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Abstract: In this paper, we establish new (p, g), -integral and (p, 9)*?-integral identities. By employ-
ing these new identities, we establish new (p, 7)«, and (p, )*?- trapezoidal integral-type inequalities
through strongly convex and quasi-convex functions. Finally, some examples are given to illustrate
the investigated results.
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1. Introduction and Preliminaries

Quantum calculus, often known as g-calculus, is a branch of mathematics that studies
calculus without limits. Euler’s work on infinite series, which he integrated with Newton’s
work on parameters, served as the idea for the g-calculus analysis, which was founded
in the eighteenth century by famous mathematician Leonhard Euler (1707-1783). In 1910,
F. H. Jackson [1] used L. Euler’s expertise to define the g-derivative and g-integral of any
function on the interval (0, o) using the g-calculus of infinite series. Quantum calculus
has a very long history. However, to keep up with the times, it has undergone rapid
growth over the past few decades. However, in order to stay current, it has experienced
tremendous development over the last several decades. I am a strong believer in this as
it serves as a link between mathematics and physics, which is useful when working with
physics. To get more information, please check the application and results of Ernst [2],
Gauchman [3], and Kac and Cheung [4] in the theory of quantum calculus and theory of
inequalities in quantum calculus. In previous papers, the authors Ntouyas and Tariboon [5]
investigated how quantum-derivatives and quantum-integrals are solved over the intervals
of the form [xq, k3] C R. In addition, they studied the characteristics and specific results
of initial value problems in impulsive g-differential equations of the first and second
order. Furthermore, set a number of quantum analogs for some well-known effects, for
example, Holder inequality, Hermite-Hadamard inequality and Ostrowski inequality;,
Cauchy-Bunyakovsky-Schwarz, Gruss, Gruss—Cebysev, and other integral inequalities
that use classical convexity. Furthermore, Noor et al. [6], Sudsutad et al. [7], and Zhuang
et al. [8] played an active role in the study and some integral inequalities have been
established which give quantum analog for the right part of Hermite-Hadamard inequality
by using g-differentiable convex and quasi-convex functions. Numerous mathematicians
have carried out research in the area of g-calculus analysis; interested readers may check
the works in [9-19].

g-calculus generalization is post-quantum or, often, is referred to as (p, q) calculus.
Post-quantum calculus is a recent advancement in the study of quantum calculus that
contains p and g-numbers with two independent variables p and 4. Quantum calculus
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is concerned with g-numbers with a single basis. Therefore, (p, g)-calculus is known as
two-parameter quantum calculus. Applications play significant roles in mathematics
and physics, such as combinatorics, fractals, special functions, number theory, dynamical
systems, and mechanics. Many additional (p, g)-analogs of classical inequalities have been
discovered since the publication of this article. In (p, g)-calculus, we get the g-calculus
formula when p = 1 and the original mathematical formula when g — 1~. Motivated by
the research work going on, Tung and Gov [20] introduced the concepts of (p, g)-derivatives
and (p, q)-integrals on finite intervals. Kunt et al. [21] used (p, q)-differentiable convex and
quasi-convex functions to prove the left side of the (p, )-Hermite-Hadamard inequality;,
and then generated some new (p, 7)-Hermite-Hadamard inequalities. Latif et al. [22]
proved the new variations in trapezoidal inequalities after quantum have been shown to be
achieved using the new (p, q)-integral identity. Based on (p, g)-calculus, many works have
been published by many researchers, see in [23-30] for more details and the references
cited therein.

Integral inequalities are a fundamental tool in both pure and applied mathematics
for constructing qualitative and quantitative properties. This perspective facilitated the
discovery of novel and significant findings in a wide variety of areas of the mathematical
and engineering sciences and provided a comprehensive framework for the study of many
issues. Numerous researchers have explored the different types of convex sets and convex
functions.

Suppose that the function K : I C R — R is said to be convex, if K meets the following
inequality:

K(tr1 + (1 —1)k2) < (k1) + (1 — 17)K(K2)

forallxy,xy € Iand 7 € [0,1].

Hermite-Hadamard inequalities are among the most well-known results in the the-
ory of convex functional analysis. It has an intriguing geometric representation that is
applicable to a wide variety of situations.

According to the exceptional inequality, if  : I C R — R is a convex mapping on the
interval I of real numbers and k1, xp € [ with k1 < k. Then,

K1 + Ko 1 7 /C(Kl) —|—’C(K2)
/c( ) < - _KlJK(r)dT < M) + 1) )

2 2

Inequality (1) was introduced by C. Hermite [31] and investigated by J]. Hadamard [32]
in 1893. For K to be concave, both inequalities hold in the inverted direction. Many
mathematicians have paid great attention to the inequality of Hermite-Hadamard due
to its quality and validity in mathematical inequalities. For significant developments,
modifications, and consequences regarding the Hermite-Hadamard uniqueness property
and general convex function definitions, for essential details, the interested reader would
like to refer to the works in [33-35] and references therein.

Different inequalities are used to represent convex functions. Convex functions are
responsible for several well-known inequalities. Strongly convexity is a reinforcement of the
concept of convexity; some aspects of strongly convex functions are just “stronger versions”
of known convex properties. Polyak [36] introduced the strongly convex function as

Definition 1 ([36]). A function K : I — R with the modulus x > 1 is called strongly convex
function, if

Ktk + (1 —1)x0) < K(x1) + (1 = 1)K (%2) — 7(1 — ) x (102 — K1)2
forall k1, € I, k1 < kpand T € [0,1].

Strongly convex functions play a significant role in optimization, mathematical eco-
nomics, nonlinear programming, etc. Some properties of strongly convex functions are
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just stronger versions of properties of convex functions. Moreover, Nikodem et al. [37]
introduced new characterizations of inner product spaces among normed spaces involving
the notion of strong convexity.

Note that quasi-convex functions are a generalization of the convex function class, as
there are quasi-convex functions that are not convex.

Definition 2 ([38]). A function K : I — R with the modulus x > 1 is strongly quasi-convex
function, if

Kty + (1 — 1)k2) < max{K(x1), K(2)} — (1 = T)x (k2 — 111 )
forall k1,xp € I,kg < xpand T € [0,1].
Remark 1. The notion of strongly quasi-convexity strengthens the concept of quasi-convexity.

Latif et al. [22] proved quantum estimates of (p, q)-trapezoidal integral inequalities
through convex and quasi-convex functions

Theorem 1 ([22]). Suppose that KC : [k1, k2] — R is a (p, q)«, -differentiable function on (x1,x7),
w1 DpgK is a (p,q)x,-integrable on [x1,%2] and 0 < q < p < 1. If |, DyqK|” is a convex
functions on k1, k2| with o > 1, then

1 (1=p)rtpra gK (k1) + pK(i2) | _ q(xa —11) -1
R X) o dpaX — < T1(p, v
‘P(Kzf’fl) '/Kl *) A [Z]M [Z]M [ 1(p q)]

X [TZ(PJI){Kle,qK(Kl)rT"‘TS(PM)‘MDMIC(KZ)‘U];r ()
where
2([2]pq —1)
Ti(pg) = —5——
2134
q[(5p° —4p* —2p +2) + (6p® —4p —2)q + (5p — 2)4* +2¢°] + (2p* —2p> —2p* +2p)
T2l = 21403
palipq
3 _242p) 4 (2p*> 4+ 2)q + pg?] +2p* -2
Ta(p,q) = 1L p)+ (2P +2)q+pg’] +2p —2p.

215,431 54

Theorem 2 ([22]). Suppose that K : [k1, k2] — R is a (p, q)«, -differentiable function on (x1,x2),
1 Dp,gK is a (p,q)x,-integrable on [k1,x2] and 0 < q < p < 1. If |, DMIC|‘7 is a quasi-convex
functions on [kq,xp] with o > 1, then

1 (1=p)rxa+prz R giC(x1) + pK(x2)
pli2 — 1) Jry e

2lpa
p4
where
Ti(p,q) = 2([2[]2’7]'%; o3

Several fundamental inequalities that are well known in classical analysis, like Holder
inequality, Ostrowski inequality, Cauchy-Schwarz inequality, Griiess—Chebyshev inequal-
ity, and Grtiess inequality. Using classical convexity, other fundamental inequalities have
been proven and applied to g-calculus.
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Our objective is to develop improved trapezoidal type inequalities by using post-
quantum calculus and to support this claim graphically.

1.1. g-Derivatives and Integrals

In this section, we discuss some required definitions of g, (p, q)-Calculus and important
quantum integral inequalities for Hermite-Hadamard on left and right sides bonds.
Throughout this paper, we are using constants 0 < g < land0 < g <p < 1.

The [m] , integers are known as g-integers and are written as

1—g"
m,=1+g+g¢>...q"—1= , for m=1,2...
[m], g+q-.-q T

[m]y =m, for m=1

The [m] gt and [ n: } ! are denoted as g-factorial and g-binomial, respectively, and are

written as follows:

In the early twentieth century, the Reverend Frank Hilton Jackson made major contri-
butions to the classical concept of a derivative of a function at a point, which allowed for a
more straightforward study of ordinary calculus and number theory in these investigations.
Jackson is responsible for numerous seminal studies in the subject, including that in [1], in
addition to creating the g-analogs of certain major results discovered in these disciplines.

K(x) — K(qx)
(1-gqx ~’

The classic Jackson approach is given below.

DyK(x) = k # 0. 4)

[ R dix = (1= g2 Y " K2, ©)
0 n=0

provided the sum converge absolutely.
The g-Jackson integral in a generic interval [k1, k7] is defined as follows:

72K(K) dgx —7IC(K) dgx —7/C(K) dgx .
K1 0 0

Whenever q approaches 1, the number theory, deduction, and ordinary integration
findings become polynomial expressions in a real variable g.

Definition 3 ([5]). We suppose that KC : [k1,k2] — R be an arbitrary function. Then qy,-
derivative of IC at x € [K1, 2] is defined as follows:

aDyfc(r) = HI SR L) ©
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As K is an arbitrary function from [Kkq,%2) to R, so for k = 1, we define , D;K(x1) = KILn%
1

x; DgKC (). The function K is called qy,-differentiable on (K1, 1), if «, DgK (k) exists for all x €
K1, 12].
Remark 2. Note that if k1 = 0 in (6), then we obtain the similar q-derivative that is defined in (4).

The following lemma is play key part to calculate g, -derivatives.

Lemma 1 ([5]). Taking ¢ € R, we have

1—¢° _
ki Dg(x —x7)° = (1_2)(95—7(1)5 .

Definition 4 ([5]). We suppose that K : [x1,x2] — R be an arbitrary function, then the qy, -
definite integral on [kq, k3] is described as below

J K0 = (=) k) Kl 4 (=), ke bl 0)

K1

The following properties are very important in quantum calculus:

Theorem 3 ([5]). Let K : I — R be a continuous function. Then,
1. Kqu f’:; IC(T) Klqu = ]C(x);
2. [F i DgK(T) kdgT = K(x) = K(x), x € (1, %).

The following is useful results for evaluating such gx;-integrals.

Lemma 2 ([5]). The following formula holds for { € R\{—1}, then

o 1—
/Kl (T —1x1)° ,dgT = <1ng+1> (o —x)"

In [9], Alp et al. established the g, -Hermite-Hadamard inequalities for convexity,
which is defined as follows:

Theorem 4 ([9]). We suppose that K : [k1, k2] — R is a convex differentiable function on [x1, 1]
Then qy,-Hermite-Hadamard inequalities are as follows:

K2
qr1 +K2> 1 / qK (k1) + K(x2)
K < K(x) g dge < ——2—22, 8
(P, < s | e r < BB ®
K1
On the other hand, the following new description of g*2-derivative, §*2-integration
and related g*2-Hermite-Hadamard form inequalities were given by Bermudo et al. [15]

Definition 5 ([15]). We suppose that IC : [x1,x2] — R is an arbitrary function, then qg*2-derivative
of K at k € [kq,x7] is defined as follows:

K(gr + (1 —g)xa2) — K(x)
(1—-9)(x2 —x)

As K is an arbitrary function from [xy, x5] to R, so for x = x;, we define 2D, KC(x7)

= li_>m 2D, K (). The function K is called g*2-differentiable on [«1, k2], if 2D, /KC(k) exists
K—Kp

for all k € [xq,x2].

2D K(x) = , K # K.
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Definition 6 ([15]). We suppose that IC : [x1,x2] — R is an arbitrary function. Then, the
q*2-definite integral on K1, 1] is defined as

K s

/IC(K) e = (1—q) (k2 —x) Y "K("c+ (1= q")k2), x € [K1,52].

e n=0

Theorem 5 ([15]). We suppose that K : [k1,k2] — R be a convex function on [kq,x2]. Then,
q*2-Hermite-Hadamard inequalities are as follows:

K1 + Ko 17 . K (1) 4+ gK(x2)
IC( 2, )s pa— kl/K(K) dgx < 2, : )

From Theorems 4 and 5, one can the following inequalities:

Corollary 1 ([15]). For any convex function K : [k1, k2] — R, we have

IC(QKl[;};KZ) +IC<K1 EzL]ZKZ) < Kzim {j’C(K) x1 gk +j/C(K) ”qux} < K(r1) + K(x2) (10)

and

+ 1 2 o) ) . Lk
IC<K1 : Kz) < 206 ) {/IC(K) Klqu+/,C(K) qux} < M a1

1.2. (p, q)-Derivatives and Integrals

In this section, we review some fundamental notions and symbols of (p, q)-calculus.
The [m] p,q Integers are known as (p, q) integers and are written as

The [m] pqt and [ 1711 } ! are denoted as (p, q)-factorial and (p, q)-binomial, respec-
P

tively, and are written as follows:

m
[m]prq! = n[i]m, m>1, [o]mz =1,
1=

{ " ] = Mt
il [m — ], i, !
Definition 7 ([20]). The (p, q)-derivative of mapping K : [k1, k2] — R is given as
K(pr) — K(gx)
D, K(x) = S0P Z A0 e s, (12
pal () (p—a)x . :

Definition 8 ([20]). The (p,q),,-derivative of mapping K : [x1,x2] — R is given as

K(px+ (1 —p)x1) — K(gx + (1 — q)x1)

- =) RFETL (13)

81 DP,LI’C(K> =
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As K is an arbitrary function from [«1, k3] to R, so for x = x1, we define y, Dp 4/ (x1)
= le x; Dp,gK (). The function K is called (p, ), -differentiable on [xq, 2], if x, Dp,4KC(x)
K—Kq

exists for all k € [k, x7].
Definition 9 ([23]). The (p, q)"*-derivative of mapping K : [x1, 2] — R is given as

K(gx + (1 —gq)x2) — K(px + (1 — p)xa)

" Dpak(o) = - -2

, K # K. (14)

As K is an arbitrary function from [«1, k3] to R, so for x = x5, we define 2D, ;K (x7)
= lim "D, ,K (k). The function K is called (p, q)"*-differentiable on [x1, k5], if ®2D, 4K ()

K—Kp
exists for all k € [k1, Kp).

Definition 10 ([20]). The definite (p, q)y,-integral of mapping K : (i1, k2] — R on [k, k2] is
stated as

K o ql’l qﬂ qn
/K K1) ydpqT = (p = q)(x — K1) Z an’C(anK"‘ <1 - W)’ﬁ)- (15)

1 n=0

Definition 11. From [23], the definite (p, q)*2-integral of mapping K : [k, k2] — Ron [K1, k3]
is stated as

o) 0 n n n
/K K (1) 2dp,t = (p—q)(ka—%) ¥ pZHIC(pZHK—i— (1 - pZH)Kz). (16)

n=0

Remark 3. If we take k1 = 0 and x = xy = 1in (15), then we have

1 00 qn qn
[ @ atpat == & TS ).
0 n:()p p

Similarly, by taking x = 11 = 0 and xp = 1 in (16), then we obtain that

1 1 0 qn qn
/0 K(7) 'yt =(p—q) ¥ pn+1/c(1 - pm).

n=0

In [21], Kunt et al. proved the following Hermite-Hadamard-type inequalities for
convex functions via (p, ), integral:

Theorem 6 ([21]). For a convex mapping K : [K1, k2] — R which is differentiable on (i1, 1], the
following inequalities hold for (p, q),, -integral:

g1 + pxa 1 pro+(1—p)ry QK:(Kl) + p’C(Kz)
IC( mm ) : p(ra — K1) /K1 K)o dpare < [Z]WI ' W

Lemma 3. We have the following equalities:

x2 (2 — 11
(ko —x)" *2dpy o = P
/"1 " [+ 1,

)IXJrl

)tX-i-]

"2 (1) — 11
K —x1)" o dp ok = —— L
O s = S

where v € R\{—1}.
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Proof. From Definition 11, we have

N

agk
I
s

3
Il
o
=

[ =) g = (p = )2~ 1)

1

=(p—q)(x2—11)

3
I
o
S

RN hg:
[]8 x|
B
AN
N S N N
AN
x|
Il =
AN
—
b
)
\
ke
2
S—
~__
=

=(p—q)(x2— K1)

3
Il
o
S
=
+
R
/N
< =
~__
=
+
=

B (KZ _ Kl)DtJrl

- [oc—f—l]prq :

Similarly, we can compute the second integral by using the Definition 10, for more
details see in [18]. O

The main objective of this paper is to present some new (p, q) estimates of trapezoidal
type inequalities for strongly convex and quasi-convex functions and show the relationship
between the results given herein. Some examples are given to illustrate the investigated
results. Finally, conclusion part is given at the end.

2. Trapezoidal Type Inequalities for (p, g)-Quantum Integrals

We are now providing new trapezoidal type inequalities for functions whose absolute
value of first (p, q)«,- and (p, g)*2-derivatives are strongly convex functions with modulus
X = 1. To prove our main results, we will initially suggest the following useful lemmas.

Lemma 4. Suppose that KC : [k1,k2] — R is a (p,q)«,-differentiable function on (x1,17). If
x1 Dp,gKC is a (p, q)«, -integrable on (x1,%7). Then, the following identity holds:

1 (I=p)x1+pr, gK(x1) + pK(x2)
X) g dpgx — ——F—=2
i) Lo () 2l

= m/ / €—7) [qDpaK((1 = 7)1 + Th2) — 1 Dp,aK((1 —€)ic1 +€K2)] dpgT dpge.  (18)

Proof. By using Definitions 8 and 10, we have

1 41
/0 /0 (€ = 7) [ DpgK((1 = T)r1 4 pTh2) —x; DpgK((1 = €)k1 + €x2)] dpgT dpge

_/ / { (1— 1)k + ptia) — K((1 — q7)K1 + qTK2)
(p—q) (k2 —x1)T
K((1—pe)x1 +exp) — K((1 — ge)x1 + gexy)

(p—q)(k2 —x1)e o dpac
R
i B _
/ / K((1— pe)xy Jr(peKz))(Kle—((Kll) qe)x1 + gexs) dp T dp e
1 B _
_/ / K((1—p7)ry "’(ZTK?)(KZK_((;) q0)K1 +47H2) dpqgT dpq€

T 1 2[K((1 — pe)x exy) — K((1 —ge)x €K
Nt p)lgriqizw_f{ge ge ) tae)l g g, e (19)
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We observe that

//e[IC (1—pr)Kk1 + ptiz) — K((1 —q7)x1 + gT162) ] dotodoe
(=) (x — )7 pas ot

LE((1 = pr)Kr1 + pxc 1 LK((1—g1)K1 + g7
7/6,,,,/ POk +p z)odﬂ_/oedp,qe/ (A= qom +qt2) ) o

(p—q) (k2 —x1)7T

(p—aq) (k2 —x1)T
(P ﬂ) o0 (( i]") qn > 0 (( qn+1) qn+1 )
_— 1—— |k + K — K1+
Ky — K1 nz‘b p2n+2 ng%) pn 1 P 2 V;) pn+1 1 pn+1 K2
(- ) £ e )
IC 1——K+—K Kl{({1-+ )k + —x
Bhata—x) ng p" 1 2 n; g )t ik
_ K(xa) — K(x1) 20
[2]pq(r2 —x1) (20)
and
LE((1 - pe)ry +peK2) K((1 — gs)K1 + gexy)
I =) —m) Apa ™ dpa€
LE((1 — pe)rr + pexs) LIC((1 — gs)x1 + gexy)
- d / d / d
/ T /o (p—ple—x) "L P T p—pe-m) °°
S - 4" . . > g g g
= DS T L ) - (1 5 e )
I S R _q1 " N 1y 4" _1 [
Ta-m pnzgp"lc«l P”)Kﬁp”Kz qzlp"K BT T

= n=

1 1 1 1\& gt q" q"

= -K(x 7(777) E —K<<17—>K + —K
|:q (2) q p ;g Opn pn 1 pn 2

Ky — K1
) /(1—p)xl+pxz K(x) gy dpt + K(x2) . 1)

(2 — 17)

Similarly,

/1 /1 K((1—pt)x1 + ptie) — K((1 — g7)K1 + q7%2) o
(p—q) (k2 —x1) pa T 4pq

LE((1 = pr)xy + ptia) — K((1 — q7)51 + gTK2)
— d
= J) e | (=)0 —x1) paT
(1-p)x1+
_ 1 . / p)K1+pK2 ]C(x) Kldp,qx T ,C(K2) . (22)
pa(ra —x1)" Jr q(r2 — x1)

and
((1 — pe)xy + pexy) — K((1 — ge)x1 + gexy)]
/ / (1—q)(x2 —x1)e dpaT dpge
1 _ _ —
= [ e [ O pee) —K (O e e
(p—4) (k2 —x1)e

K(x2) — K(x1)
[2] p.q (KZ - Kl) - )

The equalities (20)—(23) give

/ / ) [ Dp,gK((1 = 7)1 + pTia) —x DpgK((1 — pe)icy + pera)| dp T dpge
2 (1-p)rx1tpxa 2K (x2) 2[K (1) — K(x1)]
= K(x) g, dpgx — + . (24
. I = R

Multiplying both sides of (24) by M, we get (18). O
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Lemma 5. Suppose that K : [k1,13] — R is a (p,q)"2-differentiable function on (x1,x3). If
2D, 4K is a (p, q)*2-integrable on (xq,x2). Then, the following identity holds:

o ) Rd, x — PRUa) +aK (k)
) el
- 7‘7("22*"1) ./01 ‘/Ol(e—T) [2DpgK((1 = T)ka + Ti1) — 2Dy K((1 - €)ka + €x1)] dpgT dpge.  (25)

K
1—p)Ka+pry ( 2lpq

Proof. The proof is directly followed by Definitions 9 and 11. We omit the details. [J

Theorem 7. If we suppose that all of the criteria of Lemma 4 are satisfied, then the resulting
inequality, shows that |, DK ]” is a strongly convex functions on [k1, k| with modulus x > 1

foro > 1, then

1 (1—p)r1+pra q]C(Kl) =+ pIC(Kz) 11
‘W /;q K(x) mdpqx — T e < q(k2 — x1)[W5(p, q)]
1

X Wi (p, ) s DpgK (1) + Wa(p,0) | DpaK (2)|” = x(k2 = 1)*Wa(p,9) |, (26)

where
1215,0 (4lp.g +2) =202, (Blpg + [4lpa) + Blpg4lpg

W) = 2Ry Blyaliloa

2020 (Bl — lpa) + Bl (235 — B3lpa)
WZ(P/ LI) - [2]%#[3}%{1[4 pg

_ 2[2]pq[[4lpq — Blpa] + Blpal2]p.a[8lpg — [4]pa]
Walpra) = 25031 @[5

B 2(2]p,4([3]pg — [2]pg) + [4]pq([2];20,q - [3]%‘1)
W4(P/ 4) - [2]%,‘7 [3}%‘7 [4 pa
 2[2pq([4lpg — Blpal + Blpal2]p.a[3]pg — [4]p.4]

21,431 p.9[4]p,4[51p.q

Proof. Taking modulus on Equation (18) and using the power-mean inequality, we have

1 (A=p)rrtpe qK(x1) + pK(x2)
. doox —
‘P(Kz — K1) /x () i dpa 2lp4

1
Ky — K 1 /1 1=z
< % (/(; A ‘6 — T‘ dp/qT dp,q€>

1 1
. { (/0 /o e = T[] 5 DpgK((1 = T)k1 + Tx2) |7 dp g7 d,,,qe>

1

T

U=

}. (27)

1 41
+ </0 /0 le = T|| 5, Dp,g (1 — €)1 + €x3) ]U dpgT dp,qe>
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Using the strongly convexity of |, Dp,sK|” on [k1, k2], we obtain

1 r1
/o /o le =7/ x DpgK((1 = D)1 + 72) |7 dpgT dpge
1 1
< |K1Dp/qK(K1)|U/O /0 le = 7[(1 = 1) dpqT dpge

1,1 1 r1
+ 0 Dpak )| [ [le =t dpyt dyge—xta—x)? [ [[le=tit(1=1) dyy7 dpge. (28)

By using Definition 10,weget2(% — %)l - (L — l) = 1 (wz 4 2xy — 2xz — way)

w xy oz wxyz

1 1
Wi(p,q) :/0 A le—T|(1—1) dpgT dpge
—/01<2/0€(€—T)(1—T) dp,q'r_/ol(e—'c)(l—'c) dp,qr> dp,q€

:/01<2/0€<€—€T—T+T2) dp,qT—/()1(€—€T—T—|—T2)dp,q”r> dpg€e

- /ol (2 (62 - [Ze]:q - [26]; i [3€];> - <€ - [Z]GM - [2}1p,q i [3]11%)) i

9
[2]127q([4]pq+2) 2[2 (3 + [4]p9) + Blpaldlpa

B 27 Blpalhs @
Wa(p,q) = / / € = T|T dpgT dpge
_ ! 3 [[2]pg — [Blp4] € 1 .
o [ 2 [2]pq[3]pq [z]pq+ [3]10171 dpq
al +1

2
= it I Sl “1.(30)

1 1
Ws(p,q) :/ / € = 7|72 dp,T dpge
1
_/ ( / e—1)t* d qT—/ (e — )72 dp,q”r)dp,qe
0
1
_/ ( / €T —1'3) dp’qT_/o (erz—r3)dp,qr>dp,qe

_ g (e 1
- [( ) (mw [41p,q>]d””€

_ 2( 11 ) 1 _( 1 1 )
Bl,, [@,,)B,, \[2,,8,, [,
[

_ 2[2]pq[[4lpg — Blpa] + 5lpa[[2]p4[8]pa [4];7,!1}' (31)

21p.4(3)p.a[4]p.4[5]p.q
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q) = /01 /01|e— T|t(1— 1) dpqT dpge (32)
=Wa(p,q) —Ws(p,q) (33)
_ 2020 (Bl [212pq> (45 (12131~ Bloa) o
212, Blpaldlpg
 2[2]pq[[4lpq — Blpag] + Blpall2]p — [4lp4]
2Byl Blpa (39)

Applying (29)—(32) in (28), we get

1 41
/0 /0 le = 7|k, Dpg K((1 — €)1 +€K2)|U dpgT dpge
< i Dp.gK (1) |"Wi (p, 9)
+ |1y DpgK(12)| "Wa(p, q) — x (k2 — k1)*Wa(p,q). (36)

Similarly, we also observe that

1 41
/0 /0 le = 7|k, DpgK((1 — €)1 +€K2)|U dpgT dpge
< |, Dp.gK (1) |"W1 (p, 9)
+ |1y DpgK(k2)|"Wa(p, q) — x (k2 — k1)*Wa(p,q). (37)

We also have

11 1 . )
:/0 /0 le —T|dpqT dp,qez/ <—2/ (t—e¢) d,,,qr—k/o (t—e¢) dp,,,r) dp g€

_/ ( [1-[2lp,] _€+1) dwezw. (38)

[Z]p g 2]pq [2]p,[3]p.q
Applying (36)—(38) in (27), we obtain the desired inequality. O

Corollary 2. If o = 1 together with the assumptions of Theorem 7, we obtain

1 (1-p)r+prx qK (k1) + pK(x2)
K2—K1/K KOsy = 2] =t
% [Wl(P,Q)\mDp,q’C(Kl)’ + W2 (p, 9) i, DpgK(K2) | — x(k2 — 11) W4(p,q)}, 39)

where W1 (p,q), Wa(p,q) and Wy(p, q) are defined in Theorem 7.

Corollary 3. As p = 1and g — 1~ in Theorem 7, we get the inequality

1 /‘Kz K (x)dx — K(x1) —;— K(x2)

K2 — K1 Jiy

1—% ! (x o4 (% o X — K 2 %
S(Kzi,q)@ [mm +IK )" e n} (o)

Corollary 4. Suppose that the assumptions of Theorem 7 with o =1, p = 1 and lettingq — 17,
we obtain the inequality

1 2 _ K(x1) + K(x2)
p— /K1 K(x)dx —

< (2 ) [Wmn FI (e mz]_ (41)
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Theorem 8. If we suppose that all of the criteria of Lemma 4 are satisfied, then the resulting
inequality, shows that |, DMIC|H2 is a strongly convex functions on k1, k| with modulus x > 1
for a% + (%2 =1, then

1

qK(x1) + pK(r2)

1 (I=p)x1+pr, -
/ (3) g — TG < gl = ) M)

‘p(K2_K1) JK1

1

[2]p9 = 1|5, Dpa (k1) | + [, DpgK(x2)| ™ _ X2 — %1)° (Bl — [2pa] ) :
" < 2l 21p4Bloa e

where

M(p,q) = (9—p) i (—1)m-1 (B+gn it — gt —2gP ! — P )y (0 — 1) -+ (0 —m+1)
P (gt —pntl) = m! ([Z]Z}qﬂ'ﬂrl) (g1 — prmt1) ’

Proof. Taking modulus on Equation (18) and using Holder inequality, we have

(1=p)x1+pr
1 / 1+pK2 . Kldp X q]C(Kl) +PIC(K2)
Ky — K1 2

1—L
q(KZ 7 Kl) 1 1 01
< 2(/0 /0 le =TI dpgT dpge
! ! [} ‘7172
X /0 /0 |K1 Dprq’C((]‘ - T)Kl + TK2)| dp,qT dp’qe
1
! ! [} 6
+ /0 /0 |l Dp,gKC((1 = €)x1 + exa) | dp g dpge . (43)

We now evaluate the integrals involved in (43). We observe that

1 41 1/ re
% T d :/(/—‘fuz )d
/0 /0 le = 7™ dpgT dpge= | | | (€—T)" dpgT | dpge
o 1 € o
+/ (/ T—¢) dpﬂ) dmez/o (/0 (e—1) dnﬂ) dpqe
1
+/ (/ T—¢)" dpqr) dpqur/ (/0 (t—e)n dp,qT) dpge.  (44)

Consider
1 € o
./0 (/0 (e—1) dwﬂ) dpqe
_ P—9q B 1 o@-1) 1
- pritl = ot {1 ! [Z]M + Y [3]%‘1

_ (P q m1(71((71—1)~~~(01—m+1)
= q(71+1 _ q171+1 E m!(perl _ qm+1) , (45)
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1/ re 1 /1
/0 (/0 (t—e)™ d,,/ﬂ) dp,qe:/ / (t—€)™ dpge dpgt
qt
qT
—/ / T—e Vdpgedp,T— / / T—e Vdpge dpgT

m-1_01(e1—=1)---(on —m+1)
B e e

ap—q9° (—1y" q"o1(cp —1) - (o —m+1)
p¢71+1 _ q¢71+1 . m!(perl _ qm+1)

(46)

2 gym1 oo —1) (o —m+1)
R e

Using the strongly convexity of |, Dp,K|” on [x7, %3], we obtain

1 01
/0 /0 |l Dpg k(1 — )it + TK2) | dpgT dpge
1
< |t Dpgk(x1)|? / (1-1) dp,qrﬂ,(le,q/c(Kz)VZ/o T dy,t

1
—x(xp — K1) /o /0 (1—=71)7T dpyT dpge
_ [@lpg = Ul Dpgk 1) + 5, DpgK(k2) | x(k2 = 51)* [Blpg — [2]pa] . 48)

2lpa 21p.qBlpa

and similarly, we get

1,1
/0 /0 |K1Dm’C((1 —€)Kq +€K2)|‘T2 dpqgT dpg€

< [[21p.g = 1| DpgK (k1) | + |1y DpgK (k2)| — x(1e2 = x1)* [Blpg — 2lpa]
B 2]p.9 2]5,4(3pq

Making use of (44) and (49) in (43), we get the required result. [

(49)

Theorem 9. If we suppose that all of the criteria of Lemma 4 are satisfied, then the resulting
inequality shows that |y, DMIC]U is a strongly quasi-convex functions on (K1, k| with modulus
x> 1foro > 1, then

1 /(1—P)K1+PK2 qK(x1) + pK(x2)
- - X) g dpgX —
o ) s o

< (2 — ) [Ws(p, )] % [Z(p, ) Ws(p, ) = x(02 = 1) Wa(p,0)] ", (50)

Q=

where

Z(p,q) = max{‘Kle,qlC(Kl) 7
and Wy(p,q), Ws(p, q) are defined in Theorem 7.

K1 Dp,qIC(Kz) ‘0—},
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Proof. Taking modulus on Equation (18) and using the power-mean inequality, we have

1 /(1P)K1+PK2 qK(x1) + pK(x2)
K

— X) ki dpgX —
‘P(Kz—Kl) 1 ) radpa 2y

1
Ky — K 1,1 1=

1 .1
x {(/0 /0 le = 7|, DpgK((1 — 7)1 —|—TK2)’0 dpgT dme>

1
o

Q=

SIS
+(/0 /0 le — THKle,qIC((l —€)Ky +€K2)’U dpqT dp,qe> } (51)

Using the strongly convexity of ’m DyqK |U on [k1, k|, we obtain

[
’

i Dp,g K (1= T)iq + TK) |7 < max{‘,q DK (k1)

wDpgk()|7} = (k2 = x1)*T(1 = 7) (52)

and

[
7

ki Dp,g K (1 — €)1 + ex2)|” < max{ |5, Dp,g K (ic1)

1 DpgK ()|} = X2 — x1)%e(1 - ). (53)
Applying (32), (38), (52), and (53) in (51), we get the desired result. [

Corollary 5. Letting p = 1 in Theorem 9, we obtain

1 2 _ 9K() + K(x2)
K2 — K1 /Kl K0 rdgx [2]4

< (k2 — 1) (Ws(1,9))' 77 (2(114)(Ws(1/q)) = x(r2 — K1)2W4(1/t7)) , (54)

Q=

where
Wa(l,q) = @+ +9* —q+1)
ST P 38 607 + 940 + 115 + 11g* +9¢° + 642 + 37 + 1
2q
Ws(1,q) =
W) = e oyt

g
7

Z(1,q) = max{|K1DqlC(K1)

Kqu/c(xz)r’}.

Corollary 6. Letting p = 1 in Theorem 9 together with o = 1, we obtain

1 2 g (1) + K(x2)
p— /K1 KC(x) ydgx — 1[2]q )

< g0 — 1) (Z(1,9) (Ws(1,9)) — x(e2 = 11" Wa(1,9)),

where

@+ +q* —q+1)
7° +3q% + 647 +9q° +114° + 114* + 9¢% + 64 + 37 + 1

Wy(1,9) =

29
Ws(1,9) =
s(10) P+292+29+1

Z(1,9) = max{|x, DgK (1),

K1 DqIC(Kz) | }



Entropy 2021, 23, 1238

16 of 21

Theorem 10. If we suppose that all of the criteria of Lemma 5 are satisfied, then the resulting
inequality, shows that |*2 DMIC]‘T is a strongly convex functions on [k1, k| with modulus x > 1
for o > 1, then
: /K2 pK(r1) +4K(x2) -1
_ K(x)®dyx — ———"—=01 < qg(xy — k1) [W5(p, v
‘P(Kz — K1) Jpri+(1-p)rz () g 2]y = 0 =) [Ws(p.a)

X [W(p, ) xi DpgK (k)| + Wa(p,0) | Dpg K (2)|” = x(k1 = 2)*Wa(p,9) |, (55)
where W1 (p,q), Wa(p,q), W3(p,q) and Wa(p, q) are defined in Theorem 7.

Proof. The desired inequality (55) can be obtained by following the strategy applied in the
proof of Theorem 7 and considering the Lemma 5. [

Theorem 11. If we suppose that all of the criteria of Lemma 5 are satisfied, then the resulting
inequality shows that |*2 DMIC]‘T2 is a strongly convex functions on [k1, k2] with modulus x > 1
for (7% + (7% =1, then

e S ) 3~ %ﬁfc(m < gk — 1) M(p, )]
X HZ]p,q - 1] |K1DPrL7K:(K1)|‘72 + |K1Dp,qIC(K2)}(72 - X(KZ _ K1)2 [[B]p,q _ [Z]M] % (56)
(2]pq 2154B]pq ,

where M(p, q) is defined in Theorem 8.

Proof. The desired inequality (56) can be obtained by following the strategy applied in the
proof of Theorem 8 and considering the Lemma 5. O

Theorem 12. If we suppose that all of the criteria of Lemma 5 are satisfied, then the resulting
inequality shows that [*2D,, ,K |‘7 is a strongly quasi-convex functions on (K1, k2] with modulus
X >1foro > 1, then

1 kg o PR(K1) +K(x2)
‘ p(x2 —x1) /PKlJr(l*P)Kz K) g 2lp4
< 2200 ()~ (S(,0) (W)  x(s2 =50 Wap0)) ) 67)
where

g
7

S(p,q) = max{ 2Dy, g K (1)
and Wy(p,q), Ws(p, q) are defined in Theorem 7.

2Dk ()| },

Proof. The desired inequality (57) can be obtained by following the strategy applied in the
proof of Theorem 9 and considering the Lemma 5. [

3. Examples

Some examples are given to illustrate the investigated results and Figure 1 shown the
comparison of error and error bound in (26), Figure 2 shown the comparison of error and
error bound in (42)and Figure 3 shown the comparison of error and error bound in (50),
respectively.
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Example 1. Consider a function K : [0,3] — Rby K(x) = x* witho = 4. Then, [¢Dj4K(x) |4 =

‘ODMJC‘4 = [2]?,,qx4 is a strongly convex functions on [0, 3]. Then, KC satisfies the conditions of
Theorem 7 with 0 < q < p < 1, so the left side of (26) becomes

1 (=plrtpes gk (x1) + pK(x2)
' p(rz — K1) /K1 KO g = 2lpq
1 (1-p)0+3p gK(0) + pK(3) ‘
S P d. oy A0 T PRAS)
p(3—0) /0 ) mlpal 2]p.q

_ ‘1 _or
Bloa  [Plpg

and the right side of (26) with x = 2 becomes

7

1
T

(2 = 1) [Ws(p,0)]' % [Wa(p,0) sy DK (50) |7 + Wa(p, ) ey DK (i2)|” = (o2 = 1) W, )]

=

= 3= 0)[Ws(p, )" * [Wa(p, )|, DpgKO)|” + Walp, ), Dpa 3| — X3~ 02 Wa(p,)]

T2l -0 L [220a([B1g = R1pa) + Wl (1203 — Bla)
_3‘1{ 2]p.q13]p.g ] {81[2]’%[ Blpa4lpag

» [zm pa(Blpa = 21na) + W (12834 — Blna)

(2]24(3]p.9[4]pq

 2[2]pq[[4]pq — Blpa) + Blpal2]paBlpg — 4lpal ! (58)
(2]p,4[31p.q[41p.4(5]p .

1.0

Figure 1. Comparison of error and error bound in (26).
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Example 2. Consider a function KC : [0,1] — Rby K(x) = 1 — x with oy = 05 = 2. Then,
l0Dp,aK(x) }4 = |0Dpq(1 —x) |4 = 1is a strongly convex functions on [0,1]. Then, K satisfies
the conditions of Theorem 8 with 0 < q < p <1, so the left side of (42) becomes
1 (=plritpr qK(x1) + pK(x2)
—_ K(x), dpgx —
‘p(KZ —Kl) 1 ( )Kl P [Z]P/q
1 (1-p)0+1p K(0) + pK(1
3 /0 K (x) xydpgx — M’

B p(1— [Z]nq
_ ‘ (2] pg —1 4
2]pq [2]p.q

and the right side of (42) with x = 3 becomes

2. (2.4 [3lp.q

_ 1 [12lpg —1]  3[Blpg — [2lpa] :
= AM(p.9) < 2]y 21p.4Blpa > - ©9)

26— k) M, q)}lf% < (12155 — 1] |5 PpaK(51)| ™ + [y Dpg K (k2) | x(k2 — x1)*[[3]pg — [2]p] ) =

where M(p, q) is defined in Theorem 8.
The series above can be shown to be convergent. The graph below shows that the LHS is
less than or equal to the RHS. Therefore, the inequality (42) is valid for the particular choice of

the function K : [0,1] — R defined by K(x) = 1 — x with oy = 0 = 2 and ‘ODMIC(X)‘4 =
|0Dp,q(1—x) }4 = 1, which is a strongly convex functions on [0, 1]

1.0

Figure 2. comparison of error and error bound in (42).
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Example 3. Consider a function K : [0,1] — R by K(x) = Lx? with o = 3. Then,

0D, K(x)|> = & |(p+ q)(x + 1) — 2" is a strongly quasi-convex functions on [—1,1]. Then
IC satisfies the conditions of Theorem 9 with 0 < q < p < 1, so the left side of (50) becomes

1 (1=p)r1+prz g (x1) + pK(x2)
- - K d _
‘P(Kz — K1) /K1 (), g 2]p.9
1 /2”‘1 2 gK(-1) + P’C(l)‘
= |— X% _1dpax —
2pJ 1 2] P
1 [8p®  8p? ]
= | = 2P 4op] -1,
‘3217 [[3] p.q [Z]p,q P

and the right side of (50) with x = 5 becomes

U=

9062 — ) [Ws(p, )]~ [Z(p,0)Ws(p, ) — x(k2 — 1) Wa(p,q)|

[ e [202h -1
‘”lmmmm] [ {23/ ”}[mmmm]
1 22]p,4 (18] — [2lpg) + [4]pg ([2];2% - [3]%!7)
5 AEREAT
_ﬂmﬁwm—mmku%ﬁmmmm—mmwr
ABICPACPRC |

From the graph below, it is obvious that the LHS is less than or equal to the RHS. Therefore,
the inequality (50) is valid for every strongly quasi-convex functions.

7

N =
N =

(60)

0.2

Figure 3. Comparison of error and error bound in (50).

4. Conclusions

Convex functions are represented in terms of different inequalities. Many of the
well-known inequalities are consequences of convex functions. Strong convexity is a
strengthening of the notion of convexity; some properties of strongly convex functions
are just stronger versions of known properties of convex functions. In this research, we
identified new results that are used to calculate (p, q)x, and (p, 9)*>—trapezoidal integral-
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type inequalities through strongly convex and quasi-convex functions. Furthermore, some
examples were presented to illustrate the outcome of the research.
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