
− 1

2

(
X− N

N

)2
)]

=E
[
−2X2

N2 +
3X
2N

+
X3

2N3

]
.

Now, using the formulae for E(Xk), it is easy to get

E
(

êntN2

)
=

(
1

2N2 −
2
N

+
3
2

)
p +

(
− 3

2N2 +
7

2N
− 2
)

p2 +

(
1

N2 −
3

2N
+

1
2

)
p3.

Then, the bias of entropy for N2 can be calculated as

biasN2 =E
(

êntN2

)
− E

(
entN2

)
=E
(

êntN2

)
−
(
−2p2 +

3
2

p +
1
2

p3
)

=

(
1

2N2 −
2
N

)
p +

(
− 3

2N2 +
7

2N

)
p2 +

(
1

N2 −
3

2N

)
p3.

Similarly, the bias for N1 is

biasN1 =

(
1

2N2 −
2
N

)
(1− p) +

(
− 3

2N2 +
7

2N

)
(1− p)2 +

(
1

N2 −
3

2N

)
p3,

so the bias for the root node is

biasN =biasN1 + biasN2

=

(
1

2N2 −
2
N

)
+

(
− 3

2N2 +
7

2N

)(
1− 2p + 2p2

)
+

(
2

N2 −
3
N

)
p3.

(2)

For the root node, the expected entropy information is E(ênt) for N observations.
After splitting the root node, it is easy to get the left child node and the right child node
with NL observations and NR observations, respectively. Two cases where X and Y are
independent and when they are associated are considered as the following.

Case 1: Explanatory Variable X is Independent of Response Variable Y.
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In this case,

E
(
4̂ent

)
=E
(

ênt
)
− NR

N
E
(

êntR

)
− NL

N
E
(

êntL

)
=biasN + E(ent)

− NR
N

(biasR + E(entR))−
NL
N

(biasL + E(entL)).

Since X is independent of Y, so E(ent) = E(entR) = E(entL), and

E
(
4̂ent

)
=biasN −

NR
N

biasNR −
NL
N

biasNL

=

(
2
N

+
1

2N2 −
1

2NLNR

)
p +

(
− 3

2N2 +
3

2NLNR
− 7

2N

)
p2

+

(
3

2N
+

1
N2 −

1
NLNR

)
p3 +

(
2
N

+
1

2N2 −
1

2NLNR

)
(1− p)

+

(
− 3

2N2 +
3

2NLNR
− 7

2N

)
(1− p)2

+

(
3

2N
+

1
N2 −

1
NLNR

)
(1− p)3.

As X, Y are independent, the split in X can be anywhere. It is assumed to be in the middle
of X, so NL = NR = N

2 . The other circumstances can be explored in future work. Then we
have

E
(
4̂ent

)
=

(
2
N
− 3

2N2

)
p +

(
9

2N2 −
7

2N

)
p2 +

(
3

2N
− 3

N2

)
p3+(

2
N
− 3

2N2

)
(1− p) +

(
9

2N2 −
7

2N

)
(1− p)2+(

3
2N
− 3

N2

)
(1− p)3.

Since E(4ent) = 0, then
bias = E

(
4̂ent

)
.

If p = 0.5, then bias = 5
8N . This shows that, when X and Y are independent, as sample size

N decreases, entropy gain increases. Noise (redundant) variables can be seen as X here
as they are independent with Y. Suppose the number of missing values is nX, then the
sample size of X with missing values becomes N− nX . A higher nX means a lower N− nX
for fixed N. For bias = 5

8(N−nX
, more missing values means a bigger bias for this noise

variable X, thus with a bigger entropy real gain. In that case noise (redundant) variables
with more missing values have a better chance to be chosen.

Case 2: Explanatory Variable X is Associated with Response Variable Y.

In practice, if X is not a noise variable, then X and Y are associated. For example, X
and Y are related as Y = a + bX, where a and b are constants. Since X is dependent on Y,
the split should be at the same place as that in Y. In that case, the sample will become pure
after splitting, which means E

(
êntR

)
= E

(
êntL

)
= 0. Then, the expectation of entropy

gain is:

E
(
4̂ent

)
=E
(

ênt
)
− NR

N
E
(

êntR

)
− NL

N
E
(

êntL

)
=biasN + E(ent).
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Then, the bias of the entropy gain is

bias =biasN + E(ent)− E(ent)
=biasN .

Similarly, when p = 0.5, from Equation (2), biasN = −5/(8N) < 0. So, there are circum-
stances, when X is not a noise variable, and X, Y are dependent, that we have a negative
bias. It is opposite to the situation for independent variables. For bias = − 5

8(N−nX
, more

missing values means a smaller bias for this informative variable X, thus with a smaller
entropy real gain. In that case, informative variable X with more missing values has less
chance to be chosen.

The approximation is verified by simulation, choosing p = 0.5, 0.6, ..., 0.9 as p and
1− p are symmetric. For a specific N (the total number of observations), N2 ∼ B(N, p) and
N1 = N − N2 are chosen. Then, the entropy bias in the simulation can be calculated using
N, N1, N2 and assumptions from the above two situations.

The results in Figure 1 show that the theoretical values are roughly the same as the
simulated ones, which confirm our approximation. When N gets bigger, the practice
entropy gain is almost the same as the theoretical entropy gain, thus resulting with an
almost 0 bias value. One difference is that when N is small and p or 1− p is small, the log
approximation used in Equation (1) is not so suitable, so there is gap between the simulated
and theoretical results.

For noise variables, the more missing values there are, the bigger the chance they have of
being chosen as a splitting variable. For informative variables, the more missing values there are,
the smaller chance they have to be chosen. Both situations will lead to bad results. That is why
we deal with missing values and other outliers in the data cleaning process in real application.

Figure 1. Entropy gain bias in theory and practice. Red dots are theoretical values and black dots are
based on simulation. The x axis shows the total number of observations, N.
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2.2. Bias Related to More Values or Categories

In this section, how the entropy and Gini criteria have bias related to the number of
categories or number of possible values in X is explored. A χ2 statistic is also involved as a
criterion for comparison, which does not have this bias due to more values or categories as
its degree of freedom changes accordingly.

The ground truth is assumed as that X and Y are independent. When the ground
truth is unknown, for any split in X, the event that X is dependent on Y in each child node
is accepted with probability p. The hypotheses are

H0: X is independent of Y; H1: X is dependent on Y

When H0 is true, then X is independent of Y for any possible split in X. The corresponding
probability to accept H0 is

(1− p)r

where

r =

{
m− 1, ordered variable X
2m−1 − 1, categorical variable X,

and m is the number of unique values for an ordered variable or categories for a categorical
variable. When H1 is accepted, we have

P(H1 is accepted|H0 is true) = 1− (1− p)r,

which means that there is at least one split in X that makes X depend on Y. It is easy
to see that explanatory variables with more values or categories have a better chance to
be chosen even though X is independent of Y. For the Gini index or entropy gain, they
have not eliminated this multiple comparison effect, so they still have that kind of bias.
However, for a Chi-squared test [21], it uses the corresponding p value instead, and it has
different distribution for different degrees of freedom calculated from the possible values
or categories in X, so it eliminates this effect.

A simulation is conducted to explore the bias effect for the Gini gain and entropy gain
while compared with p

(
χ2). The corresponding results are shown in Figure 2. It is obvious,

for entropy gain and entropy gain rate, that the bias increases when k or m increases. For
the Gini index, it also increases, but the bias value changes little, being around 0.42 to 0.58.
For χ2, as expected, there is no sign of bias due to more values or categories in X and Y.

In Figure 2, there is some kind of bias trend for Gini index and p
(
χ2)

m,k, but it is clear
that they do not show such obvious trend as that of entropy gain and gain rate. For Gini
gain, there are also small bias when k is 7 and m is 3. So, the trend is also not stable when k
and m changes. The range of their bias values are shown at the right side of each sub figure.
The important point is how the intensity changes across k and m in each sub figure. The
comparative intensity of the same k and m among different figures is also important but it
is not included in our analysis context. So the values are not scaled. Both entropy gain and
entropy gain rate have an obvious trend when k and m increases, as the color gets darker.
However, Gini gain and p

(
χ2)

m,k do not show such obvious trend. That explains why Gini
gain is better than entropy. For classification purposes, the Gini index is chosen as the
splitting criterion as its bias due to more values or categories is not that large compared
to entropy. The rpart package [23] in R includes the choice of Gini index as the default
splitting criterion. For χ2, although it is good, the CHAID package in R can only be applied
to categorical variables while our later analysis includes continuous response variables.
There are many algorithms to build classification trees, including ID3 [24], C4.5 [25] and
CART [14], etc. ID3 is one of the original algorithms, which uses the entropy information
criterion, but it does not apply any pruning nor does it deal with numeric attributes or
missing values. As an evolution of ID3, C4.5 uses the entropy information gain ratio as the
splitting criterion. The splitting ceases when the number of instances to be split is below a
certain threshold, and error-based pruning is performed after the growing phase. Further,
C4.5 can handle numeric attributes. In terms of CART, such binary trees are constructed
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based on the Gini index or twoing criterion and the tree is pruned by complexity criterion.
It can also involve misclassification costs and prior probability distributions in the tree
building process [26]. As software R is used for coding, and the decision tree package rpart
is generally based on CART, so CART is chosen as the classification tree using Gini index
as the splitting criterion.

Figure 2. Bias when number of categories or values in X and Y changes. The four subfigures are the
bias of entropy gain(A), entropy gain rate(B), Gini gain(C), p

(
χ2)

m,k(D), respectively, at top left,
top right, bottom left and bottom right. Here, the x axis label k is the number of values or categories
in response variable Y and the y axis label m is the number of values or categories in explanatory
variable X. The darker the shade, the higher the bias.

3. Influence of Noise Variables on CART Computational Complexity

The contribution in this section is to explore how the number of noise variables
influences the computational time under simplified conditions using the existing Bonferroni
multiplier [27].

This section explores how the number of noise variables influences the computational
complexity compared to merely using informative variables. The term computational
complexity here refers to the time complexity of an algorithm. In computer science, the
time complexity of an algorithm quantifies the amount of time taken by an algorithm to
run as a function of the length of the string representing the input. Time complexity is
commonly estimated by counting the number of elementary operations (such as addition,
subtraction, multiplication, division, comparison operations) performed by the algorithm,
where an elementary operation takes a fixed amount of time to perform. Thus, the amount
of time taken and the number of elementary operations performed by the algorithm differ
by at most a constant factor. In that way, the number elementary operation is counted to
represent the computational complexity.

For CART, the following ideal conditions are assumed:

1. All the independent variables can be divided into effective variables and noise vari-
ables. The criterion is whether they are used in the tree growing process or not. As
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the most effective variables will be chosen for splitting firstly. Those variables not
chosen have less effect than those chosen. A tree building process includes both
a growing process and pruning process (or stopping criteria). This time, the tree
is assumed to choose the stopping criteria, so that we only need to concentrate on
the growing process. Noise variables refer to variables that are not used in the tree
growing process.

2. All variables are categorial variables for convenience of calculation.
3. For every split, no matter how many categories the independent variable has, there

are always two child nodes after the parent node since CART is a binary tree. All
nodes are assumed to stop splitting at the same time which means the depth is the
same for every branch on the same level.

4. When one independent variable is chosen as a split, it will not be chosen again.

Such simplifying assumptions are made for easy of calculation. In reality, the process
is more complex than that. Define N as the number of explanatory variables including
both effective variables and noise variables, M as the number of effective variables, and cj
as the number of categories in the jth independent variable. In the splitting process, the
explanatory variable will be split into two intervals (numerical) or groups (categorical).
The number of all possible ways of separating the cj categories into two groups is the
Bonferroni multiplier [27]. Here since all categories are split into two groups, it is

S
(
cj, 2

)
=

2

∑
r=1

(−1)2−r rcj

r!(2− r)!
.

3.1. Computational Complexity without Noise Variables

For the initial split, assume variable a1 is chosen, and the computational complexity is

20
M

∑
j=1

S
(
cj, 2

)
b + m,

where b is the computational complexity involved in calculating the entropy information
for one possible split in one variable and m is the computational complexity for calculating
the entropy information in y.

After that, variable a1 will not be used again because of Assumption 4. Assume
variable a2 is chosen as the split for both child nodes after a1, and the computational
complexity for both child nodes are similar, so the total computational complexity at
step 2 is

21
M

∑
j=2

S
(
cj, 2

)
b.

Even though it is essential to calculate the entropy gain from the parent node to child nodes,
just calculating the entropy information in child nodes is sufficient since the parent node
entropy information has already been calculated from the previous step. So here we just
count the computational complexity for the child nodes.

Under Assumption 3, the number of terminal nodes increases in a power of 2. After
summing all the computational complexity for all the nodes, the computational complexity
for the whole tree is:

CCe f f ect =
M−1

∑
s=0

2s
M

∑
j=s+1

S
(
cj, 2

)
b + m.

3.2. Computational Complexity with Noise Variables

It is easy to calculate the computational complexity with noise variables in a similar
way to the case without noise variables. The difference is the total number of explanatory
variables in use is not M but N, which includes the noise variables. The difference compar-
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ison will be shown in Section 3.3. For the initial split, assume variable a1 is chosen, so the
computational complexity is

20
N

∑
j=1

S
(
cj, 2

)
b + m.

For the second split, it is

21
N

∑
j=2

S
(
cj, 2

)
b.

There are many reasons for the tree to stop growing, such as the node becomes pure or all
the variables have the same proportion in all the y categories. At level M + 1, all the M
effective variables are used, so the tree will test whether the first noise variable is effective
or not. Since noise variables are assumed to be those not selected by the tree. So after the
testing, the tree will stop growing. The computational complexity for the testing is

2M
N

∑
j=M+1

S
(
cj, 2

)
b.

For the whole tree, the computational complexity is

CCe f f ect+noise =
M

∑
s=0

2s
N

∑
j=s+1

S
(
cj, 2

)
b + m.

3.3. Computational Complexity Increase

The increase in computational complexity due to the presence of noise variables is

CCinc =CCe f f ect+noise − CCe f f ect

=
M

∑
s=0

2s
N

∑
j=s+1

S
(
cj, 2

)
b + m−

M−1

∑
s=0

2s
M

∑
j=s+1

S
(
cj, 2

)
b−m

=
M

∑
s=0

2s
N

∑
j=M+1

S
(
cj, 2

)
b.

Assuming that the cj has the same value across different j, then we can rewrite S
(
cj, 2

)
b as

one value u. Then CCinc becomes

CCinc =
(

2M+1 − 1
)
· (N −M)u.

which is a linear function of the number of noise variables, N−M. So, even when methods
which increase the dimension of explanatory variables are used before the application of
decision trees, the computational complexity will not increase dramatically.

4. Conclusions

For trees, there are many splitting criteria to choose. We explored their splitting bias
due to missing values, variables with more values or categories. Results show that noise
variables with more missing values have a better chance to be chosen, but informative
variables with more missing values have a less chance to be chosen. Between entropy
information and the Gini index, we choose the latter as the splitting criterion as its bias
due to more values or categories is not that obvious compared to the former as shown in
Figure 2. Under some assumptions, we studied the influence of noise variables on CART
computational complexity. That increase will generally only result in a linear increase in
the computational complexity.

The limitations of the research are that the analysis is conducted under simple as-
sumptions, more complex assumptions are suggested in the future research. For example,
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the theoretical result under totally independent or totally dependent are conducted but
those between them are analyzed by simulation instead of by theory. In the computational
complexity section, future research can be done under less condition limitations.
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